规律总结(随机事件的概率)

合集下载

10-1 随机事件的概率汇总

10-1 随机事件的概率汇总

(4)事件 B“至少订一种报纸”中有这些可能:“只订甲报纸”“只订乙报纸”“订 甲和乙两种报纸”,事件 C“至多订一种报纸”中有这些可能:“一种报纸也不订” “只订甲报纸” “只订乙报纸” ,由于这两个事件可能同时发生,故 B 与 C 不是互斥 事件.(10 分) (5)由(4)的分析, 事件 E“一种报纸也不订”是事件 C 的一种可能, 故事件 C 与事件 E 有可能同时发生,故 C 与 E 不是互斥事件.(12 分)
25
题型3 · 互斥事件与对立事件的概率
解析: 一次射击不够8环的概率:1-0.2-0.3-0.1=0.4.
题型分类 ·典例研析
题型1 · 互斥与对立事件的判断
例1某城市的电信运营商有甲、乙两种电子报纸供居民们订阅,记事件A为 “只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”, 事件D为“不订甲报纸”,事件E为“一种报纸也不订”.判断下列每对事件是不 是互斥事件;如果是,再判断它们是不是对立事件. (1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E. . 思路点拨:分析各个事件中的子事件,然后看各个事件是否有交集,确定 是否互斥,若互斥再分析它们的并集,确定是否对立.
A∩B(或 AB)
A∩B=∅ A∩B=∅且 P(A∪B)=P(A) +P(B)=1
பைடு நூலகம்
对立事件
4. 概率的几个基本性质 (1)概率的取值范围: 0≤P(A)≤1 1 0 . . P(A)+P(B) . . (2)必然事件的概率 P(E)= (3)不可能事件的概率 P(F)= (4)互斥事件概率的加法公式 ①若事件 A 与事件 B 互斥,则 P(A∪B)= ②若事件 A 与事件 B 互为对立事件,则 P(A)= 1-P(B) .

随机事件及其概率(知识点总结)

随机事件及其概率(知识点总结)

随机事件及其概率一、随机事件1、必然事件在一定条件下,必然会发生的事件叫作必然事件.2、不可能事件在一定条件下,一定不会发生的事件叫作不可能事件.3、随机事件在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件.4、确定事件必然事件和不可能事件统称为相对于随机事件的确定事件.5、试验为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.二、基本事件空间1、基本事件在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.2、基本事件空间所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件.【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.三、频率与概率1、频数与频率在相同条件S下进行了n次试验,观察某一事件A是否出现,则称在n次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n =为事件A 出现的频率.2、概率对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率()n f A 稳定在某个常数上,则把这个常数称为事件A 的概率,简称为A 的概率,记作()P A .3、频率与概率的关系(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.四、事件的关系与运算1、包含关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,则我们称 事件B 包含事件A (或称事件A 包含于事件B ),记作B A ⊇(或A B ⊆).2、相等关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,并且如果事件B 发生时,事件A 一定发生,即若B A ⊇且A B ⊇,则我们称事件A 与事件=.B相等,记作A B3、并事件如果某事件发生当且仅当事件A或事件B发生,则我们称该事件为事件A与事件⋃(或A B+).B的并事件(或和事件),记作A B4、交事件如果某事件发生当且仅当事件A发生且事件B也发生,则我们称该事件为事件A 与事件B的交事件(或积事件),记作A B⋂(或A B⋅).5、互斥事件如果事件A与事件B的交事件A B⋂=∅),则我们称事⋂为不可能事件(即A B件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生.6、对立事件如果事件A与事件B的交事件A B⋂=∅),而事件A与⋂为不可能事件(即A B事件B的并事件A B⋃=Ω),则我们称事件A与事件B互⋃为必然事件(即A B为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件A包含事件B 类比集合A包含集合B;事件A与事件B相等类比集合A与集合B相等;事件A 与事件B的并事件类比集合A与集合B的并集;事件A与事件B的交事件类比集合A与集合B的交集……五、互斥事件与对立事件互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.1、互斥事件与对立事件的关系互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.2、互斥事件的概率加法公式(1)两个互斥事件的概率之和如果事件A 与事件B 互斥,那么()()()P A B P A P B ⋃=+;(2)有限多个互斥事件的概率之和一般地,如果事件1A ,2A ,…,n A 两两互斥,那么事件“12n A A A ⋃⋃⋃发生”(指事件1A ,2A ,…,n A 中至少有一个发生)的概率等于这n 个事件分别发生的概率之和,即1212()()()()n n P A A A P A P A P A ⋃⋃⋃=+++.【注】上述这两个公式叫作互斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.3、对立事件的概率加法公式对于对立的两个事件A 与B 而言,由于在一次试验中,事件A 与事件B 不会同时发生,因此事件A 与事件B 互斥,并且A B ⋃=Ω,即事件A 或事件B 必有一个发生,所以对立事件A 与B 的并事件A B ⋃发生的概率等于事件A 发生的概率与事件B 发生的概率之和,且和为1,即()()()()1P P A B P A P B Ω=⋃=+=,或()1()P A P B =-.【注】上述这个公式为我们求事件A 的概率()P A 提供了一种方法,当我们直接求()P B,再运用公式P A有困难时,可以转化为先求其对立事件B的概率()P A.=-即可求出所要求的事件A的概率()()1()P A P B4、求复杂事件的概率的方法求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.六、概率的基本性质1、任何事件的概率都在01之间,即对于任一事件A,都有0()1≤≤.P A2、必然事件的概率为1,不可能事件的概率为0.3、若事件A与事件B互斥,则()()()⋃=+.P A B P A P B4、两个对立事件的概率之和为1,即若事件A与事件B对立,则()()1+=.P A P B。

高二数学概率知识点总结

高二数学概率知识点总结

高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。

2. 必然事件:在一定条件下必然发生的事件。

3. 不可能事件:在一定条件下不可能发生的事件。

4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。

如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。

二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。

-每个基本事件出现的可能性相等。

2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。

三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。

-每个基本事件出现的可能性相等。

2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。

四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。

-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。

2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。

-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。

随机事件的概率与计算知识点总结

随机事件的概率与计算知识点总结

随机事件的概率与计算知识点总结概率是数学中一个重要的分支,用于描述事件发生的可能性。

在我们日常生活中,随机事件无处不在,了解概率与计算知识点能够帮助我们更好地理解和分析各种事件的发生概率。

本文将对随机事件的概率与计算知识点进行总结,帮助读者更好地理解和应用于实际问题中。

1. 概率的基本概念概率是描述随机事件发生可能性的数值,在0到1之间取值,0表示不可能发生,1表示必然发生。

对于一个随机事件E,其概率记作P(E)。

2. 事件的排列与组合在考虑多种事件同时发生的情况下,我们需要了解事件的排列与组合。

排列是指考虑事件中元素的顺序,而组合则只考虑元素的选择与不考虑顺序。

在计算排列与组合中,我们可以使用阶乘、组合数学公式等方法来求解。

3. 加法法则加法法则用于计算多个事件中至少有一个事件发生的概率。

如果事件A和事件B是互斥事件(即两者不能同时发生),则它们的概率可通过简单相加得到:P(A∪B) = P(A) + P(B)。

4. 乘法法则乘法法则用于计算多个事件同时发生的概率。

如果事件A和事件B是相互独立事件(即一个事件的发生不影响另一个事件的发生),则它们的概率可通过简单相乘得到:P(A∩B) = P(A) × P(B)。

5. 条件概率在一些情况下,事件的发生可能会受到其他事件的影响。

条件概率用于描述在给定其他事件发生的前提下,某个事件发生的概率。

条件概率可通过P(A|B) = P(A∩B) / P(B)来计算,其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。

6. 贝叶斯定理贝叶斯定理是描述事件的后验概率与先验概率之间关系的数学公式。

它以事件的条件概率为基础,并利用贝叶斯公式来进行计算,即P(A|B) = (P(B|A) × P(A)) / P(B),其中P(A)和P(B)分别表示事件A和事件B的概率。

7. 随机变量与概率分布随机变量是概率论中一个重要的概念,它可以用于描述随机事件的结果。

随机事件及其概率(知识点总结)

随机事件及其概率(知识点总结)

随机事件及其概率一、随机事件1、必然事件在一定条件下,必然会发生的事件叫作必然事件.2、不可能事件在一定条件下,一定不会发生的事件叫作不可能事件.3、随机事件在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件.4、确定事件必然事件和不可能事件统称为相对于随机事件的确定事件.5、试验为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.二、基本事件空间1、基本事件在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.2、基本事件空间所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件.【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.三、频率与概率1、频数与频率在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n=为事件A 出现的频率.对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率()n f A 稳定在某个常数上,则把这个常数称为事件A 的概率,简称为A 的概率,记作()P A .3、频率与概率的关系(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.四、事件的关系与运算1、包含关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,则我们称 事件B 包含事件A (或称事件A 包含于事件B ),记作B A ⊇(或A B ⊆).2、相等关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,并且如果事件B 发生时,事件A 一定发生,即若B A ⊇且A B ⊇,则我们称事件A 与事件B 相等,记作A B =.3、并事件如果某事件发生当且仅当事件A 或事件B 发生,则我们称该事件为事件A 与事件 B 的并事件(或和事件),记作A B ⋃(或A B +).如果某事件发生当且仅当事件A发生且事件B也发生,则我们称该事件为事件A 与事件B的交事件(或积事件),记作A B⋂(或A B⋅).5、互斥事件如果事件A与事件B的交事件A B⋂=∅),则我们称事⋂为不可能事件(即A B件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生.6、对立事件如果事件A与事件B的交事件A B⋂=∅),而事件A与⋂为不可能事件(即A B事件B的并事件A B⋃=Ω),则我们称事件A与事件B互⋃为必然事件(即A B为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件A包含事件B 类比集合A包含集合B;事件A与事件B相等类比集合A与集合B相等;事件A 与事件B的并事件类比集合A与集合B的并集;事件A与事件B的交事件类比集合A与集合B的交集……五、互斥事件与对立事件互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.1、互斥事件与对立事件的关系互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.2、互斥事件的概率加法公式(1)两个互斥事件的概率之和如果事件A 与事件B 互斥,那么()()()P A B P A P B ⋃=+;(2)有限多个互斥事件的概率之和一般地,如果事件1A ,2A ,…,n A 两两互斥,那么事件“12n A A A ⋃⋃⋃发生”(指事件1A ,2A ,…,n A 中至少有一个发生)的概率等于这n 个事件分别发生的概率之和,即1212()()()()n n P A A A P A P A P A ⋃⋃⋃=+++.【注】上述这两个公式叫作互斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.3、对立事件的概率加法公式对于对立的两个事件A 与B 而言,由于在一次试验中,事件A 与事件B 不会同时发生,因此事件A 与事件B 互斥,并且A B ⋃=Ω,即事件A 或事件B 必有一个发生,所以对立事件A 与B 的并事件A B ⋃发生的概率等于事件A 发生的概率与事件B 发生的概率之和,且和为1,即()()()()1P P A B P A P B Ω=⋃=+=,或()1()P A P B =-.【注】上述这个公式为我们求事件A 的概率()P A 提供了一种方法,当我们直接求()P A 有困难时,可以转化为先求其对立事件B 的概率()P B ,再运用公式()1()P A P B =-即可求出所要求的事件A 的概率()P A .4、求复杂事件的概率的方法求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.六、概率的基本性质1、任何事件的概率都在01之间,即对于任一事件A,都有0()1≤≤.P A2、必然事件的概率为1,不可能事件的概率为0.3、若事件A与事件B互斥,则()()()⋃=+.P A B P A P B4、两个对立事件的概率之和为1,即若事件A与事件B对立,则()()1+=.P A P B。

概率论公式总结

概率论公式总结

概率公式整理1.随机事件及其概率吸收律:AAB A A A A =⋃=∅⋃Ω=Ω⋃)(AB A A A A A =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:BA B A =⋃BA AB ⋃=n i ini iA A11===ni ini iA A11===2.概率的定义及其计算:)(1)(A P A P -= 若B A ⊂ )()()(A P B P A B P -=-⇒ 对任意两个事件A , B , 有 )()()(AB P B P A B P -=-加法公式:对任意两个事件A , B , 有 )()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i k j inj i j ini ini i A A A P A A AP A AP AP A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P)()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P全概率公式∑==ni i AB P A P 1)()()()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==ni i ik k B AP B P B A P B P 1)()()()(4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P kk (2) 二项分布 ),(p n B 若P ( A ) = p nk p pC k X P kn kk n,,1,0,)1()( =-==-*Possion 定理 0lim >=∞→λn n np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布)(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布),(b a U ⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b ax x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f xλλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ(3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布+∞<<∞-=-x ex x2221)(πϕ+∞<<∞-=Φ⎰∞--x t ex xtd 21)(22π7.多维随机变量及其分布 二维随机变量( X ,Y )的分布函数 ⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()( ⎰+∞∞-=dv v x f x f X),()(⎰⎰∞-+∞∞-=yYdudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y),()(8. 连续型二维随机变量 (1) 区域G 上的均匀分布,U( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x Ay x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X XYX0)()()(>=y f y x f y f YYX Y⎰⎰+∞∞-+∞∞-==dyy f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dxx f x y f dx y x f y f X XYY )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X XY =)(x y f XY)(),(x f y x f X =)()()(x f y f y x f X Y Y X =10.随机变量的数字特征 数学期望∑+∞==1)(k kkp xX E⎰+∞∞-=dxx xf X E )()(随机变量函数的数学期望 X 的 k 阶原点矩 )(kX E X 的 k 阶绝对原点矩 )|(|kX EX 的 k 阶中心矩 )))(((kX E X E - X 的 方差 )()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩 )(lkY X E X ,Y 的 k + l 阶混合中心矩 ()lkY E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩 )(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())(((X 的方差D (X ) = E ((X - E (X ))2) )()()(22X E X E X D -=协方差 ()))())(((),cov(Y E Y X E X E Y X --= )()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±=相关系数)()(),cov(Y D X D Y X XY =ρ。

概率论公式总结

概率论公式总结

率。分布函数 F(x) 表示随机变量落入区间(– ∞,x]内的概率。
1. 0 F(x) 1, x ;2。 F(x) 是单调不减的函数,即 x1 x2 时,有
F(x1) F (x2) ; 3 。 F() lim F(x) 0 , F() lim F(x) 1 ; 4 。
x
x
F(x 0) F(x) ,即 F(x) 是右连续的;5. P(X x) F(x) F(x 0) 。对于离散型
自由度为 n2 的 F 分布,记为 F~f(n1, n2).
F1
(n1 , n2 )
F
1 (n2 , n1 )
第四章 随机变量的数字特征
(1) 期望 一维 随 机 期望就是平均值 变量 的数 字特 征
函数的期望
离散型
连续型
设 X 是离散型随机变量,其分布 设 X 是连续型随机变
律 为 P( X xk ) = pk ,
乘法公式: P(AB) P(A)P(B / A)
乘法公式
更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 … An 1) 。
①两个事件的独立性
设事件 A 、 B 满足 P( AB) P( A)P(B) ,则称事件 A 、 B 是相互独立的。
W
服从自由度为
n

2
分布记为
i 1
W~ 2 (n)
2 分布
所谓自由度是指独立正态随机变量的个数,它是随机变量分布 中的一个重要参数。
2 分 布 满 足 可 加 性 : 设 Yi 2 (ni ), 则

随机事件与概率的计算知识点总结

随机事件与概率的计算知识点总结

随机事件与概率的计算知识点总结随机事件与概率是数学中的重要概念,在许多实际应用中得到广泛的运用。

下面将对随机事件与概率的计算知识点进行总结。

一、随机事件的基本概念随机事件指的是在一定条件下,结果具有不确定性的事件。

随机事件可以用集合论中的概念进行描述,即事件是样本空间中的一个子集。

二、事件的概率计算事件的概率是指某个事件发生的可能性大小。

概率的计算可以通过频率和几何概率方法进行。

1. 频率法频率指的是在重复实验中,某一事件发生的次数与总实验次数之比。

频率法计算概率的基本步骤是:进行大量实验,记录事件发生的次数,然后计算事件发生的频率。

2. 几何概率法几何概率是指事件发生的可能性与样本空间中所有可能事件的比值。

几何概率计算的基本原理是:事件发生的可能性与事件所占的样本空间的面积成正比。

三、常用概率计算公式在概率计算中,有一些常用的公式可以帮助我们计算事件的概率。

1. 事件的互斥与对立事件互斥事件指的是两个事件不能同时发生,对立事件则指的是两个事件中一个事件发生时,另一个事件一定不发生。

对于互斥事件,可以使用加法法则计算概率;对于对立事件,可以使用减法法则计算概率。

2. 事件的独立性与条件概率事件的独立性指的是两个事件的发生与否互不影响,可以独立计算概率。

条件概率指的是在另一个事件已经发生的条件下,某一事件发生的概率。

四、排列与组合的计算在随机事件与概率的计算中,常常需要用到排列与组合的计算方法。

1. 排列排列是指从若干个元素中取出一部分并按照一定的顺序排列的方式。

排列的计算可以使用阶乘的方法进行。

2. 组合组合是指从若干个元素中取出一部分并不考虑顺序的方式。

组合的计算可以使用组合数的方法进行。

五、事件的加法与乘法规则在复杂事件的计算中,我们需要使用事件的加法与乘法规则。

1. 加法规则加法规则指的是对于两个不互斥事件的概率,可以通过将两个事件的概率相加来计算它们的并集概率。

2. 乘法规则乘法规则指的是对于两个独立事件的概率,可以通过将两个事件的概率相乘来计算它们的交集概率。

概率论第一章总结

概率论第一章总结

第一章随机事件及其概率一、内容提要 (一).随机事件的概率1.随机试验:(i )在相同的条件下可以重复进行;(ii )试验有多种可能结果(iii )所有可能结果可以明确,但试验前不能事先预知哪个结果出现。

记为E2.随机事件:与随机试验结果有关的命题, 简称事件.记为A,B,C……不可能事件和必然事件也视为为随机事件分别记为 φ和Ω.3.基本事件:按照试验的目的和要求所确定的随机试验E 的一个直接可能结果ω称为基本事件或样本点.4.样本空间(基本事件集):试验E 的所有样本点ω构成的集合称为E 的样本空间或基本事件集,记为Ω.即 Ω.={ω}(二).随机事件的关系和运算1.事件的包含: 若事件A 发生必然导致B 发生.则称A 包含于B 记作 A ⊂B.2.事件的相等:对两个事件A,B.若A ⊂B.且B ⊂A.则称A 与B 相等.记作A=B3.事件的并:“事件A 与B 中至少有一个发生”的事件称为A 与B 的并(或和),记作A B 。

“n 个事件中至少有一个发生”的事件称为这个事件的并(或和).记作12....n A A A 简记为1n i i A =4.事件的差: “事件A 发生而B 不发生”的事件称为A 与B 的差记作A-B5.事件的交(积): “事件A 与B 都发生” 的事件称为A 与B 的交(积).记作A Bn 个事件12,...n AA A 都发生”的事件称为这个事件的交(或积).记作12...n A A A .6. 事件的互斥(互不相容):事件A 与事件B 不能同时发生,则称互斥.即AB φ=7. 事件的互逆(对立): 事件A 与事件B 必有一个发生,但不能同时发生,则称A 与B 互逆,记作A B =或B A = 即满足A B =Ω AB φ=8.完备事件组:若事件12,,,n A A A 必有一个发生,且12,,,n A A A 两两互不相容,即 12,n A A A =Ω ,且(, 1.2...,,)i j A A i j n i j φ==≠(三).概率的概念1.概率的古典定义:设E 为古典概型,其样本空间Ω包含n 样本点,事件A 含k 样本点,则称k/n 为 事件A 的概率,记作()/P A k n =2.概率的统计定义设在相同条件下重复进行同一试验,n 次试验中事件A 发生的次数为μ,如果随着试验次数的增大,事件A 发生的频率/n μ 仅在某个常数(01)p p << 附近有 微小变化,则称数p 是事件A 的概率, 即()P A p =.3.概率的公理化定义设A 为随机事件, ()P A 为定义在所有随机事件组成的集合上的实函数且满足下列三条公理:公理1 对任一事件A,有0()1P A ≤≤公理2 ()1P Ω= ()0P φ=公理3.对于两两互斥的可数个随机事件12,,,n A A A ..., 有1212(......)()()...()...n n P A A A P A P A P A =++++ 则()P A 称为事件A 的概率.(四).概率的性质1. ()1P Ω= ()0P φ=2. 对任意两个事件A ,B.有()()()()P A B P A P B P AB =+-若AB φ=,则()()()P A B P A P B =+3.对任意事件A,有()1(P A P A =-)4.对任意个事件12,,...,n A A A .有12(...)n P A A A 11()()n i i j i i j n P A P A A =≤<≤=-∑∑+1()i j k i j k n P A A A ≤<<≤∑-...+12(1)(...)n n P A A A -(-1)若i j A A φ= (,1,2...,)i j n i j =≠ 则121(...)()n n i i P A A A P A ==∑5.若B A ⊂,则()()()P A B P A P B -=-,且()()P A P B ≥(五).条件概率、 乘法公式1.条件概率 设A ,B 为随机试验E 的两个事件。

高中数学中的概率分布规律总结

高中数学中的概率分布规律总结

高中数学中的概率分布规律总结在高中数学课程中,概率分布是一个关键的主题,对于我们理解随机事件的规律,以及在实际问题中做出判断和决策,都有着至关重要的作用。

本文旨在对高中数学中的概率分布规律进行总结和回顾,帮助读者更好地掌握概率分布的基本知识和应用。

1. 随机变量和概率分布函数概率分布的核心在于随机变量的定义。

随机变量是指可能取多个不同值的变量,在概率分布中,我们将其与相应的概率联系起来,得到概率分布函数。

离散型随机变量的概率分布函数可以表示为:P(X=x_i)=p_i (i=1, 2, …, n)其中P(X=x_i)表示随机变量X等于x_i的概率,而p_i则为对应的概率值。

连续型随机变量的概率分布函数则采用概率密度函数的形式表示,通常记作f(x)。

在这种情况下,我们不可能计算出X等于某个具体数值的概率,而只能计算出在某个区间内的概率。

2. 期望和方差在概率分布的计算中,期望和方差是十分重要的概念。

期望是指随机变量在一定条件下取得各种可能的值所乘以对应概率后再相加得到的数学期望值,可以简单地理解为加权平均值。

离散型随机变量的期望计算公式为:E(X)=∑[x_i*P(X=x_i)]连续型随机变量的期望计算公式为:E(X)=∫xf(x)dx方差则是在期望的基础上计算随机变量取值与期望的差值的平方与对应概率的乘积,实际上是对随机变量的分布范围波动情况的度量。

若约离散型随机变量来讲,有:D(X)=∑(x_i-E(X))^2P(X=x_i)连续型随机变量的方差计算公式为:D(X)=∫(x-E(X))^2f(x)dx3. 常见概率分布类型概率分布有很多种类型,以下列举一些常见类型的概率分布:1. 伯努利分布伯努利分布是一种特殊的离散型概率分布。

这个分布的性质是,在只有两种可能结果的试验中,其中一种结果的概率为p,另一种结果的概率为1-p。

2. 二项分布二项分布是在n次独立重复试验中,成功的次数X的概率分布,其中每次试验的概率为p。

34:概率高三复习数学知识点总结(全)

34:概率高三复习数学知识点总结(全)

概率1.随机事件的概率(1)必然事件:在一定条件下,必然会发生的事件;(2)不可能事件:在一定条件下,肯定不会发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件.(4)随机事件的概率:对于给定的随机事件,A 在大量重复进行同一试验时,事件A 发生的频率n m会在某个常数附近摆动并趋于稳定,我们把这个常数常数称为随机事件A 的概率,记作).(A P 注:由定义可知,1)(0≤≤A P 必然事件的概率是1,不可能事件的概率是0.2.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B )相等关系若A ⊆B 且B ⊆A A =B并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件(积事件)若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件)A ∩B (或AB )互斥事件若A ∩B 为不可能事件(A ∩B =∅),则称事件A 与事件B 互斥A ∩B =∅对立事件若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,P(A)+P(B)=13.古典概型(列举法)(1)古典概型的两大特点:①所有的基本事件只有有限个;②每个基本事件的发生都是等可能的.(2)古典概型的概率计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是.1n 如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为.)(nmA P =例1-1【2020全国I 文】设O 为正方形ABCD 的中心,在D CB A O ,,,,中任选三点,则取到三点共线的概率为()A.51B.52 C.21 D.54例1-2【2016全国I 文】为美化环境,从红、黄、白、紫4种颜色的花中任取2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.31 B.21 C.32 D.65例1-3【2016江苏高考】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.答:1-1:A ;1-2:C;1-3:65.4.互斥事件和对立事件(1)互斥事件:不能同时发生的两个事件叫做互斥事件.一般地,如果事件n A A A ,,,21 中的任意两个都是互斥事件,则称事件n A A A ,,,21 彼此互斥.(2)互斥事件概率公式:如果事件B A ,互斥,那么事件B A +发生(注:B A +表示事件B A ,至少有一个发生)的概率,等于事件B A ,分别发生的概率的和,即).()()(B P A P B A P +=+推广:一般地,若n A A A ,,,21 彼此互斥,那么).()()()(2121n n A P A P A P A A A P +++=+++ 注:若A,B 不互斥,则).()()()(B A P B P A P B A P -+=(3)对立事件:如果两个互斥事件必有一个发生,那么称这两个事件为对立事件.事件A 的对立事件记为.A (4)对立事件的概率公式:).(1)(A P A P -=注:“至多”,“至少”的问题考虑反面(对立事件)往往比较简单.例2-1:某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56% C.46% D.42%例2-2:将一枚骰子连续抛掷两次,至少有一次向上的点数为1的概率是.答:2-1:C;2-2:.36115.事件的独立性(1)条件概率:一般地,对于两个事件A 和,B 在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率,记为).|(B A P 概率的乘法公式:).()|()(B P B A P AB P =注:事件AB 表示事件A 和事件B 同时发生.(2)事件的独立性①定义:一般地,若事件B A ,满足)()|(A P B A P =(即事件B 发生不影响事件A 发生的概率),则称事件B A ,独立.②性质:若事件B A ,相互独立,则事件A 与B ,A 与,B A 与B 都相互独立.③公式:事件B A ,相互独立的充要条件是).()()(B P A P AB P =④推广:若n A A A ,,,21 相互独立,则这n 个事件同时发生的概率为).()()()(2121n n A P A P A P A A A P =⑤区别:独立事件与互斥事件的根本区别在于是否能同时发生,如果不能那是互斥事件,如果能再满足)()()(B P A P AB P =则为独立事件.注:求条件概率的两个思路:思路一:缩减样本空间法计算条件概率,如求P (A |B ),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P (A |B )=n (AB )n (B )计算;思路二:直接利用公式计算条件概率,即先分别计算出P (AB ),P (B ),再利用公式P (A |B )=P (AB )P (B )计算.(3)全概率公式设n A A A ,,,21 是一组两两互斥的事件,,21Ω=n A A A 且,0)(>i A P ,,,2,1n i =则对任意的事件,Ω⊆B 有∑==ni i i A B P A P B P 1).|()()(我们称上面的公式为全概率公式.全概率公式是概率论中最基本的公式之一.6.离散型随机变量及其概率分布(1)随机变量:一般地,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,通常用大写拉丁字母Z Y X ,,(或小写的希腊字母ξ,η,ζ)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量可能的取值.(2)离散型随机变量的概率分布:一般地,假定随机变量X 有n 个不同的取值,它们分别是1x ,2x ,…,n x ,且()i i P X x p ==,1,2,,i n =⋅⋅⋅,①则称①为随机变量X 的概率分布列,简称为X 的分布列.也可以将①用表的形式来表示.X 1x 2x …nx P1p 2p …np 我们将表称为随机变量X 的概率分布表.它和①都叫做随机变量X 的概率分布.注:①),,2,1(0n i p i =≥;②121=+++n p p p ;③求随机变量的概率分布的步骤:1.确定X 的可能取值(1,2,)i x i =…;2.求出相应的概率()i i P X x p ==;3.列成表格的形式.7.常见离散型随机变量的概率分布(1)两点分布(0-1分布)若随机变量X 服从两点分布,即其分布列为X01P p-1p 则,)(p X E =).1()(p p X D -=(2)超几何分布一批产品共N 件,其中有M 件次品,任取n 件,其中恰有X 件次品,则事件}{r X=发生的概率为()r n r M N MnN C C P X r C --==,0,1,2,,r m = ,其中{}min ,m n M =,称X 服从超几何分布,记为),,,(~N M n H X 并将()r n r M N MnNC C P X r C --==记为).,,;(N M n r H X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --则N nM X E =)(;)1())(()(2---=N N n N M N nM X D (了解).8.二项分布(1)n 次独立重复试验(伯努利试验)一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 和,A 每次试验中.0)(>=p A P 我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.(2)二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为,X 在每次试验事件A 发生的概率均为,p 那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为),2,1,0()1()(n k p p C k X P k n kk n =-==-.此时称随机变量X 服从参数为p n ,的二项分布,记作).,(~p n B X(3)均值与方差若),,(~p n B X 则np x E =)(,).1()(p np x V -=注:超几何分布与二项分布的区别与联系(1)区别:是否有放回是两个的本质区别,有放回是二项分布,无放回是超几何分布;(2)联系:当总体容量较大时如流水线上,也可以用二项分布近似超几何分布.9.离散型随机变量的均值与方差(1)一般地,若离散型随机变量X 的概率分布为X 1x 2x…nx P1p 2p …np 其中,1,,,2,1,021=+++=≥n i p p p n i p 则有如下公式1.均值(数学期望):.)(2211n n p x p x p x X E ++==μ它反映了离散型随机变量取值的平.均水平....注:对于连续型变量通常取“组中值”来代替i x 计算期望.2.方差:.)()()()(22221212n n p x p x p x X V μμμσ-++-+-== (方差也可以用V(x)表示),它刻画了随机变量X 与其均值E (X )的平均偏离程度........3.标准差:.)(X V =σ注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度.方差或标准差越小,随机变量偏离于均值的平均程度就越小,稳定性就越好.(2)均值和方差的性质若随机变量b aX Y +=(b a ,为常数),则,)()(b X aE Y E +=).()(2X V a Y V =10.正态分布(1)正态曲线函数,21)(222)(σμπσ--=x e x f 其中实数μ和σ为参数(σ>0,μ∈R).我们称函数)(x f 的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交;当x 无限增大时,曲线无限接近x 轴.②曲线是单峰的,它关于直线μ=x 对称;③曲线在μ=x 处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示①若随机变量X 的概率分布密度函数为,21)(222)(σμπσ--=x e x f 则称随机变量X 服从正态分布,则记作),(~2σμN X .其中,参数μ反映了正态分布的集中位置,σ反映了随机变量的分布相对于均值μ的离散程度,此时=)(X E μ,=)(X D 2σ.特别地,当10==σμ,时,称随机变量X 服从标准正态分布,记作X~N (0,1).②若),,(~2σμN X 则如图所示,X 取值不超过)(x X P ≤为图中区域A 的面积,而)(b X a P ≤≤为区域B的面积.(4)正态总体在三个特殊区间内取值的概率值①P(μ-σ<X ≤μ+σ)=0.6826;②P(μ-2σ<X ≤μ+2σ)=0.9544;③P(μ-3σ<X ≤μ+3σ)=0.9974.注:在实际应用中,通常认为服从正态分布),(2σμN 的随机变量X 只取]3,3[σμσμ+-之间的值,这在统计学中称为σ3原则.在次区间以外取值的概率只有0.0026,通常认为这种情况几乎不可能发生.【解题规范】【2014江苏高考】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同。

概率公式总结

概率公式总结

一、随机事件和概率1、随机事件及其概率、随机变量及其分布1、分布函数性质P(X Eb)二F(b) P(a ::: X <b)二F(b) — F(a)2、散型随机变量3三、多维随机变量及其分布1、 离散型二维随机变量边缘分布 P i.=P(X=X j )=' P(X=X i ,Y=y j )=' pjP j=P(丫 = yj)=' P(X=X j ,Y=yj)=' pjjji i2、 离散型二维随机变量条件分布x y3、 连续型二维随机变量(X ,Y )的分布函数F (x, y)=匕打二f (u,v)dvdu4、 连续型二维随机变量边缘分布函数与边缘密度函数x ■: : ■::分布函数: Fx (x) f (u,v)dvdu y -beF Y (y) f (u,v)dudv5、二维随机变量的条件分布 s(yx)—XY (xy)fyp —四、随机变量的数字特征1、 数学期望■bo 鈕离散型随机变量: E(X) X k P k连续型随机变量: E(X ) = xf (x)dxk=1一北2、 数学期望的性质(1) E(C) =C,C 为常数 E[E(X)] =E(X) E(CX) =CE(X)pi j= P(X=xi 丫= yj)史二二上,i”P(Y =y j)P j.pj i= P(Y = yjX =x i)7 丫知P(X =X i )P i .密度函数:fx (x)二 f(x,v)dv_f?0■ho fY(y)二 f(u, y)du⑵ E(X _Y) =E(X) -E(Y) E(aX —b)二aE(X) _b EGX1 C n X n) ^汨*) C n E(X n)⑶若XY相互独立则:E(XY) =E(X)E(Y) (4)[E(XY)]2空 E2(X)E2(Y)3、方差:D(X) =E(X2) —E2(X)4、方差的性质2 2(1)D(C) =0 D[D(X)] =0 D(aX _b) =a2D(X) D(X) ::: E(X _C)2(2)D(X _Y) =D(X) D(Y) _2Cov(X,Y) 若 XY 相互独立则: D(X 二丫)= D(X) D(Y)5、协方差:Cov(X,Y) =E(X,Y) -E(X)E(Y) 若 XY 相互独立则: Cov(X,Y)=06、相关系数:P XY = P(X,丫) = Cov(X,Y)若XY相互独立则:P XY =0即XY不相关W(X)jD(Y)7、协方差和相关系数的性质(1) Cov(X,X) =D(X) Co VX,Y) =Co VY,X) ⑵ Cov(X i X2,Y) =Cov(X i,Y) C OV(X2,Y) Cov(aX c,bY d) =abCo%,Y) 8、常见数学分布的期望和方差五、大数定律和中心极限定理1、切比雪夫不等式若 E(X) ==D(X) =;「2,对于任意0 有 P{X -E(X) 一 } 一卫孚或 P{X -E(X) :: } 一1-卫冷91n1nXT X n相互独立且n T旳时,丄瓦Xi ― 丄瓦E(X i) n y nid2、大数定律:若⑸样本k 阶中心距:n1 _— k B k 二M k (X i -X)k,k =2,3…⑹次序统计量:设样本 (人必2…X n )的观察值 区也…冷),将“X ?…冷按照由小到大的次序重新排列,得到X (1)岂乂⑵乞…岂Xg ,记取值为X(Q 的样本分量为X(Q ,则称X (1)岂X (2) <<X (n)为样本以皿 X .)的次序统计 量。

随机事件的概率知识点总结

随机事件的概率知识点总结

随机事件的概率知识点总结事件的分类 1、确定事件必然发生的事件:当A 是必然发生的事件时,P (A )=1 不可能发生的事件:当A 是不可能发生的事件时,P (A )=0 2、随机事件:当A 是可能发生的事件时,0<P (A )<1 概率的意义一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。

概率的表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P 概率的求解方法1.利用频率估算法:大量重复试验中,事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).2.狭义定义法:如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,考察事件A 包含其中的m 中结果,那么事件A 发生的概率为P (A )=nm3.列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.特别注意放回去与不放回去的列表法的不同.如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少?放回去 P (1和2)=92 不放回去P (1和2)=62(3,3)(3,2)(3,1)3(2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次结果321第二次(3,2)(3,1)3(2,3)(2,1)2(1,3)(1,2)1第一次结果321第二次4.树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.注意:求概率的一个重要技巧:求某一事件的概率较难时,可先求其余事件的概率或考虑其反面的概率再用1减——即正难则反易. 概率的实际意义对随机事件发生的可能性的大小即计算其概率.一方面要评判一些游戏规则对参与游戏者是否公平,就是要看各事件发生概率.另一方面通过对概率的学习让我们更加理智的对待一些买彩票抽奖活动.。

随机事件的概率计算方法总结

随机事件的概率计算方法总结

随机事件的概率计算方法总结随机事件的概率计算是概率论中的一个重要内容,通过计算随机事件发生的可能性,能够帮助我们做出合理的决策和预测。

本文将总结一些常见的随机事件概率计算方法,以供参考和学习。

一、频率法频率法是最常见的概率计算方法之一,它通过实际实验或观察的结果来确定随机事件发生的概率。

具体步骤如下:1. 设立实验并重复进行多次,记录事件发生的次数。

2. 将事件发生的次数除以实验总次数,得到事件发生的频率。

3. 根据频率来逼近概率,频率越接近某个特定值,则认为该事件发生的概率越接近该特定值。

频率法的优点在于可以通过实际实验来获得准确的概率值,但需要进行大量的实验才能得到较为可靠的结果。

二、古典概率法古典概率法适用于有限样本空间且每个样本发生的概率相等的情况。

具体步骤如下:1. 确定样本空间S,即所有可能的结果集合。

2. 根据样本空间中每个样本的可能性相等的假设,计算每个样本的概率P(A)。

3. 根据概率定义,将样本的概率相加得到所要求的事件的概率P(A)。

古典概率法的缺点在于假设每个样本发生的概率相等并且适用于有限样本空间的情况,因此不适用于复杂的实际问题。

三、条件概率法条件概率法适用于已知一些附加信息的情况,通过这些附加信息来计算随机事件的概率。

具体步骤如下:1. 确定附加信息,即已知的条件。

2. 根据附加信息来限定样本空间,将样本空间缩小为满足条件的样本集合。

3. 根据缩小后的样本集合中事件的发生次数与实验总次数的比值,来计算事件的概率。

条件概率法的优点在于能够利用已知信息来计算随机事件的概率,使得计算结果更加准确。

四、事件的相互关系在概率计算中,经常需要考虑多个事件之间的相互关系。

常见的事件相互关系有交集、并集、互斥等。

交集:事件A与事件B的交集表示同时发生事件A和事件B的情况,记为A∩B。

计算交集的概率可以使用条件概率公式:P(A∩B) =P(A) * P(B|A)。

并集:事件A与事件B的并集表示事件A和事件B中至少发生一个的情况,记为A∪B。

(完整版),概率论公式总结,推荐文档

(完整版),概率论公式总结,推荐文档

P( Ai Aj Ak ) (1)n1 P( A1 A2 An )
i 1
i 1
1i jn
1i jk n
3.条件概率 PB A P(AB) 乘法公式 P(AB) P(A)PB A (P(A) 0) P( A)
P( A1 A2 An ) P( A1 )P A2 A1 P An A1 A2 An1
(P( A1 A2 An1 ) 0)
n
全概率公式 P(A) P(ABi ) i 1
n
P(Bi ) P( A
i 1
Bi ) Bayes 公式 P(Bk
A) P( ABk ) P( A)
P(Bk )P( A Bk ) n P(Bi )P( A Bi ) i 1
4.随机变量及其分布
分布函数计算 P(a X b) P(X b) P(X a)
f (x, y)dx
fY X ( y x) f X (x)dx
fX Y (x y)
f (x, y) fY ( y)
fY X ( y x) fX (x) fY ( y)
fY X ( y x)
f (x, y) fX (x)
fX Y (x y) fY ( y) fX (x)
10. 随机变量的数字特征
E ( X E( X ))k (Y E(Y ))l
E(X kY l )
X ,Y 的 k + l 阶混合中心矩
X ,Y 的 二阶混合原点矩 E(XY ) X ,Y 的二阶混合中心矩 X ,Y 的协方差 E( X E( X ))(Y E(Y ))
X ,Y 的相关系数
E
(X
E( X ))(Y E(Y D( X ) D(Y )
f (x, v)dv
8. 连续型二维随机变量 (1) 区域 G 上的均匀分布,U ( G )

概率论与数理统计知识点总结

概率论与数理统计知识点总结




密度函数


分布函数
期望
( EX ) 方差( DX )
均 匀 分
f
(x)
b
1
a
,
a xb
0, x a
0, 其他
F
(
x)
x b
a a
,
a xb
EX a b 2
(b a)2 DX
12

1, x b
记作 X ~U[a,b]
n
n
n
P Ai 1 P(Ai ) 1 (1 P(Ai ))
i1
i1
i1
(4)伯努利概型
伯努利定理:在一次试验中,事件 A 发生的概率为 p(0 p 1) ,则在 n 重伯努利试验中,事
件 A 恰好发生 k 次的概率为: b(k; n, p) Ckn pkqnk ,其中 q 1 p . 在伯努利试验序列中,设每次试验中事件 A 发生的概率为 p ,“事件 A 在第 k 次试验中才首
数 n 有关),如果 n 时, npn ( 0 为常数),则对任意给定的 k ,有
lim
n
b(k; n,
pn
)
k k!
e
.
当二项分布 b(n, p) 的参数 n 很大,而 p 很小时,可以将它用参数为 np 的泊松分布来近
似,即有
b(k; n, p) (np)k enp . k!
4.常用的连续型分布
k
N2 N
nk
.这一近似关系的严格
数学表述是:当 N
时, N1
, N2
,且
N1 N
p,
N2 N
1
p ,则对任意给

概率论公式总结

概率论公式总结
, 其中 ,
则称随机变量 服从参数为 , 的二项分布。记为 。当 时, , ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
泊松分布
设随机变量 的分布律为
, , ,
则称随机变量 服从参数为 的泊松分布,记为 或者P( )。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
随机变量的函数
若X1,X2,…Xm,Xm+1,…Xn相互独立,h,g为连续函数,则:
h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。
特例:若X与Y独立,则:h(X)和g(Y)独立。
例如:若X与Y独立,则:3X+1和5Y-2独立。
函数分布
Z=X+Y
根据定义计算:
态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。

Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:
分布
设n个随机变量 相互独立,且服从标准正态分布,可以证明它们的平方和
W~
我们称随机变量W服从自由度为n的 分布记为
所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。
离散型
连续型
期望
期望就是平均值
设X是离散型随机变量,其分布律为P( )=pk,k=1,2,…,n,
(要求绝对收敛)
设X是连续型随机变量,其概率密度为f(x),
(要求绝对收敛)
函数的期望
Y=g(X)
Y=g(X)
方差
D(X)=E[X-E(X)]2,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•规律总结
1.客观世界中的事件分为随机事件、不可能事件、必然事件三类.
2.随机事件的统计规律表现在:随机事件的频率即此事件发生的次数与试验总次数的比值具有稳定性.即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.这个常数叫做这个随机事件的概率.概率可以看作频率在理论上的期望值,是概率的一种统计定义.
3.由概率的统计定义可以得到:必然事件的概率为1,不可能事件的概率为0,而任意事件A 的概率是在[0,1]内的一个数.虽然必然事件、不可能事件和随机事件是三类不同的事件,但在一定情况下又可以统一起来,这正反映了事物间既对立又统一的辩证关系.。

相关文档
最新文档