七年级上学期第二次月考数学试题附答案
新人教版七年级上第二次数学月考试卷及答案(pdf版)
(第 6 题 )
折(标价的80%)销 售,售 价 为 240 元,设 这 件 衣 服 的 进 价 为 x
元,根据题意,下面所列的方程正确的是( ).
A.x·50% ×80% =240
B.x· (1+50% )×80% =240
C.240×50% ×80% =x D.x·(1+50%)=240×80%
价为每立方米1.0元,那么这个月共用多少立方米的水? 设这个月共用x 立方米的水,下列
方程正确的是( ).
A.1.2×20+2(x-20)=1.5x
B.1.2×20+2x=1.5x
C.1.22+2x=1.5x
D.2x-1.2×20=1.5x
二 、填 空 题 (每 题 3 分 ,共 24 分 )
9.写
有种子数是
粒.
三、解答题(第17题8分,第18~21题每题5分,其余每题6分 共52分)
17.解 方 程 :
(1)3(x+1)- 1 3 (x-1)=4(x-1)- 7 2 (x+1);
50
(2)x5+4-x+5=x3+3-x2-2; (3)7x24-1=0.11-.08.2x-5x12+1.
51
用方程思想来研究,发现这三个数的和不可能是( ).
日一二三四五六
A.69
12345
B.54
6 7 8 9 101112
C.27
13 14 15 16 17 18 19
20 21 22 23 24 25 26
D.40
27 28 29 30 31
7.某品牌服装折扣店将 某 件 衣 服 按 进 价 提 高 50% 后 标 价,再 打 8
人教版七年级数学上册第二次月考卷及答案
人教版七年级数学上册第二次月考卷及答案第二次月考将测试第一章至第三章的内容,考试时间为120分钟,满分为120分。
请填写班级、姓名和得分。
选择题共有10小题,每小题3分。
填空题共有8小题,每小题3分。
选择题:1.正确答案为A,因为两个负数相乘得正数。
2.正确答案为B,因为-a²是二次单项式,次数为2,系数为1.3.正确答案为B,因为只有①和④是一元一次方程。
4.正确答案为B,因为ma-3和mb-3是同一项,所以两边都减去ma得到-3=mb-ma,而ma和mb不一定相等。
5.正确答案为C,因为3(a-1)=3a-3,符合分配律。
6.正确答案为C,将x=-1代入方程可得5(-1)+2m-7=0,解得m=6.7.正确答案为D,将2x³nyⁿm+4和-3x⁹y⁶化简后可得m=3,n=2.8.正确答案为C,设两车相遇时间为x,则慢车行驶距离为75(x+1)千米,快车行驶距离为120x千米,两者之和为270千米,列方程得到120x+75(x+1)=270,解得x=1.5小时。
9.正确答案为C,设成本价为x元,则标价为1.2x元,折扣后售价为1.08(1.2x)=1.296x元,每件服装利润为1.296x-x=0.296x元,根据题意得到0.296x=8,解得x=27.03,约为27.04元,所以每件服装的成本是110元。
10.正确答案为B,①错误,应该是2(-2)=6;②正确;③正确,ab=a(1-b)=a-a*b=a-a*(1-a)=2a-a²;④正确,将1/2代入可得2*(1-1/2)=1,2*1+1=3,3/2=1.5,1.5-2=-0.5,所以x=-2.填空题:11.-1/1112.在搜索“社会主义核心价值观”时,XXX发现相关结果约为4.28×10^6个。
13.若a+=1,则a^3=1.14.若方程(a-2)x|a|+1+3=0是关于x的一元一次方程,则a=2.15.若a,b互为相反数,c,d互为倒数,m的绝对值为2,则2m-2017(a+b)-cd的值为-4034.16.若关于a,b的多项式3(a^2-2ab-b^2)-(a^2+mab+2b^2)中不含有ab项,则m=-1.17.已知一列单项式-x^2.3x^3.-5x^4.7x^5,…,按此规律排列,第9个单项式是-19x^10.18.XXX爷爷的生日是20号。
七年级(上)第二次月考数学检测试卷(含答案)
七年级(上)第二次月考数学检测试卷(每小题3分,共30分) .在 8080080008.0 ,8 ,31.0 ,41, ,2 ,14.33--π(每两个8之间依次多1个0)这些数中,无理数的个数为( )A 、1个B 、2个C 、3个D 、4个 ,下列运算正确的是( )A 、2222=-xx B 、 2222555d c dc =+C 、xy xy xy =-45D 、532532m m m =+、将一元一次方程13321=--x 去分母,下列正确的是( )A 、1-(x -3)=1B 、3-2(x -3)=6C 、2-3(x -3)=6D 、3-2(x -3)=1下列近似数中,含有3个有效数字的是 ( ) A.5430 B.5.430×106C.0.5430D.5.43万.下列各式中去括号正确的是( )A 、22(22)22x x y x x y --+=-++B 、()m n mn m n mn -+-=-+-C 、(53)(2)22x x y x y x y --+-=-+D 、(3)3ab ab --+= 下列式子中: 12,b ,y x + ,032=-y ,ts 整式的个数为( )A 、2个B 、3个C 、4个D 、5个.下列说法中正确的是 ( . ) A.有理数与数轴上的点一一对应。
B.无限小数是无理数。
C.23-读作3-的平方 D.5的平方根是5±、哥哥今年15岁,弟弟今年9岁,x 年前哥哥的年龄是弟弟年龄的2倍,则列方程为( ) A、)9(215x x -=- B、)15(29x x -=- C、)9(215x x +=+ D、)15(29x x +=+ 9、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为 A .7B .3C .3-D .2-10,在甲组图形的4个图中,每个图是由4种简单图形A 、B 、C 、D(•不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为A ·B 。
人教版七年级数学上册第二次月考试卷(含答案)
人教版七年级数学上册第二次月考试卷(含答案)第二次月考测试范围:第一~第三时间:120分钟满分:120分班级:姓名:得分:一、选择题(每小题3分,共30分)1.下列各式结果是负数的是( )A.-(-3)B.-|-3| .3 D.(-3)22.下列说法正确的是( )A.x2+1是二次单项式B.-a2的次数是2,系数是1.-23πab的系数是-23 D.数字0也是单项式3.下列方程:①3x-y=2;②x+1x-2=0;③12x=12;④x2+3x-2=0.其中属于一元一次方程的有( )A.1个B.2个 .3个 D.4个4.如果a=b,那么下列等式中不一定成立的是( )A.a+1=b+1B.a-3=b-3.-12a=-12b D.a=b5.下列计算正确的是( )A.3x2-x2=3B.-3a2-2a2=-a2.3(a-1)=3a-1 D.-2(x+1)=-2x-26.若x=-1是关于x的方程5x+2-7=0的解,则的值是( )A.-1B.1 .6 D.-67.如果2x3ny+4与-3x9y6是同类项,那么,n的值分别为( )A.=-2,n=3B.=2,n=3 .=-3,n=2 D.=3,n =28.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时.如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意可列方程为( )A.75×1+(120-75)x=270B.75×1+(120+75)x=270.120(x-1)+75x=270 D.120×1+(120+75)x=2709.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是( )A.100元B.105元.110元 D.115元10.定义运算a b=a(1-b),下列给出了关于这种运算的几个结论:①2 (-2)=6;②2 3=3 2;③若a=0,则ab=0;④若2 x+x -12=3,则x=-2.其中正确结论的序号是( )A.①②③B. ②③④ .①③④ D.①②③④二、填空题(每小题3分,共24分)11.比较大小:-67 -56.12.“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000个,数据4280000用科学记数法表示为.13.若a+12=0,则a3=.14.若方程(a-2)x|a|-1+3=0是关于x的一元一次方程,则a=.15.若a,b互为相反数,,d互为倒数,的绝对值是2,则2-2017(a+b)-d的值是.16.若关于a,b的多项式3(a2-2ab-b2)-(a2+ab+2b2)中不含有ab项,则=.17.已知一列单项式-x2,3x3,-5x4,7x5,…,若按此规律排列,则第9个单项式是.18.爷爷快八十大寿,小明想在日历上把这一天圈起,但不知道是哪一天,于是便去问爸爸,爸爸笑着说:“在日历上,那一天的上下左右4个日期的和正好等于爷爷的年龄.”则小明爷爷的生日是号.三、解答题(共66分)19.(12分)计算及解方程:(1)81÷(-3)2-19×(-3)3; (2)-12-12-23÷13×[-2+(-3)2];(3)4x-3(20-x)=-4; (4)2x-13-5-x6=-1.20.(6分)先化简,再求值:4(xy2+xy)-13×(12xy-6xy2),其中x=1,y=-1.21.(8分)某种商品因换季准备打折出售,如果按照原价的七五折出售,每件将赔10元,而按原价的九折出售,每件将赚38元,求这种商品的原价.22.(8分)一个正两位数的个位数字是a,十位数字比个位数字大2.(1)用含a的代数式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被22整除.23.(10分)小明解方程2x-13=x+a4-1,去分母时方程右边的-1漏乘了12,因而求得方程的解为x=3,试求a 的值,并正确求出方程的解.24.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成.硬纸板以如图所示两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)分别求裁剪出的侧面和底面的个数(用含x的代数式表示);(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?25.(12分)阅读下列材料,在数轴上A点表示的数为a,B点表示的数为b,则A,B两点的距离可以用右边的数减去左边的数表示,即AB=b-a.请用这个知识解答下面的问题:已知数轴上A,B两点对应的数分别为-2和4,P为数轴上一点,其对应的数为x.(1)如图①,若P到A,B两点的距离相等,则P点对应的数为;(2)如图②,数轴上是否存在点P,使P点到A,B两点的距离和为10?若存在,求出x的值;若不存在,请说明理由.参考答案与典题详析1.B2.D3.A4.D5.D6. 7.B 8.B 9.A 10.11.<12.4.28×106 13.-18 14.-215.3或-5 16.-6 17.-17x1018.20 解析:设那一天是x号,依题意得x-1+x+1+x-7+x+7=80,解得x=20.19.解:(1)原式=81÷9+3=9+3=12.(3分)(2)原式=-1+16÷13×(-2+9)=-1+12×7=52.(6分)(3)去括号,得4x-60+3x=-4,移项、合并同类项,得7x=56,系数化为1,得x=8.(9分)(4)去分母,得2(2x-1)-(5-x)=-6,去括号,得4x-2-5+x=-6,移项、合并同类项,得5x=1,系数化为1,得x=0.2.(12分)20.解:原式=4xy2+4xy-4xy+2xy2=6xy2.(4分)当x=1,y=-1时,原式=6.(6分)21.解:设这种商品的原价是x元,根据题意得75%x+10=90%x-38,解得x=320.(7分)答:这种商品的原价是320元.(8分)22.解:(1)这个两位数为10(a+2)+a=11a+20.(3分)(2)新的两位数为10a+a+2=11a+2.(5分)因为11a +2+11a+20=22a+22=22(a+1),a+1为整数,所以新数与原数的和能被22整除.(8分)23.解:由题意得x=3是方程12×2x-13=12×x+a4-1的解,所以4×(2×3-1)=3(3+a)-1,解得a=4.(4分)将a=4代入原方程,得2x-13=x+44-1,去分母得4(2x-1)=3(x+4)-12,去括号,得8x-4=3x+12-12,移项、合并同类项得5x=4,解得x=45.(10分)24.解:(1)因为裁剪时x张用A方法,所以裁剪时(19-x)张用B方法.所以裁剪出侧面的个数为6x+4(19-x)=(2x+76)个,裁剪出底面的个数为5(19-x)=(95-5x)个.(4分)(2)由题意得2(2x+76)=3(95-5x),解得x=7.(8分)则2×7+763=30(个).(9分)答:能做30个盒子.(10分)25.解:(1)1(3分)(2)存在.(4分)分以下三种情况:①当点P在点A左侧时,PA=-2-x,PB=4-x.由题意得-2-x+4-x=10,解得x=-4;(6分)②当点P在点A,B之间时,PA=x-(-2)=x+2,PB=4-x.因为PA+PB=x+2+4-x=6≠10,即此时不存在点P到A,B两点的距离和为10;(8分)③当点P 在点B右侧时,PA=x+2,PB=x-4.由题意得x+2+x-4=10,解得x=6.(10分)综上所述,当x=-4或x=6时,点P到A,B两点的距离和为10.(12分)。
人教版七年级数学上学期第二次月考测试卷含答案
人教版七年级数学上学期第二次月考测试卷含答案一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个C .3个D .4个 2.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣5 3.已知280x y -++=,则x y +的值为( ) A .10B .-10C .-6D .不能确定 4.下列各数是无理数的为( )A .-5B .πC .4.12112D .0 5.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( )①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=aA .① ③B .① ② ③C .① ② ③ ④D .① ② ④6.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9 7.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6 8.27 ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间 9.下列说法中不正确的是( ) A .2-是2的平方根B 22的平方根C .22D .22 10.下列运算中,正确的是( )A 93=±B 382=C |4|2-=-D 2(8)8-=- 二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2. 从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____.12.若()2320m n ++-=,则m n 的值为 ____.13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________.15.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡⎤=⎣⎦→2⎡⎤⎣⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.16.已知72m =-,则m 的相反数是________. 17.116的算术平方根为_______. 18.已知:103<157464<1003;43=64;53<157<63,则 315746454=,请根据上面的材料可得359319=_________.19.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.22.探究与应用:观察下列各式:1+3= 21+3+5= 21+3+5+7= 21+3+5+7+9= 2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)23.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把n aa a a a ÷÷÷⋯÷个 (a≠0)记作a ⓝ,读作“a 的圈 n 次方”. (初步探究)(1)直接写出计算结果:2③=___,(12)⑤=___; (2)关于除方,下列说法错误的是___A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(-3)④=___; 5⑥=___;(-12)⑩=___. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于___;(3)算一算:212÷(−13)④×(−2)⑤−(−13)⑥÷33 24.对于实数a ,我们规定:用符号⎡⎣a a ⎡⎣a 为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____.25.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.26.对于结论:当a+b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子来判断上述结论是否成立;(2x+5的平方根是它本身,求x+y 的立方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将2,24,27,n 分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F(2)=12,故①正确;∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小∴F(24)= 42=63,故②是错误的;∵27=1×27=3×9,且3和9的绝对值差最小∴F(27)=31=93,故③错误;∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个.故答案为B.【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.2.B解析:B【分析】根据a★b=a2-ab可得(x+2)★(x-3)=(x+2)2-(x+2)(x-3),进而可得方程:(x+2)2-(x+2)(x-3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x-3)=5,x2+4x+4-(x2-x-6)=5,x2+4x+4-x2+x+6=5,5x=-5,解得:x=-1,故选:B.【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a★b=a2-ab所表示的意义.3.C解析:C【分析】根据算术平方根的非负性求出x,y,然后再求x+y即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.4.B解析:B【分析】根据无理数与有理数的概念进行判断即可得.【详解】解:A. -5是有理数,该选项错误;B. π是无理数,该选项正确;C. 4.12112是有理数,该选项错误;D. 0是有理数,该选项错误.故选:B【点睛】本题考查了无理数定义,初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方0.1010010001…,等. 5.C解析:C【分析】原式各项利用题中的新定义计算得到结果,即可作出判断.【详解】解:根据题意得:①a*2=a+2-2a ,2*a=2+a-2a ,成立;②(-2)*a=-2+a+2a ,a*(-2)=a-2+2a ,成立;③(2*a )*3=(2-a )*3=2-a+3-3(2-a )=2-a+3-6+3a=2a-1,2*(a*3)=2*(a+3-3a )=2+a+3-3a-2(a+3-3a )=2a-1,成立;④0*a=0+a-0=a ,成立.故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.7.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….8.D解析:D【分析】用平方法进行比较,看27在哪两个整数平方之间即可.【详解】∵252527=<,263627=>∴5<6故选:D【点睛】本题考查比较二次根式的大小,常见方法有2种:(1)将数字平方,转化为不含二次根号的数字比较;(2)将数字都转化到二次根式中,然后进行比较.9.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C .10.B解析:B【分析】根据平方根及立方根的定义逐一判断即可得答案.【详解】,故该选项运算错误,2=,故该选项运算正确,2=,故该选项运算错误,8=,故该选项运算错误,故选:B .【点睛】本题考查平方根、算术平方根及立方根,一个正数的平方根有两个,它们互为相反数;其中正的平方根叫做这个数的算术平方根;一个数的立方根只有一个.二、填空题11.8【解析】解:当a >b 时,a☆b= =a,a 最大为8;当a <b 时,a☆b==b,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n=(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 14.【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=8 18181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.15.255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)解析:255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.16.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】解:m 的相反数是2)2-=,故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.17.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可..【详解】∵,,∴的算术平方根为;故答案为:.【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可..【详解】14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.18.【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=1000000,就能确定是2位数.由解析:39【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=10000002位数.由59319的个位上的数是99,如果划去59319后面的三位319得到数59,而33=27、43=64339. 故答案为:39【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.19.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.20.1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为解析:1【分析】分别求出第1次到第7次的输出结果,发现从第4次输出的结果开始,每三次结果开始循环一次,则可确定第2019次输出的结果与第6次输出的结果相同.【详解】解:x=7时,第1次输出的结果为10,x=10时,第2次输出的结果为1105 2⨯=,x=5时,第3次输出的结果为5+3=8,x=8时,第4次输出的结果为184 2⨯=,x=4时,第5次输出的结果为142 2⨯=,x=2时,第6次输出的结果为121 2⨯=,x=1时,第7次输出的结果为1+3=4,……,由此发现,从第4次输出的结果开始,每三次结果开始循环一次,∵(2019﹣3)÷3=672,∴第2019次输出的结果与第6次输出的结果相同,∴第2019次输出的结果为1,故答案为:1.【点睛】本题考查了程序框图和与实数运算相关的规律题;根据题意,求出一部分输出结果,从而发现结果的循环规律是解题的关键.三、解答题21.不能,说明见解析.【分析】根据长方形的长宽比设长方形的长DC为3xcm,宽AD为2xcm,结合长方形ABCD的面积为300cm2,即可得出关于x的一元二次方程,解方程即可求出x的值,从而得出AB的长,再根据圆的面积公式以及圆的面积147cm2,即可求出圆的半径,从而可得出两个圆的直径的长度,将其与AB的长进行比较即可得出结论.【详解】解:设长方形的长DC为3xcm,宽AD为2xcm.由题意,得3x•2x=300,∵x>0,∴x=∴AB=,BC=cm.∵圆的面积为147cm2,设圆的半径为rcm,∴πr 2=147,解得:r=7cm .∴两个圆的直径总长为28cm .∵382428<=⨯=<,∴不能并排裁出两个面积均为147cm 2的圆.22.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.23.初步探究:(1)12,8;(2)C ;深入思考:(1)213,415,82;(2)21n a-;(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n 次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2③=2÷2÷2=12(12)⑤=11111822222÷÷÷÷= (2)A :任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A 错误; B :因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1,故选项B 错误; C :3④=3÷3÷3÷3=19,4③=4÷4÷4=14,3④≠4③,故选项C 正确; D :负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D 错误;故答案选择:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=213 5⑥=5÷5÷5÷5÷5÷5=415 (-12)⑩=8111111111122222222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷-÷-÷-÷-÷-÷-÷-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)a ⓝ=a÷a÷a…÷a=21n a -(3)原式=()4252621111442711233---÷⨯-÷-⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ =1144981278⎛⎫÷⨯--÷ ⎪⎝⎭=23--=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.24.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x <4,可得满足题意的x 的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴5<6,∴]=[2]=2,]=5,故答案为2,5;(2)∵12=1,22=4,且]=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,]=1,∴对255只需进行3次操作后变为1,∵,,]=2,]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.25.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可.【详解】.(1)1×2+2×3+3×4+…+10×11 =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯.(2)1×2+2×3+3×4+……+n×(n+1)=1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+ ()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++.【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.26.(1)成立,例子见解析;(2)﹣2【分析】(1(2)根据互为相反数的和为0,列等式可得y 的值,根据平方根的定义得:x+5=0,计算x+y 并计算它的立方根即可.【详解】解:(10,则2+(﹣2)=0,即2与﹣2互为相反数;所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立;(2=0,∴8﹣y+2y ﹣5=0,解得:y =﹣3,∵x+5的平方根是它本身,∵x+5=0,∴x =﹣5,∴x+y =﹣3﹣5=﹣8,∴x+y 的立方根是﹣2.【点评】本题考查立方根和平方根的知识,难度一般,注意互为相反数的和为0,知道这一知识是本题的关键.。
七年级数学上册第二次月考试试题(含答案)
七年级上册数学第二次月考试题一、选择题(每题3分,共30分)1.下列平面图形中不能围成正方体的是 ( )A. B. C 。
D. 2.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为 ( )A .40.8510⨯亿元 B .38.510⨯亿元 C .48.510⨯亿元 D .28510⨯亿元 3.两件不同的商品,售价都是90元,其中一件盈利20%,另一件亏损20%,在这笔交易中的盈亏情况是( )A 、亏15元B 、亏7。
5C 、盈2.5元D 、 保本 4.下面不是同类项的是( ). A .-2与21 B .2m 与2n C .b a 22-与b a 2D .22y x -与2221y x 5.若x =3是方程a -x =7的解,则a 的值是( ). A .4 B .7 C .10 D .736.在解方程123123x x -+-=时,去分母正确的是( ). A .3(x -1)-2(2+3x )=1 B .3(x -1)+2(2x +3)=1 C .3(x -1)+2(2+3x )=6 D .3(x -1)-2(2x +3)=67. 甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程( ).A .98+x =x -3B .98-x =x -3C .(98-x )+3=xD .(98-x )+3=x -38. 以下3个说法中:①在同一直线上的4点A 、B 、C 、D 只能表示5条不同的线段;②QP图4BA经过两点有一条直线,并且只有一条直线;③在所有连接两点的线中,直线最短.说法都正确的结论是( ).A .②B .③C .①②D .①9.用一副三角板(两块)画角,不可能画出的角的度数是( ).A .1350B .750C .550D .15010.学校、电影院、公园在平面图上的标点分别是A 、B 、C ,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB 等于( ) A 、115° B 、155° C 、25° D 、65°二、填空题(每小题3分,共18分) 11.7与x 的差的34比x 的3倍小6的方程是____________________。
七年级数学(上册)第二次月考试卷(含答案)
A BC A B C A B C A B C A B CA B C D(1)(2)(3)…七年级数学(上册)第二次月考试卷(含答案)一、选择题(30分)1、-3的绝对值是( )A. 31 ;B. -3;C. 31-; D. 3; 2、下列说法:①经过两点有一条直线,并且只有一条直线;②两点之间,线段最短;③到线段两端点距离相等的点叫线段的中点;④线段的中点到线段两端点距离相等;其中正确的有( )A. 4个;B. 3个;C.2个;D. 1个;3、第六次全国人口普查公布的数据表明:登记的全国人口约1340000000人,这个数据用科学记数法表示为( )A. 134×107;B. 13.4×108;C. 1.34×109;D. 1.34×1010;4、下列各题合并同类项,结果正确的是( )A. 13ab -4ab=9;B. -5a 2b -2a 2b=-7a 2b ;C.-12a 2+5a 2=7a 2;D. 2x 3+3x 3=5x 6;5、数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动6个单位长度到达点C ,若点C 表示的数是1,则点A 表示的数为( )A. 7;B. 3;C.-3;D. -2;6、已知∠AOB=50°,OC 是∠AOB 的平分线,则∠AOC 的余角是( )A. 40°;B. 50°;C. 65°;D. 75°;7、下列语句正确的是( )A. 画直线AB=10厘米;B. 角平分线是一条线段;C. 画射线OB=3厘米;D. 延长线段AB 到C ,使得BC=AB ;8、下列四个图形能折叠成右边正方体的是( ) 9、计算)2(91)2131()32(-÷÷-⨯-的结果是( ) A. 2; B. 21-; C. 23-; D. 以上答案都不对; 10、如图,数轴上A 、B a 、b ,则下列结论不正确的是( )A. a+b >0;B. ab <0;C.a -b <0;D. ∣a ∣-∣b ∣>0;二、填空题(24分)11、线段AB=10cm ,BC=5cm ,A 、B 、C 三点在同一直线上,则AC= 。
七年级上学期第二次月考数学 试卷及答案
七年级上学期第二次月考数学试卷一、精心选一选,相信自己的判断!(每小题3分,共计36分)1.(3分)3的相反数的倒数是()A.﹣3 B.+3 C.﹣D.2.(3分)用四舍五入法对0.03957(保留到千分位)取近似值为()A.0.039 B.0.040 C.0.0395 D.0.039473.(3分)在﹣(﹣3),﹣|﹣3|,(﹣3)2,﹣32这4个数中,属于负数的个数是()A.1B.2C.3D.44.(3分)0.1252008×(﹣8)2007的结果是()A.0.125 B.﹣0.125 C.1D.﹣15.(3分)方程x﹣=4的解题步骤如下:第一步:3x﹣x﹣4=12;第二步:3x﹣x=12+4;第三步:2x=16;第四步:x=8.错误开始于()A.第一步B.第二步C.第三步D.第四步6.(3分)西瓜每千克1元,买50千克以上按8折优惠,甲、乙两人所买西瓜的重量不同可付的钱相同,若甲买48千克,则乙买的西瓜重量是()A.48千克B.84千克C.64千克D.60千克7.(3分)正方体的棱长为a,当棱长增加x时,体积增加了()A.a3﹣x3B.x3C.(a+x)3﹣a3D.(a+x)3﹣x38.(3分)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.59.(3分)如图,在数轴上有a,b两个实数,则下列结论中,正确的是()A.a>﹣b B.|a|<|b| C.﹣ab>0 D.a+b>010.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米211.(3分)若xy>0,则+的值为()A.﹣2 B.2或﹣2 C.2D.0或212.(3分)当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是()A.﹣2 B.0C.2D.不能确定二、细心填一填,试试自己的身手!(每小题3分,共计18分)13.(3分)若|x﹣2|+(y﹣3)2=0,则x y+(y﹣2x)2007的值是.14.(3分)如图,该图形是立体图形的展开图.15.(3分)某商品原来价格为m元,先降价20%再提价a元后的价格为元.16.(3分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,列车提速后的速度为.17.(3分)我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要分钟就能追上乌龟.18.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.三、用心做一做,显显自己的能力!(本大题共7小题,共计46分)19.(6分)计算:(1)﹣32÷3+(﹣)÷×(﹣4)+|﹣2|;(2)(+﹣)×(﹣60).20.(5分)解方程:=﹣1.21.(5分)若x=是方程=的解,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.22.(6分)如图所示的几何体是由5个相同的正方体搭成的,请画出它的主视图、左视图和俯视图.23.(6分)在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.24.(8分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?25.(10分)某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费120元.(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.参考答案与试题解析一、精心选一选,相信自己的判断!(每小题3分,共计36分)1.(3分)3的相反数的倒数是()A.﹣3 B.+3 C.﹣D.考点:倒数;相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:3的相反数是﹣3,3的相反数的倒数是﹣,故选:C.点评:本题考查了倒数,先求相反数再求倒数.2.(3分)用四舍五入法对0.03957(保留到千分位)取近似值为()A.0.039 B.0.040 C.0.0395 D.0.03947考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:0.03957≈0.040(保留到千分位).故选B.点评:本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.3.(3分)在﹣(﹣3),﹣|﹣3|,(﹣3)2,﹣32这4个数中,属于负数的个数是()A.1B.2C.3D.4考点:正数和负数.分析:先把各式化简,然后根据负数的定义判断即可.解答:解:﹣(﹣3)=3,﹣|﹣3|﹣3,(﹣3)2=9,﹣32=﹣9;所以属于负数的有﹣|﹣3|,﹣32;故选B.点评:判断一个数是正数还是负数,要把它化简成最后形式再判断.概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(3分)0.1252008×(﹣8)2007的结果是()A.0.125 B.﹣0.125 C.1D.﹣1考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的法则求解.解答:解:0.1252008×(﹣8)2007=0.125×[0.125×(﹣8)]2007=﹣0.125.故选B.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.5.(3分)方程x﹣=4的解题步骤如下:第一步:3x﹣x﹣4=12;第二步:3x﹣x=12+4;第三步:2x=16;第四步:x=8.错误开始于()A.第一步B.第二步C.第三步D.第四步考点:解一元一次方程.专题:计算题.分析:方程两边乘以3去分母,去括号,移项合并,把x系数化为1,求出解,错误不为始于第一步.解答:解:错误始于第一步,原因为:去括号错误,正确步骤为:3﹣(x﹣4)=12,即3﹣x+4=12,故选A点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.(3分)西瓜每千克1元,买50千克以上按8折优惠,甲、乙两人所买西瓜的重量不同可付的钱相同,若甲买48千克,则乙买的西瓜重量是()A.48千克B.84千克C.64千克D.60千克考点:一元一次方程的应用.分析:设乙买了x千克西瓜,先求出甲买西瓜的花费,然后根据题意列出买50kg以上西瓜所需花费的代数式,根据所付钱数相等,列方程求解.解答:解:设乙买了x千克西瓜,由题意得,48×1=1×0.8x,解得:x=60,即乙买了60千克西瓜.故选D.点评:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.7.(3分)正方体的棱长为a,当棱长增加x时,体积增加了()A.a3﹣x3B.x3C.(a+x)3﹣a3D.(a+x)3﹣x3考点:列代数式.分析:根据正方体的体积公式,用变化后的正方体体积减去原来的正方体体积即得答案.解答:解:根据题意,正方体的体积增加了(a+x)3﹣a3.故选C.点评:本题考查正方体的体积公式,是一道简单的基础题.8.(3分)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5考点:等式的性质.专题:应用题.分析:根据等式的性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立,可得答案.解答:解:一个球等于2.5个长方体,三个球等于个长方体;一个长方体等于正方体,个长方体等于5个正方体,即三个球体的重量等于5个正方体的重量,故选:D.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.9.(3分)如图,在数轴上有a,b两个实数,则下列结论中,正确的是()A.a>﹣b B.|a|<|b| C.﹣ab>0 D.a+b>0考点:实数大小比较;数轴.分析:由数轴上的数右边的数总是大于左边的数可以知道:a<0,0<b,|a|>|b|,利用a 到原点距离大于b到原点距离,再根据有理数的运算法则即可判断.解答:解:由图示知,a<0,0<b,|a|>b.A、根据a到原点距离大于b到原点距离得到:a<﹣b,故该选项错误;B、根据a到原点距离大于b到原点距离得到:|a|>|b|,故该选项错误;C、根据a<0,0<b得到:﹣ab>0,故该选项正确;D、根据a<0,0<b,得到:a﹣b<0,故该选项错误;故选:C.点评:此题主要考查的是利用在数轴上数比较大小,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.10.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米2考点:列代数式.分析:横档的长度为x米,则竖档的长度=(12﹣3x)÷2=6﹣1.5x,根据窗框的面积=长×宽求出答案.解答:解:竖档的长度=(12﹣3x)÷2=6﹣1.5x,∴窗框的面积=长×宽=x(6﹣1.5x)=x(6﹣x)米2.故选D.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.需注意,用字母表示数时,数字通常写在字母的前面,带分数的要写成假分数的形式.11.(3分)若xy>0,则+的值为()A.﹣2 B.2或﹣2 C.2D.0或2考点:绝对值.分析:由于xy>0,分x<0,y<0;x>0,y>0;两种情况讨论计算即可求解.解答:解:∵xy>0,∴x<0,y<0时,+=﹣1﹣1=﹣2;x>0,y>0时,+=1+1=2.∴+的值为2或﹣2.故选:B.点评:考查了绝对值,本题需要分情况讨论,难度中等.12.(3分)当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是()A.﹣2 B.0C.2D.不能确定考点:有理数的乘方.分析:﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.解答:解:(﹣1)2n+1+(﹣1)2n=﹣1+1=0.故选B.点评:本题考查了有理数的乘方,涉及知识点是:﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.二、细心填一填,试试自己的身手!(每小题3分,共计18分)13.(3分)若|x﹣2|+(y﹣3)2=0,则x y+(y﹣2x)2007的值是7.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解答:解:∵|x﹣2|+(y﹣3)2=0,∴x﹣2=0,y﹣3=0,解得:x=2,y=3,则原式=8﹣1=7.故答案为:7点评:此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.14.(3分)如图,该图形是立体图形三棱柱的展开图.考点:几何体的展开图.分析:利用立体图形的展开图特征求解即可.解答:解:该图形是立体图形三棱柱的展开图.故答案为:三棱柱.点评:本题主要考查了几何体的展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.15.(3分)某商品原来价格为m元,先降价20%再提价a元后的价格为(0.8m+a)元.考点:列代数式.分析:降价后的价格是原价×(1﹣20%),即0.8m,再加上提价的a元即可求解.解答:解:(1﹣20%)m+a=0.8m+a(元).答:先降价20%再提价a元后的价格为(0.8m+a)元.故答案为:(0.8m+a).点评:考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.注意降价的基数是多少.16.(3分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,列车提速后的速度为256千米/小时.考点:一元一次方程的应用.分析:设列车提速前的速度是x千米/时,则提速后为(x+176)千米/时,根据提速前的时间与提速后的时间之间的等量关系建立方程求出其解就可以求出提速后的速度.解答:解:设列车提速前的速度是x千米/时,则提速后为(x+176)千米/时,由题意,得16x=(16﹣11)(x+176),x=80,提速后的速度为:x+176=256.答:列车提速后的速度为256千米/小时.故答案为:256千米/小时.点评:本题考查了路程=速度×时间的运用,列一元一次方程解实际问题的运用,设间接未知数的运用,在解答时根据时间之间的数量关系建立方程是解答本题的关键.17.(3分)我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要10分钟就能追上乌龟.考点:一元一次方程的应用.专题:行程问题.分析:在追及路程问题中,注意等量关系:小白兔追上乌龟所走的路程=乌龟所走的路程+落后的路程.解答:解:设小白兔大概需要x分钟就能追上乌龟,根据题意可得101x=x+1000解得x=10那么小白兔大概需要10分钟就能追上乌龟.点评:在此题中注意单位要统一.18.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.考点:规律型:数字的变化类.专题:压轴题.分析:根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n个数为解答:解:∵n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;n=3时,分子:8=(﹣1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(﹣1)5•24,分母:9=2×4+1;…,∴第n个数为:故答案为:点评:本题主要考查通过分析数的变化总结归纳规律,解题的关键在于求出分子、分母与n的关系.三、用心做一做,显显自己的能力!(本大题共7小题,共计46分)19.(6分)计算:(1)﹣32÷3+(﹣)÷×(﹣4)+|﹣2|;(2)(+﹣)×(﹣60).考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果.解答:解:(1)原式=﹣9×+×4×4+2=﹣3+8+2=7;(2)原式=﹣45﹣35+70=﹣10.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(5分)解方程:=﹣1.考点:解一元一次方程.专题:计算题.分析:方程去分母,去括号,移项合并,把y系数化为1,即可求出解.解答:解:去分母得:8(y﹣1)=3(y+2)﹣12,去括号得:8y﹣8=3y+6﹣12,移项合并得:5y=2,解得:y=0.4.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.(5分)若x=是方程=的解,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.考点:解一元一次方程;代数式求值.专题:计算题.分析:由方程解的定义将x=代入方程求出m的值,原式去括号合并得到最简结果,将m的值代入计算即可求出值.解答:解:根据题意将x=代入方程得:=,去分母得:3﹣3m=2﹣4m,解得:m=﹣1,原式=﹣m2+m﹣2﹣m+1=﹣m2﹣1,当m=﹣1时,原式=﹣1﹣1=﹣2.点评:此题考查了解一元一次方程,以及代数式求值,求出m的值是解本题的关键.22.(6分)如图所示的几何体是由5个相同的正方体搭成的,请画出它的主视图、左视图和俯视图.考点:作图-三视图.分析:主视图有3列,每列小正方形数目分别为2,1,1;左视图有2列,每列小正方形数目分别为1,2;俯视图有3列,每行小正方形数目分别为2,1,1.解答:解:如图所示:.点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.(6分)在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.考点:扇形统计图;条形统计图.专题:压轴题;图表型.分析:(1)扇形统计图中,各部分的数量=总体×所占百分比,据此求得各中型号的数量;(2)由题意得,,求解即可.解答:解:(1)240×55%=132,240×(1﹣55%﹣25%)=48,240×25%=60.(2)由题意得,,16(2a﹣2)=12×8解之,得a=4,经检验a=4是原分式方程的解.2a﹣2=2×4﹣2=6.点评:命题立意:考查扇形统计图及综合应用能力.24.(8分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?考点:一元一次方程的应用.分析:(1)设小玲每月上网x小时,利用A:费用=每分钟的费用×时间;B:费用=包月费+通信费,根据两种计费方式的收费相同列出方程,解方程即可;(2)如果一个月内上网的时间为65小时,根据两种收费方式分别计算费用,比较后即可回答问题.解答:解:(1)设小玲每月上网x小时,根据题意得(0.05+0.02)×60x=50+0.02×60x,解得x=.答:小玲每月上网小时;(2)如果一个月内上网的时间为65小时,选择A、计时制费用:(0.05+0.02)×60×65=273(元),选择B、月租制费用:50+0.02×60×65=128(元).所以一个月内上网的时间为65小时,采用月租制较为合算.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.(10分)某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费120元.(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.考点:一元一次方程的应用.分析:(1)设这个公司要加工x件新产品,则红星厂单独加工这批产品需天,巨星厂单独加工这批产品需要天,根据题意找出等量关系:红星厂单独加工这批产品需要的天数﹣巨星厂单独加工这批产品需要的天数=20,根据此等量关系列出方程求解即可.(2)应分为三种情况讨论:①由红星厂单独加工;②由巨星厂单独加工;③由两场厂共同加工,分别比较三种情况下,所耗时间和花费金额,求出即省钱,又省时间的加工方案.解答:解:(1)设这个公司要加工x件新产品,由题意得:﹣=20,解得:x=960.答:这个公司要加工960件新产品.(2)①由红星厂单独加工:需要耗时为=60天,需要费用为:60×(5+80)=5100元;②由巨星厂单独加工:需要耗时为=40天,需要费用为:40×(120+5)=5000元;③由两场厂共同加工:需要耗时为=24天,需要费用为:24×(80+120+5)=4920元.所以,由两厂合作同时完成时,即省钱,又省时间.点评:本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系列出方程.对于要求最符合要求类型的题目,应将所有方案,列出来求出符合题意的那一个即可.。
陕西省西安市西北工业大学附属中学2023-2024学年七年级上学期第二次月考数学试题(有答案)
陕西省西安市西北工业大学附属中学2023-2024学年七年级上学期第二次月考数学试题一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)﹣|﹣5|=( )A.5B.﹣C.﹣5D.2.(3分)如图表示一个由相同小立方块搭成的几何体的从上面看到的形状图俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的形状图为( )A.B.C.D.3.(3分)2019年长沙市地区生产总值约为11500亿元,数据11500用科学记数法表示为( )A.0.115×105B.11.5×103C.1.15×104D.1.15×103 4.(3分)下列调查,适合用普查方式的是( )A.了解西安市居民的年人均消费B.了解某一天西安市的人口流量C.了解西安电视台《百家碎戏》栏目的收视率D.了解西安翱翔中学七年级某班同学100米短跑成绩5.(3分)在一个半径为2cm的圆内,有一个圆心角为60°的扇形,这个扇形的面积为( )A.B.2πcm2C.D.4πcm26.(3分)如图,两艘轮船A,B分别在海岛O的北偏东40°方向和东南方向上,则两船A,B与海岛O形成的夹角∠AOB的度数为( )A.85°B.80°C.90°D.95°7.(3分)下列说法:①若一个数的相反数等于它本身,则这个数是0;②若线段AC=BC,则点C为线段AB的中点;③若,则a=b;④经过一点,有且只有一条直线.正确的有( )A.1个B.2个C.3个D.4个8.(3分)按一定规律排列的单项式:2x,4x3,8x5,16x7,32x9,64x11,…,则第n个单项式是( )A.2n x n+1B.2n x n﹣1C.2n x2n﹣1D.2n x2n+19.(3分)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是( )A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=10.(3分)已知:线段AB,点P是直线AB上一点,直线上共有3条线段:AB,PA和PB,若其中有一条线段的长度是另一条线段长度的两倍,则称点P是线段AB的“中南点”,线段AB的“中南点”的个数是( )A.9B.6C.8D.3二、填空题(共5小题,每小题3分,计15分)11.(3分)单项式﹣5a2b m+2与3a n+5b是同类项,那么m﹣n= .12.(3分)指针式钟表上,9:40时分针与时针形成角的度数为 .13.(3分)不超过(﹣)3的最大整数是 .14.(3分)如果x=5时,代数式ax5+bx﹣7的值为9,那么x=﹣5时,代数式的值为 .15.(3分)已知∠MON=70°,OA为∠MON所在平面内的一条射线,若OB平分∠AOM,OC平分∠AON,则∠BOC的度数为 .三、解答题(共8小题,计55分,解答应写出过程)16.(8分)计算:(1)()×(﹣8);(2)﹣14﹣(﹣32)÷×|(﹣2)2﹣7|.17.(8分)解方程:(1)﹣2(3x﹣4)=8﹣3(x﹣5);(2).18.(5分)先化简,再求值:2a﹣4b﹣[3abc﹣2(2b﹣a)]÷2abc,其中.19.(5分)如图,已知线段a,线段b,请用尺规作图的方法作一条线段MN,使MN=2a ﹣b.(不写作法,保留作图痕迹)20.(5分)如图,点B在线段AC上,O是线段AC的中点,且AB=24cm,.求线段OB的长.21.(6分)某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?22.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a+1 0,2﹣b a﹣c;(2)|b﹣c|= ;(3)化简:|c﹣3|+|c﹣b|﹣|b+1|.23.(10分)探索并解决下列问题:.(1)如图1,长方形ABCD的边AB=6cm,BC=4cm,点P从点B出发,沿BC→CD→DA的路径以每秒2cm的速度运动,到达点A时停止运动.设运动时间为t(s).①用含t的代数式表示三角形APB的面积;②当三角形APB的面积为6时,求t的值.(2)如图2,已知长方形ABCD,以它的对角线AC为边作另一个长方形AEFC,其中EF 经过点B.现有一点P在长方形ABCD内随意运动,连接AP和PC.若三角形ACD的面积为24cm2,AE=4.8cm,那么随着点P的运动,封闭图形PAEFC的周长是否有最小值?如果有,请求出这个最小值;如果没有,请说明理由.参考答案一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.C;2.C;3.C;4.D;5.A;6.D;7.B;8.C;9.D;10.A;二、填空题(共5小题,每小题3分,计15分)11.2;12.50°;13.﹣5;14.﹣1;15.35°;三、解答题(共8小题,计55分,解答应写出过程)16.(1)5;(2)80.;17.(1)x=﹣5;18.﹣.;19.解:如图,作一条射线OM,在射线OM上截取OA=2a,再在线段OA上截取OB=b,则线段BA即为所求.;20.8cm.;21.解:设分配x人生产甲种零件,则共生产甲零件24x个和乙零件12(60-x),解得x=15,60-15=45(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.22.<;>;c﹣b;23.(1)①;②t=1或t=6;(2)29.6 cm;。
陕西省西安市重点中学2023-2024学年七年级上学期第二次月考数学试卷(含解析)
2023-2024学年陕西省西安市重点中学七年级(上)第二次月考数学试卷一.选择题(共10小题)1.(3分)下列方程为一元一次方程的是( )A.x+2y=3B.y+3=0C.x2﹣2x=0D.+y=02.(3分)我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为( )A.2.15×107B.0.215×108C.2.15×106D.21.5×1063.(3分)下列变形中,不正确的是( )A.若a﹣c=b﹣c,则a=bB.若,则a=bC.若a=b,则D.若ac=bc,则a=b4.(3分)如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是( )A.3cm B.3.5cm C.4cm D.4.5cm5.(3分)有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是( )A.a﹣b>0B.a+b>0C.ab>0D.b﹣a=|a|+|b|6.(3分)下列叙述正确的是( )A.a的系数是0,次数为1B.单项式5xy3z4的系数为5,次数是7C.当m=3时,代数式10﹣3m2等于1D.多项式2ab﹣3a﹣5次数为2,常数项为﹣57.(3分)钟表10点30分时,时针与分针所成的角是( )A.120°B.135°C.150°D.225°8.(3分)如图,OC平分∠AOD,OD平分∠BOC,下列等式中不成立的是( )A.∠COA=∠BOC B.∠COD=∠BODC.∠AOC=∠AOD D.∠AOC=∠AOB9.(3分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x名工人生产螺母,由题意可知下面所列的方程正确的是( )A.2×1200x=2000(22﹣x)B.2×1200(22﹣x)=2000xC.2×2000x=1200(22﹣x)D.2×2000(22﹣x)=1200x10.(3分)观察下列图形:已知图n中有2023有颗星,则n为( )A.644B.654C.664D.674二.填空题(共6小题)11.(3分)若3x4y m与﹣2x4y2是同类项,则m= .12.(3分)90°﹣78°28′56″= .13.(3分)若从n边形的一个顶点出发,最多可以引5条对角线,则n= .14.(3分)已知a、b互为相反数,c、d互为倒数,|m|=1,则的值为 .15.(3分)如果x=3是方程﹣ax﹣b=5﹣2x的解,那么3﹣6a﹣2b= .16.(3分)如图,已知直线l上的三条线段分别为:AB=4,BC=24,CD=8,将线段CD固定不动,线段AB 以每秒4个单位的速度向右运动,M、N分别为AB、CD中点,设线段AB的运动时间为t,当7.5≤t≤9时,MN+AD= .三.解答题(共8小题)17.计算:(1)(﹣2)2+|﹣4|;(2)2(3a2b﹣2ab2)﹣4(﹣ab2+a2b).18.解方程:(1)2x﹣1=5x+2;(2).19.先化简,再求值:已知代数式,其中x=3,y=﹣3.20.如图,已知线段a,b,用尺规作一条线段AB,使AB=2a﹣b(不写作法,保留作图痕迹).21.已知,如图B、C两点把线段AD分成2:5:3三部分,M是AD的中点,CM=6cm,则线段AD的长为多少厘米?22.某校准备组织学生参观博物馆,每张门票30元.已知购买团体票有两种优惠方案,方案一:全体人员打7折;方案二:若打8折,有5人可免票.(1)一班有45名学生,选择哪种方案更优惠?(2)二班无论选择哪种方案,需支付购买门票的费用相同,求二班的学生人数.(用一元一次方程求解)23.如图,已知∠AOB=120°,∠COD是∠AOB内的一个角,且∠COD=50°,OE是∠AOC的平分线,OF 是∠BOD的平分线,求∠EOF的度数.24.如图,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O 在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 度.2023-2024学年陕西省西安市重点中学七年级(上)第二次月考数学试卷参考答案与试题解析一.选择题(共10小题)1.(3分)下列方程为一元一次方程的是( )A.x+2y=3B.y+3=0C.x2﹣2x=0D.+y=0【分析】根据一元一次方程的定义即可求出答案.【解答】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,故选:B.【点评】本题考查一元一次方程,解题的关键是正确理解一元一次方程的定义,本题属于基础题型.2.(3分)我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为( )A.2.15×107B.0.215×108C.2.15×106D.21.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将21500000用科学记数法表示为:2.15×107.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列变形中,不正确的是( )A.若a﹣c=b﹣c,则a=bB.若,则a=bC.若a=b,则D.若ac=bc,则a=b【分析】根据等式的性质逐个判断即可.【解答】解:A.∵a﹣c=b﹣c,∴a﹣c+c=b﹣c+c,即a=b,故本选项不符合题意;B.=,乘c,得a=b,故本选项不符合题意;C.a=b,除以c2+2,得=,故本选项不符合题意;D.当c=0时,由ac=bc不能推出a=b,故本选项符合题意.故选:D.【点评】本题考查了等式的性质,能熟记等式的性质是解此题的关键,①等式的性质1:等式的两边都加(或减)同一个数或式子,等式仍成立,②等式的性质2:等式的两边都乘同一个数,等式仍成立,等式的两边都除以同一个负数,等式仍成立.4.(3分)如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是( )A.3cm B.3.5cm C.4cm D.4.5cm【分析】根据线段中点的定义求出AC,再根据BC=AB﹣AC计算即可得解.【解答】解:∵点D是AC的中点,∴AC=2CD=2×3=6cm,∴BC=AB﹣AC=10﹣6=4cm.故选:C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念并准确识图是解题的关键.5.(3分)有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是( )A.a﹣b>0B.a+b>0C.ab>0D.b﹣a=|a|+|b|【分析】分别判断即可.【解答】解:(A)∵a<0<b,∴a﹣b<0,∴A不符合题意;(B)∵a<0<b,当|a|=|b|,时a+b=0,当|a|>|b|,时a+b<0,当|a|<|b|,时a+b>0,∴B不符合题意;(C)∵a<0<b,∴ab<0,∴C不符合题意;(D)∵a<0<b,∴﹣a>0,∴|b|=b,|a|=﹣a,∴b﹣a=b+(﹣a)=|a|+|b|,∴D符合题意.故选:D.【点评】本题考查数轴和绝对值,掌握数轴上数的特点是解题的关键.6.(3分)下列叙述正确的是( )A.a的系数是0,次数为1B.单项式5xy3z4的系数为5,次数是7C.当m=3时,代数式10﹣3m2等于1D.多项式2ab﹣3a﹣5次数为2,常数项为﹣5【分析】根据单项式的系数,次数,多项式的次数及常数项,代数式的值逐项判断即可.【解答】解:a的系数是1,次数为1,则A不符合题意;单项式5xy3z4的系数为5,次数是8,则B不符合题意;当m=3时,代数式10﹣3m2=10﹣3×9=﹣17,则C不符合题意;多项式2ab﹣3a﹣5次数为2,常数项为﹣5,则D符合题意;故选:D.【点评】本题考查单项式和多项式,熟练掌握相关定义是解题的关键.7.(3分)钟表10点30分时,时针与分针所成的角是( )A.120°B.135°C.150°D.225°【分析】根据时钟上一大格是30°进行计算即可解答.【解答】解:由题意得:4×30°+×30°=135°,∴钟表10点30分时,时针与分针所成的角是:135°,故选:B.【点评】本题考查了钟面角,熟练掌握时钟上一大格是30°是解题的关键.8.(3分)如图,OC平分∠AOD,OD平分∠BOC,下列等式中不成立的是( )A.∠COA=∠BOC B.∠COD=∠BODC.∠AOC=∠AOD D.∠AOC=∠AOB【分析】根据角平分线的定义进行作答.【解答】解:A、∵OC平分∠AOD,∴∠COA=∠COD,故本选项错误;B、∵OD平分∠BOC,∴∠COD=∠BOD,故本选项正确;C、∵OC平分∠AOD,∴∠COA=∠COD,∴∠AOC=∠AOD,故本选项正确;D、∵OC平分∠AOD,OD平分∠BOC,∴∠AOC=∠COD=∠BOD,∴∠AOC=∠AOB,故本选项正确;故选:A.【点评】本题考查了角平分线的定义.从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.9.(3分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x名工人生产螺母,由题意可知下面所列的方程正确的是( )A.2×1200x=2000(22﹣x)B.2×1200(22﹣x)=2000xC.2×2000x=1200(22﹣x)D.2×2000(22﹣x)=1200x【分析】题目已经设出分配x名工人生产螺母,则(22﹣x)人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),故B答案正确,故选:B.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.10.(3分)观察下列图形:已知图n中有2023有颗星,则n为( )A.644B.654C.664D.674【分析】仔细观察图形,找到图形的变化规律,利用规律求解即可.【解答】解:观察图形知:图1中有3×1+1=4颗星,图2中有3×2+1=7颗星,图3中有3×3+1=10颗星,图4中有3×4+1=13颗星,•••,图n中有(3n+1)颗星,当3n+1=2023时,解得:n=674,故选:D.【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形的变化规律,难度不大.二.填空题(共6小题)11.(3分)若3x4y m与﹣2x4y2是同类项,则m= 2 .【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.据此可得答案.【解答】解:∵若3x4y m与﹣2x4y2是同类项,∴m=2.故答案为:2.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.12.(3分)90°﹣78°28′56″= 11°31′4″ .【分析】先把90°化成89°59′60″,然后计算即可.【解答】解:90°﹣78°28'56″=89°59′60″﹣78°28′56″=11°31′4″.故答案为:11°31′4″.【点评】本题考查了度分秒的换算,大单位化小单位乘以进率,小单位化大单位除以进率.13.(3分)若从n边形的一个顶点出发,最多可以引5条对角线,则n= 8 .【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,列方程求解.【解答】解:设多边形有n条边,则n﹣3=5,解得n=8,故多边形的边数为8,即它是八边形,故答案为:8.【点评】本题考查了多边形的对角线,明确多边形有n条边,则经过多边形的一个顶点所有的对角线有(n ﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形是解题的关键.14.(3分)已知a、b互为相反数,c、d互为倒数,|m|=1,则的值为 0或﹣2 .【分析】根据a、b互为相反数,c、d互为倒数,|m|=1,可以得到a+b=0,cd=1,m=±1,然后代入所求式子计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|m|=1,∴a+b=0,cd=1,m=±1,当m=1时,=1+﹣12=1+0﹣1=0;当m=﹣1时,=(﹣1)+﹣12=﹣1+0﹣1=﹣2;由上可得,的值为0或﹣2,故答案为:0或﹣2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.15.(3分)如果x=3是方程﹣ax﹣b=5﹣2x的解,那么3﹣6a﹣2b= 1 .【分析】先把x=3代入方程得到﹣3a﹣b=﹣1,再把3﹣6a﹣2b变形为3+2(﹣3a﹣b),然后利用整体代入的方法计算.【解答】解:∵x=3是方程﹣ax﹣b=5﹣2x的解,∴﹣3a﹣b=﹣1,∴3+2(﹣3a﹣b)=3+2×(﹣1)=3﹣2=1.故答案为:1.【点评】本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.也考查了整体代入的方法.16.(3分)如图,已知直线l上的三条线段分别为:AB=4,BC=24,CD=8,将线段CD固定不动,线段AB 以每秒4个单位的速度向右运动,M、N分别为AB、CD中点,设线段AB的运动时间为t,当7.5≤t≤9时,MN+AD= 6 .【分析】运动t秒后,A点表示4t,B点表示4+4t,C点表示28,D点表示36,根据线段中点的定义得到M 点表示4t+2,N点表示32,然后利用线段的和的定义即可得到结论.【解答】解:设运动t秒后,A点表示4t,B点表示4+4t,C点表示28,D点表示36,∵M为AB中点,N为CD中点,∴M点表示4t+2,N点表示32,∴MN=|4t+2﹣32|=|4t﹣30|,AD=|36﹣4t|,∴MN+AD=|4t﹣30|+|36﹣4t|,当≤t≤9时,MN+AD=4t﹣30+36﹣4t=6.故答案为:6.【点评】本题主要考查了两点间的距离,同时也利用了非负数的性质等知识,解答本题的关键是掌握两点间的距离公式.三.解答题(共8小题)17.计算:(1)(﹣2)2+|﹣4|;(2)2(3a2b﹣2ab2)﹣4(﹣ab2+a2b).【分析】(1)先算乘方,绝对值,乘法,再算加减即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(﹣2)2+|﹣4|=4+4+6=14;(2)2(3a2b﹣2ab2)﹣4(﹣ab2+a2b)=6a2b﹣4ab2+4ab2﹣4a2b=2a2b.【点评】本题主要考查整式的混合运算,解答的关键是对相应的运算法则的掌握.18.解方程:(1)2x﹣1=5x+2;(2).【分析】(1)先移项、合并同类项,再系数化为1进行求解;(2)通过去分母、去括号、移项、合并同类项和系数化为1等步骤进行求解.【解答】解:(1)移项,得2x﹣5x=2+1,合并同类项,得﹣3x=3,系数化为1,得x=﹣1;(2)去分母,得2(5x+1)﹣(2x﹣1)=4,去括号,得10x+2﹣2x+1=4,移项并合并,得8x=1,系数化为1,得x=.【点评】此题考查了解一元一次方程的能力,关键是能准确确定运算顺序,并能进行正确求解.19.先化简,再求值:已知代数式,其中x=3,y=﹣3.【分析】先去括号,然后合并同类项,最后代入求值即可.【解答】解:==﹣3x+y2,当x=3,y=﹣3时,原式=﹣3×3+(﹣3)2=﹣9+9=0.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减运算法则是解题的关键.20.如图,已知线段a,b,用尺规作一条线段AB,使AB=2a﹣b(不写作法,保留作图痕迹).【分析】首先作射线,再截取AD=DC=a,进而截取BC=b,即可得出AB=2a﹣b.【解答】解:如图所示:线段AB即为所求.【点评】此题主要考查了复杂作图,正确作出射线进而截取得出是解题关键.21.已知,如图B、C两点把线段AD分成2:5:3三部分,M是AD的中点,CM=6cm,则线段AD的长为多少厘米?【分析】设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=AD=5x,由CM=6cm,可得DM﹣CD=6cm,得到关于x的方程,解方程即可求解.【解答】解:∵B、C两点把线段AD分成2:5:3三部分,∴设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,∵M为AD的中点,∴AM=DM=AD=5x,∵CM=6cm,即:DM﹣CD=6cm,∴5x﹣3x=6,解得x=3,∴AD=10x=30,线段AD的长为30cm.【点评】本题考查了两点间的距离,利用线段的和差,线段中点的性质是解题关键.22.某校准备组织学生参观博物馆,每张门票30元.已知购买团体票有两种优惠方案,方案一:全体人员打7折;方案二:若打8折,有5人可免票.(1)一班有45名学生,选择哪种方案更优惠?(2)二班无论选择哪种方案,需支付购买门票的费用相同,求二班的学生人数.(用一元一次方程求解)【分析】(1)分别计算两种方案的费用,再比较即可得答案;(2)设二班有x人,根据选择哪种方案,需支付购买门票的费用相同列方程30×70%•x=30×80%×(x﹣5),解方程即可解得答案.【解答】解:(1)方案一:30×70%×45=945(元),方案二:30×80%×(45﹣5)=960(元),∵945<960,∴一班选择方案一更优惠;(2)设二班有x人,根据题意得:30×70%•x=30×80%×(x﹣5),解得x=40,答:二班有40人.【点评】本题考查一次方程的应用,解题的关键是读懂题意,找出等量关系列方程.23.如图,已知∠AOB=120°,∠COD是∠AOB内的一个角,且∠COD=50°,OE是∠AOC的平分线,OF 是∠BOD的平分线,求∠EOF的度数.【分析】根据角平分线的定义得出,,再根据∠AOB=120°,∠COD=50°求出∠AOC+∠BOD的度数,从而求出∠EOF的度数.【解答】解:∵OE是∠AOC的平分线,OF是∠BOD的平分线,∴,,∴,∵∠AOB=120°,∠COD=50°,∴∠AOC+∠BOD=∠AOB﹣∠COD=120°﹣50°=70°,∴∠COE+∠DOF=,∴∠EOF=∠COE+∠DOF+∠COD=35°+50°=85°.【点评】本题考查了角平分线的定义和角的计算,主要考查学生的计算和推理能力.24.如图,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O 在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 105或135或75或45 度.【分析】(1)设∠A′OB=∠POB=x,表示∠AOP=2x,∠BOP=x,由∠AOB=60°列方程为:x+2x=60,可得x的值,从而求出结论;(2)分两种情况讨论,①当点O运动到使点A在射线OP的左侧,②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时,分别求的值即可;(3))①如图3,当∠A′OB=150°时,可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°,因为∠AOP =∠A'OP,所以∠AOP=45°,∠BOP=60°+45°=105°;②如图4,当∠A′OB=150°时,可得:∠A'OA=360°﹣150°﹣60°=150°,因为∠AOP=∠A'OP,所以∠AOP=75,∠BOP=60°+75°=135°;【解答】(本题10分)解:(1)∵OB平分∠A′OP,∴设∠A′OB=∠POB=x,∵∠AOP=∠A′OP,∴∠AOP=2x,∵∠AOB=60°,∴x+2x=60,∴x=20°,∴∠AOP=2x=40°;(2)①当点O运动到使点A在射线OP的左侧,∵∠AOM=3∠A′OB,∴设∠A′OB=x,∠AOM=3x.∵OP⊥MN,∴∠AON=180°﹣3x,∠AOP=90°﹣3x.∴.∵∠AOP=∠A′OP,∴∠AOP=∠A′OP=.∴OP⊥MN.∴.∴.∴.②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时.∵∠AOM=3∠A′OB,设∠A′OB=x,∠AOM=3x,∴∠AOP=∠A′OP=.∴OP⊥MN.∴3x+=90.∴x=24°.∴.(3)①如图3,当∠A′OB=150°时,由图可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°.∵∠AOP=∠A'OP,∴∠AOP=45°.∴∠BOP=60°+45°=105°.②如图4,当∠A′OB=150°时,由图可得:∠A'OA=360°﹣150°﹣60°=150°.∵∠AOP=∠A'OP,∴∠AOP=75°.∴∠BOP=60°+75°=135°.当射线OP在MN下面时,∠BOP=75°或45°.综上所述:∠BOP的度数为105°或135°或75°或45°.故答案为:105或135或75或45.【点评】本题主要考查了角的运算,学会灵活处理问题,注意分类讨论不同的情况.。
七年级上学期第二次月考数学试卷附答案
七年级上学期第二次月考数学试卷一、选择题:(每题3分,共30分)1.(3分)﹣的倒数是()A.﹣2 B.C.2D.﹣2.(3分)下列语句中,正确的是()A.直线比射线长B.射线比线段长C.无数条直线不可能相交于一点D.两条直线相交,只有一个交点3.(3分)下列方程中是一元一次方程的是()A.=7 B.y2﹣y=1 C.2x﹣3y=1 D.﹣3+x=1﹣x4.(3分)下列各题运算正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+16y2=7 D.9a2b﹣9a2b=05.(3分)若|a|=2,则a=()A.2B.﹣2C.2或﹣2 D.以上答案都不对6.(3分)下列方程中,以x=2为解的方程是()A.x+2=0 B.2x﹣1=0 C.2x+4=6+3x D.2x﹣4=6﹣3x7.(3分)下列变形错误的是()A.由x+7=5,得x+7﹣7=5﹣7 B.由3x﹣2=2x+1,得x=3C.由4﹣3x=4x﹣3,得4+3=4x+3x D.由﹣2x=3,得x=﹣.8.(3分)甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是()A.甲说3点时和3点30分B.乙说6点15分和6点45分C.丙说9时整和12时15分D.丁说3时整和9时整9.(3分)如图,四条表示方向的射线中,表示北偏东60°的是()A.B.C.D.10.(3分)同一平面内互不重合的三条直线的交点的个数是()A.可能是0个,1个,2个B.可能是0个,2个,3个C.可能是0个,1个,2个或3个D.可能是1个可3个二、填空题:(每题2分,共16分,)11.(2分)代数式的系数是.12.(2分)若代数式3a5b m与﹣2a5b2是同类项,那么m=.13.(2分)七(1)班的同学用二个图钉就把刚获得的校田径运动会团体总分第一名的奖状挂在墙上了,请你用本章的一个知识来说明这样做的道理:.14.(2分)一个多边形的一个顶点出发有5条对角线,这是一个边形.15.(2分)如图,∠AOC和∠BOD都是直角,如果∠DOC=36°,则∠AOB是度.16.(2分)48.13°=度分秒.17.(2分)某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:排数 1 2 3 4座位数50 53 56 59按这种方式排下去,第n排有个座位.18.(2分)如果x<0,y>0且x2=4,y2=9,则x+y=.三、解答题(前两小题题4分,后两小题5分,共18分)19.(18分)计算下列各题(1)(﹣7)+(+15)﹣(﹣25)(2)(﹣36)×(﹣+)(用运算律)(3)﹣24﹣×[5﹣(﹣3)2](4)x2y﹣3xy2+2yx2﹣y2x.四、综合应用题(共36分)20.(6分)图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.21.(6分)先化简,再求值:,其中.22.(6分)把一个圆分割成三个扇形,它们圆心角的度数比为1:2:3,求最大的扇形的圆心角的度数.23.(6分)如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.24.(6分)已知:如图,线段AB=16cm,E为AB的中点,C为AB上一点,D为AB延长线上的点,且CD=4cm,B为CD的中点.求线段EC和ED的长.25.(6分)数a,b在数轴上的位置如图所示,化简:|a+b|﹣|a﹣b|+|a|﹣|b|.参考答案与试题解析一、选择题:(每题3分,共30分)1.(3分)﹣的倒数是()A.﹣2 B.C.2D.﹣考点:倒数.分析:根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:﹣的倒数是﹣2,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)下列语句中,正确的是()A.直线比射线长B.射线比线段长C.无数条直线不可能相交于一点D.两条直线相交,只有一个交点考点:直线、射线、线段.分析:利用线段有两个端点,不能延伸;射线只有一个端点,可向射线延伸方向延伸;直线无端点,可两向延伸,来解答本题即可.解答:解:∵线段有两个端点,不能延伸;射线只有一个端点,可向射线延伸方向延伸;直线无端点,可两向延伸,∴AB均不正确;C中由过一点可做无数条直线知,是不正确的;故只有D正确.故选D.点评:本题考查的是线段、射线和直线的端点特征.3.(3分)下列方程中是一元一次方程的是()A.=7 B.y2﹣y=1 C.2x﹣3y=1 D.﹣3+x=1﹣x考点:一元一次方程的定义.分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解答:解:A、不是整式方程,不是一元一次方程;B、未知项的最高次数为2,不是一元一次方程;C、含有两个未知数,不是一元一次方程;D、符合一元一次方程的定义.故选D.点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.(3分)下列各题运算正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+16y2=7 D.9a2b﹣9a2b=0考点:合并同类项.分析:根据同类项的定义及合并同类项法则解答.解答:解:A、3x+3y不是同类项,不能合并,故A错误;B、x+x=2x≠x2,故B错误;C、﹣9y2+16y2=7y2≠7,故C错误;D、9a2b﹣9a2b=0,故D正确.故选:D.点评:本题考查的知识点为:同类项的定义:所含字母相同,相同字母的指数相同;合并同类项的方法:字母和字母的指数不变,只把系数相加减;不是同类项的一定不能合并.5.(3分)若|a|=2,则a=()A.2B.﹣2C.2或﹣2 D.以上答案都不对考点:绝对值.专题:计算题.分析:根据绝对值的意义可知:在数轴上到原点的距离是2的点有两个数,为2或﹣2.解答:解:∵|a|=2,∴a=±2.故选C.点评:注意:互为相反数的两个数的绝对值相等.运用数形结合的思想很容易解决此类问题.6.(3分)下列方程中,以x=2为解的方程是()A.x+2=0 B.2x﹣1=0 C.2x+4=6+3x D.2x﹣4=6﹣3x考点:方程的解.分析:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.解答:解:A、把x=2代入方程,左边=2+2=4≠右边,故选项错误;B、把x=2代入方程,左边=4﹣1=3≠右边,故选项错误;C、把x=2代入方程,左边=4+4=8,右边=6+6=12,则左边≠右边,故选项错误;D、把x=2代入方程,左边=4﹣4=0,右边6﹣6=0,则左边=右边,故是方程的解.故选D.点评:本题主要考查了方程解的定义,方程的解就是能够使方程两边左右相等的未知数的值,理解定义是关键.7.(3分)下列变形错误的是()A.由x+7=5,得x+7﹣7=5﹣7 B.由3x﹣2=2x+1,得x=3C.由4﹣3x=4x﹣3,得4+3=4x+3x D.由﹣2x=3,得x=﹣.考点:等式的性质.分析:根据等式的性质进行变形,再判断即可.解答:解:A、x+7=5,则x+7﹣7=5﹣7,正确,不符合题意;B、3x﹣2=2x+1,3x﹣2x=1+2,x=3,正确,不符合题意;C、4﹣3x=4x﹣3,4+3=4x﹣3x,正确,不符合题意;D、﹣2x=3,x=﹣,错误,符合题意;故选D.点评:本题考查了等式的性质的应用,主要考查学生的理解能力和判断能力.等式的性质是:①等式的两边都加上(或都减去)同一个数或同一个整式,所对的仍是等式,②等式的两边都乘以(或都除以)同一个不等于0的数,所对的仍是等式.8.(3分)甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是()A.甲说3点时和3点30分B.乙说6点15分和6点45分C.丙说9时整和12时15分D.丁说3时整和9时整考点:钟面角.分析:根据时针与分针相距的份数乘以每份的度数,可得答案.解答:解:A、3点30分不到90°,故A错误;B、6点15分比90°多,故B错误;C、12时15分不到90°,故C错误;D、3时整和9时整钟面角都是90°,故D正确;故选:D.点评:本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数.9.(3分)如图,四条表示方向的射线中,表示北偏东60°的是()A.BC.D.考点:方向角.分析:北偏东60°即由北向东偏60°,理解坐标上上北下南的表示方法.解答:解:A中为南偏东60°,B中为北偏东60°,C中为北偏西30°,D中为北偏东30°,所以只有B符合题意,故选B.点评:掌握方向角的表示方法.10.(3分)同一平面内互不重合的三条直线的交点的个数是()A.可能是0个,1个,2个B.可能是0个,2个,3个C.可能是0个,1个,2个或3个D.可能是1个可3个考点:直线、射线、线段.分析:在同一平面内,两条直线的位置关系有两种,平行和相交,三条直线互相平行无交点,两条直线平行,第三条直线与它相交,有2个交点,三条直线两两相交,最多有3个交点,最少有1个交点.解答:解:由题意画出图形,如图所示:故选C.点评:本题考查了直线的交点个数问题.二、填空题:(每题2分,共16分,)11.(2分)代数式的系数是.考点:单项式.分析:单项式的系数是指单项式中的数字因数,包括符号及分母的数字.解答:解:代数式的数字因数是﹣,故单项式的系数是.点评:本题考查了单项式的系数的概念.注意不要忘了符号和分母的数字.12.(2分)若代数式3a5b m与﹣2a5b2是同类项,那么m=2.考点:同类项.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得m的值.解答:解:∵3a5b m与﹣2a5b2是同类项,∴m=2.故答案为:2.点评:本题考查了同类项的知识,解答本题的关键是掌握同类项的定义.13.(2分)七(1)班的同学用二个图钉就把刚获得的校田径运动会团体总分第一名的奖状挂在墙上了,请你用本章的一个知识来说明这样做的道理:过两点有且只有一条直线.考点:直线的性质:两点确定一条直线.分析:要把奖状挂在墙上,需要把奖状挂直,这就需要有一条直线来确保能够实现,过两点有且只有一条直线,可以满足要求.解答:解:由题意知道奖状要挂在墙上必须挂直,需要确定一条直线来实现目的,即需要有两个图钉.利用的道理是:过两点有且只有一条直线.点评:本题考查了直线的基本性质,实现了理论与实际的结合,题型不错.14.(2分)一个多边形的一个顶点出发有5条对角线,这是一个八边形.考点:多边形的对角线.分析:根据n边形从一个顶点引出的对角线与边的关系:n﹣3,列方程求解.解答:解:设多边形有n条边,则n﹣3=5,解得n=8.故多边形的边数为8,即它是八边形.故答案为八.点评:本题考查了多边形的对角线,经过n边形的一个顶点所有的对角线有(n﹣3)条,经过n边形的一个顶点的所有对角线把n边形分成(n﹣2)个三角形.15.(2分)如图,∠AOC和∠BOD都是直角,如果∠DOC=36°,则∠AOB是144度.考点:角的计算;余角和补角.专题:计算题.分析:由余角的性质,结合角的计算求出结果.解答:解:∵∠AOC和∠BOD都是直角,∠DOC=36°,∴∠A OD=54°.∴∠AOB=∠BOD+∠AOD=90°+54°=144°.点评:此题主要考查了学生余角的性质,利用余角性质即可求出该角.16.(2分)48.13°=48度7分48秒.考点:度分秒的换算.分析:根据度分秒的换算,大的单位化小的单位乘以进率,不满一度的化成分,不满一分的化成秒,可得答案.解答:解:48.13°=48°7′48″,故答案为:48°7′48″.点评:本题考查了度分秒的换算,把不满一度的化成分,不满一分的化成秒,都乘以进率60.17.(2分)某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:排数 1 2 3 4座位数50 53 56 59按这种方式排下去,第n排有(47+3n)个座位.考点:规律型:数字的变化类.分析:通过分析数据可知,观众席的座位每增加1排,就增加3个座位,再通过计算推断得出第n排的座位数.解答:解:根据表格中数据所显示的规律可知:第1排有47+3×1=50个座位,第2排有47+3×2=53个座位,第3排有47+3×3=56个座位,第4排有47+3×4=59个座位,…则第n排有(47+3n)个座位.故答案为(47+3n).点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.18.(2分)如果x<0,y>0且x2=4,y2=9,则x+y=1.考点:平方根;有理数的加法;有理数的乘方.专题:计算题.分析:x2=4即x是4的平方根,因而根据x<0,y>0且x2=4,y2=9,就可确定x,y的值,进而求解.解答:解:∵x2=4,y2=9,∴x=±2,y=±3,又∵x<0,y>0,∴x=﹣2,y=3,∴x+y=﹣2+3=1.故答案为:1.点评:本题主要考查了平方根的意义,根据条件正确确定x,y的值是解题关键.三、解答题(前两小题题4分,后两小题5分,共18分)19.(18分)计算下列各题(1)(﹣7)+(+15)﹣(﹣25)(2)(﹣36)×(﹣+)(用运算律)(3)﹣24﹣×[5﹣(﹣3)2](4)x2y﹣3xy2+2yx2﹣y2x.考点:有理数的混合运算;合并同类项.专题:计算题.分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式合并即可得到结果.解答:解:(1)原式=﹣7+15+25=﹣7+40=33;(2)原式=﹣9+20﹣21=﹣10;(3)原式=﹣16+2=﹣14;(4)原式=3x2y﹣4y2x.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、综合应用题(共36分)20.(6分)图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.考点:作图-三视图.专题:作图题.分析:由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,4,左视图有2列,每列小正方形数目分别为4,3.据此可画出图形.解答:解:点评:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.21.(6分)先化简,再求值:,其中.考点:整式的加减—化简求值.分析:利用去括号法则先化简再求值.解答:解:原式=3x﹣8x+2﹣+2x=﹣3x+,把x=﹣代入上式得:原式=﹣1.点评:此题主要考查学生利用去括号法则先化简再求值的能力,学生做这类题时要认真细心.22.(6分)把一个圆分割成三个扇形,它们圆心角的度数比为1:2:3,求最大的扇形的圆心角的度数.考点:角的概念.分析:首先根据题意,求出最大的扇形的圆心角占圆周角的=;然后根据分数乘法的意义,用360°乘以,求出最大的扇形的圆心角的度数是多少即可.解答:解:360°×=360°×=180°.即最大的扇形的圆心角的度数是180°.点评:此题主要考查了角的概念的应用,要熟练掌握,解答此题的关键是要明确:圆周角等于360°,并能判断出最大的扇形的圆心角的度数占圆周角的几分之几.23.(6分)如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.考点:角的计算.专题:计算题.分析:根据角平分线的定义∠COD=∠EOD,所以∠COB的度数等于180°﹣∠AOB﹣∠EOD﹣∠COD,然后代入数据计算即可.解答:解:∵∠EOD=28°46′,OD平分∠COE,∴∠COD=∠EOD=28°46′,∵∠AOB=40°,∴∠COB=180°﹣∠AOB﹣∠EOD﹣∠COD,=180°﹣40°﹣28°46′﹣28°46′,=82°28′.故答案为:82°28′.点评:本题主要考查角的度数的运算,读懂图形分清角的和差关系比较重要,还要注意角是60进制,这也是同学们容易出错的地方.24.(6分)已知:如图,线段AB=16cm,E为AB的中点,C为AB上一点,D为AB延长线上的点,且CD=4cm,B为CD的中点.求线段EC和ED的长.考点:两点间的距离.分析:先根据线段AB=16cm,E为AB的中点得出BE的长,再根据CD=4cm,B为CD 的中点得出BC=BD=2,进而可得出结论.解答:解:∵线段AB=16cm,E为AB的中点,∴BE=AB=8cm.∵CD=4cm,B为CD的中点,∴BC=BD=2cm,∴EC=EB﹣BC=8﹣2=6cm;ED=EB+BD=8+2=10cm.点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25.(6分)数a,b在数轴上的位置如图所示,化简:|a+b|﹣|a﹣b|+|a|﹣|b|.考点:整式的加减;数轴;绝对值.分析:根据a、b在数轴上的位置可得,a<0<b,然后进行绝对值的化简,去括号,合并同类项求解.解答:解:由图可得,a<0<b,则|a+b|﹣|a﹣b|+|a|﹣|b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.点评:本题考查了整式的加减,解答本题的关键是掌握绝对值的化简、合并同类项法则.。
人教版(五四学制)2022-2023学年七年级数学上册第二次月考测试题(附答案)
2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(共计30分)1.﹣2的倒数是()A.﹣2B.﹣C.D.22.下列计算正确的是()A.2a+3b=5ab B.(﹣a3b4)2=a6b8C.a6÷a2=a3D.(a+b)2=a2+b23.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.4.如图所示的几何体的左视图是()A.B.C.D.5.方程=的解为()A.x=2B.x=﹣4C.x=4D.x=﹣26.如图,点A,B,C,D都在⊙O上,∠BAC=15°,∠BOD=70°,DE切⊙O于D,则∠CDE的度数是()A.15°B.20°C.25°D.55°7.如图.BC是⊙O的直径,点A、D在⊙O上,P A切⊙O于A,若∠ADC=48°,则∠P AB =()A.42°B.48°C.46°D.50°8.在菱形ABCD中,AB=5,∠BCD=120°,则对角线BD等于()A.20B.C.10D.59.在△ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,则有()A.b=a•tan A B.b=c•sin A C.a=c•cos B D.c=a•sin A 10.如图,点D,E,F分别在△ABC的边AB,AC,BC上,连接DE,EF,若DE∥BC,EF∥AB,则下列比例式正确的是()A.=B.=C.=D.=二、填空题(共计30分)11.实数16800000用科学记数法表示为.12.在函数中,自变量x的取值范围是.13.计算:=.14.在实数范围内分解因式:a2m﹣5m=.15.关于x的不等式组的整数解是.16.某种过季绿茶的价格两次大幅下降,原来每袋250元,现在每袋90元,则平均每次下调的百分率是.17.在△ABC中,AB=AC=5,BD是高,且cos∠ABD=,则BC=.18.如图,分别过⊙O上A、B、C三点作⊙O切线,切线两两交于P、M、N,P A=9,则△PMN的周长为.19.在△ABC中,∠ACB=90°,CA=CB,点D为AB边上一点,AD=3BD,CD=2,点E在直线AC上,∠CDE=45°,则AE=.20.如图,△ABC中,AB=AC,AD⊥BC于D,DE平分∠ADC,EF⊥AB交AD于G,AG =1,BC=6,则BF=.三、解答题(共计60分)21.先化简,再求代数式的值,其中a=tan60°﹣6sin30°.22.△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向右平移5个单位长度,同时向下平移4个单位长度得到△A1B1C1;(2)将△ABC绕点A顺时针旋转90°得到△AB2C2,连接A1C2,直接写出A1C2的长.23.为了丰富同学们的课余生活,某中学开展以“我最喜欢的书籍种类”为主题的调查活动,围绕“在文学类、科普类、艺术类、其它类四类书籍中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若该中学共有1200名学生,请你估计该中学最喜欢科普类书籍的学生有多少名.24.在▱ABCD中,E,F分别为对角线BD上两点,连接AE、CE、AF、CF,且AE∥CF.(1)如图1,求证:四边形AECF是平行四边形;(2)如图2,若2BE=3EF,在不添加任何字母及辅助线的情况下,请直接写出图2中面积是△ABD面积的的四个三角形.25.某文教店用1200元购进了甲、乙两种钢笔.已知甲种钢笔进价为每支12元,乙种钢笔进价为每支10元.文教店在销售时甲种钢笔售价为每支15元,乙种钢笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种钢笔各多少支?(2)若该文教店以原进价再次购进甲、乙两种钢笔,且购进甲种钢笔的数量不变,而购进乙种钢笔的数量是第一次的2倍,乙种钢笔按原售价销售,而甲种钢笔降价销售.当两种钢笔销售完毕时,要使再次购进的钢笔获利不少于340元,甲种钢笔最低售价每支应为多少元?26.如图,四边形ABCD内接于⊙O,AC平分∠BCD.(1)如图1,求证:AB=AD;(2)如图2,点E在弧AD上,弧CE=弧BC,延长CD、AE交于点F,求证:AF=AD.(3)在(2)的条件下,如图3,连接ED并延长ED交AC延长线于点P,连接PF,若PF=AF=4,PE=10,求⊙O的半径.27.如图,在平面直角坐标系中,O为坐标原点,直线AC的解析式为:y=﹣x+3,点B在x轴负半轴上,且AB=5.(1)求直线BC的解析式;(2)点P从点C出发,沿射线CO方向以每秒1个单位的速度运动,点T在AO上,且BT=CO,连接PT,设点P运动时间为t秒,S△OTP=S,求S与t之间的函数解析式(直接写出自变量t的取值范围);(3)在(2)的条件下,过点T作AB的垂线,交AC于E,连接BE,过点A作CT的平行线AL,将线段BP绕P点顺时针方向旋转得PQ点Q恰好落在直线AL上,若∠BPQ=2∠BET,求t值.参考答案一、选择题(共计30分)1.解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.解:A、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(﹣a3b4)2=a6b8,原计算正确,故此选项符合题意;C、a6÷a2=a4,原计算错误,故此选项不符合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意.故选:B.3.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.4.解:这个组合体的左视图为:故选:A.5.解:去分母得:5x=8x﹣12,解得:x=4,检验:把x=4代入得:x(2x﹣3)≠0,∴分式方程的解为x=4.故选:C.6.解:连接OC,∵∠BAC=15°,∴∠BOC=2∠BAC=30°,∵∠BOD=70°,∴∠COD=70°﹣30°=40°,∵OC=OD,∴∠ODC=∠OCD=(180°﹣40°)=70°,∵DE切⊙O于D,∴OD⊥DE,∴∠CDE=90°﹣70°=20°,故选:B.7.解:连接OA,∵P A切⊙O于A,∴∠OP A=90°,∵∠ADC=48°,∴∠ABC=∠ADC=48°,∵OA=OB,∴∠OAB=∠ABC=48°,∴∠P AB=90°﹣∠OAB=42°,故选:A.8.解:∵四边形ABCD是菱形,∴∠ACB=∠BCD=×120°=60°,AC⊥BD,OC=AC=×5=2.5,BD=2OB,∴在Rt△OBC中,OB=OC•tan∠ACB=2.5×=,∴BD=2OB=5.故选:B.9.解:在△ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,tan A=,则a=b•tan A,A错误;sin A=,则a=c•sin A,B错误;cos B=,则a=c•cos B,C正确;sin A=,则a=c•sin A,D错误;故选:C.10.解:∵DE∥BC,∴△ADE∽△ABC,∴=,∴≠,故A错误;∵EF∥AB,∴∠CEF=∠A,∵∠C=∠AED,∴△CEF∽△EAD,∴=,∵△ADE∽△ABC,∴=,∵四边形BDEF是平行四边形,∴DE=BF,∴=,∵≠,∴≠,故B错误;∵EF∥AB,∴=,故C正确;∵△CEF∽△CAB,∴=,∵DE=BF,∴=,∵≠,∴≠,故D错误,综上所述,C正确,故选:C.二、填空题(共计30分)11.解:16800000=1.68×107.故答案为:1.68×107.12.解:由题意得:x+2>0,解得:x>﹣2,故答案为:x>﹣2.13.解:原式=4×2﹣2=8﹣2=6.故答案为:6.14.解:a2m﹣5m=m(a2﹣5)=m(a+)(a﹣),故答案为:m(a+)(a﹣).15.解:,由①得:x≤2,由②得:x>,∴不等式组的解集为<x≤2,则不等式组的整数解为1,2.故答案为:1,2.16.解:设平均每次下调的百分率为x,依题意得250(1﹣x)2=90,(1﹣x)2=,1﹣x=±,x1=40%,x2=160%(舍去).答:平均每次下调的百分率为40%.故答案为:40%.17.解:分两种情况:①如图一,当△ABC是锐角三角形时,在△ABD中,BD是AC边上的高,AB=5,cos∠ABD=,∴BD=3,∴AD==4,∴CD=AC﹣AD=5﹣4=1,在Rt△BDC中,BC=;②如图二,当△ABC是钝角三角形时,在△ABD中,BD是AC边上的高,AB=5,cos∠ABD=,∴BD=3,∴AD==4,∴CD=AC+AD=5+4=9,在Rt△BDC中,BC==3.故答案为:或3.18.解:∵P A、PB、MN分别与⊙O切于A、B、C,∴P A=PB,MA=MC,NB=NC,∴△PMN的周长=PM+MN+PN=PM+MC+CN+PN=PM+MA+NB+PN=P A+PB=9+9=18,故答案为:18.19.解:①如图,点E在AC上时,在△ABC,∠ACB=90°,CA=CB,∴∠EAD=∠CBA=45°,∵∠CDE=45°,∠CDA=∠CDE+∠ADE=∠B+∠BCD,∴∠ADE=∠BCD,∴△ADE∽△BCD,∴,∴AD=,BD=,∴,∴AE=,∵∠CDE=∠A=45°,∴△CED∽△CDA,∴,∵CD=2,∴AC•CE=40,∴,即AE•CE=15,∵AE+CE=AC,即AE+CE=,∴CE=,∴AE,∴AE=3;②如图,点E在AC的延长线上,∵∠CDE=45°,∠DCM=∠BCD,∴△CDE∽△BCD,∴,∵CD=2,CB=AC,∴BC•CM=40,即AC•CM=40,∵∠EDB=∠A+∠E,∠DCA=∠E+∠CDE,∠A=∠CDE=45°,∴∠EDB=∠DCA,∵∠A=∠B=45°,∴△BDM∽△ACD,∴,∵AC=BC,AB=AC,AD=3BD,∴AD=,BD=,,∴BM=,∵BM+CM=AC,∴CM=,∴AC=8,作DN∥BC,∴,∴DN=BC×=8×=6,AN=AC×=8×=6,∴CN=8﹣6=2,∵CM=,∴,∴,∴CE=10,∴AE=AC+CE=8+10=18,综上,AE=3或18,故答案为:3或18.20.解:如图,连接BG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,BD=CD=BC=3,∵EF⊥AB,∴∠AFG=90°,∵∠AFG=∠ADC=90°,∴∠AGF=∠C,∵∠AGF=∠DGE,∴∠DGE=∠C,∵DE平分∠ADC,∴∠CDE=∠EDG,∵DE=DE,∴△CDE≌△GDE(AAS),∴DG=CD=3,∵AG=1,∴AD=AG+DG=1+3=4,由勾股定理得:AB===5,∵S△ABG=•AB•FG=•AG•BD,∴×5FG=×1×3,∴FG=,由勾股定理得:AF===,∴BF=AB﹣AF=5﹣=.故答案为:.三、解答题(共计60分)21.解:原式=÷=﹣•=﹣,当a=tan60°﹣6sin30°=﹣3时,原式=﹣=﹣.22.解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,A1C2==3.23.解:(1)在这次调查中,一共抽取的学生数是:8÷20%=40(名);(2)其它类的人数有:40﹣8﹣14﹣12=6(名),补全统计图如下:(3)根据题意得:1200×=360(名),答:估计该中学最喜欢科普类书籍的学生有360名.24.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE∥CF,∴∠AEF=∠CFE,∴∠AEB=∠CFD,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形;(2)解:△ABE、△CDF、△BCE、△ADF,理由如下:由(1)得:△ABE≌△CDF,∴BE=DF,∵2BE=3EF,∴BE:BD=3:8,∴△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=△ABD面积的.25.解:(1)设文具店购进甲种钢笔x支,乙种钢笔y支,由题意,得,解得.答:这个文具店购进甲种钢笔50支,乙种钢笔60支.(2)设甲种钢笔每只的最低售价为m元,由题意,得50(m﹣12)+2×60(12﹣10)≥340,解得:m≥14.故甲种钢笔每只的最低售价为14元.26.(1)证明:∵四边形ABCD内接于⊙O,AC平分∠BCD,∴∠BCA=∠DCA,∴AB=AD;(2)证明:由(1)知,∠BCA=∠DCA,AB=AD,∵弧CE=弧BC,∴∠BAC=∠CAE,在△ABC和△AFC中,,∴△ABC≌△AFC(ASA),∴AB=AF,∵AB=AD,∴AF=AD;(3)解:连接BE、BP,过点E作EG⊥BP于点G,∵PF=AF=4,AF=AB=AD,∴AB=PF=4,∠APF=∠P AF,由(2)知,∠BAP=∠P AF,∴∠BAP=∠APF,∴AB∥PF,又∵AB=PF,∴四边形ABPF是平行四边形,又∵AB=AF,∴四边形ABPF是菱形,∴AF∥BP,BP=AB=4,∴∠AEB=∠EBP,∠FEP=∠EPB,∵点A、C、D、E在⊙O上,∴∠FEP=∠ACD,∵∠AEB=∠ACB,∴∠EBP=∠EPB,∴EB=EP=10,∵EG⊥BP,∴PG=BP=2,在Rt△PEG中,PE=10,∴EG===4,∴AB=EG,又∵EG⊥BP,∴∠ABP=90°,∴菱形ABPF是正方形,∴∠BAE=90°,∴EB是⊙O的直径,∴⊙O的半径是5.27.解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,∴A(3,0),C(0,3),∴OA=3,OC=3,∵AB=5,∴OB=2,∵B在x轴负半轴上,∴B(﹣2,0),设直线BC解析式为y=kx+b,将B(﹣2,0),C(0,3)代入得:,解得,∴直线BC解析式为y=x+3;(2)∵OC=3,点T在AO上,且BT=CO,B(﹣2,0),∴T(1,0),OT=1,∵点P从点C出发,沿射线CO方向以每秒1个单位的速度运动,点P运动时间为t秒,∴CP=t,当t<3时,如图:∴OP=OC﹣CP=3﹣t,∴S=OT•OP=×1×(3﹣t)=﹣t+,当t>3时,如图:同理可得S=OP•OT=t﹣,∴S=;(3)由(2)知T(1,0),在y=﹣x+3中令x=1得y=2,∴E(1,2),∵B(﹣2,0),∴ET=2,BT=3,由C(0,3),T(1,0)可得直线CT解析式为y=﹣3x+3,由AL∥CT,A(3,0)可得AL解析式为y=﹣3x+9,设Q(m,﹣3m+9),取BQ中点M,∵B(﹣2,0),∴M(,),过M作MN⊥x轴于N,过P作PH⊥MN于H,当P在x轴上方时,如图:∵将线段BP绕P点顺时针方向旋转得PQ,∴BP=PQ,∵M是BQ中点,∴∠BPQ=2∠BPM,∠BMP=90°,∵∠BPQ=2∠BET,∴∠BPM=∠BET,∵∠BMP=∠BTE=90°,∴△BMP∽△BTE,∴==,∵∠PMH=90°﹣∠BMN=∠MBN,∠PHM=∠MNB=90°,∴△PMH∽△MBN,∴===,∴=,解得m=,∴M(,),∴BN=OB+ON=,而=,∴MH=,∴NH=MH+MN=+==OP,∴CP=OC﹣OP=3﹣=,∴t=CP÷1=;当P在x轴下方时,如图:同理可得==,∴=,解得m=4,∴M'(1,﹣),∴BN'=OB+ON'=3,M'H'=2,∴OP=N'H'=M'N'+M'H'=+2=,∴CP=OC+OP=,∴t=CP÷1=,综上所述,t的值为或.。
七年级上学期数学 第二次月考数学试卷及答案
七年级(上)第二次月考数学试卷一、选择题(每小题3分,共24分)1.有理数﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.数轴上表示﹣的点到原点的距离是()A.﹣B.C.﹣2 D. 23.如果a+b>0,且ab<0,那么()A.a>0,b>0B.a<0,b<0C.a、b异号D.a、b异号且负数的绝对值较小4.下列计算正确的是()A.﹣14=﹣4 B.(1)2=1C.﹣(﹣2)2=4 D.﹣1﹣3=﹣45.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位)D.0.0502(精确到0.0001)6.有理数a,b在数轴上对应的点位置如下图所示,则下列试子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b<07.若|a|=2,|b|=5且b>0,则a+b的值应该是()A.7 B.﹣3和﹣7 C.3和7 D.﹣3和78.计算(﹣2)11+(﹣2)10的值是()A.﹣2 B.(﹣2)21 C.0 D.﹣210二、填空题(每空3分,共21分).9.某地气温开始是6℃,中午升高4℃,晚上某一时刻又下降了11℃,这时气温是.10.绝对值大于1而小于4的整数有个.11.简化符号:﹣(﹣71)=;﹣|﹣8|=;(﹣3)2=.12.用“<”符号连接:﹣3,1,0,(﹣3)2,﹣12为.13.一组按规律排列的数,,,,…第9个数是.14.(﹣1)+(﹣1)2+(﹣1)3+…+(﹣1)2015=.15.若|x+2|+(y﹣3)2=0,则x y的值为.三、解答题16.计算:①2﹣3﹣5+(﹣3)②2×(﹣3)3﹣4×(﹣3)+15③﹣26﹣(﹣+﹣)÷④5﹣3÷2×﹣|﹣2|3÷(﹣)17.甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是﹣5℃,乙此时在山脚测得温度是7℃,已知该地区高度每增加100米,气温大约降低0.6℃,这个山峰的高度大约是多少米?18.用科学记数法表示下列各数:(1)地球距离太阳约有150000000千米;(2)第五次全国人口普查,我国人口总数约为129533万人.19.已知a与b互为相反数,c与d互为倒数,m的绝对值为2,求﹣cd+m的值.20.如果规定*的意思是a*b=,求2*(﹣3)*4的值.21.某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、﹣3、+4、+2、+8、+5、﹣2、﹣8、+12、﹣5、﹣7(1)到晚上6时,出租车在什么位置.(2)若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗油多少升?22.阅读并解答后面的问题.,;,;,…(1)等于吗?请验证.(2)化简(计算):…+.2015-2016学年深圳市龙华中学七年级(上)第二次月考数学试卷参考答案一、选择题(每小题3分,共24分)1.有理数﹣3的相反数是(A)A.3 B.﹣3 C.D.﹣2.数轴上表示﹣的点到原点的距离是(B)A.﹣B.C.﹣2 D.23.如果a+b>0,且ab<0,那么(D)A.a>0,b>0B.a<0,b<0C.a、b异号D.a、b异号且负数的绝对值较小4.下列计算正确的是(C)A.﹣14=﹣4 B.(1)2=1C.﹣(﹣2)2=4 D.﹣1﹣3=﹣45.用四舍五入法按要求对0.05019分别取近似值,其中错误的是(B)A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位)D.0.0502(精确到0.0001)6.有理数a,b在数轴上对应的点位置如下图所示,则下列试子中正确的是(A)A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b<07.若|a|=2,|b|=5且b>0,则a+b的值应该是(C)A.7 B.﹣3和﹣7 C.3和7 D.﹣3和78.计算(﹣2)11+(﹣2)10的值是(D)A.﹣2 B.(﹣2)21 C.0 D.﹣210二、填空题(每空3分,共21分).9.某地气温开始是6℃,中午升高4℃,晚上某一时刻又下降了11℃,这时气温是﹣1°.10.绝对值大于1而小于4的整数有4个.11.简化符号:﹣(﹣71)=71;﹣|﹣8|=﹣8;(﹣3)2=9.12.用“<”符号连接:﹣3,1,0,(﹣3)2,﹣12为﹣3<﹣12<0<1<(﹣3)2.13.一组按规律排列的数,,,,…第9个数是.14.(﹣1)+(﹣1)2+(﹣1)3+…+(﹣1)2015=﹣1.15.若|x+2|+(y﹣3)2=0,则x y的值为﹣8.三、解答题16.计算:解:①原式=﹣1﹣9=﹣10;②原式=2×(﹣27)+12+15=﹣54+12+15=﹣27;③原式=﹣64﹣(﹣×16+×16﹣×16)=﹣64﹣(﹣8+4﹣2)=﹣64+6=﹣58;④原式=5﹣﹣8÷(﹣)=5﹣+16=20.17.甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是﹣5℃,乙此时在山脚测得温度是7℃,已知该地区高度每增加100米,气温大约降低0.6℃,这个山峰的高度大约是多少米?解:根据题意得:[7﹣(﹣5)]÷0.6×100=2000(米),答:这个山峰的高度大约是2000米.18.用科学记数法表示下列各数:(1)地球距离太阳约有150000000千米;(2)第五次全国人口普查,我国人口总数约为129533万人.解:(1)150000000=1.5×108(千米);(2)1295330000=1.29533×109(人).19.已知a与b互为相反数,c与d互为倒数,m的绝对值为2,求﹣cd+m的值.解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,﹣cd+m=0﹣1+2=1;当m=﹣2时,﹣cd+m=0﹣1﹣2=﹣3.20.如果规定*的意思是a*b=,求2*(﹣3)*4的值.解:∵2*(﹣3)==6,∴2*(﹣3)*4=6*4==2.4.21.某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、﹣3、+4、+2、+8、+5、﹣2、﹣8、+12、﹣5、﹣7(1)到晚上6时,出租车在什么位置.(2)若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗油多少升?解:(1)(+10)+(﹣3)+(+4)+(+2)+(+8)+(+5)+(﹣2)+(﹣8)+(+12)+(﹣5)+(﹣7)=10﹣3+4+2+8+5﹣2﹣8+12﹣5﹣7=41﹣25=16千米.∴到晚上6时,出租车在停车场东边16千米;(2)|+10|+|﹣3|+|+4|+|+2|+|+8|+|+5|+|﹣2|+|﹣8|+|+12|+|﹣5|+|﹣7|=10+3+4+2+8+5+2+8+12+5+7=66千米,0.2×66=13.2升.22.阅读并解答后面的问题.,;,;,…(1)等于吗?请验证.(2)化简(计算):…+.解:(1)∵=,=﹣=,∴=;(2)根据以上得出的规律得:…+=﹣++﹣+…=1﹣=.。
2022-2023学年人教版七年级数学上册第二次月考测试题(附答案)
人教版2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(每小题3分,30分)1.实数1,﹣1,0,﹣四个数中,最大的数是()A.0B.1C.﹣1D.2.某市某日的气温是﹣2℃~6℃,则该日的温差是()A.8℃B.6℃C.4℃D.﹣2℃3.下列各式中,是一元一次方程的是()A.2x+5y=6B.3x﹣2C.x2=1D.3x+5=84.下列各式中运算错误的是()A.5x﹣2x=3x B.5ab﹣5ba=0C.4x2y﹣5xy2=﹣x2y D.3x2+2x2=5x25.下列说法正确的是()A.单项式的系数是﹣5B.单项式a的系数为1,次数是0C.次数是6D.xy+x﹣1是二次三项式6.方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8B.0C.2D.87.下面说法中错误的是()A.368万精确到万位B.0.0450精确到千分位C.2.58精确到百分位D.10000保留到百位为1.00×1048.如果a=b,则下列式子不成立的是()A.a+c=b+c B.a2=b2C.ac=bc D.a﹣c=c﹣b 9.在某次活动中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A.30x﹣8=31x+26B.30x+8=31x+26C.30x﹣8=31x﹣26D.30x+8=31x﹣2610.观察图和所给表格回答.当图形的周长为80时,梯形的个数为()梯形个数12345….图形周长58111417….A.25B.26C.27D.28二、填空题(每小题3分,30分)11.﹣23=.12.已知多项式2mx m+2+4x﹣7是关于x的三次多项式,则m=.13.产量由m千克增长15%后,达到千克.14.若有理数a、b满足|a+6|+(b﹣4)2=0,则a﹣b的值为.15.与原点的距离为2个单位的点所表示的有理数是.16.白玉兰商店把某种服装成本价提高50%后标价,又以7折卖出,结果每一件仍然获利20元,这种服装每件的成本是元.17.如果a﹣b=3,ab=﹣1,则代数式3ab﹣a+b﹣2的值是.18.列等式表示:“x的2倍与8的和等于10”上述等式可列为:.19.若代数式2a+3与8﹣3a的值相等,则a2021=.20.一份试卷,一共20道选择题,每一题答对得5分,答错或不答扣3分,小红共得68分,那么小红答对了道题.三、解答题(60分)21.(1)计算﹣12021+18÷(﹣3)×|﹣|(2)化简3a2﹣[8a﹣(4a﹣7)﹣2a2](3)化简求值﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=﹣,b=1022.解方程:(1)5(x+2)=2(5x﹣1);(2);(3)23.若方程3x+2a=12和方程3x﹣4=2的解相同,求a的值.24.甲乙两车从相距240km的两站同时开出,相对而行,甲车每小时行50km,乙车每小时行30km,问出发几小时后两车相距80km?25.抗洪抢修施工队甲处有31人,乙处有21人,由于任务的需要,现另调23人去支援,使在甲处施工的人数是在乙处施工人数的2倍,问应调往甲、乙两处各多少人?26.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天?27.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?参考答案一、选择题(每小题3分,30分)1.解:﹣1<﹣<0<1,故选:B.2.解:该日的温差=6﹣(﹣2)=6+2=8(℃).故选:A.3.解:A、含有2个未知数,故选项错误;B、不是等式,故选项错误;C、是2次方程,故选项错误;D、正确.故选:D.4.解:A、5x﹣2x=(5﹣2)x=3x,正确;B、5ab﹣5ba=(5﹣5)ab=0,正确;C、4x2y与5xy2不是同类项,不能合并,故本选项错误;D、3x2+2x2=(3+2)x2=5x2,正确.故选:C.5.解:A、单项式的系数是﹣,错误;B、单项式a的系数为1,次数是1,错误;C、次数是4,错误;D、正确.故选:D.6.解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选:D.7.解:A、368万精确到万位,此选项不符合题意;B、0.0450精确到万分位,此选项符合题意;C、2.58精确到百分位,此选项不符合题意;D、10000保留到百位为1.00×104,此选项不符合题意.故选:B.8.解:A.根据等式性质1,在等式的两边同时加上c,结果成立,故正确;B.根据等式性质2,在等式的两边同时乘以一个相同的数或式子,结果成立,故正确;C.根据等式性质2,在等式的两边同时乘以c,结果成立,故正确;D.不符合等式的性质,故不成立.故选:D.9.解:由题意得:30x+8=31x﹣26,故选:D.10.解:周长分别是5,8,11,14…可以看出:首项a1=5,等差d=3,由公式a n=a1+(n﹣1)d,即a n=5+(n﹣1)×3=3n+2.∴3n+2=80,解得n=26.故选:B.二、填空题(每小题3分,30分)11.解:﹣23=﹣8.故答案为:﹣8.12.解:∵多项式2mx m+2+4x﹣7是关于x的三次多项式,∴m+2=3,解得:m=1,故答案为:1.13.解:根据题意得:m(1+15%)=1.15m(千克);故答案为:1.15m.14.解:∵|a+6|+(b﹣4)2=0,∴a+6=0,b﹣4=0,∴a=﹣6,b=4,∴a﹣b=﹣6﹣4=﹣10.故答案为:﹣10.15.解:设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x,则|x|=2,解得:x=±2.故答案为:±2.16.解:设这种服装每件的成本为x元,依题意,得:0.7×(1+50%)x﹣x=20,解得:x=400.故答案为:400.17.解:∵a﹣b=3,ab=﹣1,∴3ab﹣a+b﹣2,=3×(﹣1)﹣3﹣2,=﹣3﹣3﹣2,=﹣8.故答案为:﹣8.18.解:依题意得:2x+8=10.故答案是:2x+8=10.19.解:根据题意得:2a+3=8﹣3a,移项合并得:5a=5,解得:a=1,则原式=1,故答案为:120.解:设小红答对了x道题,则答错或不答(20﹣x)道题,依题意,得:5x﹣3(20﹣x)=68,解得:x=16.故答案为:16.三、解答题(60分)21.解:(1)原式=﹣1﹣6×=﹣1﹣3=﹣4;(2)原式=3a2﹣8a+4a﹣7+2a2=5a2﹣4a﹣7;(3)原式=a2﹣2ab﹣b2﹣a2﹣ab+b2=﹣3ab,当a=﹣,b=10时,原式=2.22.解:(1)去括号得:5x+10=10x﹣2,移项合并得:﹣5x=﹣12,解得:x=2.4;(2)去分母得:6(x﹣2)=2x﹣1,去括号得:6x﹣12=2x﹣1,移项合并得:4x=11,解得:x=;(3)方程整理得:x﹣=2﹣,去分母得:10x﹣5x+5=20﹣2x﹣4,移项合并得:7x=11,解得:x=.23.解:3x﹣4=2x=2,∵方程3x+2a=12和方程3x﹣4=2的解相同,把x=2代入3x+2a=12得6+2a=12,a=3.24.解:设出发x小时后两车相距80km,(50+30)x=240﹣80或(50+30)x=240+80解得,x=2或x=4答:出发2小时或4小时后两车相距80km.25.解:设应调往甲处x人,调往乙处(23﹣x)人.依题意,有31+x=2(21+23﹣x),解方程,得x=19,23﹣x=23﹣19=4.答:应调往甲处19人,调往乙处4人.26.解:设甲挖掘机挖了x天,则乙挖掘机挖了(x+6)天,依题意,得:+=1,解得:x=4.答:甲挖掘机挖了4天.27.解:(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票;(2)设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多.。
七年级数学上学期第二次月考试题含解析试题
卜人入州八九几市潮王学校永登县苦水二零二零—二零二壹七年级数学上学期第二次月考试题一、精心选一选:〔本大题10个小题,每一小题4分,一共40分〕1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.以下各式符合代数式书写标准的是()A.B.a×3C.2m﹣1个D.1m3.以下各式中运算正确的选项是()A.6a﹣5a=1 B.a2+a2=a4C.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b4.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A. B.C. D.5.对于代数式﹣,以下结论正确的选项是()A.它的系数是,次数是5 B.它的系数是﹣,次数是6C.它的系数是,次数是6 D.它的系数是﹣,次数是56.|a|=4,b是的倒数,且a<b,那么a+b等于()A.﹣7 B.7或者﹣1 C.﹣7或者1 D.17.代数式3x2﹣6x+6的值是9,那么代数式x2﹣2x+6的值是()A.18 B.12 C.9 D.78.某服装店新开张,第一天销售服装a件,第二天比第一天多销售12件,第三天的销售量是第二天的2倍少10件,那么第三天销售了()A.〔2a+2〕件B.〔2a+24〕件 C.〔2a+10〕件 D.〔2a+14〕件9.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,增援后拔草人数是植树人数的2倍,求支援拔草和植树的人分别有多少人?假设设支援拔草的有x人,那么以下方程中正确的选项是()A.31+x=2×18 B.31+x=2〔38﹣x〕C.51﹣x=2〔18+x〕D.51﹣x=2×1810.一个两位数的个位数字与十位数字都是x,假设将个位数字与十位数字分别加2和1,所得的新数比原数大12,那么可列的方程是()A.2x+3=12 B.10x+2+3=12C.〔10x+x〕﹣10〔x+1〕﹣〔x+2〕=12 D.10〔x+1〕+〔x+2〕=10x+x+12二、细心填一填:〔本大题一一共10个小题,每一小题4分,一共40分〕11.被称为“地球之肺〞的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为__________公顷.12.关于x的方程2x+3a=﹣1的解是x=1,那么a=__________.13.假设单项式﹣x2m﹣1y2的次数是5,那么m的值是__________.14.假设x m+1y5和是同类项,那么2m﹣3mn=__________.15.在某月内,李教师要参加三天的学习培训,如今知道这三天日期的数字之和是39.假设培训时间是是连续三周的周六,那么培训的第一天的日期是__________.16.如图,OD⊥OA,∠AOB:∠BOC=1:3,OD平分∠BOC,那么∠AOC=__________度.17.某商场新进一批同型号的电脑,按进价进步40%标价〔就是价格牌上标出的价格〕,此商场为了促销,又对该电脑打8折销售〔8折就是实际售价为标价的80%〕,每台电脑仍可盈利420元,那么该型号电脑每台进价为__________元.18.时间是为10:40时,时钟的时针与分针的夹角是__________度.19.假设有足够多的黑白围棋子,按照一定的规律排成一行:请问第2021个棋子是黑的还是白的?答:__________.20.数a,b,c的大小关系如下列图:那么以下各式:①b+a+〔﹣c〕>0;②〔﹣a〕﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有__________〔请填写上编号〕.三、用心做一做:〔本大题一一共70分〕以下各题解答时必须给出必要的演算过程或者推理步骤21.计算:〔1〕〔﹣4〕2﹣9〔2〕﹣120﹣〔1﹣0.5〕2×.22.化简以下各式:〔1〕2〔a2﹣ab〕﹣2a2+3ab;〔2〕〔﹣x2+2xy﹣y2〕﹣2〔xy﹣3x2〕+3〔2y2﹣xy〕.23.解以下方程:〔1〕3x﹣2〔x+3〕=6﹣2x;〔2〕.24.某种商品进货后,零售价定为每件900元,为了适应场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%〔相对于进价〕,问这种商品的进价为多少元?25.先化简,再求值:,其中a、b满足|a+3b+1|+〔2a ﹣4〕2=0.26.〔1〕如图,点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度;〔2〕假设点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,请直接写出线段MN 的长度;〔用a、b的代数式表示〕二零二零—二零二壹永登县苦水七年级〔上〕第二次月考数学试卷一、精心选一选:〔本大题10个小题,每一小题4分,一共40分〕1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.应选:A.【点评】主要考察倒数的概念及性质.倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数.2.以下各式符合代数式书写标准的是()A.B.a×3C.2m﹣1个D.1m【考点】代数式.【分析】根据代数式的书写要求判断各项.【解答】解:A、符合代数式的书写,故A选项正确;B、a×3中乘号应略,数字放前面,故B选项错误;C、2m﹣1个中后面有单位的应加括号,故C选项错误;D、1m中的带分数应写成假分数,故D选项错误.应选:A.【点评】此题考察代数式的书写要求:〔1〕在代数式中出现的乘号,通常简写成“•〞或者者略不写;〔2〕数字与字母相乘时,数字要写在字母的前面;〔3〕在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.以下各式中运算正确的选项是()A.6a﹣5a=1 B.a2+a2=a4C.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b【考点】合并同类项.【专题】计算题.【分析】根据同类项的定义及合并同类项法那么解答.【解答】解:A、6a﹣5a=a,故A错误;B、a2+a2=2a2,故B错误;C、3a2+2a3=3a2+2a3,故C错误;D、3a2b﹣4ba2=﹣a2b,故D正确.应选:D.【点评】合并同类项的方法是:字母和字母的指数不变,只把系数相加减.注意不是同类项的一定不能合并.4.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A. B.C. D.【考点】由三视图判断几何体;简单组合体的三视图.【专题】作图题.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.应选D.【点评】此题考察了三视图的知识,主视图是从物体的正面看得到的视图.5.对于代数式﹣,以下结论正确的选项是()A.它的系数是,次数是5 B.它的系数是﹣,次数是6C.它的系数是,次数是6 D.它的系数是﹣,次数是5【考点】单项式.【分析】根据单项式的系数、次数的定义进展判断.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数为﹣,次数为3+2=5,应选D.【点评】此题考察了单项式的系数及次数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.6.|a|=4,b是的倒数,且a<b,那么a+b等于()A.﹣7 B.7或者﹣1 C.﹣7或者1 D.1【考点】倒数;绝对值;有理数的加法.【分析】根据绝对值,倒数的概念及条件a<b,首先确定a与b的值,再代入所求代数式a+b,运用有理数的加法法那么得出结果.【解答】解:∵|a|=4,∴a=±4.∵b是的倒数,∴b=﹣3,又∵a<b,∴a=﹣4,∴a+b=﹣4﹣3=﹣7.应选A.【点评】主要考察绝对值,倒数的概念及理数的加法法那么.倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.有理数加法法那么:同号相加,取一样符号,并把绝对值相加;绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;一个数同0相加,仍得这个数.7.代数式3x2﹣6x+6的值是9,那么代数式x2﹣2x+6的值是()A.18 B.12 C.9 D.7【考点】代数式求值.【分析】由代数式3x2﹣6x+6的值是9,易求得x2﹣2x的值,然后整体代入代数式x2﹣2x+6,即可求得答案.【解答】解:∵3x2﹣6x+6=9,∴3x2﹣6x=3,∴x2﹣2x=1,∴x2﹣2x+6=1+6=7.应选D.【点评】此题考察了代数式的求值问题.此题难度适中,注意掌握整体思想的应用.8.某服装店新开张,第一天销售服装a件,第二天比第一天多销售12件,第三天的销售量是第二天的2倍少10件,那么第三天销售了()A.〔2a+2〕件B.〔2a+24〕件 C.〔2a+10〕件 D.〔2a+14〕件【考点】列代数式.【分析】此题要根据题意直接列出代数式,第三天的销售量=〔第一天的销售量+12〕×2﹣10.【解答】解:第二天销售服装〔a+12〕件,第三天的销售量2〔a+12〕﹣10=2a+14〔件〕,应选D.【点评】此题要注意的问题是用多项式表示一个量的后面有单位时,这个多项式要带上小括号.9.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,增援后拔草人数是植树人数的2倍,求支援拔草和植树的人分别有多少人?假设设支援拔草的有x人,那么以下方程中正确的选项是()A.31+x=2×18 B.31+x=2〔38﹣x〕C.51﹣x=2〔18+x〕D.51﹣x=2×18【考点】由实际问题抽象出一元一次方程.【分析】首先知道支援拔草的有x人,一共有20人去支援,那么支援植树的有人,再根据关键语句“增援后拔草人数是植树人数的2倍〞可得方程.【解答】解:设支援拔草的有x人,那么支援植树的有人,由题意得:31+x=2[18+],即:31+x=2〔38﹣x〕,应选:B.【点评】此题主要考察了由实际问题抽象出一元一次方程,关键是把支援的20人清楚的分开,表示出支援后的拔草人数是植树人数.10.一个两位数的个位数字与十位数字都是x,假设将个位数字与十位数字分别加2和1,所得的新数比原数大12,那么可列的方程是()A.2x+3=12 B.10x+2+3=12C.〔10x+x〕﹣10〔x+1〕﹣〔x+2〕=12 D.10〔x+1〕+〔x+2〕=10x+x+12【考点】由实际问题抽象出一元一次方程.【专题】数字问题.【分析】根据将个位数字与十位数字分别加2和1后的数﹣原来这个两位数=12进展列式.【解答】解:原来两位数可表示为11x,将个位数字与十位数字分别加2和1后新数可表示为10〔x+1〕+〔x+2〕,由所得的新数比原数大12可列式10〔x+1〕+〔x+2〕=10x+x+12,应选D.【点评】此题主要考察由实际问题抽象出一元一次方程的知识点,读懂题意,找出等量关系是解答此题的关键.二、细心填一填:〔本大题一一共10个小题,每一小题4分,一共40分〕11.被称为“地球之肺〞的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为×107公顷.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法就是将一个数字表示成a×10n的形式,其中1≤|a|<10,n表示整数,n为整数.【解答】解:15000000=×107.【点评】此题考察学生对科学记数法的掌握.科学记数法要求前面的局部|a|是>或者等于1,而<10,n 为整数.12.关于x的方程2x+3a=﹣1的解是x=1,那么a=﹣1.【考点】一元一次方程的解.【专题】计算题.【分析】由于x=1是原方程的解,将x=1代入原方程,即:2+3a=﹣1,直接解新方程可以求出a的值.【解答】解:由于x=1是方程2x+3a=﹣1的解,即满足:2×1+3a=﹣1,是一个关于a的一元一次方程解之得:3a=﹣3,a=﹣1故答案为:a=﹣1.【点评】此题考察的是原方程的解求解原方程中未知数的过程,只需将原方程的解代入原方程求出未知数的值即可.13.假设单项式﹣x2m﹣1y2的次数是5,那么m的值是2.【考点】单项式.【分析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.【解答】解:∵单项式﹣x2m﹣1y2的次数是5,∴2m﹣1+2=5,解得,m=2.∴m的值是2.【点评】确定单项式的次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式次数的关键.14.假设x m+1y5和是同类项,那么2m﹣3mn=﹣12.【考点】同类项.【分析】根据同类项的定义可先求得m和n的值,从而求出2m﹣3mn的值.【解答】解:由同类项的定义可知m+1=4,2n+1=5,解得:m=3,n=2,那么2m﹣3mn=﹣12.故答案为:﹣12.【点评】此题考察同类项问题,代数式的求值也是中考中常见的试题,要求代数式的值,关键是求出代数式中的字母的值,此题根据同类项即可求解字母的值.15.在某月内,李教师要参加三天的学习培训,如今知道这三天日期的数字之和是39.假设培训时间是是连续三周的周六,那么培训的第一天的日期是6日.【考点】一元一次方程的应用.【专题】应用题;数字问题.【分析】根据题意可知这三天一次相差7天,设培训的第一天的日期是x日,分别用x表示出另外2天,利用三天日期和是39列方程求解即可.【解答】解:设培训的第一天的日期是x日,那么另外两天是〔x+7〕日,〔x+14〕日,根据题意,得x+x+7+x+14=39解得x=6所以培训的第一天的日期是6日.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解.16.如图,OD⊥OA,∠AOB:∠BOC=1:3,OD平分∠BOC,那么∠AOC=144度.【考点】角的计算;角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据比例设出两角,再利用OD⊥OA,∠AOD是90°求解.【解答】解:根据题意,设∠AOB为x,∠BOC为3x,∵OD平分∠BOC,∴∠BOD=x,∵OD⊥OA,∴x+x=90°,解得x=36°,∴∠AOC=x+3x=4x=4×36°=144°.【点评】利用垂直得到直角是解此题的关键.17.某商场新进一批同型号的电脑,按进价进步40%标价〔就是价格牌上标出的价格〕,此商场为了促销,又对该电脑打8折销售〔8折就是实际售价为标价的80%〕,每台电脑仍可盈利420元,那么该型号电脑每台进价为3500元.【考点】一元一次方程的应用.【专题】销售问题.【分析】设该型号电脑每台进价为x元,那么按进价进步40%的标价是x+40%x,那么打8折销售的价格﹣进价=盈利,根据这个等量关系列方程,求得解.【解答】解:设该型号电脑每台进价为x元,根据题意列方程得:〔x+40%x〕×0.8﹣x=420,解得:x=3500∴该型号电脑每台进价为3500元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解.18.时间是为10:40时,时钟的时针与分针的夹角是80度.【考点】钟面角.【专题】计算题.【分析】此类钟表问题,先理清分针、时针,每分钟、每小时的转动角度,然后再进展求解.【解答】解:时针每小时转动360÷12=30°,每分钟转动30÷60=0.5°;分针每分钟转动360÷60=6°;当时间是为10:40时,时针转动的角度为:30°×10+40×0.5°=320°;分针转动的角度为:40×6°=240°;∴此时,时针与分针的夹角为320°﹣240°=80°.【点评】此题考察的是钟表类问题,掌握时针、分针的转动情况是解答此类题的关键所在.19.假设有足够多的黑白围棋子,按照一定的规律排成一行:请问第2021个棋子是黑的还是白的?答:白.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些局部发生了变化,是按照什么规律变化的.此题的关键是找出黑白棋子的变化规律,然后根据规律来判断第n个棋子的颜色.【解答】解:根据题意得:每6个围棋子的顺序都是一致的,∵2021÷6=335…5,∴假设把6个围棋子看作一个循环,第2021个棋子经过了335个循环,是第336个循环中的第5个棋子,∴根据第5个棋子是白色的,∴第2021个也应该是白色的.故答案为:白.【点评】此题考察了规律型:图形的变化美、图形的变化规律;此题是一道找规律的题目,根据题意得出6个围棋子为一个循环是解决问题的关键,这类题型在中考中经常出现.20.数a,b,c的大小关系如下列图:那么以下各式:①b+a+〔﹣c〕>0;②〔﹣a〕﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有②③⑤〔请填写上编号〕.【考点】绝对值.【专题】数形结合.【分析】有数轴判断abc的符号和它们绝对值的大小,再判断所给出的式子的符号,写出正确之答案.【解答】解:由数轴知b<0<a<c,|a|<|b|<|c|,①b+a+〔﹣c〕<0,故原式错误;②〔﹣a〕﹣b+c>0,故正确;③,故正确;④bc﹣a<0,故原式错误;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b,故正确;其中正确的有②③⑤.【点评】此题综合考察了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,表达了数形结合的优点.三、用心做一做:〔本大题一一共70分〕以下各题解答时必须给出必要的演算过程或者推理步骤21.计算:〔1〕〔﹣4〕2﹣9〔2〕﹣120﹣〔1﹣0.5〕2×.【考点】有理数的混合运算.【专题】计算题;实数.【分析】〔1〕原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;〔2〕原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:〔1〕原式=16﹣12﹣4=0;〔2〕原式=﹣120﹣××2=﹣120.【点评】此题考察了有理数的混合运算,纯熟掌握运算法那么是解此题的关键.22.化简以下各式:〔1〕2〔a2﹣ab〕﹣2a2+3ab;〔2〕〔﹣x2+2xy﹣y2〕﹣2〔xy﹣3x2〕+3〔2y2﹣xy〕.【考点】整式的加减.【分析】此题考察了整式的加减、去括号法那么两个考点.先按照去括号法那么去掉整式中的括号,再合并整式中的同类项即可.【解答】解:〔1〕原式=2a2﹣2ab﹣2a2+3ab=ab;〔2〕原式=﹣x2+2xy﹣y2﹣2xy+6x2+6y2﹣3xy=5x2﹣3xy+5y2.【点评】解决此类题目的关键是熟记去括号法那么,及纯熟运用合并同类项的法那么,其是各地中考的常考点.注意去括号法那么为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.23.解以下方程:〔1〕3x﹣2〔x+3〕=6﹣2x;〔2〕.【考点】解一元一次方程.【专题】计算题.【分析】〔1〕先去括号,再移项、合并同类项、化系数为1即可;〔2〕先去分母、去括号,再移项、合并同类项、化系数为1.【解答】解:〔1〕去括号,得:3x﹣2x﹣6=6﹣2x,移项,得:3x﹣2x+2x=6+6,合并同类项,得:3x=12,系数化1,得:x=4.∴x=4是方程的解.〔2〕去分母,得:2〔1﹣2x〕=6﹣〔x+2〕,去括号,得:2﹣4x=6﹣x﹣2,移项,得:﹣4x+x=6﹣2﹣2,合并同类项,得:﹣3x=2,系数化1,得:.∴是方程的解.【点评】此题考察理解一元一次方程的步骤:去分母、去括号、移项、合并同类项和系数化为1,在去分母时一定要注意:不要漏乘方程的每一项.24.某种商品进货后,零售价定为每件900元,为了适应场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%〔相对于进价〕,问这种商品的进价为多少元?【考点】一元一次方程的应用.【分析】通过理解题意可知商店按零售价的九折且让利40元销售即销售价=900×90%﹣40,得出等量关系为x×〔1+10%〕=900×90%﹣40,求出即可.【解答】解:设进价为x元,可列方程:x×〔1+10%〕=900×90%﹣40,解得:x=700,答:这种商品的进价为700元.【点评】此题主要考察了一元一次方程的应用,解决此题的关键是得到商品售价的等量关系.25.先化简,再求值:,其中a、b满足|a+3b+1|+〔2a ﹣4〕2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方;解一元一次方程.【分析】先由非负数的性质化简a、b满足的关系式,求出a、b的值,化简所给的代数式代入求值即可.【解答】解:∵|a+3b+1|≥0,〔2a﹣4〕2≥0,且|a+3b+1|+〔2a﹣4〕2=0,∴2a﹣4=0且a+3b+1=0,∴a=2,b=﹣1,∵原式=3a2b﹣〔2ab2﹣2ab+3a2b〕+2ab=3a2b﹣2ab2+2ab﹣3a2b+2ab=﹣2ab2+4ab∴当a=2,b=﹣1时原式=﹣2×2×〔﹣1〕2+4×2×〔﹣1〕=﹣4+〔﹣8〕=﹣12.【点评】考察的是整式的化简求值问题.注意应用非负数的性质求解未知数的值,这是中考的重点.26.〔1〕如图,点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度;〔2〕假设点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,请直接写出线段MN 的长度;〔用a、b的代数式表示〕【考点】两点间的间隔.【分析】〔1〕由条件可知,MN=MC+NC,又因为点M、N分别是AC、BC的中点,那么MC=AC,NC=BC,故MN=MC+NC=〔AC+BC〕,由此即可得出结论;〔2〕直接根据〔1〕的计算得出答案即可.【解答】解:〔1〕∵AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,∴MC=3cm,NC=2cm,∴MN=MC+NC=3+2=5cm.〔2〕∵点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,∴MN=〔a+b〕.【点评】此题考察了两点间的间隔,利用线段中点性质转化线段之间的关系是解题的关键.。
人教版(五四学制)2022-2023学年七年级数学上册第二次月考测试题(附答案)
2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(共30分)1.下列各式中,是一元一次方程的是()A.3x﹣2=y B.x2﹣1=0C.=2D.=2 2.下面四个图中,∠1=∠2是对顶角的是()A.B.C.D.3.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若x=y,则=C.若x=y,则1﹣3x=1﹣3y D.若a=b,则ac=bc4.如图,点A到直线CD的距离是指线段()的长.A.AC B.CD C.AD D.BD 5.如图,共有对顶角()A.3对B.6对C.12对D.16对6.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.7.如图,下列结论正确的是()A.∠5与∠2是对顶角B.∠1与∠3是同位角C.∠2与∠3是同旁内角D.∠1与∠2是同旁内角8.如图,直线AB,CD相交于点E,EF⊥AB于点E,若∠FEC﹣∠AEC=20°,那么∠AED 的度数为()A.125°B.135°C.140°D.145°9.如图,OP∥QR∥ST,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=90°C.∠1﹣∠2+∠3=90°D.∠2+∠3﹣∠1=180°10.下列说法正确的个数有()个.(1)若∠1+∠2=180°,则∠1与∠2是邻补角;(2)直线外一点到这条直线的垂线段,叫点到直线的距离;(3)邻补角的角平分线互相垂直;(4)如果两条直线被第三条直线所截,那么同位角相等;(5)如果两条直线都垂直于同一条直线,那么这两条直线平行;(6)同旁内角互补.A.1B.2C.3D.4二、填空题(共18分)11.如图,要把池中的水引到C处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:12.若x=2是方程ax+a﹣3=0的解,则a=.13.表中记录了一次试验中时间和温度的数据.时间/min0510152025温度/℃102540557085如果温度的变化是均匀的,则21min时的温度是℃.14.如图,已知∠1=100°,∠2=100°,∠3=70°,则∠4=度.15.我们知道写成小数形式即0.,反过来,无限循环小数0.写成分数形式即.一般地,任何一个无限循环小数都可以写成分数形式.以无限循环小数0.为例:设0.=x,由0.=0.777…可知,10x=7.777…,所以10x﹣x=7,解方程,得x=,于是0.=.运用以上方法,可求得0.写成分数形式为.16.将直角三角板如图所示放置,∠ABC=60°,∠ACB=90°,∠A=30°,直线CE∥AB,BE平分∠ABC,在直线CE上确定一点D,满足∠BDC=45°,则∠EBD=.三、解答题(共72分)17.解下列方程:(1)1﹣(x+8)=3(2x﹣7).(2)=3﹣.18.如图,网格中的每个小正方形的边长均为1,则线段AB的长为5.(1)过点A画出线段BC的垂线段,垂足为点D;(2)过点C画出线段AB的垂线,垂足为点E;(3)直接写出点C到直线AB的距离为.19.已知代数式与代数式,当x为何值时,代数式与代数式的值相等.20.如图,AB∥CD,EF分别交于AB、CD于E、F,EG平分∠AEF,FH平分∠EFD.求证:EG∥FH.请在括号里填写适当的根据.证明:∵AB∥CD(已知)∴∠AEF=∠EFD()∵EG平分∠AEF,FH平分∠EFD()∴∠GEF=∠AEF,∠HFE=∠EFD()∵∠AEF=∠EFD∴∠AEF=∠EFD∴∠=∠()∴EG∥FH()21.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°(1)求证:EF∥AD.(2)连接CE,若CE平分∠BCF,求∠FEC的度数.22.某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满了7个月就决定不再继续干了,结账时,给了他一件衣服和2枚银币.这件衣服值多少枚银币?23.如果两个方程的解相差1,则称解较大的方程为另一个方程的“后移方程”.例如:方程x﹣2=0是方程x﹣1=0的后移方程.(1)判断方程2x+1=0是否为方程2x+3=0的后移方程(填“是”或“否”);(2)若关于x的方程3x+m+n=0是关于x的方程3x+m=0的后移方程,求n的值.(3)当a≠0时,如果方程ax+b=0是方程ax+c=0的后移方程,用等式表达a,b,c 满足的数量关系.24.“丰收1号”油菜籽的平均每公顷产量为2500kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”油菜籽的平均每公顷产量提高了300kg,含油率提高了10个百分点.某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少2公顷,但是所产菜籽油的总量比去年提高2800kg.(1)设这个村去年种值油菜的面积为x公顷,则今年种植油菜的面积为公顷;(含x的式子表示)(2)这个村去年种植油菜的面积是多少公顷?(3)这个村今年油菜籽的总产量是多少千克?25.已知直线MN、PQ,点A、B为分别在直线MN、PQ上,点C为平面内一点,连接AC、BC,且∠C=∠NAC+∠CBQ.(1)求证:MN∥PQ;(2)如图2,射线AE、BD分别平分∠MAC和∠CBQ,AE交直线PQ于点E,BD与∠NAC内部的一条射线AD交于点D,若∠C=2∠D,求∠EAD的度数.参考答案一、选择题(共30分)1.解:A.3x﹣2=y,含有两个未知数,不是一元一次方程,故本选项不符合题意;B.x2﹣1=0,未知数的最高次数为2,不是一元一次方程,故本选项不符合题意;C.是一元一次方程,故本选项符合题意;D.,不是整式方程,故本选项不符合题意;故选:C.2.解:A、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;B、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;C、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;D、是对顶角,故此选项正确;故选:D.3.解:A、若x=y,则x+5=y+5,正确,不合题意;B、若x=y,则=,a≠0,故此选项错误,符合题意;C、若x=y,则1﹣3x=1﹣3y,正确,不合题意;D、若a=b,则ac=bc,正确,不合题意.故选:B.4.解:要表示点A到直线CD的距离,就要过点A作直线CD的垂线,垂足为D点,垂线段为AD,要求的距离就是线段AD的长,故选C.5.解:两条直线相交于一点,共有对顶角的对数为2对,三条直线两两相交,有三个交点,共有对顶角的对数为6对.故选:B.6.解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.7.解:根据同位角、同旁内角、对顶角的定义进行判断,A、∠5与∠2+∠3是对顶角,故本选项错误;B、∠1与∠3+∠4是同位角,故本选项错误;C、∠2与∠3没有处在两条被截线之间,故本选项错误;D、∠1与∠2是同旁内角;故本选项正确;故选:D.8.解:设∠AEC为x,则∠FEC=x+20°;∵EF⊥AB,∴∠AEF=90°,∴∠AEC+∠FEC=90°,∴x+x+20°=90°,解得:x=35°,即∠AEC=35°,∴∠AED=180°﹣35°=145°.故选:D.9.解:方法一、延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠FSR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.方法二、∵OP∥QR∥ST,∴∠2+∠PRQ=180°,∠3=∠1+∠PRQ,∴∠2+∠3﹣∠1=180°,故选:D.10.解:(1)∠1+∠2=180°,∠1与∠2不一定是邻补角,原来的说法错误;(2)直线外一点到这条直线的垂线段的长度,叫点到直线的距离,原来的说法错误;(3)邻补角的角平分线互相垂直是正确的;(4)如果两条直线平行,那么两条直线被第三条直线所截的同位角相等,原来的说法错误;(5)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;(6)同旁内角不一定互补,原来的说法错误.故选:A.二、填空题(共18分)11.解:过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,根据是垂线段最短.故答案是:垂线段最短;12.解:把x=2代入方程得:2a+a﹣3=0,移项合并得:3a=3,解得:a=1.故答案为:1.13.解:根据表格中的数据可知温度随时间的增加而上升,且每分钟上升3℃,当t=21min时,温度=70+3=73(℃).故21min时的温度是73℃.故答案为:73.14.解:∵∠1=100°,∠2=100°,∴∠1=∠2,∴AB∥CD,∴∠5=∠4,∵∠3=70°,∴∠5=110°,∴∠4=110°.故答案为:110.15.解:设0.=x,即x=0.636363…,则100x=63.636363…,所以100x﹣x=63,解方程得:x==.故答案为:.16.解:D在C的左边,如图1:∵BE平分∠ABC,∴∠ABE=∠ABC=30°,∵CE∥AB,∴∠ABD=180°﹣∠BDC=135°,∴∠EBD=135°﹣30°=105°;D在C的右边,如图2:∵BE平分∠ABC,∴∠ABE=∠ABC=30°,∵CE∥AB,∴∠ABD=∠BDC=45°,∴∠EBD=45°﹣30°=15°.故∠EBD=15°或105°.故答案为:15°或105°.三、解答题(共72分)17.解:(1)1﹣(x+8)=3(2x﹣7),去括号,得1﹣x﹣8=6x﹣21,移项,得﹣x﹣6x=﹣21﹣1+8,合并同类项,得﹣7x=﹣14,系数化成1,得x=2;(2)=3﹣,去分母,得4(1﹣x)=36﹣3(x+2),去括号,得4﹣4x=36﹣3x﹣6,移项,得﹣4x+3x=36﹣6﹣4,合并同类项,得﹣x=26,系数化成1,得x=﹣26.18.解:(1)如图,线段AD即为所求;(2)如图,线段CE即为所求;(3)∵AB==5,BC=16,AD⊥BC,CE⊥AB,∴•BC•AD=•AB•CE,∴CE=.故答案为:.19.解:由题意可得:=,∴3x=4(2﹣x),∴3x=8﹣4x,∴7x=8,∴x=.当x=时,代数式与代数式的值相等.20.证明:∵AB∥CD(已知),∴∠AEF=∠EFD(两直线平行,内错角相等),∵EG平分∠AEF,FH平分∠EFD(已知),∴∠GEF=∠AEF,∠HFE=∠EFD(角平分线定义),∵∠AEF=∠EFD,∴∠AEF=∠EFD,∴∠GEF=∠HFE(等量代换),∴EG∥FH(内错角相等,两直线平行),故答案为:两直线平行,内错角相等;已知;角平分线定义;GEF;HFE;等量代换;内错角相等,两直线平行.21.解:(1)∵AD∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵∠EFC=140°,∴∠FCB+∠EFC=180°,∴EF∥BC,∴EF∥AD.(2)∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.22.解:设这件衣服值x枚银币,根据题意可得:(x+10)÷12=(x+2)÷7,解得:x=9.2.答:这件衣服值9.2枚银币.23.解:(1)方程2x+1=0,解得:x=﹣,方程2x+3=0,解得:x=﹣,∵(﹣)﹣(﹣)=﹣+=1,∴方程2x+1=0是方程2x+3=0的后移方程;故答案为:是;(2)方程3x+m+n=0,解得:x=﹣,方程3x+m=0,解得:x=﹣,根据题意得:﹣﹣(﹣)=1,解得:n=﹣3;(3)方程ax+b=0,解得:x=﹣,方程ax+c=0,解得:x=﹣,根据题意得:﹣﹣(﹣)=1,即=1,整理得:a+b﹣c=0.故答案为:a+b﹣c=0.24.解:(1)∵这个村去年种值油菜的面积为x公顷,今年的种植面积比去年减少2公顷,∴今年种植油菜的面积为(x﹣2)公顷.故答案为:(x﹣2);(2)设去年种植油菜面积为x公顷,由题意得,40%×2500x+2800=(40%+10%)×(2500+300)(x﹣2),解得:x=14,答:这个村群种植油菜面积是14公顷;(3)(14﹣2)×(2500+300)=33600(kg),答:这个村今年油菜籽的总产量为33600kg.25.(1)证明:过C作CS∥MN,如图,∵CS∥MN,∴∠NAC=∠ACS,∵∠ACB=∠ACS+∠BCS=∠NAC+∠CBQ,∴∠BCS=∠CBQ,∴PQ∥CS,∴MN∥PQ;(2)解:如图,连接DC并延长交AE于点F,则:∠ACF=∠DAC+∠ADC,∠BCF=∠DBC+∠BDC,∴∠ACB=∠DAC+∠DBC+∠ADB=2∠ADB,∴∠ADB=∠DAC+∠DBC,∴2∠ADB=2∠DAC+2∠DBC=2∠DAC+∠QBC,又∠ACB=∠NAC+∠CBQ=2∠ADB.∴∠NAC+∠CBQ=2∠DAC+∠QBC,即∠NAC=2∠DAC,∴∠DAC=∠NAC,∴∠EAD=∠EAC+∠CAD=∠MAC+∠NAC=(∠MAC+∠NAC)=90°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期月考检测七年级数学试题 (总分120分 时间70分钟)
一.填空题(每题2分,共20分) 1、-11
2
的倒数等于__________,21
-的绝对值是 。
2、在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22米,那么小东跳出了3.85米,记作 。
3.据不完全统计,2008年F1上海分站赛给上海带来的经济收入将达到267000000美元,用科学记数法可表示为 美元。
4、用火柴棒按下图的方式搭图形,第n 个图形要 根火柴。
5、单项式256
x y
-的系数是 ,次数是 ;
6. 一个多项式加上x-4-2x 2得到12-x ,那么这个多项式为___________;
7、数轴上点A 表示-2,从A 出发,沿数轴移动4个单位长度到达点B ,则点B 表示的数是________. 8.式子2x +3y 的值是-4,则6x+9y+3的值是 ; 9、如图,正方形的边长为x ,用整式表示图中阴影部分的面积 为 ;(保留π)
10.单项式z y x n 123-是关于x 、y 、z 的五次单项式, 则n=___________;
二.选择题:(每小题3分,共30分) 11. 如果|a|=a ,则 ( )
A.a 是正数;
B.a 是负数;
C.a 是零;
D. a 是正数或零
a
1012.有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( ) A 、
0>b
a
B 、a<b
C 、ab>0
D 、a>b 13、若2a ++()2
3-b =0,则b a 的值为( )
A 、-6
B 、 8
C 、-8
D 、6 14、下面各对数中互为相反数的是( )
A .2332与-
B .()33
22--与 C .()22
33--与 D .()22
2323⨯-⨯-与
15、下列说法正确的是( )
A 、0.720精确到百分位
B 、3.6万精确到个位
C 、5.078精确到千分位
D 、0.72精确到千分位 16、下列有理数大小关系判断正确的是( )
A 10
1
)91(-
->-- B 100-> C 33+<- D 01.01->- 17、下列说法中正确的是( ) A. 5不是单项式 B.
2y x +是单项式 C. 2x y 的系数是0 D.3
2
x -是整式 18.下列各组的两个单项式为同类项的是
A .xyz 与7xy
B .m 与n
C .523y x 与和732y x
D .5n m 2与-42nm 19. 下面计算正确的是( )
A .xy y x 633=+
B .2x x x =+
C .36922-=+-y y
D .09922=-b a b a
20、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,
218737=,656138=…………;那么20073的末位数字应该是( )
A 3
B 9
C 7
D 1 三、解答题(共70分)
21、计算:(每题6分,共24分)
(1)()()24192840-+---- (2)5
3
143316167÷⨯⎪⎭⎫ ⎝⎛-⨯
(3)2
725.0)431(218)522(52⨯÷--⨯--÷ (4)-12006-(1- 0.5)×⨯31
[3-(-3)2]
22、化简(6分)5253432222+++--xy y x xy y x
23、化简求值(8分):
()()222234,1,1x y xy x y xy x y x y +---==-其中
24、(10分)某检测小组乘汽车检修供电线路,约定前进为正,后退为负,某天自A 地出发到收工时,所走路程(单位:km )为:+22,-3,+4,-2,-8,+17,-2,-3,+12,+7,-5问: (1)收工时在A 地前方还是后方?距A 地多远?
(2)若每千米耗油4升,从A 地出发到收工共耗油多少升?
25.(10分)在“计算4a 2-2ab +3b -a 2+2ab -5-3a 2的值,其中a=-5
2
,b=3 ”的解题过程中,小芳把a=-
52错写成a=52,小华错写成a=5
3-.但他们的答案都是正确的,你知道这是什么原因吗?请你做出正确的结果。
26.(12分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r 米,广场长为a 米,宽为b 米。
(1)请列式表示广场空地的面积;
(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积(计算结果保留π)。
2012——2013学年第一学期期中学业水平检测七年级数学试题
参考答案:
一 .1、32-
,2
1 ; 2、—0.15米 ; 3、2.67×108
;4、2n+1; 5、 ,3; 6、332
+-x x ; 7、﹣6或2; 8、-9;
9、x 2 — πx 2 ; 10、3
二.11、D ;12、D ;13、C ;14、C ;15、C ;16、A ;17、D ; 18、D ;19、D ;20、C
三、21、(1)—73(2)-5/72(3)-3/8(4)0 22、8x 2y —2xy 2+2
23、—5x 2y+5xy , 0 24、(1)A 地向前39KM (2)340升
25、原式=3b —5 , 与a 的值无关,所以它们的答案都正确 ,4 26、⑴(ab —πr 2
)米2
⑵(40000—100π)米2
65 -
4 1。