20.2 数据的波动程度(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 在问题1 中,检查人员从两家的鸡腿中各随机 抽取15 个,记录它们的质量(单位:g)如下表所示. 根据表中的数据,你认为快餐公司应该选购哪家加工厂 的鸡腿?
甲 74 74 75 74 76 73 76 73 76 75 78 77 74 72 73
乙 75 73 79 72 76 71 73 72 78 74 77 78 80 71 75
温故知新
回顾
2
方差的计算公式,请举例说明方差的意义.
1 2 2 2 s = [ (x1 -x) +(x2 -x) + +(xn -x) ] n
方差越大,数据的波动越大; 方差越小,数据的波动越小. 方差的适用条件: 当两组数据的平均数相等或相近时,才利用方差来 判断它们的波动情况.
生活中的数学
2
由 s < s 可知,甲加工厂的鸡腿质量更稳定,大小更均
匀.因此,快餐公司应该选购甲加工厂生产的鸡腿.
2 甲
2 乙
学以致用
问题2 一台机床生产一种直径为40 mm的圆柱形零 件,正常生产时直径的方差应不超过0.01 mm2,下表是 某日8︰30—9︰30及10︰00—11︰00两个时段中各任意 抽取10 件产品量出的直径的数值(单位:mm).
八年级
下册
20.2 数据的波动程度(2)
课件说明
• 本课是在学习方差意义的基础上,根据样本估计总 体的思想,学习用样本方差估计总体方差的方法, 并运用这种方法分析实际问题中数据的波动程度.
课件说明
• 学习目标: 1.能熟练计算一组数据的方差; 2.通过实例体会方差的实际意义. • 学习重点: 方差的应用、用样本估计总体.
课后作业
作业: 必做题:教科书第127页练习题; 选做题:教科书第128页综合应用第4题.
解:样本数据的方差分别是:
2 2 2 2 ( 74- 75 ) +( 74- 75 ) + +( 72- 75 ) +( 73- 75 ) s甲 = 3 15 2 2 2 2 ( 75 75 ) + ( 73 75 ) + + ( 7 175 ) ( 75 75 ) 2 s乙 = 8 15 由 x甲 =x乙 可知,两家加工厂的鸡腿质量大致相等;
问题1 某快餐公司的香辣鸡腿很受消费者欢迎.现 有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两 家鸡腿的价格相同,品质相近.快餐公司决定通过检查 鸡腿的质量来确定选购哪家的鸡腿. (1)可通过哪些统计量来关注鸡腿的质量? 每个鸡腿的质量;鸡腿质量的稳定性. (2)如何获取数据? 抽样调查.
生活中的数学
8:30—9:30 40 39.8 40.1 40.2 39.9 40 40.2 40.2 39.8 39.8
10:00—11:00
40
40
百度文库
39.9
40
39.9 40.2
40
40.1
40
39.9
试判断在这两个时段内机床生产是否正常.如何对 生产作出评价?
可借助计算 器完成计算.
课堂小结
(1)在解决实际问题时,方差的作用是什么? 反映数据的波动大小. 方差越大,数据的波动越大;方差越小,数据 的波动越小,可用样本方差估计总体方差. (2)运用方差解决实际问题的一般步骤是怎样的? 先计算样本数据平均数,当两组数据的平均数 相等或相近时,再利用样本方差来估计总体数据的 波动情况.
解:样本数据的平均数分别是: 74+ 74+ + 72+ 73 x甲 = 75 15 样本平均数相同,估计 75+ 73+ + 71+ 75 这批鸡腿的平均质量相近. x乙 = 75 15
生活中的数学
甲 74 74 75 74 76 73 76 73 76 75 78 77 74 72 73 乙 75 73 79 72 76 71 73 72 78 74 77 78 80 71 75
相关文档
最新文档