自动控制原理习题答案3剖析

合集下载

自动控制原理习题答案3

自动控制原理习题答案3
可求得与得值.
若实测结果就是:加10V电压可得1200得稳态转速,而达到该值50%得时间为1、2s,试求电机传递函数。
提示:注意,其中,单位就是
解依题意有:
(伏)
(弧度/秒) (1)
(弧度/秒) (2)
设系统传递函数
应有 (3)
由式(2),(3)

解出 (4)
将式(4)代入式(3)得
3-6单位反馈系统得开环传递函数,求单位阶跃响应与调节时间。
解由结构图写出闭环系统传递函数
令闭环增益,得:
令调节时间,得:。
3-4在许多化学过程中,反应槽内得温度要保持恒定,图3-46(a)与(b)分别为开环与闭环温度控制系统结构图,两种系统正常得值为1。
(1)若,两种系统从响应开始达到稳态温度值得63、2%各需多长时间?
(2)当有阶跃扰动时,求扰动对两种系统得温度得影响。
解依题
,;
,;

综合以上条件可画出满足要求得特征根区域如图解3-8所示。
3-9电子心脏起博器心律控制系统结构图如题3—49图所示,其中模仿心脏得传递函数相当于一纯积分环节。
(1)若对应最佳响应,问起博器增益应取多大?
(2)若期望心速为60次/min,并突然接通起博器,问1s钟后实际心速为多少?瞬时最大心速多大?
解依题,系统传递函数为
令 可解出
将代入二阶系统阶跃响应公式
可得
时,系统超调量,最大心速为
3-10机器人控制系统结构图如图3-50所示。试确定参数值,使系统阶跃响应得峰值时间s,超调量。
解依题,系统传递函数为
由联立求解得
比较分母系数得
3-11某典型二阶系统得单位阶跃响应如图3-51所示.试确定系统得闭环传递函数.

自动控制原理习题与答案解析

自动控制原理习题与答案解析

⾃动控制原理习题与答案解析精⼼整理课程名称: ⾃动控制理论(A/B卷闭卷)⼀、填空题(每空 1 分,共15分)1、反馈控制⼜称偏差控制,其控制作⽤是通过给定值与反馈量的差值进⾏的。

2、复合控制有两种基本形式:即按输⼊的前馈复合控制和按扰动的前馈复合控制。

为8、PI控制器的输⼊-输出关系的时域表达式是,其相应的传递函数为,由于积分环节的引⼊,可以改善系统的性能。

⼆、选择题(每题 2 分,共20分)1、采⽤负反馈形式连接后,则 ( )A 、⼀定能使闭环系统稳定;B 、系统动态性能⼀定会提⾼;C 、⼀定能使⼲扰引起的误差逐渐减⼩,最后完全消除;D 、需要调整系统的结构参数,才能改善系统性能。

2、下列哪种措施对提⾼系统的稳定性没有效果 ( )。

A 、增加开环极点;B 、在积分环节外加单位负反馈;C 、增加开环零点;D 、引⼊串联超前校正装置。

3、系统特征⽅程为 0632)(23=+++=s s s s D ,则系统 ( ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平⾯闭环极点数2=Z 。

4、系统在2)(t t r =作⽤下的稳态误差∞=ss e ,说明 ( ) A 、型别2C 、输⼊幅值过⼤;D 、闭环传递函数中有⼀个积分环节。

5、对于以下情况应绘制0°根轨迹的是( )A 、主反馈⼝符号为“-” ;B 、除r K 外的其他参数变化时;C 、⾮单位反馈系统;D 、根轨迹⽅程(标准形式)为1)()(+=s H s G 。

6、开环频域性能指标中的相⾓裕度γ对应时域性能指标( ) 。

A 、超调%σB 、稳态误差ss eC 、调整时间s tD 、峰值时间p t 7 系统①系统②系统③图2A 、系统①B 、系统②C 、系统③D 、都不稳定8、若某最⼩相位系统的相⾓裕度0γ>o,则下列说法正确的是 ( )。

A 、不稳定;B 、只有当幅值裕度1g k >时才稳定;C 、稳定;D 、不能判⽤相⾓裕度判断系统的稳定性。

自动控制原理第三章习题解答

自动控制原理第三章习题解答
σ % = e −πξ /
tp =
1−ξ 2
= e −π 0.6 /
1−0.62
= e −π 0.6 /
1−0.62
= 9 .5 %
π
1 − ξ ωn
2
=
π
1.6
= 1.96( s )
ts =
3-5
3.5
ξω n
=
3.5 = 2.92( s ) 1.2
设单位反馈系统的开环传递函数为
G ( s) =
0.4 s + 1 s ( s + 0.6)
s5 s4 s3 s2 s1 s0
1 12 35 3 20 25 16 80 3 3 5 25 10 25
有一对虚根,系统不稳定 3-13 已知单位反馈系统的开环传递函数
G ( s) =
K (0.5s + 1) s ( s + 1)(0.5s 2 + s + 1)
试确定系统稳定时的 K 值范围。 解:系统特征方程为
ε 0 ,试问 k1 应满足什么条件?
见习题 3-20 解答 3-2 设系统的微分方程式如下: (1)
&(t ) = 2r (t ) 0.2c
&&(t ) + 0.24c &(t ) + c(t ) = r (t ) (2) 0.04c
试求系统的单位脉冲响应 k(t)和单位阶跃响应 h(t)。已知全部初始条件为零。 解: (1) 因为 0.2 sC ( s ) = 2 R ( s ) 单位脉冲响应: C ( s ) = 10 / s 单位阶跃响应 h(t)
试求系统的超调量σ%、峰值时间tp 和调节时间ts。 解: h(t ) = 1 −

自动控制原理第三章答案

自动控制原理第三章答案
2 2
n
临界阻尼:ts 4.75T 4.75
1

4.75
n
1 0.95s 5
3-3 原系统传递函数为 G(s) 0.2s 1 , 现采用如题所示的负反馈方式,欲将反 馈系统的调节时间减小为原来的0.1倍, 并且保证原放大倍数不变,试确定参数 K0 , KH的值。 解:原系统传递函数 新系统传递函数
K 10
0
1 10K 10 (时间常数为
H
1 ) 10
K 0.9
H
问题 非标准形式 10K 0 1 1 10K H , 0 .2 s 1 Ts 1 1 10K H
3
3-4
已知系统的单位阶跃响应为 试求取系统的传递函数
y(t ) 1 e
t
e
2t
Y(s) X(s)
n
2
问题 1、没有完成 2、计算错误
0.146
8
1 KK
1
2
3-9 设题3-9图(a)所示的单位 阶跃响应如题3-9图(b)所示。 试确定系统参数K1,K2和a。
解:据题意
K K (s) s(s a ) K K K K s as K s 2 s 1 s(s a )
(s) s(0.1s 1)
K 1 s(0.1s 1) K 10K 0.1s s K s 10s 10K
2 2
对应二阶系统标准形式,取ζ=1,得
问题
1、没有求调节时间 2、临界阻尼,调节时间 计算错误
2 10 5
n n
5 10K K 2.5 10
t
p
0.1
1.1 1.0 100% 10% 1.1 根据二阶欠阻尼系统指标计算公式

自动控制原理第3章习题解答

自动控制原理第3章习题解答
g0sgsfskpskjs2系统位置误差系数为kplimgs在rt作用下系统的稳态误差essrr101kp在n1t作用下系统的稳态误差这时系统的开环传递函数g0sgsfskpskjs2系统位置误差系数为kplimgs在n1t作用下系统的稳态误差essn1在n1t和n2t同时作用下系统的稳态误差10r101kp胡寿松自动控制原理习题解答第三章n2t作用下系统的稳态误差这时系统的开环传递函数为
(2) k (t ) = 5t + 10 sin( 4t + 45 )
0
(3) k (t ) = 0.1(1 − e 解: (1) Φ ( s ) =
−t / 3
)
0.0125 s + 1.25
1
胡寿松自动控制原理习题解答第三章
(2) k (t ) = 5t + 10 sin 4t cos 45 + 10 cos 4t sin 45
3s 4 + 10s 3 + 5s 2 + s + 2 = 0
试用劳思稳定判据和赫尔维茨判据确定系统的稳定性。 解: 列劳思表如下:
s4 s3 s2 s1 s0
3 5 2 10 1 47 2 10 1530 0 − 47 2
由劳思表可以得到该系统不稳定。 3-12 已知系统特征方程如下,试求系统在 s 右半平面的根数及虚根值。 (1)
2ξω n = 70
ξ=
7 2 6
根据(3-17)
h(t ) = 1 +
e − t / T1 e − t / T12 + T2 / T1 − 1 T1 / T2 − 1
解:根据公式(3-17)
3
胡寿松自动控制原理习题解答第三章

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。

用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。

(2)弊端:不可以自动调理被控量的偏差。

所以系统元器件参数变化,外来未知扰动存在时,控制精度差。

2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。

它是一种按偏差调理的控制系统。

在实质中应用宽泛。

⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。

1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。

闭环控制系统常采纳负反应。

由1-1 中的描绘的闭环系统的长处所证明。

比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。

1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。

控制的目的是保持水位为必定的高度。

《自动控制原理》课后习题答案解析

《自动控制原理》课后习题答案解析

《自动控制原理》课后习题答案解析1.1解:(1)机器人踢足球:开环系统输入量:足球位置输出量:机器人的位置(2)人的体温控制系统:闭环系统输入量:正常的体温输出量:经调节后的体温(3)微波炉做饭:开环系统:输入量:设定的加热时间输出量:实际加热的时间(4)空调制冷:闭环系统输入量:设定的温度输出量:实际的温度1.2解:开环系统:优点:结构简单,成本低廉;增益较大;对输入信号的变化响应灵敏;只要被控对象稳定,系统就能稳定工作。

缺点:控制精度低,抗扰动能力弱闭环控制优点:控制精度高,有效抑制了被反馈包围的前向通道的扰动对系统输出量的影响;利用负反馈减小系统误差,减小被控对象参数对输出量的影响。

缺点:结构复杂,降低了开环系统的增益,且需考虑稳定性问题。

1.3解:自动控制系统分两种类型:开环控制系统和闭环控制系统。

开环控制系统的特点是:控制器与被控对象之间只有顺向作用而无反向联系,系统的被控变量对控制作用没有任何影响。

系统的控制精度完全取决于所用元器件的精度和特性调整的准确度。

只要被控对象稳定,系统就能稳定地工作。

闭环控制系统的特点:(1)闭环控制系统是利用负反馈的作用来减小系统误差的(2)闭环控制系统能够有效地抑制被反馈通道保卫的前向通道中各种扰动对系统输出量的影响。

(3)闭环控制系统可以减小被控对象的参数变化对输出量的影响。

1.4解输入量:给定毫伏信号被控量:炉温被控对象:加热器(电炉)控制器:电压放大器和功率放大器系统原理方块图如下所示:工作原理:在正常情况下,炉温等于期望值时,热电偶的输出电压等于给定电压,此时偏差信号为零,电动机不动,调压器的滑动触点停留在某个合适的位置上。

此时,炉子散失的热量正好等于从加热器获取的热量,形成稳定的热平衡状态,温度保持恒定。

当炉温由于某种原因突然下降时,热电偶的输出电压下降,与给定电压比较后形成正偏差信号,该偏差信号经过电压放大器、功率放大器放大后,作为电动机的控制电压加到电动机上,电动机带动滑线变阻器的触头使输出电压升高,则炉温回升,直至达到期望值。

自动控制原理---丁红主编---第三章习题答案

自动控制原理---丁红主编---第三章习题答案

⾃动控制原理---丁红主编---第三章习题答案习题3-1.选择题:(1)已知单位负反馈闭环系统是稳定的,其开环传递函数为:)1(2)s )(2+++=s s s s G (,系统对单位斜坡的稳态误差是: 3-2 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。

解Φ()()./(.)s L k t s ==+001251253-3 ⼀阶系统结构图如图3-45所⽰。

要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。

图题3-3图解由结构图写出闭环系统传递函数111)(212211211+=+=+=ΦK K sK K K s K sK K s K s 令闭环增益212==ΦK K ,得:5.02=K 令调节时间4.03321≤==K K T t s ,得:151≥K 。

3-4 设⼆阶控制系统的单位阶跃响应曲线如图所⽰。

如果该系统为单位反馈控制系统,试确定其开环传递函数。

图题3-4图解:由图知,开环传递函数为3-5 设⾓速度指⽰随动统结构图如图3-40所⽰。

若要求系统单位阶跃响应⽆超调,且调节时间尽可能短,问开环增益K 应取何值,调节时间s t 是多少图3-40 题3-5图解:依题意应取 1=ξ,这时可设闭环极点为02,11T -=λ。

写出系统闭环传递函数Ks s Ks 101010)(2++=Φ闭环特征多项式20022021211010)(++= +=++=T s T s T s K s s s D ⽐较系数有==K T T 101102200 联⽴求解得 ??==5.223-6 图所⽰为某控制系统结构图,是选择参数K 1和K 2,使系统的ωn =6,ξ=1.3-7 已知系统的特征⽅程,试判别系统的稳定性,并确定在右半s 平⾯根的个数及纯虚根。

(1)01011422)(2 345=+++++=s s s s s s D (2)0483224123)(2345=+++++=s s s s s s D (3)022)(45=--+=s s s s D(4)0502548242)(2345=--+++=s s s s s s D解(1)1011422)(2345+++++=s s s s s s D =0Routh : S 5 1 2 11 S 4 2 4 10 S 3 ε 6 S 2 εε124- 10 S 6 S 0 10第⼀列元素变号两次,有2个正根。

自动控制原理第3章 习题及解析

自动控制原理第3章 习题及解析

自动控制原理(上)习 题3-1 设系统的结构如图3-51所示,试分析参数b 对单位阶跃响应过渡过程的影响。

考察一阶系统未知参数对系统动态响应的影响。

解 由系统的方框图可得系统闭环响应传递函数为/(1)()()111K Ts Ks Kbs T Kb s Ts +Φ==++++ 根据输入信号写出输出函数表达式:111()()()()()11/()K Y s s R s K s T Kb s s s T bK =Φ⋅=⋅=-++++对上式进行拉式反变换有1()(1)t T bKy t K e-+=-当0b >时,系统响应速度变慢;当/0T K b -<<时,系统响应速度变快。

3-2 设用11Ts +描述温度计特性。

现用温度计测量盛在容器内的水温,发现1min 可指示96%的实际水温值。

如果容器水温以0.1/min C ︒的速度呈线性变化,试计算温度计的稳态指示误差。

考察一阶系统的稳态性能分析(I 型系统的,斜坡响应稳态误差)解 由开环传递函数推导出闭环传递函数,进一步得到时间响应函数为:()1t T r y t T e -⎛⎫=- ⎪⎝⎭其中r T 为假设的实际水温,由题意得到:600.961Te-=-推出18.64T =,此时求输入为()0.1r t t =⋅时的稳态误差。

由一阶系统时间响应分析可知,单位斜坡响应的稳态误差为T ,所以稳态指示误差为:lim ()0.1 1.864t e t T →∞==3-3 已知一阶系统的传递函数()10/(0.21)G s s =+今欲采用图3-52所示负反馈的办法将过渡过程时间s t 减小为原来的1/10,并保证总的放大倍数不变,试选择H K 和0K 的值。

解 一阶系统的调节时间s t 与时间常数成正比,则根据要求可知总的传递函数为10()(0.2/101)s s Φ=+由图可知系统的闭环传递函数为000(10()()1()0.211010110()0.21110H HHHK G s K Y s R s K G s s K K K s s K ==++++==Φ++)比较系数有101011011010HHK K K ⎧=⎪+⎨⎪+=⎩ 解得00.9,10H K K ==3-4 已知二阶系统的单位阶跃响应为1.5()1012sin(1.6+53.1t y t e t -=-)试求系统的超调量%σ,峰值时间p t ,上升时间r t 和调节时间s t 。

自动控制原理习题及其解答 第三章

自动控制原理习题及其解答 第三章

例3-1 系统的结构图如图3-1所示。

已知传递函数 )12.0/(10)(+=s s G 。

今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的倍,并保证总放大系数不变。

试确定参数K h 和K 0的数值。

解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。

一阶系统的过渡过程时间t s 与其时间常数成正比。

根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。

例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。

解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。

例3-3 设控制系统如图3-2所示。

试分析参数b 的取值对系统阶跃响应动态性能的影响。

解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。

动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。

解毕。

例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。

试确定系统的传递函数。

解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,4 30 t图3-34 二阶控制系统的单位阶跃h (t )而是3。

自动控制原理(孟华)第3章习题解答

自动控制原理(孟华)第3章习题解答

自动控制原理(孟华)第3章习题解答自动控制原理(孟华)的习题答案。

3.1.已知系统的单位阶跃响应为c(t) 1 0.2e 60t 1.2e 10t试求:(1)系统的闭环传递函数Φ(s)=?(2) 阻尼比ζ=?无自然振荡频率ωn=?解:(1)由c(t)得系统的单位脉冲响应为g(t) 12e 60t 12e 10t (t 0)(s) L[g(t)] 12__12 2 s 10s 60s 70s 6002n(2)与标准(s) 2对比得:2s 2 n nn 600 24.5,702 6001.4293.2.设图3.36 (a)所示系统的单位阶跃响应如图3.36 (b)所示。

试确定系统参数K1,K2和a。

(a) (b)图3.36 习题3.2图解:系统的传递函数为K12 nK1K2s(s a)W(s) K2 2 K2 2K1s as K1s 2 n n1s(s a)又由图可知:超调量Mp4 3133峰值时间tp 0.1 s自动控制原理(孟华)的习题答案。

代入得2n K1 1 21e30.1 2 n K K2解得:ln32;0.33,n10 2233.3,K1 n 1108.89,a 2 n 2 0.33 33.3 21.98,K2 K 3。

3.3. 给定典型二阶系统的设计性能指标:超调量p 5%,调节时间ts 3s,峰值时间tp 1s,试确定系统极点配置的区域,以获得预期的响应特性。

解:设该二阶系统的开环传递函数为2nG sss 2 n 20.05 p e33 则满足上述设计性能指标:ts nt 1 p2n得:0.69,n 1 n2由上述各不等式得系统极点配置的区域如下图阴影部分所示:自动控制原理(孟华)的习题答案。

3.4.设一系统如图3.37所示。

(a)求闭环传递函数C(s)/R(s),并在S平面上画出零极点分布图;(b)当r(t)为单位阶跃函数时,求c(t)并做出c(t)与t的关系曲线。

图3.37 习题3.4图解:(a)系统框图化简之后有C(s)2 s2 R(s)s 0.5s 2.252 s(s35j)(s j)22z1 2,s1,2零极点分布图如下:35j 2自动控制原理(孟华)的习题答案。

自动控制原理参考答案-第3章

自动控制原理参考答案-第3章

×100% = 35%
⇒ ξ = 0.32 ,又 t p =
π
ωn 1 − ξ 2 2 ⇒ K = ωn = 1.96 ; a = 2ξωn = 0.896
= 2.36 ⇒ ωn = 1.4 ;
题 3-5:某速度给定控制系统的动态结构图如题 3-5 图所示。在给定输入量为
r(t) = 10v 直流电压时要求期望的转速输出量为 c(t) = 1000r / min 。试问:稳态反馈
π ωn 1 − ξ
3
2
=
2 3 π = 0.73 ; 15
(∆ = 0.05) 或 ts = 4
ξωn
= 1.2
ξωn
= 1.6
(∆ = 0.02)
题 3-3: 题 3-3 图所示为一位置随动控制系统的动态结构图,输出量为电动机拖
动对象的旋转角度。将速度量反馈回输入端比较环节后构成负反馈内环,速度反 馈系数为τ。试计算:
胡尔维茨行列式 D = 0 5 0 1
10 0 6
0 − 10 10
0 0 0
D2 = 30 D3 = −300 D4 = −1800
0 0 5 0 − 10 D5 = 18000 胡尔维茨行列式非正定,系统不稳定. 题 3-7:已知三个控制系统的特征方程式如下,试应用劳斯稳定判据判定系统 的稳定性;对不稳定的系统要求指出不稳定的极点数;对存在不稳定虚根的要求
4 37
12 K − 40 100 K 70 K − 100
164 K − 1080 100 K 劳斯表: 37 11480 K 2 − 228900 K + 108000 1 s 164 K − 1080 0 s 100 K 若系统稳定则: 164 K − 1080 ⎧ >0 ⎪ 37 ⎪ 2 ⎪11480 K − 228900 K + 108000 >0 ⎨ 164 K − 1080 ⎪ 100 K > 0 ⎪ ⎪ ⎩ ⇒ k > 19.46 题 3-10:已知单位负反馈控制系统的开环传递函数为

自动控制原理第三章课后习题答案解析(最新)

自动控制原理第三章课后习题答案解析(最新)

完美WORD 格式格式专业整理专业整理 知识分享知识分享3-1(1) )(2)(2.0t r t c =(2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。

已知全部初始条件为零。

解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==F 单位脉冲响应:s s C /10)(= 010)(³=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(³=t tt c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s f单位脉冲响应:124.004.01)(2++=s s s C t et g t4sin 325)(3-=单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s C t et et c tt4sin 434cos 1)(33----=3-2温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。

若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=F Ts s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。

视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=F -F =îíì==11vT K用静态误差系数法,当t t r ×=10)( 时,C T Ke ss°===5.21010。

自动控制原理课后答案第3章

自动控制原理课后答案第3章

第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。

微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。

对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。

本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。

根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。

这里先引入时域分析法的基本概念。

所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。

由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。

当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。

3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。

下面先介绍常用的典型输入信号。

3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。

为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。

自动控制原理习题答案3

自动控制原理习题答案3

自动控制原理习题答案3自动控制原理习题答案3自动控制原理是现代工程领域中的一门重要学科,它研究如何利用各种控制方法和技术,使得系统能够自动地实现预期的目标。

在学习自动控制原理的过程中,习题是非常重要的一部分,通过解答习题可以帮助我们更好地理解和掌握相关的知识。

下面是一些自动控制原理习题的答案,希望能对大家的学习有所帮助。

1. 问题:什么是闭环控制系统?请简要描述闭环控制系统的基本结构。

答案:闭环控制系统是指在反馈的基础上进行控制的系统。

它由四个基本部分组成:被控对象、传感器、控制器和执行机构。

被控对象是需要进行控制的物理系统,传感器用于采集被控对象的状态信息,控制器根据传感器采集到的信息进行计算并生成控制信号,执行机构负责执行控制信号并对被控对象进行调整。

2. 问题:什么是传递函数?如何表示传递函数?答案:传递函数是描述线性时不变系统输入输出关系的函数。

它可以用 Laplace 变换来表示,一般形式为 G(s) = Y(s)/X(s),其中 G(s) 表示传递函数,Y(s) 表示输出信号的 Laplace 变换,X(s) 表示输入信号的 Laplace 变换。

3. 问题:什么是稳定性?如何判断一个系统的稳定性?答案:稳定性是指系统在无穷远处的输出是否有界。

对于线性时不变系统,可以通过判断系统的传递函数的极点位置来判断系统的稳定性。

如果系统的所有极点都位于左半平面,则系统是稳定的;如果存在一个或多个极点位于右半平面,则系统是不稳定的。

4. 问题:什么是根轨迹?如何利用根轨迹判断系统的稳定性?答案:根轨迹是描述系统极点随控制参数变化的轨迹。

通过绘制根轨迹可以直观地了解系统的稳定性。

根轨迹的形状和位置与系统的极点有关,如果根轨迹全部位于左半平面,则系统是稳定的;如果根轨迹经过右半平面,则系统是不稳定的。

5. 问题:什么是PID控制器?它的工作原理是什么?答案:PID控制器是一种常用的控制器,它由比例控制器、积分控制器和微分控制器三部分组成。

自动控制原理第三章课后习题答案解析(最新)

自动控制原理第三章课后习题答案解析(最新)

3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。

已知全部初始条件为零。

解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。

若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。

视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。

解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。

自动控制原理课后答案第三章

自动控制原理课后答案第三章
4 G(s) 4 2s 3 + 10s 2 + 13s + 1 = = Φ(s) = 4 1 + G(s) 1 + 2s 3 + 10s 2 + 13s + 5 2s 3 + 10s 2 + 13s + 1 ).特征方程 特征方程2 (1).特征方程2s 3 + 10s 2 + 13s + 5 = 0, 系数均大于零, ∴ 系统稳定. 系数均大于零,且10 × 13 > 2 × 5, 系统稳定.
环传递函数, 已知单位反馈系统的开 环传递函数, 的稳定性. 试用劳思判据判断系统 的稳定性. 50 ; G(s) = s(s + 1)(s + 5)
若要求右半s 若要求右半s平面闭环 极点数,则列Routh表 极点数,则列Routh表 : Routh 1 5 s3 6 50 s2 6 × 5 − 1× 50 1 <0 0 s 6 0 s 50 首列元素反号两次, 首列元素反号两次, 故 右半s 右半s平面闭环极点数 为2.
第三章重点
进行时域分析的基本方法:重点是二阶系统的时域响应、 进行时域分析的基本方法:重点是二阶系统的时域响应、劳斯稳定判据 及稳态误差分析。 及稳态误差分析。 基本概念,稳定性和动态性能、主导极点、稳态误差、串联校正、 基本概念,稳定性和动态性能、主导极点、稳态误差、串联校正、反馈 校正等。 校正等。 Routh判据的应用;建立系统稳定(绝对稳定和相对稳定)的概念;稳 判据的应用; 判据的应用 建立系统稳定(绝对稳定和相对稳定)的概念; 定和闭环极点的关系 二阶系统的典型输入及性能指标; )(3-27)( )(3-28) 二阶系统的典型输入及性能指标;式(3-26)( )( )( ) )(3-31)和(3-32)为参数与指标间的数学描述 (3-30)( )( ) ) 高阶系统重点建立主导极点概念, 高阶系统重点建立主导极点概念,非主导极点及开环小时间常数影响 根据稳态误差定义推导出稳态误差与系统结构参数以及输入信号形式大 小的关系,引出静态误差系数。( 。(0、 、 型系统 型系统? 小的关系,引出静态误差系数。( 、I、II型系统?)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。

解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ∙∙+=+()()()()τ近似描述,其中,1)(0<-<τT 。

试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(=当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; T t T T d -⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt e TT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt e TT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s e TT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。

要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。

解 由结构图写出闭环系统传递函数111)(212211211+=+=+=ΦK K sK K K s K sK K s K s令闭环增益212==ΦK K , 得:5.02=K 令调节时间4.03321≤==K K T t s ,得:151≥K 。

3-4 在许多化学过程中,反应槽内的温度要保持恒定, 图3-46(a )和(b )分别为开环和闭环温度控制系统结构图,两种系统正常的K 值为1。

(1) 若)(1)(t t r =,0)(=t n 两种系统从响应开始达到稳态温度值的63.2%各需多长时间?(2) 当有阶跃扰动1.0)(=t n 时,求扰动对两种系统的温度的影响。

解 (1)对(a )系统: 1101110)(+=+=s s K s G a , 时间常数 10=T632.0)(=T h (a )系统达到稳态温度值的63.2%需要10个单位时间;对(a )系统:11011010110010110100)(+=+=Φs s s b , 时间常数 10110=T 632.0)(=T h (b )系统达到稳态温度值的63.2%需要0.099个单位时间。

(2)对(a )系统: 1)()()(==s N s C s G n 1.0)(=t n 时,该扰动影响将一直保持。

对(b )系统: 1011011011010011)()()(++=++==Φs s s s N s C s n 1.0)(=t n 时,最终扰动影响为001.010111.0≈⨯。

3-5 一种测定直流电机传递函数的方法是给电枢加一定的电压,保持励磁电流不变,测出电机的稳态转速;另外要记录电动机从静止到速度为稳态值的50%或63.2%所需的时间,利用转速时间曲线(如图3-47)和所测数据,并假设传递函数为)()()()(a s s Ks V s s G +=Θ=可求得K 和a 的值。

若实测结果是:加10V 电压可得1200min r 的稳态转速,而达到该值50%的时间为1.2s ,试求电机传递函数。

提示:注意as Ks V s +=Ω)()(,其中dt d t θω=)(,单位是s rad解 依题意有: 10)(=t v (伏) ππω406021200)(=⨯=∞ (弧度/秒) (1)πωω20)(5.0)2.1(=∞= (弧度/秒) (2) 设系统传递函数 as Ks V s s G +=Ω=)()()(0 应有 πω401010lim )()(lim )(000==+⋅⋅=⋅=∞→→aK a s K s s s V s G s s s (3) [][]ate a K a s s L a K a s s K L s V s G L t -----=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+=⋅=1101110)(10)()()(1101ω 由式(2),(3) [][]ππω20140110)2.1(2.12.1=-=-=--a a e e aK得 5.012.1=--ae解出 5776.02.15.0ln =-=a (4) 将式(4)代入式(3)得 2586.74==a K π3-6 单位反馈系统的开环传递函数)5(4)(+=s s s G ,求单位阶跃响应)(t h 和调节时间t s 。

解:依题,系统闭环传递函数)1)(1(4)4)(1(4454)(212T s T s s s s s s ++=++=++=Φ ⎩⎨⎧==25.0121T T41)4)(1(4)()()(210++++=++=Φ=s C s C s C s s s s R s s C1)4)(1(4lim)()(lim 000=++=Φ=→→s s s R s s C s s34)4(4lim)()()1(lim 011-=+=Φ+=→-→s s s R s s C s s31)1(4lim)()()4(lim 042=+=Φ+=→-→s s s R s s C s st t e e t h 431341)(--+-=421=T T , ∴3.33.3111==⎪⎪⎭⎫ ⎝⎛=T T T t t s s 。

3-7 设角速度指示随动系统结构图如图3-48所示。

若要求系统单位阶跃响应无超调,且调节时间尽可能短,问开环增益K 应取何值,调节时间s t 是多少?解 依题意应取 1=ξ,这时可设闭环极点为02,11T -=λ。

写出系统闭环传递函数Ks s Ks 101010)(2++=Φ 闭环特征多项式20022021211010)(⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=++=T s T s T s K s s s D 比较系数有 ⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=K T T 101102200 联立求解得 ⎩⎨⎧==5.22.00K T 因此有 159.075.40''<''==T t s3-8 给定典型二阶系统的设计指标:超调量%5%≤σ,调节时间 s t s 3<,峰值时间s t p 1<,试确定系统极点配置的区域,以获得预期的响应特性。

解依题%5%≤σ, )45(707.0︒≤≥⇒βξ;35.3<=ns t ωξ, 17.1>⇒n ωξ;np t ωξπ21-=1<, 14.312>-⇒n ωξ综合以上条件可画出满足要求的特征根区域如图解3-8所示。

3-9 电子心脏起博器心律控制系统结构图如题3-49图所示,其中模仿心脏的传递函数相当于一纯积分环节。

(1) 若5.0=ξ对应最佳响应,问起博器增益K 应取多大?(2) 若期望心速为60次/min ,并突然接通起博器,问1s 钟后实际心速为多少?瞬时最大心速多大?解 依题,系统传递函数为2222205.005.0105.0)(nn n s s K s s Ks ωξωω++=++=Φ ⎪⎪⎩⎪⎪⎨⎧⨯==n n Kωξω205.0105.0 令 5.0=ξ可解出 ⎩⎨⎧==2020nK ω将 s t 1=代入二阶系统阶跃响应公式()βωξξξω+---=-t e t h n t n 221sin 11)(可得 min 00145.60000024.1)1(次次==s h 5.0=ξ时,系统超调量 %3.16%=σ,最大心速为min 78.69163.1163.01(次次)==+=s t h p3-10 机器人控制系统结构图如图3-50所示。

试确定参数21,K K 值,使系统阶跃响应的峰值时间5.0=p t s ,超调量%2%=σ。

解 依题,系统传递函数为222121212112)1()1()1(1)1()(n n n s s K K s K K s K s s s K K s s K s ωξωωΦΦ++=+++=++++= 由 ⎪⎩⎪⎨⎧=-=≤=--5.0102.0212n p oo t e ωξπσξπξ 联立求解得⎩⎨⎧==1078.0nωξ 比较)(s Φ分母系数得⎪⎩⎪⎨⎧=-===146.0121001221K K K n n ξωω 3-11 某典型二阶系统的单位阶跃响应如图3-51所示。

试确定系统的闭环传递函数。

解 依题,系统闭环传递函数形式应为2222.)(nn ns s K s ωξωω++=ΦΦ 由阶跃响应曲线有:21)(lim )()(lim (0==⋅Φ=Φ=∞Φ→→K ss s s R s s h s s )⎪⎪⎩⎪⎪⎨⎧=-===-=--o oo o n p e t 25225.221212ξξπσξωπ 联立求解得 ⎩⎨⎧==717.1404.0nωξ所以有 95.239.19.5717.1717.1404.02717.12)(2222++=+⨯⨯+⨯=Φs s s s s3-12 设单位反馈系统的开环传递函数为)12.0(5.12)(+=s s s G试求系统在误差初条件1)0(,10)0(==ee 作用下的时间响应。

解 依题意,系统闭环传递函数为 5.6255.62)(1)()()()(2++=+==Φs s s G s G s R s C s 当0)(=t r 时,系统微分方程为 0)(5.62)(5)(=+'+''t c t c t c 考虑初始条件,对微分方程进行拉氏变换[][]0)(5.62)0()(5)0()0()(2=+-+'--s C c s C s c c s s C s整理得 ()())0()0(5)(5.6252c c s s C s s'++=++ (1)对单位反馈系统有 )()()(t c t r t e -=, 所以110)0()0()0(101000()0()0(-=-='-'='-=-=-=e r c e r c )将初始条件代入式(1)得 2225.7)5.2(26)5.2(105.6255110)(++++-=++--=s s s s s s C 22225.7)5.2(5.747.35.7)5.2()5.2(10++-+++-=s s s)8.705.7sin(6.105.7sin 47.35.7cos 10)(5.25.25.2︒+-=--=---t e t e t et c t t t3-13 设图3-52(a )所示系统的单位阶跃响应如图3-52(b )所示。

相关文档
最新文档