一题多解,一题多变
物理习题教学中的一题多解
物理习题教学中的一题多解、一题多变、一题多问
1 . 一题多解培养思维发散性
一题多解是指通过不同的思维途径,采用多种解题方法解决同一个实际问题的教学方法。
它有利于培养学生辨证思维能力,加深对概念、规律的理解和应用,提高学生的应变能力,启迪学生的发散性思维。
在物理解题过程中,我们可以通过“一题多解”训练拓宽自己的思路,在遇到新的问题时能顺利挖掘出物理量间的相互关系和物理规律间的内在联系,培养求异思维,使自己的思维具有流畅性。
2 一题多变诱导学生思路
在习题课中的“一题多变”是指从多角度、多方位对例题进行变化,引出一系列与本例题相关的题目,形成多变导向,使知识进一步精化的教学方法.思维的变通性是指摆脱定势的消极影响,不局限于问题的某一方面,能够随机应变,举一反三,触类旁通。
在二轮复习的解题过程中主动出击,运用变式,通过“一题多变”演绎问题的产生过程,能够摆脱由生活习惯中原有思维方式和平时解题所带来的思维定势,使思维具有变通性。
3 一题多问培养思维的严密性
思维的严密性,主要表现在通过细致缜密的分析,从错综复杂的联系与关系中认识事物的本质。
在题目解完后再通过“一题多问”自己考虑问题更全面细致,让自己的思维具有严密性。
这种“多题归一”的方法还可以培养思维的概括性。
思维的概括性是指思维能够反映一类事物的共同的本质的特征,以及事物之间的本质联系和规律。
许多物理习题具有物理过程、规律和性质类似的问题,它们间只有不同程度的量的差异而无质的区别,在复习过程中做过一定量的习题后进行反思,通过“多题归一”,进行有的放矢的精解和拓宽,可以使思维具有概括性。
基于两道高考试题的“一题多解”与“一题多变”
基于两道高考试题的“一题多解”与“一题多变”高考是中国教育系统中最为重要的一次考试,几乎决定了学生的未来走向。
为了选拔出最好的学生,高考试题往往是非常严谨和严密的。
在实际的考试过程中,有时会出现一题多解或一题多变的情况。
一题多解指的是一个问题有多种答案或多种解决方法。
高考试题通常设计成有唯一正确答案的形式,但由于问题的复杂性和广度,也有可能会有其他答案。
某道数学题要求求解一个方程,虽然通常只有一个解,但在某些特定条件下也可能有多个解。
这种情况下,如果考生能够给出其他解,并且解答过程正确,他们也可以得到分数。
一题多变指的是同一道题目在不同的考试中,可能会有不同的表述或要求。
高考试题是经过精心设计和审核的,但有时会有一些小的差异。
某个考试要求学生解答一道文学理解题,其中涉及到一个小说中的情节。
在不同的考试中,可能会有对情节的描述有细微差别,但要求学生进行相同的分析和理解。
这种情况下,考生需要根据实际题目做出相应的答案。
一题多解和一题多变可能是由于试题设计者的失误或主观性造成的,也可能是故意设置的。
试题设计者有时会故意设置一题多解或一题多变的情况,以考察学生的思维能力和灵活性。
这样的题目可以激发学生的创造力和思考能力,使他们更好地理解问题,发现不同的解决方法。
一题多解和一题多变也反映了学科知识的广度和复杂性。
一个问题可能涉及到多个知识点或技能,学生需要综合运用这些知识点和技能来解答问题。
这样的问题在一定程度上能够衡量学生的综合能力和深度理解能力。
一题多解和一题多变也存在一定的问题。
一些考生可能会误解题意,给出错误的答案。
而一些考生可能只掌握了解题的一种方法,导致无法应对不同的题目要求。
对于学生来说,重要的是要在高中阶段充分掌握各学科的知识和技能,提高解题的能力和思维的灵活性。
要注重对题目的理解和分析,切忌盲目套用模板答案。
对于教育机构和教师来说,应该注重培养学生的综合能力和创新能力,设计更有针对性的试题,对一题多解和一题多变进行更加科学和合理的评分。
一题多变与一题多解
一题多变与一题多解在数学教学过程中,通过利用一切有用条件,进行对比、联想,采取一题多解与一题多变的形式进行教学。
这对培养学生思维的广阔性、深刻性、探索性、灵活性、独创性无疑是一条有效的途径。
另外,能力提高的过程中,学生的成就感自然增强,并且在不断的变化和解决问题的不同途径中,兴趣油然而生。
对于传统的数学教学来说,教学过程的重点不外乎为:讲解定义推导公式,例题演练,练习,及习题的安排。
下面就一题多解与一题多变在教学中的运用谈谈我个人的几点看法。
一题多变和一题多解的变式在教学之中,往往能起到一座桥的作用,在最近发展区之中能把学生从已知的彼岸渡到未知的彼岸。
一题多解,一道数学题,因思考的角度不同可得到多种不同的思路,广阔寻求多种解法,有助于拓宽解题思路,发展学生的思维能力,提高学生分析问题的能力。
一题多变,对一道数学题或联想,或类比,或推广,可以得到一系列新的题目,甚至得到更一般的结论,积极开展多种变式题的求解,哪怕是不能解决,有助于学生应变能力的养成,培养学生发散思维的形成,增强学生面对新问题敢于联想分析予以解决的意识。
在例题讲解中运用一题多解和一题多变,就不用列举大量的例题让学生感到无法接受。
而是从一个题中获得解题的规律,技巧,从而举一反三。
下面仅举一例进行一题多解和一题多变来说明:例:已知x、y≥0且x+y=1,求x2+y2的取值范围。
解答此题的方法比较多,下面给出几种常见的思想方法,以作示例。
解法一:(函数思想)由x+y=1得y=1-x,则由于x∈[0,1],根据二次函数的图象与性质知当x=时,x2+y2取最小值;当x=0或1时,x2+y2取最大值1。
评注:函数思想是中学阶段基本的数学思想之一,揭示了一种变量之间的联系,往往用函数观点来探求变量的最值。
对于二元或多元函数的最值问题,往往是通过变量替换转化为一元函数来解决,这是一种基本的数学思想方法。
解决函数的最值问题,我们已经有比较深的函数理论,函数性质,如单调性的运用、导数的运用等都可以求函数的最值。
一题多解与一题多变在高中数学教学中的运用
一题多解与一题多变在高中数学教学中的运用一题多解和一题多变是高中数学教学中常常运用的教学策略。
它们旨在培养学生的创新思维能力和解决问题的能力,并激发学生的兴趣,提高学习效果。
接下来,我将探讨这两种教学策略的具体运用和重要性。
一题多解是指在一个数学问题中,可以有多种方法或角度来解决问题。
这样的设计可以激发学生的创造力和解决问题的能力。
通过多样的解法,学生能够体验到数学的多样性,培养他们的思维灵活性和创新思维能力。
例如,对于一个简单的方程题,学生可以选择代入法、消元法或配方法等多种解法来解决,而不仅仅依赖于固定的解题顺序。
这样,学生在解题中会产生一种自主思考和探索的意识,从而提高他们的创造力和解决问题的能力。
一题多变是指通过改变题目中的条件或参数,从而使得问题具有不同的情境和挑战性。
这样的设计可以提高学生的应变能力和灵活思维。
通过处理不同版本的问题,学生能够培养他们的思维逻辑,培养他们从不同角度思考和解决问题的能力。
例如,在一个几何问题中,通过改变图形的形状、增加限制条件或改变性质,可以设计出多个相关的问题,从而激发学生不同层次的思考和解决问题的能力。
在高中数学教学中,一题多解和一题多变的运用是十分重要的。
首先,它们可以激发学生的自主学习兴趣和主动学习探索的能力。
通过多种不同的解法和问题情境,学生可以展开自主思考和探索,从而培养他们的学习兴趣和学习动力。
其次,它们能够提高学生的解决问题的能力和思维能力。
通过面对多样的解法和不同版本的问题,学生需要灵活运用知识和技巧,培养他们的应变能力和解决问题的能力。
同时,这种培养的能力也是他们今后在现实生活中解决问题的重要能力之一要充分运用一题多解和一题多变的教学策略,教师需要合理设置问题,鼓励和引导学生思考。
教师可以设计一些具有挑战性的问题,引导学生尝试不同的解法和思路。
此外,教师还可以通过提供不同版本的问题,或者给定一些开放式的问题,鼓励学生从不同的角度思考和解决问题。
浅谈小学数学中的“一题多解与一题多变”
浅谈小学数学中的“一题多解与一题多变”在当今教育模式下,通常我们数学的教育模式都是以“标准题目”和“标准答案”来解决问题,这导致学生的思维受到禁锢并沿着定向发展,导致千人一面,这种单一、刻板的思维严重地束缚着小学生创新思维的发展。
因此,教师必须打破禁锢。
想要锻炼思维,可以通过一系列的变式训练,以多侧面、多角度地去探索问题中的本质,这样有利于弄清知识脉络和知识间的联系,可以培养学生的思维转换能力。
在新课程改革实行的背景下,一题多解和一题多变是数学研究中的一个热点问题,一题多解式和一题多变式的教学形式也不断呈现出了新的特点,而数学作为一门应用最广泛,最能培养创造性思维和问题解决的能力的一门基础课程,通过不断激发学生积极思维和求知兴趣,从而达到举一反三、触类旁通的效果,因此其在培养学生的创新能力上具有独特优势。
一、“一题多解”在小学数学教学过程中的实践一个题目能否得到解决的确非常的重要,但是去探求不同于别人的新解法,才是学习上梦寐以求的乐事。
学生学习的兴趣往往与所创造出的欢乐是紧密相连的。
因此研究一题多解是为了增强学生们的求知欲望,从而激发人们的创新精神。
那么所谓的“一题多解”是什么呢?从字面上看很容易看出就是指一题多解训练,对同一问题的结论通过不同的方法得出,不断通过指引和启迪学生从不同的思路、不同的方向、不同的方法以及不同的运算过程去分析和解答问题。
为了能充分解释一题多解在培养小学生思维方面的应用,将通过下面两个例子,来详细的介绍“一题多解”。
例1:计划修一条长120米的水渠,前5天修了这条水渠的20%,照这样的进度,修完这条水渠还需多少天?这道题先启发学生求工作效率,即从“工作量÷工作时间”来思考:解法(1):120÷(120×20%÷5)-5 ;解法(2):(120-120×20%)÷(120×20%÷5);这道题也还可以从分数的意义直接进行解答:解法(3):1÷(20%÷5)-5 ;解法(4):(1-20%)÷(20%÷5);解法(5) 5÷20%-5例2:李老师带了若干元去买书。
新 2019-2020 一题多解、一题多变、一题多问 述职
一题多解、一题多变、一题多问这几年的教学中我一直在思考一个问题:学生掌握了知识点,但做题的过程中为什么总是犯错误?慢慢地我意识到仅靠课堂上以及学习辅导几道基础练习,只能是“纸上谈兵”,要通过周周清、周末作业来将理论知识充分实践应用,因此在习题教学中我注意以下三个教学策略:一题多解、一题多变、一题多问。
一、“一题多解”“一题多解”是指引导学生就不同的角度、不同的观点审视分析同一来源材料中的数量关系,用不同解法求得相同结果。
“一题多解”可以帮助学生改变思维的方向,调节思维角度,从狭窄的思维模式中解放出来。
其次提供更多机会加深学生对各种解法的认识,进而对已有的信息进行分析、归纳、整理、储存,形成顿悟。
还可以提供分析比较的机会,提高解决问题的能力。
例题1:一篇作文有3268个字,小张每分钟能打76个字,他45分钟能打完这篇作文吗?方法一:比较工作总量45分钟的工作总量:76×45=3420(个)比较总量:3268个<3420个,能方法二:比较工作时间小张打完3268个字需要的时间:3268÷76=43(分)比较时间:45分>43分,能例题2:《格林童话》每本21元,“六一”优惠买五本送一本。
黄老师带300元钱,最多可以买多少本?方法一:买完再送300元能买几本:300÷21=14(本)……6(元)14本里有几个5:14÷5=2(组)……4(本)最多买几本:14+2=16(本)方法二:捆绑法1组有几本:5+1=6(本)1组的单价:21×5=105(元)300元能买几组:300÷105=2(组)……90(元)剩下48元还能买几本:90÷21=4(本)……6(元)最多买几本:2×6+4=12+4=16(本)通过一题多解,训练学生对数学思想和数学方法的娴熟运用,有利于提高学生学习的主动性,启发学生思维,开阔视野,培养学生全方位的思考问题、分析问题的能力,发展创造性思维。
一题多解与一题多变
一题多解与一题多变一题多解:开拓学生解题思路,沉淀学生的严谨思维;一题多变:引导学生知识联系,培养学生的发散思维。
在高中数学教学中,对例题的讲解,要做到一题多解和一题多变。
也就是先要做到从不同的角度进行分析,用不同的方法来解决问题,这样能够开拓学生的解题思路,培养学生分析问题和解决问题的能力。
还要进行拓展廷伸,使学生掌握知识间的联系,培养学生的发散思维。
问题一:设AB 是抛物线px y 22=的弦,O 为原点,若OA ⊥OB ,则直线AB 恒过定点。
证明之。
分析:1、若过定点,则定点应在何处?——根据对称性,应可猜想到定点应在x 轴上。
2、怎样利用已知条件? 主要是OA ⊥OB 的作用:①1-=⋅OB OAk k②设()()2211,,y x 、B y x A,则02121=+y y x x3、可从那些方面入手? ①从设点的坐标入手由点A 、B 在抛物线上,可设点A ⎪⎪⎭⎫⎝⎛a p a ,22、B ⎪⎪⎭⎫⎝⎛b p b ,22, ②从设直线AB 的方程入手1)设直线AB 的方程为x=my+b 2)设直线AB 的方程为ax+by=1 ③从OA ⊥OB 入手 设OA 的斜率为k ,则OB 的斜率为k1- 方法一:设A ⎪⎪⎭⎫⎝⎛a p a ,22、B ⎪⎪⎭⎫⎝⎛b p b ,22,则OA 、OB 的 斜率分别为a p 2、bp 2,由OA ⊥OB 得:24p ab -=,又AB 的斜率为∶ba pk +=2,∴AB 方程为∶ ⎪⎪⎭⎫ ⎝⎛-+=-p a x b a p a y 222,即()p x b a py 22-+=, 显然AB 过定点(2p ,0)。
ABO方法二∶设直线AB 的方程为x=my+b ,(注意这样设直线方程有两大优点:①不必考虑斜率不存在,②代入消x 简便),代入抛物线的方程消x 得:0222=--pb mpy y又设A ()11,y x 、B ()22,y x ,则pb y y 221-=,又,2121px y =,2222px y = ∴()()222222121424b ppb py y x x =-==,由OA ⊥OB 得02121=+y y x x ,∴022=-pb b,∵b ≠0,∴b=2p ,即AB 的方程为x=my+2p ,显然AB 过定点(2p ,0)。
浅析一题多解与一题多变
{ + s Ⅱ 2 2 f £ 0 j + l2
tI t≥0 t ・2
或 △< j 2— <口< 2 o 2 2+
从而, 方程有根的实数 n的取值范围为(一 。2— √ 。 , 2 习
方程可进一步转化为 n=一
:一
。 =
表示 点 a xy 与 ( 一1 两点连线 的斜 率 ( ,) 2, )
浅 析 一 题 多解 与 一题 多变
泰兴 市扬子 江高级 中学 袁 小武
【 摘 要】 随着素质教育的不断深入, 江苏省 2 4号文件的实施, 培养学生分析问题、 解决问题的能力显得越来越重要. 而能力
的提 高必须依 靠方 式方 法, 我们认为“ 一题 多解与一题 多变” 可以很好地培养 学生 的解题能力. 一题 多解是从 不同的角度 、 同的 不 方位去审视 分析 问题 , 是一种发散 思维, 而一题 多变则是创造性思维的体现 , 通过题设 的变化 、 结论的变化、 引申新 问题让 学生对 知识的理 解更深刻. 通过变发现 不变的 东西 , 从而总结 出解决一类 问题的一种方法 , 是凝 聚思维的一种体现.
① 方程有两个正根 , 则必须 满足条 件 f △>u
一
值围 范为
( : 孚) 答 】 案
3 2
2 已知 函数 f( 、 )=s 在 闭 区间 i n
2
t 2>0
② 方程有一个正根一个负根 , 则必须满足条件
t ・t l 2<O 8 < 一 1
③ 方程有一个正根一个零根 , 则必须满足条件
△ 0
【 变式训练】
1 变 目标 函数分别为 z J
大值. 说 明: 这类 问题 考查 目标 函数 的几何 意义 : z + 表 示 a( , ) B 0,) 点 间 距 离 的平 方 = xy 与 ( 0 两
“一题多解,一题多变”教学片段及反思
“一题多解,一题多变”教学片段及反思一题多解、一题多变是数学教师在几何教学中常用的手段,它不仅有助于提高学生学习兴趣,活跃课堂气氛,更重要的是有助于开阔学生思维,能从多角度、多方位、多层次思考问题,把握问题的整体,即抓住它的基本特征,又能抓住它的细节和特殊因素,从而放开思路进行思考。
著名的数学教育家G.波利亚曾形象地指出:“好问题同某种蘑菇有些相像,它们都成堆地生长,找到一个以后,你应当在周围找一找,很可能附近就有好几个。
”因此,在课堂上抓好例题一题多解,一题多变的教学这一关无疑是培养学生良好思维能力的契机,那么,如何设计有效地例题教学策略使之发挥应有的功能,是一个值得我们探讨和努力地研究课题。
现就一题多解、一题多变例题的教学片段,谈谈自己的想法及反思。
(1)《数学课程标准要求》以创新精神和实践能力为重点,改变过于重视知识传授的倾向,强调形成主动性的学习方式,有利于学生探究、创新能力的发展。
而培养学生的创新精神是课程改革的核心目标之一。
创新的心理基础是创造性思维。
创造性思维是主动地、独创地发现新事物、提出新见解、解决新问题的思维形式,它的思维活动的高级水平。
数学思维作为一种特殊的思维形式,它是人脑和数学对象交互作用并按照一般思维规律认识数学内容的内在理性活动,是数学思维的各种特性的综合表现。
由于数学教学的重要目的在于培养学生数学思维能力,而创造性是数学思维的最根本、最核心的智力品质。
因此,要提高学生的数学思维能力,完善人的数学思维的智力品质。
培养学生的数学创造性思维能力是数学教学的一个重要任务和教育工作者研究的重要课题。
在平时的教学中能借助一题多解,一题多变来培养学生多角度、多方位、多层次思考问题,也是对我们教师的创造性思维提出了要求。
教师在教学过程中,能在求同证法中及时捕捉到激发学生求异的思维亮点,将学生思维从特殊引向一般,有助于提高学生的数学思维品质。
同时教师能站在一题多解的“同”和“异”两个视角进行变式创新,无疑对学生的创新能力的培养有着潜移默化的作用的。
一题多问、一题多变、一题多解的运用与思考
一题多问、一题多变、一题多解的运用与思考
一题多问、一题多变、一题多解的运用与思考是在我们解决问题的过程中,充分探索问题本质的方法。
它可以帮助我们从多个角度理解问题,找到更好的解决方案。
一题多问可以帮助我们深入挖掘问题,了解各种因素和影响,从而更全面地理解问题和寻找解决方案。
例如,在解决一个企业的销售问题时,我们可以提出以下问题:销售情况如何?客户需要什么?竞争对手的情况如何?市场变化的影响是什么?等等。
一题多变可以帮助我们在不同情况下灵活应对问题,并根据不同情况调整解决方案。
例如,在解决一个销售问题时,如果是年底大促销,我们需要不同的解决方案,而如果是平时销售问题,则需要不同的解决方案。
一题多解可以帮助我们拓展思路,从不同方向考虑问题,找到更多的解决方案。
例如,在解决一个企业的成本问题时,我们可以提出以下解决方案:降低原材料成本、改变生产流程、优化运营成本等等。
总之,一题多问、一题多变、一题多解的运用与思考可以帮助我们更全面地理解问题、更多角度考虑解决方案,从而找到更好的解决方案。
高三数学一题多解一题多变试题及详解答案
高三数学一题多解一题多变试题及详解答案乐享集团公司,写于2021年6月16日高三一题多解 一题多变题目一题多解 一题多变一原题:482++=x mx x f )( 的定义域为R,求m 的取值范围 解:由题意0482≥++x mx 在R 上恒成立0>∴m 且Δ0≤,得4≥m变1:4823++=x mx x f log )(的定义域为R,求m 的取值范围 解:由题意0482>++x mx 在R 上恒成立0>∴m 且Δ0<,得4>m变2:)(log )(4823++=x mx x f 的值域为R,求m 的取值范围 解:令=t 482++x mx ,则要求t 能取到所有大于0的实数,∴当0=m 时,t 能取到所有大于0的实数当0≠m 时,0>m 且Δ0≥4≤0⇒m <变3:18223+++=x nx mx x f log )(的定义域为R,值域为[]20,,求m,n 的值解:由题意,令[]911822,∈+++=x n x mx y ,得0-8--2=+n y x x m y )( m y ≠时,Δ0≥016-)(-2≤++⇒mn y n m y -∴ 1和9时0162=++-)(-mn y n m y 的两个根∴ 当m y =时,08==mn x - R x ∈ ,也符合题意 一 题 多 解-解不等式523<<3-x解法一:根据绝对值的定义,进行分类讨论求解 1当03-≥x 2时,不等式可化为53-<<x 2343<<x ⇒2当03-<x 2时,不等式可化为0x -1⇒53-2x <<<+<3 综上:解集为}{0x 1-<<<<或43x x 解法二:转化为不等式组求解原不等式等价于综上:解集为}{0x 1-<<<<或43x x 解法三:利用等价命题法 原不等式等价于-33-2x 5-53-<<<<或x 23,即0x 1-<<<<或43x 解集为}{0x 1-<<<<或43x x 解法四:利用绝对值的集合意义原不等式可化为2523<<23-x ,不等式的几何意义时数轴上的点23到x 的距离大于23,且小于25,由图得, 解集为}{0x 1-<<<<或43x x一题多解 已知n s 是等比数列的前n 想项和,963s s s ,,成等差数列,求证:852a a a ,,成等差数列法一:用公式qq a s n n 一一111)(=,因为963s s s ,,成等差数列,所以9632s s s =+且1≠q 则 所以8716141152222a q a q q a q a q a a a ===+=+)( 所以 852a a a ,,成等差数列` 法二用公式qqa a s n n 一一11=,q q a a q q a a q q a a s s s 一一一一一一12112916131963)(∴,=+=+则q a q a q a a a a 85296322=+⇒=+8522a a a =+⇒,所以 852a a a ,,成等差数列`证法三:用公式)(),(n n n n n n n q q s s q s s 23211++=+=解得213一=q 下略变题:已知54=αsin 且α是第二象限角,求αtan解:α是第二象限角,54=αsin 345312一一一一===αααtan ,sin cos ⇒变1:54=αsin ,求αtan解:054>=αsin ,所以α是第一或第二象限角若是第一象限角,则3453==ααtan ,cos若是第二象限角,则3454一一==ααtan ,cos变2:已知)(sin 0>=m m α求αtan 解:由条件10≤<m ,所以当 10<<m 时,α是第一或第二象限角 若是第一象限角时2211mm αm α一一==tan ,cos 若是第二象限角2211mm αm α一一一一tan ,cos ==当1=m 时αtan 不存在 变3:已知)(sin 1≤=m m α,求αtan 解:当11一,=m 时,αtan 不存在 当0=m 时, 0=αtan当α时第一、第四象限角时,21mm α一=tan当α是第二、第三象限角时,21mm α一一=tan一题多解 一题多变三题目:求函数)()(01 x xx x f +=的值域 方法一:判别式法 --设xx y 1+= ,则01yx -=+2x ,由Δ2y =-204≥⇒≥y 当2=y 时,2x -012=+x 1=⇒x , 因此当1=x 时,)()(01x xx x f +=有最小值2,即值域为[)+∞,2方法二:单调性法先判断函数)()(01 x xx x f +=的单调性 任取210x x ,则212121211x x x x x x x f x f )-)(-()(-)(=当2021≤x x 时,即)()(21x f x f ,此时)(x f 在(]10,上时减函数 当212x x 时,)()(21x f x f )(x f 在()+∞,2上是增函数由)(x f 在(]10,上是减函数,)(x f 在()∞,+1上是增函数,知 1=x时,)(x f 有最小值2,即值域为[)+∞,2方法三:配方法 2112+=+=)-()(xx xx x f ,当01=xx -时,1=x ,此时)(x f 有最小值2,即值域为[)+∞,2方法四:基本不等式法)(x f 有最小值2,即值域为[)+∞,2变 题原题:若函数1212++=x ax x f )(的定义域为R,求实数a 的取值范围解:由题意得0122 ++x ax 在R 上恒成立,则要求0 a 且Δ1044 a a ⇒=-变式一:函数)(log )(1222++=x ax x f 的定义域为R,求实数a 的取值范围 解:由题意得0122 ++x ax 在R 上恒成立,则要求0 a 且Δ1044 a a ⇒=-变式二:函数)(log )(1222++=x ax x f 的值域为R,求实数a 的取值范围 解:令=u 122++x ax 能取到所有大于0的实数,则 0=a 时,1+=zx u 能取到所有大于0的实数 0≠a 时,0 a 且Δ1a 004a -≤⇒≥= 4综上10≤≤a一题多解 一题多变四题目:求函数)()(01 x xx x f +=的值域 方法一:判别式法 --设xx y 1+= ,则01yx -=+2x ,由Δ2y =-204≥⇒≥y当2=y 时,2x -012=+x 1=⇒x , 因此当1=x 时,)()(01x xx x f +=有最小值2,即值域为[)+∞,2方法二:单调性法先判断函数)()(01 x xx x f +=的单调性任取210x x ,则212121211x x x x x x x f x f )-)(-()(-)(=当2021≤x x 时,即)()(21x f x f ,此时)(x f 在(]10,上时减函数 当212x x 时,)()(21x f x f )(x f 在()+∞,2上是增函数由)(x f 在(]10,上时减函数,)(x f 在()∞,+1上是增函数,知 1=x时,)(x f 有最小值2,即值域为[)+∞,2方法三:配方法 2112+=+=)-()(xx xx x f ,当01=xx -时,1=x ,此时)(x f 有最小值2,即值域为[)+∞,2方法四:基本不等式法)(x f 有最小值2,即值域为[)+∞,2变 题原题:若函数1212++=x ax x f )(的定义域为R,求实数a 的取值范围解:由题意得0122 ++x ax 在R 上恒成立,则要求0 a 且Δ1044 a a ⇒=-变式一:函数)(log )(1222++=x ax x f 的定义域为R,求实数a 的取值范围 解:由题意得0122 ++x ax 在R 上恒成立,则要求0 a 且Δ1044 a a ⇒=-变式二:函数)(log )(1222++=x ax x f 的值域为R,求实数a 的取值范围 解:令=u 122++x ax 能取到所有大于0的实数,则0=a 时,1+=zx u 能取到所有大于0的实数 0≠a 时,0 a 且Δ1a 004a -≤⇒≥= 4综上10≤≤a一题多解 一题多变五题目:椭圆1162522=+y x 的焦点是21F F 、,椭圆上一点P 满足21PF PF ⊥,下面结论正确的是——————————————————————— AP 点有两个 BP 点有四个 CP 点不一定存在 DP 点一定不存在 解法一:以21F F 为直径构圆,知:圆的半径b c r =<==43,即圆与椭圆不可能有交点;故选D 解法二:由题知124321)(21max 21=⨯=•⨯=∆b F F S F pF ,而在椭圆中:164tan221==∆πb S F PF ,∴不可能成立,1612>故选D解法三:由题意知当p 点在短轴端点处21PF F <最大,设α221=<PF F ,∴<⇒<=,4,143tan παα此时21PF F <为锐角,与题设矛盾;故选D 解法四:设)sin 4,5(θθcon P ,由,21PF PF ⊥知02121=•⇒⊥PF PF PF PF ,而⇒-=⇒=+-=+-=•970sin 16925)sin 4,35)(sin 4,35(22221θθθθθθθcon con con con PF PF 无解,故选D解法五:设θ=∠21F PF ,假设21PF PF ⊥,则26)4sin(26sin 66||||21≤+=+=+πθθθcon PF PF ,而102||||21==+a PF PF即:2610≤,不可能;故选D解法六:=-=--+=-+=<||||2|||264||||236||||2)|||(|||||36||||21212121222121222121PF PF PF PF PF PF PF PF PF PF PF PF PF PF PF F con 025*******)2||||(321||||3222121≠=-=-+≥-PF PF PF PF ,故212190PF PF PF F ⊥∴≠< 不可能;故选D解法七:设),(00y x P 由焦半径知:∴⊥-=-=+=+=21002001,535||,535||PF PF x ex a PF x ex a PF 2212221||||||F F PF PF =+962550251810)535()535(202022020=⇒=⇒=-++⇒x x x x 而在椭圆中5||0≤x 而325||0=x >8,故不符合题意,故选D解法八.设圆方程为:922=+y x椭圆方程为:1162522=+y x两者联立解方程组得: 不可能故圆922=+y x 与椭圆1162522=+y x 无交点即 1PF 不可能垂直2PF 故选D一题多解 一题多变六一变题:课本P110 写出数列}{n a 的前5项:1-111,14n n a a a =-=- 变题:已知函数1()22,[,1]2f x x x =-+∈,设)(x f 的反函数为)(x g y =,)(,1211a g a a ==)(1-n n a g a =,求数列}{n a 的通项公式;解:由题意得,x x g y 211-)(==,1--n n a a 211=1212()323n n a a -∴-=-,令32-n n a b =,则}{n b 是以31为首项,21-为公比的等比数列,故)()-(1-12131≥=n b n n从而,)(23)-(1-n 1-11232≥×+=+=n b a n n n n 二、一题多解已知函数),[,)(+∞∈++=122x xax x x f 1当21=a 时,求函数)(x f 的最小值;-2若对于任意01>+∞∈)(),,[x f x 恒成立,试求实数a 的取值范围, 解:1当21=a 时,222212+≥++=xx x f )(,当且仅当22=x 时取等号 由)()(0>+=k xkx x f 性质可知,)(x f 在),[+∞22上是增函数 ),[+∞∈1x ,所以)(x f 在)∞,[+1是增函数,)(x f 在区间)∞,[+1上的最小值为271=)(f2法一:在区间上)∞,[+1,022>++=xax x x f )(恒成立022>++⇔a x x 恒成立设a x x ++=22y ,),[+∞∈1x 11222-)(y a x a x x ++=++=在)∞,[+1上增 所以1=x 时,3min +=a y ,于是当且仅当03min >+=a y 时,函数0>)(x f 恒成立,故-3>a法二:),[,)(+∞∈++=12x xax x f当0≥a 时,函数)(x f 的值恒为正;当0<a 时,函数)(x f 为增函数,故当1=x 时,3min +=a y ,于是当且仅当03min >+=a y 时,函数0>)(x f 恒成,故-3>a法三:在区间)∞,[+1上,022>++=xax x x f )(恒成立022>++⇔a x x 恒成立 x x a 22- -⇔>恒成立,故a 应大于x x 22- -u =,)∞,[∈+1x 时的最大值-3,所以-3>a一题多解 一题多变七原题::若)()(0112>++=x x x xf ,则=)(x f 分析:用倒数换元解: 令tx xt 11==则, 所以 将t 换成x 得到:变题1:设)(x f 满足关系式,)()(x xf x f 312=+求)(x f 的解析式 解:tx xt 11==则将t 换成x 得到:与原式联立方程组消去)(xf 1得到变题2:已知()()af x f x bx +-=,其中12≠a 试求)(x f 的解析式解:用相反数换元 令,t x x t =-=-代入到原式当中得到: 将t 换成x 得到:与原式联立方程组,得到:变题3:已知22(43)(34)2,af x bf x x a b -+-=≠,试求)(x f 的解析式解:令43x t -=,则232+=t x 将()1 中t 换-t 得到: 与()1联立方程组得到:变题4:已知2()()1,n n af x f x bx a n +-=≠,其中为奇数,求)(x f解:设n n t x t x ==, 代入原式得: 将t 换成—t 得到:n t b t f t af ——=+)()( 与上式联立方程组得到∴ )(x f 的解析式为:()f x ==一题多解题目:设二次函数)(x f 满足,———)()(22x f x f =且函数图象y 轴上的截距为1,被x 轴截的线段长为22,求)(x f 的解析式分析:设二次函数的一般形式)()(02≠++=a c bx ax x f ,然后根据条件求出待定系数a,b,c解法一:设)()(02≠++=a c bx ax x f由,———)()(22x f x f = 得:04=b a — 又2284a ac b =∴— 由题意可知 1=c 解之得:解法二:,———)()(22x f x f =故函数)(x f y =的图象有对称轴2—=x 可设k x a y ++=22)(函数图象与y 轴上的截距为1,则14=+k a又被x 轴截的线段长为22,则2221==d x x Δ—整理得:02=+k a 解之得: 解法三::,———)()(22x f x f =故 函数)(x f y =的图象有对称轴2—=x ,又2221=x x —∴ )(x y =与x 轴的交点为:∴故可设)(222++=x a y一题多解 一题多变八原题 设()x f y =有反函数)(-1x f y =,又)(2+=x f y 与)1-(-1x f y = 互为反函数,则__________)(-)(-1-1=01f f 教学与测试P 77变题 设()x f y =有反函数)(-1x f y =,又)(1+=x f y 的图象与)(-11+=x f y 的图象关于x y =对称(1) 求)(-)(01f f 及)(-)(-1-101f f 的值;(2) 若b a ,均为整数,请用b a ,表示()()f a f b 及)(-)(-1-1b f a f解1因)(-11+=x f y 的反函数是()1-x f y =,从而()11-)(x f x f =+,于是有()11--)(=+x f x f ,令1=x 得-1(0)-)(=f f 1;同样,)(1+=x f y 得反函数为()1--1x f y =,从而()11-)(-1-1x f x f =+,于是,()11--)(-1-1=+x f x f .2 -11)(-)(=++x f x f 2,而()11--)(=+x f x f ,故()12-1)-(-)(=+x f x f ,即()22--)(=+x f x f , …()n x f n x f --)(=+,从而()[]()a b a f a b a f b f a f --)-(-)(=+=.同理,()-1-1()f a f b b a -=-.一题多解1.函数2(),(1)(3)f x x bx c f f =++-=,则 A (1)(1)f c f >>- B (1)(1)f c f <<- C (1)(1)c f f >-> D (1)(1)c f f <-<解法1. 由(1)(3)f f -=知()x f 的图象关于1=x 对称,得2b =-而22(1)1(2)11,(1)(-1)(2)(1)3f c c f c c =+-•+=--=+-•-+=+,且31c c c +>>-,因此(1)(1)f c f <<-.解法2.由(1)(3)f f -=知()x f 的图象关于1=x 对称,而)(0f c =,而()x f 在-1,1上递减,易得答案为B .y-1 0 1x一题多解 一题多变九姜忠杰变 题原题:若在区间y =2a -ax -2x 在区间)3-,1∞-(是减函数,则a 的取值范围是多少变1:若函数y =2a -ax -2x 在)3-,1∞-(上是减函数,则a 的取值范围是多少变2、若函数y =)a -ax -(log 2221x 在)3-,1-(∞上是增函数,则a 的取值范围是多少变3、若函数y =)a -ax -(log 2221x 在)3-,1∞-(上是增函数,且函数的值域为R,则a 的取值范围是多少解: 函数2a -ax -2x y =的减区间为]-2a ,(∞,∴⊆)3-,1∞-(]-2a,(∞∴),∞32-2[+ -变1、设2a -ax -2x u =,则u 在)3-,1∞-(为减函数,且在)3-,1∞-(,u ≥0 所以有3-12a ≤且u 3-10≥,∴a 的取值范围是],[)51)(1-3()5-1)(1-(223+变2:设2a -ax -2x u =,则u 在为减函数,且在]3-,1∞-(,u ≥0- 所以有3-12a ≤且u 3-10≥,∴a 的取值范围是],[)51)(1-3()5-1)(1-(223+变3:设2a -ax -2x u =,则u 在)3-,1∞-(减区间,u 在)3-,1∞-(取到一切正实数3-12a ≤,01=)3-(u ,所以=a 23)5-1)(1-(或2)51)(1-3(+一题多解:设10=+a a lg ,1010=+b b ,求b a +的值;解法一构造函数:设x x x f lg )(+=,则)(lg )(b b b b f b a f 1010101010=+=+==,由于)(x f 在),(+∞0上是单调递增函数,所以b a 10=,故1010=+=+b b a b ; 解法二图象法因为a 是方程10=+x x lg 的一个根,也就是方程x x -lg 10=的一个根b 是方程1010=+x x 的一个根,也就是方程x -1010=x 的一个根令x x g lg )(=,x x h 10=)(,x x -)(10=Φ,在同一坐标系中作出他们的图象,如图所示:a 是方程)()(x x g Φ=的根,即图中OA=ab 是方程)()(x x h Φ=的根,即图中OB=b易得OA+OB=10,所以10=+b a解法三:方程10=+x x lg ,1010=+x x 的根为a ,b 由1010=+x x ,得x x -1010=,∴x)-lg(10=x ,又10=+x x lg 10lgx x)-lg(=+∴10, 1010x )-x (10=即,02=+101010x -x 即一题多解 一题多变十课本P 102 证明:222221212122121)()(≤)(,)()(;)()()(,)(x f x f x x f b ax x x f x f x f x x f b ax x f ++++=+=++=则若则)若(变题:1、如图所示,),,,)((4321=i x f i 是定义在0,1上的四个函数,其中满足性质:“对0,1中的任意的21x x ,,任意1212[0,1],[(1)]()(1)()f x x f x f x λλλλλ∈+-≤+-恒成立”的只有 AA 、 )(),(31x f x fB 、)(2x fC 、)(),(32x f x fD 、)(4x f变题2、定义在R 上的函数)(x f 满足:如果对于任意R x x ∈21,都有222121)()(≤)(x f x f x x f ++ 则称函数)(x f 是R 上的凹函数;已知二次函数),()(02≠∈+=a R a x ax x f 1求证:当0>a 时,函数)(x f 是凹函数;2如果],[10∈x 时,1≤|)(|x f ,试求实数a 的取值范围; 1证明:略2实数a 的取值范围是[2,0)- 二、一题多解不查表计算:5235233lg lg lg lg ++解法一:原式=3lg2lg55)lg lg2lg5-2lg )(lg (lg 22+++52 =523552222lg lg lg lg lg -lg ++ =5522222lg lg lg lg ++ =1522=+)lg (lg解法二:原式=322(lg 2lg5)3lg 2lg5-3lg 2lg 53lg 2lg5+-+=1-3lg 2lg5(lg 2lg51)+- =1解法三:原式=52352523523lg lg )lg (lg lg lg -)lg (lg +++=5235231lg lg lg lg -+ =1解法四:原式=52352352352352352222233lg lg lg lg -lg lg -lg lg lg lg lg lg ++++=)-lg (lg lg lg -)lg (lg 152523523++ =1解法五:原式=15235233×++lg lg lg lg=)lg (lg lg lg lg lg 525235233+×++ =352)lg (lg + =1一题多解 一题多变十一一题多解- 1. 已知212x x f -)(=-1)<x ,求-12()3f -的值解法1 先求反函数 由221xy =-得221y x =- ∴ y2-1-=x 且0<y故原函数的反函数是x2-1-)(1-=x f )(0<x 解法2从互为反函数的函数的关系看 令32-x -2=12解得2±=x 即 -2)32-(1-=f变题2. 已知)(x f 对于任意实数y x .满足)()()(y f x f y x f +=+,当0>x 时,0<)(x f (1) 求证)-(-)(x f x f = (2) 判断)(x f 的单调性证明 1令,0==y x 得)()()(000f f f += -令-y =x ,得0-x)()()(=+=f x f f 02设21x x <,则)()-()()]-([)(11211212x f x x f x f x x x f x f <+=+= ∴ )(x f 在R 上是单调函数变题 1. 已知函数是定义R 在上的增函数,且满足-)()(x f yxf =)(y f(1) 求)(1f 的值(2) 若,)(16=f 解不等式215<+)(-)(xf x f 解 1 令1==y x ,得∴ 01=)(f -(3) 在)(-)()(y f x f yx f =中,令61==y x ,得 从而261636==)(-)()(f f f又原不等式可化为 )()]([365f x x f <+, 且)(x f 是),(+∞0上的增函数,∴ 原不等式等价于又 0>x 05>+x 解得 40<<x∴ 原不等式的解集为0,4一题多解 一题多变十二考查知识点:函数的对称中心原题:函数)lg(12++=x x y 的图象关于原点对称;解:该函数定义域为R,且))-(-lg()()-(12++=+x x x f x f +)lg(12++x x =))(-lg(1122++++x x x x =01=lg)(-)-(x f x f =∴,∴该函数图像关于原点对称变题1:已知函数)(x f y =满足)(-)-(11+=+x f x f 则)(x f y =的图象的关于),(01对称解: )(-)-(11+=+x f x f ∴)(1+=x f y 为奇函数,即)(1+=x f y 的图象关于原点),(00对称,故)(x f y =的图象关于),(01对称;变题2:已知函数)(x f y =满足2=+)-()(x f x f ,则函数)(x f y =的图象关于),(10对称解:由2=+)-()(x f x f 得,∴]-)([--)-(11x f x f =,)(x f y =-1为奇函数,即)(x f y =-1的图象关于0,0对称,∴)(x f y =的图象关于),(10对称变题3:已知函数)(x f y =满足22=++)()(x f x f ,则)(x f y =的图象关于1,1对称解:令1-t x =,则t x --1=,故由22=++)()(x f x f 得211=++)-()(t f t f ,即)(x f 满足211=++)-()(x f x f ,即]-)([--)-(1111+=+x f x f ,∴11-)(+=x f y 的图象关于原点0,0对称,故)(x f y =的图象关于1,1对称;结论:若函数)(x f y =满足b x c f x a f =++)-()(,则)(x f y =的图象关于()22bc a ,+对称;变题4:已知244+=x xx f )(求证:111=+)-()(x f x f 2指出该函数图象的对称中心并说明理由;3求)()()(100110001000210001f f f +++ 的值;1证明:1242244244244111=+++=+++=+xx x x x x x x f x f --)-()(,得证;- 2解:该函数图象的对称中心为),(2121,由11=+)-()(x f x f 得12121=++)-()(x f x f 即]-)([--)-(21212121+=+x f x f ,∴2121-)(+=x f y 的图象关于原点中心对称,故)(x f y =的图象关于),(2121对称; 3解:11=+)-()(x f x f ,故11001100010011=+)()(f f ,1100199910012=+)()(f f ,……,∴ )()()(100110001000210001f f f +++ =500变题5:求证:二次函数)()(02≠++=a c bx ax x f 的图象没有对称中心;证明:假设),(n m 是)()(02≠++=a c bx ax x f 的图象的对称中心,则对任意R x ∈,都有n x m f x m f 2=++)-()(,即n c x m b x m a c x m b x m a 222=+++++++)-()-()()(恒成立,即有n c bm am ax =+++22恒成立,也就是0=a 且02=++n c bm am -与0≠a 矛盾 所以)()(02≠++=a c bx ax x f 的图象没有对称中心;一题多解 一题多变十三题目:已知函数[)∞∈+++=,)(122x xax x x f 若对任意[)01)>(,,x f x ∞+∈恒成立,试求实数a 的取值范围;解法一:在区间[)∞+,1上,022>++=xax x x f )(恒成立022>++⇔a x x 恒成立,设a x x y ++=22在[)∞+,1递增 ,∴当x=1时a y +=3min ,于是当且仅当03>+=a y min 时,函数恒成立,故 a>—3;解法二:[)∞+∈++=,,)(12x xax x f 当a 0≥的值恒为正,当a<0时,函数)(x f 为增函数故当x=1时a x f +=3)(min 于是当且仅当3+a>时恒成立, 故 a>—3;解法三:在区间[)∞+,1上xax x x f ++=22)(恒成立022>++⇔a x x 恒成立x x a 22——>⇔恒成立,故a 应大于[)∞+∈=,,——122x x x u 时的最大值—3, ()112++>∴x a — 当x=1时,取得最大值 —3 。
拓展思维,一题多变,多题一解,一题多解
拓展思维,一题多变,多题一解,一题多解初三数学总复习是大家所关注的重要问题,确立复习的指导思想,选择正确的复习方法,使学生在毕业前把基础知识系统化,对所学教学内容有一个较全面的认识,并且得到综合和提高,以便为升学考试打好基础.在复习时间紧、内容多、任务重的情况下,选择典型题目进行精讲精练,探索研究揭示规律,训练解题技巧,以拓展学生思维,达到举一反三之功效,使知识融会贯通.因此,在复习解题中,应做到三个“一”,即一题多变,多题一解,一题多解.下面就举例说明.一、一题多变对培养学生分析问题和解决问题的能力,提高逻辑思维能力和发展创造性思维能力都是十分有效的如:农机厂职工距工厂15千米的农村检修农机,一部分人骑自行车先走40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两种车的速度.分析:设自行车的速度是x千米/时,则汽车的速度是3x千米/时,速度、时间、路程三者间的关系如下表:■因为汽车晚开出40分钟(即■小时),与自行车同时到达,说明行驶15千米,汽车比自行车少用■小时,即有如下等量关系:汽车所用时间=自行车所用时间-■小时于是得■=■-■,此题可变换成如下题目:变换1:若把条件中“他们同时到达”分别变换成如下条件:(1)汽车比自行车早到10分钟;(2)汽车到达时,自行车距目的地2千米.则可根据时间关系列出方程:设自行车速度是x千米/时,有:(1)■=■-■-■;(2)■=■-■.变换2:若把条件“汽车速度是自行车的3倍”,分别作如下变换:(1)已知汽车的速度是自行车的3倍多0.5千米;(2)汽车与自行车相同路程所用时间比为1∶3,则可列出方程:设自行车速度为x千米/时,有:(1)■=■-■;(2)■=■-■.变换3:农机厂职工骑自行车到距工厂15千米的农村检修农机.(1)行车5千米后,因有人车坏,因而以比原速度少1千米/时的速度骑行,结果比原计划晚15分钟到达;(2)行车5千米后,以后以速度的1.2倍骑行,因而比原计划早20分钟到达;(3)在回来的路中,用原速度行了半小时后,因事停留半小时,以后每小时多骑2千米,结果往来时间一样.分别求骑自行车原来的速度.设自行车原来的速度为x千米/时,则可列出相应的方程:(1)■=■+■;(2)■=■-■;(3)■=■-■.以上一组题都是同向而行,也可变换成异向而行,此时,只要掌握异向、相向而行与同向而行的区别,仍可按时间关系列出方程.又如:已知:如图1,点c为线段ab上一点,△acm,△cbn是等边三角形.求证:an=bm.■分析:为证结论,首先可按题中条件画出图形,让学生从直观上比较an与bm的大小关系,然后给予证明.证明:由∠acm=∠bcn得∠acn=∠bcm,又ac=mc,bc=nc,故△can≌△mcb,从而an=bm.此题可作如下变换:变换1:设an、bm交于d点,试求∠adb的度数.分析:根据三角形外角的性质和全等三角形的对应角相等,可得∠adb=120°.变换2:若an交cm于e,bm交cn于f,求证ce=cf.分析:△cen≌△cfb不难得出ce=cf.变换3:若连结ef,试证fe∥ab.分析:由ce与cf的关系和∠ecf为60°,可知△ecf是等边三角形,进而可得ef∥ab.变换4:若an的中点为p,bm的中点为q,试证:cp=cq.分析:因为cp是△can的一边an上的中线,而cq是△mcb的一边bm上的中线,又△acn≌△mcb,全等三角形对应边上的中线相等,故cp=cq.变换5:如图2,点c为线段ab上一点,且ac∶cb=2∶1,△acm、△cbn是等边三角形,连结mn,试证mn⊥cn.■分析:利用已知条件,ac∶cb=2∶1,再取ac中点h,连结mh,显然mh为等边△acm的中线,故可知mh⊥ac,由全等三角形判定定理(sas)可得△mcn≌△mch,故mn⊥cn.变换6:如图3,若ac=3,cb=1,试计算△cef的面积.■分析:仍从条件ac∶cb=3∶1入手,不难发现ec∥nb,故有ce∶bn=ac∶ab,即ce∶1=3∶4,解得ce=■,因为△cef为等边三角形,用勾股定理,可迅速求得s△cef=■.对这道几何题,从各个方面进行变换,对提高学生的思维能力大有裨益.下面一组题是利用图形位置的变化进行变换的,变换后的题与原题证法完全相似.例.如图4,在正方形abcd中,ae⊥bf,求证:ae=bf.■本题利用全等三角形的知识不难给出证明,若将bf平移,则有: 变换1:如图5,在正方形abcd中,ae⊥mn,求证:ae=mn.■若再将ae作类似的平移,即有:变换2:如图6,在正方形abcd中,若mn⊥gh,求证:mn=gh.■这两个变题,只需利用平行的有关知识,作出如各自图中所示的辅助线,即可仿照原题给出证明.本题还可给出下列变式:变换3:点h在正方形的一边上,将纸片折叠,使点h正好与所在边的对边上一点g重合,若折痕长10cm,试求hg的长度.在几何教学中,使用从一些基本题出发变换的相关题组,可帮助学生在解题过程中掌握知识间的联系,培养良好的思维习惯,提高解题效率.二、多题一解能训练学生的集中思维,揭示各方面知识的内在联系和规律,从而加深对各方面知识的理解和应用,使知识融会贯通如:如果一元二次方程ax2+bx+c=0的两根之比为2∶3,求证6b2=25ac.本题有多种证法,这里从略.若将两根之比推广到一般,即有命题:如果一元二次方程的两根之比为m∶n,求证mnb2=(m+n)2ac.证明:设已知方程的两根分别为mk、nk,则mk+nk=-■,mk·nk=■(m+n)k=-■,①mnk2=■②若m+n=0,则b=0,等式仍然成立;若m+n≠0,则由①得:k=-■,③将③代入②中,消去k,得:mn-■2=■.所以mnb2=(m+n)2ac,综上可知,命题成立.特别地,若m=n,这个等式就是b2=4ac,与方程有等根的条件一致. 利用此结论,解某些与一元二次方程两根之比有关的问题非常简单。
一题多问、一题多变、一题多解的运用与思考
一题多问、一题多变、一题多解的运用与思考引言在学习中,我们经常会遇到一些问题,这些问题有时候并不是只有一个答案或一个解决方法。
一题多问、一题多变、一题多解的思想,就是针对这种情况而提出的。
本文将介绍这种思想的具体含义,及其在学习中的运用和思考。
一题多问在学习过程中,我们在掌握问题的基本内容后,有时候会遇到一些疑点。
这时候我们可以通过反复询问问题、寻找答案来更深入地理解问题。
一题多问的思想,就是在问题的基础上反复提出问题,追究问题的本质和细节,获得更深入的理解。
例如,我们在学习物理学中的牛顿第一定律时,可以从以下几个方面去思考问题:•什么是牛顿第一定律?•牛顿第一定律的实验验证的是什么?•牛顿第一定律的本质是什么?•牛顿第一定律与运动无关,那么万有引力定律是否也是与运动相关?通过一题多问的思想,我们可以深入地理解一个问题的本质和意义,从而更好地掌握其知识。
一题多变一题多变指的是在学习中,同一个问题可以有不同的表述方法或角度,通过不同的表述方法或角度来理解问题。
这种思想能够帮助我们更好地理解问题,从而更好地掌握知识。
例如,在学习数学中的解方程时,我们可以从以下几种不同的角度来表述同一个问题:•消元法:将未知数移项并整理,得到最终的解;•因式分解法:将多项式转化为一元二次方程组的形式,然后通过因式分解法得到最终的解;•公式法:对于某些特定的方程,我们可以使用特定的公式来求解。
通过一题多变的思想,我们可以更全面地理解一个问题,并且可以寻找不同的解决方法,从而更好地掌握知识。
一题多解一题多解指的是一个问题可以有不同的解决方法或答案。
在学习中,我们常常会遇到一些问题,即使是同一个问题,也可能有多个解决方法或答案。
一题多解的思想,就是鼓励我们去尝试不同的解决方法或答案,从而更好地掌握知识。
例如,在学习编程时,解决一个问题可能有多种不同的方法,我们可以通过不同的方法比较优劣性质,例如:代码复杂度、效率等,找到最佳的解决方法。
“一题多解与一题多变”在培养学生发散思维能力中的应用-最新文档
“一题多解与一题多变”在培养学生发散思维能力中的应用引言:在数学教学中,常用一题多解、一题多变的方法开拓学生的思路,克服思维定势,培养发散性思维的创造性能力。
所谓“一题多解”,就是尽可能用多种例外方法去解决同一道题,更严重的是可以培养学生的思考能力和创造能力。
所谓“一题多变”就是指一个题目反复变换,有利于扩大学生的视野,从而提高解题能力,更能激发学生学习的兴趣,增强求知欲。
一、利用一题多解训练学生的思维能力发散思维是从同一来源材料中探求例外答案的思维过程,培养这种思维能力,有利于提高学生学习的主动性和创新性等。
通过一题多解,引导学生就例外的角度、例外的观点审视分析同一题中的数量关系,用例外解法求得相同结果,可以激发学生去发现和去创造的强烈欲望,训练学生对数学思想和数学方法的熟练运用,从而培养学生的思维品质,发展学生的创造性思维。
二、利用一题多变培养学生的广漠思维提高学生综合分析能力是帮助学生解答应用题的严重教学手段。
通过“一题多变”的练习可以达到这一目的。
在习题课教学过程中,通过一题多解的表现形式对于培养学生数学兴趣和培养发散性思维的创造能力等起着不可估量的作用。
即通过对习题的题设或结论进行变换,而对同一个问题从多个角度来研究。
这种训练可以增强学生解题的应变能力,培养思维的广漠性和深刻性,从而培养创新思维的品质。
三、在例题讲解中运用一题多解和一题多变(一)在例题讲解中运用一题多解一题多解,一道数学题,因思考的角度例外可得到多种例外的思路,广漠寻求多种解法,提高学生分析问题的能力。
一题多变,对一道数学题或联想,可以得到一系列新的题目,积极开展多种变式题的求解,有助于增强学生面对新问题敢于联想分析予以解决的意识。
下面仅举一例进行一题多解和一题多变来说明:例:已知x、y≥0且x+y=1,求x2+y2的取值范围。
解答此题的方法比较多,下面给出几种多见的思想方法,以作示例。
解法一:(函数思想)由x+y=1得y=1-x,则由于x∈[0,1],根据二次函数的图象与性质知当x=时,x2+y2取最小值;当x=0或1时,x2+y2取最大值1。
“一题多解与一题多变”在培养学生思维能力中的应用
“一题多解与一题多变”在培养学生思维能力中的应用创新的教育价值观认为,教学的根本目的不是教会解答、掌握结论,而是在探究和解决问题的过程中锻炼思维,发展能力。
在数学教学中,常用一题多解、一题多变的方法开拓学生的思路,克服思维定势,培养学生思维的发散性和创造性。
下面我将结合人教版三年级数学教材浅析如下:一题多解所谓“一题多解”,就是启发和引导学生从不同角度、不同思路、不同的方位,运用不同的方法和不同的运算过程,解答同一道数学问题。
教学中适当的一题多解,可以激发学生去发现和去创造的强烈欲望,加深学生对所学知识的深刻理解,训练学生对数学思想和数学方法的娴熟运用,锻炼学生思维的广阔性和深刻性、灵活性和独创性,从而培养学生的思维品质,发展学生的创造性思维。
如:“你们的折法相同吗?为什么涂色部分都是这张纸的四分之一?”通过一题多解,让学生异中求同,从而揭示出分数的本质。
一、鼓励学生进行一题多解的实际练习。
一题多解训练的目的,不是单纯地解题,而是为了培养和锻炼学生的思维,发展学生的智力,提高学生的解题能力。
二、口述不同的解题思路和解题方法。
口述不同的解题思路和解题方法,就是只要求学生说出不同的解题思路和解题方法,不用具体解答,让学生动脑动口。
三、引导学生自己找出最简便的解法。
在学生求得多种解题方法之后,让他们自己去分析比较,可以相互讨论,也允许相互争论,让学生在此过程中,找出最简便的解题方法。
一题多解训练,还应当注意以下几点:(1)目的要明确。
(2)要注意把握上这种课的时机。
(3)选题要得当,方法要灵活。
一题多变所谓“一题多变”就是指一个题目反复变换,使学生学会用联想旧知,联想同类,改变事情,改变问题中的条件或问题等等变题方法,从中悟出解题规律、方法。
通过“一题多变”可以激发学生的学习兴趣,有效地避免题海战术,巩固数学知识,可培养学生独立思考,举一反三的学习态度,有利于扩大学生的视野,可以增强学生解题的应变能力,培养思维的广阔性和深刻性,从而培养创新思维的品质。
浅析一题多解与一题多变在高中数学教学中的应用
2024年2月上半月㊀学习指导㊀㊀㊀㊀浅析一题多解与一题多变在高中数学教学中的应用◉江苏东海高级中学㊀冯月华㊀㊀在高中数学教学中,一题多解与一题多变教学是常用的方法,以期通过多角度分析达到夯实基础,培养学生创新能力和探究能力,提高学生发现㊁提出㊁分析和解决问题能力的目的[1].下面笔者以两道典型的三角函数题为例,谈谈对一题多解与一题多变教学的一些粗浅认识,供参考!1一题多解,培养思维的发散性例1㊀已知t a n(α2+π4)=-3,求1+s i nα的值.本题主要考查二倍角公式㊁和角的正切公式㊁ 1 的灵活转化等知识点,解题方法不唯一.根据预设可以看出,学生对 1 的转化比较熟悉,例如1+s i n x=s i n x2+c o s x2,1-s i n x=s i n x2-c o s x2.教师先让学生独立解题,然后与学生共同交流.师:谁来说一说,你是如何求解例1的?生1:因为t a n(α2+π4)=-3,根据两角和的正切公式,易求出t a nα2=2,所以α2的终边在第一或第三象限.由同角三角函数的基本关系式,进一步可求出s i nα2=255,c o sα2=55,或s i nα2=-255,c o sα2=-55,则都有1+s i nα=s i nα2+c o sα2=355,所以1+s i nα=355.师:很好!生1从已学习过的知识出发,利用1+s i nα=s i nα2+c o sα2解决了问题.我们知道三角函数形式是灵活多变的,还有没有其他的方法呢?生2:我在此基础上做了改进.由t a n(α2+π4)=-3,可以得到s i n(α2+π4)=ʃ31010,所以可得s i nα2+c o sα2=2s i n(α2+π4)=355,即1+s i nα=355.师:很好!生2从问题出发,灵活运用有关三角恒等变换公式,将已知和问题建立了联系,真正体现了知识的活学活用.学生给出预设的两种解法后,教师准备开始其他问题的探究,但生3又提出了新思路.生3:可从已知条件出发,因为t a n(α2+π4)=-3,利用二倍角公式得t a n(α+π2)=34,所以t a nα=-43,则s i nα=ʃ45,解得1+s i nα=355或55.我感觉自己的思路和过程没有问题,但是却和前面两位同学的结果不一致.生3给出的方法超出了教师的预设,教师一时不知如何回答.不过该方法是学生的真实想法,且具有一定的科学性和探究性,为此选择与学生共同探索,挖掘答案不一致的真正原因.师:生3的答案和之前两位同学的答案不一致,是前面两位同学的结果不够完善,还是生3的结果存在增根呢?这个确实是一个非常有价值的问题.问题到底出现在哪里呢?生4:我感觉生3的解题思路和计算过程没有问题,已知条件仅给出了t a n(α2+π4)=-3,没有给出α的范围,所以很难确定α的终边在哪一个象限.师:条件中确实没有给出α的范围,那么α的范围真的没有办法确定吗生5:可以将t a n(α2+π4)与特殊角的三角函数比较,逐步缩小角的范围.由t a n(α2+π4)=-3<-3,得kπ-π2<α2+π4<kπ-π3,所以2kπ-3π2<α<2kπ-7π6(kɪZ),由此可知,α在第二象限.师:分析得非常有道理!那么是什么原因使生3解题时出现了增根呢95学习指导2024年2月上半月㊀㊀㊀生6:问题应该出现在 由t a n(α2+π4)=-3,利用二倍角公式得t a n (α+π2)=34这一步的变换上,变换时扩大了α的范围,从而出现了增根.对于同一题,思考的角度不同,其解决方法也会有所不同,不过最终的结果是一致的.在日常教学中,教师应鼓励学生尝试从不同角度探索解决问题的方法,这样可以有效激活学生的原认知,提高分析和解决问题的能力.2一题多变,培养思维的灵活性例2㊀已知α是三角形的内角,且s i n α+c o s α=15,求t a n α的值.例2考查同角三角函数基本关系式及其应用,难度不大,教师先让学生独立求解,然后师生互动交流.师:对于例2,大家是怎么想的?生1:我是用方程的思想方法求解的,由s i n α+c o s α=15和s i n 2α+c o s 2α=1,解得s i n α=-35,c o s α=45,或s i n α=45,c o s α=-35.又α是三角形的内角,所以s i n α=45,c o s α=-35.所以t a n α=-43.师:非常好!根据同角三角函数的基本关系式,运用方程的思想方法顺利解决了问题.对于该题,大家还有其他解题思路吗生2:由(s i n α+c o s α)2=1+2s i n αc o s α=125,得2s i n αc o s α=-2425<0.又α是三角形的内角,所以α为钝角,则s i n α>0,c o s α<0.又(s i n α-c o s α)2=4925,所以s i n α-c o s α=75,将其与s i n α+c o s α=15联立,求得s i n α=45,c o s α=-35,所以t a n α=-43.师:很好!根据角的范围判断三角函数的符号往往是解三角函数问题的关键,解题时切勿忘记.学生顺利完成例2的解答后,教师给出如下变式问题:变式㊀若t a n θ=2,求s i n 2θ+s i n θc o s θ-2c o s 2θ.此变式同样考查 s i n 2θ+c o s 2θ=1的灵活运用,将原式变为s i n 2θ+s i n θc o s θ-2c o s 2θs i n 2θ+c o s 2θ,将此式的分子分母同时除以c o s 2θ,转化为关于t a n θ的式子,进而将已知条件代入即可求得答案.例2及变式求解后,教师引导学生对以上解题方法进行归纳总结,从而提高学生解决一类问题的能力.在此基础上,教师继续提出新问题:(1)变式的条件还可以做怎样的变形?如果将t a n θ=2变为t a nθ2=2或3s i n θ+c o s θ=0或s i n (3π+θ)=2s i n (3π2+θ),该如何求解?(2)变式的问题还可以做哪些变形?如果是2s i n θ-c o s θs i n θ+2c o s θ,1c o s 2θ+2s i n 2θ,s i n 2θ-c o s 2θ1+c o s 2θ,又该如何求解?通过以上变式,引导学生体会该类题型考查的核心内容是s i n 2θ+c o s 2θ=1,t a n θ=s i n θc o s θ与 1的灵活应用,题目虽然形式不同,但是所用的知识㊁思路与方法基本相同.这样通过一题多变既能加深对相关知识㊁方法的理解,又能增强学生解题信心,提高学生解决问题的能力.数学题目千变万化,更换一个条件或结论就会成为一道新题.为了帮助学生跳出 题海 ,教学中应注重对一些典型例题进行变式教学,这样既能加深相关知识的理解,又能激发学生的探究欲望,提高学生的思维能力和学习能力,从而让学生逐渐爱上数学学习[2].3结束语在实际教学中,教师要通过一题多解与一题多变为学生提供更多的自主探究空间,以此帮助学生加深对所学知识的理解,培养良好的学习习惯和独立的个性.学生是课堂的主体.教学过程中,教师要尊重学生㊁相信学生,提供时间和空间让学生主动参与课堂,切实提高教学有效性和学生数学能力.在实际教学中,教师既要进行充分的预设,又要及时捕捉精彩的课堂生成,以平等对话的态度了解学生的真实想法,共同研究解决问题的策略,激发学生参与课堂的积极性,促成深度学习.总之,在解题教学中,教师切勿越俎代庖,应该充分发挥学生的主体价值,通过一题多解㊁一题多变教学提炼解题规律和解题方法,培养学生的创新㊁探究能力,提升教学有效性.参考文献:[1]郭靖.基于核心素养的引导探究教学模式的探索与实践 高中新教材不等式性质的教学案例[J ].中文科技期刊数据库(全文版)教育科学,2021(6):168G170.[2]陈光建,郑日锋.一花一世界一题一天地 一节高考二轮复习的教学设计及反思[J ].中小学数学(高中版)2013(4):20G22.Z06。