河南省中考数学专题复习 专题五 解直角三角形的实际应用训练
2022河南数学中考总复习--解直角三角形(试题、含解析)
2022河南数学中考总复习--§6.3 解直角三角形五年中考考点1 锐角三角函数1.(2021天津,2,3分)tan 30°的值等于( )A.√33B.√22C.1D.2答案 A tan 30°=√33,故选A .2.(2020浙江杭州,4,3分)如图,在△ABC 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则 ( )A.c =b sin BB.b =c sin BC.a =b tan BD.b =c tan B答案 B ∵Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,∴sin B =b c,即b =c sin B ,故A 选项不成立,B 选项成立;tan B =ba ,即b =a tan B ,故C 选项不成立,D 选项不成立.故选B .3.(2019天津,2,3分)2sin 60°的值等于 ( )A.1B.√2C.√3D.2答案 C 根据特殊角的三角函数值,可得sin 60°=√32,则2sin 60°=2×√32=√3.故选C .4.(2018云南,12,4分)在Rt △ABC 中,∠C =90°,AC =1,BC =3,则∠A 的正切值为 ( )A.3B.13 C.√1010 D.3√1010答案 A ∵AC =1,BC =3,∠C =90°,∴tan A =BCAC =3.故选A .5.(2017内蒙古包头,18,3分)如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.答案√22解析连接AF.∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°.∵点E是CD的中点,AB=2,∴CE=1.∵FC=2BF,BC=3,∴BF=1,FC=2.易证△ABF≌△FCE,∴AF=EF,∠AFB=∠FEC,∵∠FEC+∠EFC=90°,∴∠AFB+∠EFC=90°,∴∠AFE=90°.∴△AEF是等腰直角三角形,∴cos∠AEF=cos45°=√22.考点2解直角三角形1.(2020安徽,8,4分)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=45,则BD的长度为()A.94B.125C.154D.4答案C∵在Rt△ABC中,∠C=90°,AC=4,cos A=ACAB =4 5 ,∴AB =5,∴BC =√AB 2-AC 2=3, ∵∠DBC =∠A , ∴cos∠DBC =BC BD =45, ∴BD =154. 故选C .思路分析 先利用cos A 的值和勾股定理求出BC 的长,再利用cos ∠DBC =cos A =45求出BD 的长.2.(2020江苏苏州,7,3分)如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角∠ACE =α;(2)量得测角仪的高度CD =a ;(3)量得测角仪到旗杆的水平距离DB =b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为 ( )A.a +b tan αB.a +b sin αC.a +btanα D.a +bsinα 答案 A 延长CE 交AB 于F , 由题意得,四边形CDBF 为矩形, ∴CF =DB =b ,FB =CD =a ,在Rt △ACF 中,∠ACF =α,CF =b , ∵tan∠ACF =AFCF ,∴AF =CF ·tan ∠ACF =b tan α, ∴AB =AF +BF =a +b tan α. 故选A .解题关键本题主要考查了解直角三角形,解题关键是通过构造直角三角形,将实际问题转化为数学问题.3.(2019辽宁大连,15,3分)如图,建筑物BC上有一旗杆AB,从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m.(结果取整数.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)答案3解析∵∠BDC=45°,∠BCD=90°,∴∠DBC=180°-∠BCD-∠BDC=180°-90°-45°=45°,∴∠BDC=∠DBC,∴BC=DC=10m.,在Rt△ADC中,tan∠ADC=ACCD,∴tan53°=AC10∴AC=10tan53°≈10×1.33≈13.3m.∴AB=AC-BC=13.3-10=3.3≈3m.故答案为3.思路分析因为∠BDC=45°,∠BCD=90°,所以可得BC=DC=10m,解直角三角形可求出AC≈13.3m,进一步可求出AB的长度.4.(2018河南,20,9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A ,B 两点间的距离为90 cm .低杠上点C 到直线AB 的距离CE 的长为155 cm ,高杠上点D 到直线AB 的距离DF 的长为234 cm ,已知低杠的支架AC 与直线AB 的夹角∠CAE 为82.4°,高杠的支架BD 与直线AB 的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH.(结果精确到1 cm .参考数据:sin 82.4°≈0.991,cos 82.4°≈0.132,tan 82.4°≈7.500,sin 80.3°≈0.983,cos 80.3°≈0.168,tan 80.3°≈5.850)解析 在Rt △CAE 中,AE =CE tan ∠CAE =155tan82.4°≈1557.500≈20.7. (3分)在Rt △DBF 中,BF =DF tan ∠DBF =234tan80.3°≈2345.850=40. (6分)∴EF =AE +AB +BF =20.7+90+40=150.7≈151. ∵四边形CEFH 为矩形, ∴CH =EF =151.即高、低杠间的水平距离CH 的长约是151 cm .(9分)思路分析 根据Rt △CAE 和Rt △DBF 中的边和角的数值,用正切函数分别求得AE ,BF 的长度,得EF =AE +AB +BF ,由矩形的性质可知CH =EF ,可以求出问题的答案.5.(2021河南,19,9分)开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A 与佛像BD 的底部D 在同一水平线上.已知佛像头部BC为4m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1m.参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77).解析设BD=x m,在Rt△BDA中,∠BDA=90°,∠BAD=45°,∴AD=BD=x.(3分)在Rt△CDA中,∠CAD=37.5°,∴CD=AD·tan37.5°≈0.77x.(6分)∵BC=4,∴BD-CD=4,即x-0.77x=4.解得x≈17.4.答:佛像BD的高度约为17.4m.(9分)6.(2019河南,19,9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上.在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67,√3≈1.73)解析在Rt△ACE中,∵∠A=34°,CE=55,∴AC =CEtan34°≈550.67≈82.1. ∴BC =AC -AB =82.1-21=61.1. (4分)在Rt △BCD 中, ∵∠CBD =60°,∴CD =BC ·tan 60°≈61.1×1.73≈105.7. (7分)∴DE =CD -CE =105.7-55≈51.所以炎帝塑像DE 的高度约为51 m . (9分)思路分析 已知EC =55,∠A =34°,先解Rt △ACE ,求得AC 的长,由BC =AC -AB 得BC 的长,再解Rt △BCD ,求得CD 的长,从而求得DE.7.(2020河南,18,9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22°,然后沿MP 方向前进16 m 到达点N 处,测得点A 的仰角为45°,测角仪的高度为1.6 m .(1)求观星台最高点A 距离地面的高度(结果精确到0.1 m .参考数据:sin 22°≈0.37,cos 22°≈0.93,tan 22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6 m .请计算本次测量结果的误差,并提出一条减小误差的合理化建议.解析 (1)如图,过点A 作AF ⊥MP ,垂足为点F ,交BC 的延长线于点E.由题意知,四边形MBCN 和四边形NCEF 均为矩形, (2分)设AE =x m ,在Rt △ACE 中,∠AEC =90°,∠ACE =45°, ∴CE =AE =x m , (3分)在Rt △ABE 中,∠AEB =90°,∠ABE =22°, ∵tan 22°=AEBE , ∴BE =AEtan22°≈x0.40=52x m , (4分)∵BE -CE =BC , ∴52x -x =16. 解得x =323≈10.67. (6分)∵EF =BM =1.6 m ,∴AF =AE +EF =10.67+1.6≈12.3 m .即观星台最高点A 距离地面的高度约为12.3 m . (7分)(2)误差为12.6-12.3=0.3(m ).(8分)可多次测量,取测量数据的平均值(答案不唯一,合理即可). (9分)8.(2017河南,19,9分)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C.此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43,√2≈1.41解析 过点C 作CD ⊥AB 交直线AB 于点D ,则∠CDA =90°. (1分)设CD =x 海里,则AD =CD =x 海里. ∴BD =AD -AB =(x -5)海里.(3分)在Rt △BDC 中,CD =BD ·tan 53°, 即x =(x -5)·tan 53°,∴x =5tan53°tan53°-1≈5×4343-1=20. (6分)∴BC =CD sin53°=x sin53°≈20÷45=25海里.∴B 船到达C 船处约需25÷25=1(小时). (7分) 在Rt △ADC 中,AC =√2x ≈1.41×20=28.2海里, ∴A 船到达C 船处约需28.2÷30=0.94(小时).(8分)而0.94<1,所以C 船至少要等待0.94小时才能得到救援. (9分) 解题技巧 本题是解三角形两种典型问题中的一种. 以下介绍两种典型问题: (1)如图1,当BC =a 时,设AD =x , 则CD =x tanβ,BD =xtanα. ∵CD +BD =a , ∴xtanβ+xtanα=a , ∴x =atanαtanβtanα+tanβ.图1(2)如图2,当BC =a 时,设AD =x , 则BD =x tanα,CD =x tanβ, ∵CD -BD =a ,∴x tanβ-xtanα=a ,∴x =atanαtanβtanα-tanβ.图29.(2021江西,20,8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC 与手臂MC 始终在同一直线上,枪身BA 与额头保持垂直.量得胳膊MN =28 cm ,MB =42 cm ,肘关节M 与枪身端点A 之间的水平宽度为25.3 cm (即MP 的长度),枪身BA =8.5 cm . (1)求∠ABC 的度数;(2)测温时规定枪身端点A 与额头距离范围为3~5 cm .在图2中,若测得∠BMN =68.6°,小红与测温员之间距离为50 cm .问此时枪身端点A 与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin 66.4°≈0.92,cos 66.4°≈0.40,sin 23.6°≈0.40,√2≈1.414)图1图2解析 (1)过点B 作BK ⊥MP 于点K ,由题意可知四边形ABKP 为矩形. ∴MK =MP -AB =25.3-8.5=16.8 cm . 在Rt △BMK 中,cos ∠BMK =MK MB =16.842=0.4, ∴∠BMK ≈66.4°,∴∠MBK =90°-66.4°=23.6°, ∴∠ABC =23.6°+90°=113.6°. 答:∠ABC 的度数为113.6°.(2)延长PM 交FG 于点H ,由题意得∠NHM =90°, ∵∠BMN =68.6°,∠BMK =66.4°, ∴∠NMH =180°-68.6°-66.4°=45°. 在Rt △MNH 中, cos 45°=HM MN =HM28,∴HM =28×√22≈14×1.414=19.796 cm .∴枪身端点A 与小红额头的距离为50-19.796-25.3=4.904 cm ≈4.9 cm . ∵3<4.9<5,∴枪身端点A 与小红额头的距离在规定范围内.三年模拟A组基础题组一、选择题(每题3分,共9分)1.(2021洛阳汝阳一模,5)李红同学遇到了这样一道题:√3tan(α+20°)=1,你猜想锐角α的度数应是()A.40°B.30°C.20°D.10°答案D∵√3tan(α+20°)=1,∴tan(α+20°)=√33,∵α为锐角,∴α+20°=30°,α=10°.故选D.2.(2020信阳商城一模,8)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.13B.1 C.√33D.√3答案B连接BC,由题意可得AB=BC=√5,AC=√10,∴AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1.故选B.3.(2020河南百校联盟一模,9)如图,在矩形ABCD中,AB=3,BC=5,以B为圆心,BC长为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A.12 B.25 C.310 D.13 答案D连接BE.∵以B 为圆心,BC 长为半径画弧交AD 于点E ,∴BE =BC =5,∴AE =√BE 2-AB 2=√52-32=4,∴DE =AD -AE =5-4=1,∴CE =√CD 2+DE 2=√32+12=√10,∵BC =BE ,BF⊥CE ,∴点F 是CE的中点,∴CF =12CE =√102,∴BF =√BC 2-CF 2=√52-(√102)2=3√102,∴tan∠FBC =CF BF =√1023√102=13,即tan ∠FBC 的值为13.故选D.二、解答题(共51分)4.(2021濮阳一模,18)某市为了加快5G 网络信号覆盖,在市区附近小山顶架设信号发射塔,如图,山顶上有一个信号塔AC ,已知信号塔高AC =21米,在山脚下点B 处测得塔底C 的仰角∠CBD =36.9°,塔项A 的仰角∠ABD =42.0°.求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan 36.9°≈0.75,sin 36.9°≈0.60,tan 42.0°≈0.90)解析 由题意得,在Rt △ABD 与Rt △CBD 中,AD =BD ·tan ∠ABD =BD ·tan 42.0°≈0.90BD , CD =BD ·tan ∠CBD =BD ·tan 36.9°≈0.75BD.∵AC =AD -CD =0.15BD =21(米), ∴BD =140(米). ∴CD =0.75BD =105(米). 答:山高CD 约为105米.5.(2021郑州二模,18)某区域平面示意图如图所示,点D 在河的右侧,人民路AB 与桥BC 垂直,某校数学小组进行研学活动时,在C 处测得点D 位于西北方向,又在A 处测得点D 位于南偏东65°方向,另测得BC =628 m ,AB =400 m ,求出点D 到AB 的距离.(结果保留整数,参考数据:sin 65°≈0.91,cos 65°≈0.42,tan 65°≈2.14)解析 如图,过点D 作DE ⊥AB 于点E ,过点D 作DF ⊥BC 于点F ,则四边形EBFD 是矩形, 设DE =x m ,在Rt △ADE 中,∠AED =90°, ∵tan∠DAE =DEAE , ∴AE =DE tan ∠DAE ≈x2.14,∴BE =400-x2.14, 又BF =DE =x ,∴CF =628-x ,在Rt △CDF 中,∠DFC =90°,∠DCF =45°, ∴DF =CF =628-x , 又BE =DF ,即400-x2.14=628-x , 解得x =428.故点D 到AB 的距离约是428 m .6.(2021许昌一模,18)曹魏古城是许昌的特色建筑之一,具有文化展示、旅游休闲、商业服务、特色居住等主要功能,某数学活动小组借助测角仪和皮尺测量曹魏古城南城门中间大门的高度,如图,矩形AEFB 是中间大门的截面图,他们先在城门南侧点C 处测得点A 的仰角∠ACE 为58°,然后沿直线从点C 处穿过城门到达点D ,从点D 处测得点B 的仰角∠BDF 为45°,点C 到D 的距离为38米,EF 的距离为18米,求曹魏古城南城门中间大门AE 的高度.(结果精确到1米,参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60)解析 设AE =x ,则BF =AE =x ,在Rt △ACE 中,∠AEC =90°,∠ACE =58°, ∴CE =AEtan58°≈x1.6, (3分)在Rt △BFD 中,∠BFD =90°,∠BDF =45°, ∴DF =BF =x ,(5分)∵CE +EF +FD =CD , ∴x1.6+18+x =38,解得x ≈12. (8分)即曹魏古城南城门中间大门AE 的高度约为12 m . (9分)7.(2021安阳二模,19)2021年“五一”期间,修复后的安阳老城东南城墙及魁星阁与市民见面,这一始建于北魏天兴元年(公元398年)的建筑,在1 600多年后,以崭新的面貌向世人展示历史印记,古代安阳“魁星取水”景观即将重现.某数学学习小组利用卷尺和自制的测角仪测量魁星阁顶端距离地面的高度,如图所示,他们在地面一条水平步道FB 上架设测角仪,先在点F 处测得魁星阁顶端A 的仰角是26°,朝魁星阁方向走20米到达点G 处,在点G 处测得魁星阁顶端A 的仰角是45°,若测角仪CF 和DG 的高度均为1.5米,求魁星阁顶端距离地面的高度(图中AB 的值).(参考数据:sin 26°≈0.44,cos 24°≈0.90,tan 26°≈0.49,√2≈1.41,结果精确到0.1米)解析由题意知,CD=FG=20,CF=DG=BE=1.5,四边形CFBE是矩形.(1分)设AE=x,在Rt△ADE中,∵∠ADE=45°,∴AE=DE=x,(3分)在Rt△ACE中,∵tan26°=AECE =x CE,∴CE=xtan26°,∵CE-DE=CD,∴xtan26°-x=20,(6分)解得x≈19.2,(7分)∴AB=19.2+1.5=20.7.(8分)答:魁星阁顶端距离地面的高度约为20.7米. (9分)8.(2021河南名校联考,18)“青山绿水,生态农业”.某地需引水修建水库,既可蓄水灌溉,又可美化环境.据了解,水库C修建在水源A的正东方向,在水源A的北偏东75°方向有一古迹B,B与A相距14km,其中水库C在古迹B的东南方向.(1)若在水源A与水库C之间修建一条水渠,求该水渠的最短长度;(2)在古迹B的西南方向5km处有一古墓群,为了保护文物,不破坏古墓,在古墓群周围1km范围内不得进行任何土工作业,判断按照(1)中的方式修建水渠是否合理,并说明理由.(结果保留一位小数,参考数据:sin15°≈0.26,cos15°≈0.97,√2≈1.41)解析(1)过点B作BD⊥AC于点D,由题意得,∠BAD=15°,∠DBC=∠DCB=45°,AB=14km,BD=DC,在Rt△ADB中,BD=AB·sin15°≈14×0.26=3.64(km),AD=AB·cos15°≈14×0.97=13.58(km),∴CD=BD=3.64(km),∴AC=AD+DC=13.58+3.64≈17.2(km),根据“两点之间,线段最短”,可知线段AC的长即为所求.答:该水渠的最短长度约为17.2km.(2)按照(1)中的方式修建水渠不合理,理由如下:过点B作BE⊥BC交AC于点E,由(1)知,∠DCB=45°,CD=3.64km,∴CE=2CD=7.28(km),∴BE=CE·sin45°≈5.1(km),∵5.1-5=0.1(km),0.1km<1km,∴有破坏文物的可能,即按照(1)中的方式修建水渠不合理.思路分析(1)过点B作BD⊥AC于点D,利用锐角三角函数得出BD、AD,进而得出AC即可.(2)过点B作BE⊥BC 交AC于点E,利用锐角三角函数得出BE,与所给的数据比较大小,进而解答即可.9.(2021开封一模,18)被誉为“天下第一塔”的开封铁塔,八角十三层,其设计精巧,单是塔砖就有数十种图案,它历经战火、水患、地震等灾害,依然屹立.某数学兴趣小组通过调查研究把“如何测量铁塔的高度”作为一项课题活动,他们制订了测量方案,并利用课余时间实地测量.课题 测量铁塔的高度测量工具测量角度的仪器,皮尺等测量方案在点C 处放置高为1.3米的测角仪,此时测得塔顶端A 的仰角为58°,再沿BC 方向走20.5米到达点E 处,此时测得塔顶端A 的仰角为45°说明:E ,C ,B 三点在同一水平面上(1)请你根据表中信息帮助该数学兴趣小组求铁塔的高度;(结果精确到0.1米,参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60)(2)景点介绍开封铁塔的高度为55.88米,则计算结果的误差为多少?请你说出一条可能导致计算结果产生误差的原因.解析 由题意知DF =CE =20.5米,CD =EF =1.3米,过点F 作FG ⊥AB 于点G , ∴BG =CD =1.3米,设AG =x 米,在Rt △AGF 中,∠AFG =45°, ∴FG =AG =x 米,∴DG =FG -DF =(x -20.5)米,在Rt △AGD 中,∠ADG =58°, ∴tan 58°=AG DG =xx -20.5≈1.6,解得x ≈54.67米,∴AB =AG +BG =54.67+1.3≈56.0(米). ∴铁塔的高度约为56.0米. (2)56.0-55.88=0.12(米) ∴产生的误差为0.12米.原因:读数时出现误差、皮尺没有拉直、测角仪器没有摆正等.(合理即可)思路分析 本题考查解直角三角形的应用—仰角问题,先在图表中找出所需信息,根据解直角三角形的“母子型”,设出参数利用锐角三角函数的边角关系,构建方程解决问题.B 组 提升题组解答题(每题3分,共65分)1.(2021许昌长葛一模,18)如图,AD 是△ABC 的高,cos B =√22,sin C =35,AC =10,求△ABC 的周长.解析 在Rt △ACD 中,sin C =ADAC , ∵sin C =35,AC =10, ∴35=AD 10, ∴AD =6.∴CD =√AC 2-AD 2=8. 在Rt △ABD 中,∵cos B =√22, ∴∠B =45°, ∴∠BAD =∠B =45°,∴BD=AD=6,AB=6√2.∴△ABC的周长为AB+AC+BD+CD=6√2+10+6+8=24+6√2.2.(2021新乡辉县模拟,19)如图,某小区一高层住宅楼AB高60米,附近街心花园内有一座古塔CD,小明在楼底B 处测得塔顶仰角为38.5°,到楼顶A处测得塔顶仰角为22°,求住宅楼与古塔之间的距离BD的长.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)解析过点A作AE⊥CD于点E,由题意可知∠CAE=22°,∠CBD=38.5°,ED=AB=60米,设大楼与塔之间的距离BD的长为x米,则AE=BD=x米,,∵在Rt△BCD中,tan∠CBD=CDBD∴CD=BD tan38.5°≈0.8x(米),,∵在Rt△ACE中,tan∠CAE=CEAE∴CE=AE tan22°≈0.4x(米),∵CD-CE=DE,∴0.8x-0.4x=60,∴x=150米,即BD =150米.答:楼与塔之间的距离BD 的长约为150米.3.(2021平顶山二模,19)一渔船跟踪鱼群由西向东航行,在点B 处测得北偏东60°方向上有一海岛A ,航行10海里后到达C 处,又测得海岛A 位于北偏东53°方向上.(1)求C 处到海岛A 的距离(结果精确到0.1海里,参考数据:sin 53°≈0.80,cos 53°≈0.60,tan 53°≈1.33,√3≈1.73);(2)已知海岛A 的周围20海里范围内有暗礁,若渔船继续由西向东航行是否会有触礁的危险?说明理由.解析 (1)过点A 作AD ⊥BC 于点D ,由题意可知, ∠BAD =60°,∠CAD =53°, (1分)设AD =x ,在Rt △ADB 中,tan ∠BAD =BD AD =BDx=√3, ∴BD =√3x ,∴CD =BD -BC =√3x -10, (3分) 在Rt △ADC 中,tan ∠CAD =CDAD , 即tan 53°=√3x -10x≈1.33,∴x ≈101.73-1.33=25, (5分) 在Rt △ADC 中,cos ∠CAD =ADAC , 即cos 53°=25AC ≈0.6, ∴AC ≈250.6≈41.7.∴C 处到海岛A 的距离约为41.7海里. (7分)(2)由(1)可知,AD=25>20,所以若渔船继续由西向东航行不会有触礁的危险.(9分)4.(2020信阳二模,19)为宣传国家相关政策,某村在一小山坡顶端的平地上竖起一块宣传牌AB,如图.某数学小组想测量宣传牌AB的高度,派一人站在山脚C处,测得宣传牌顶端A的仰角为40°,山坡CD的坡度i=1∶2,山坡CD的长度为4√5米,山坡顶点D与宣传牌底部B的水平距离为2米,求宣传牌的高度AB.(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,√5≈2.24)解析延长AB交CM于点E,过点D作DF⊥CM于点F,则四边形BDFE是矩形,EF=BD=2,BE=DF,(1分)在Rt△CDF中,∵i=DF∶CF=1∶2,∴设DF=x米,则CF=2x米,(2分)∵CD=4√5米,∴x2+(2x)2=(4√5)2,解得x=4(舍负)米,(4分)∴DF=4米,CF=8米,∴CE=CF+EF=8+2=10米,BE=DF=4米.(5分)在Rt△ACE中,∵∠ACE=40°,=tan40°,∴AECE∴AE=CE·tan40°≈10×0.84=8.4米,(7分)∴AB=AE-BE=8.4-4=4.4米.(8分)答:宣传牌AB的高度约为4.4米.(9分)5.(2021南阳镇平一模,19)某数学课外兴趣小组为了测量建在山丘DE上的宝塔CD的高度,在山脚下的广场A 处测得建筑物底端点D(即山顶)的仰角为20°,沿水平方向前进20米到达B点,测得建筑物顶部点C的仰角为45°,已知山丘DE高37.69米,求塔的高度CD.(结果精确到1米,参考数据:sin20°≈0.34,cos20°≈0.94,tan 20°≈0.36)解析设CD=x米.在Rt△BCE中,∵∠CEB=90°,∠CBE=45°,∴EC=BE=(x+37.69)米,在Rt△ADE中,∵tan20°=DEAE ,∴0.36≈37.6920+x+37.69,解得x≈47米.答:塔的高度CD约为47米.思路分析本题考查解直角三角形的应用—仰角问题,根据解直角三角形的“交叉型”,设CD=x米.在Rt△ADE 中,根据tan20°=DEAE,构建方程即可解决问题.6.(2021安阳一模,18)如图所示,文峰塔是安阳著名古建筑,小明所在的课外活动小组在塔上距地面25米高的点D处,测得地面上点B的俯角α为30°,点D到塔中心轴AO的距离DE为6.5米;从地面上的点B沿BO方向走11米到达点C处,测得塔尖A的仰角β为45°,请你根据以上数据计算塔高AO.(参考数据:√3≈1.73,√2≈1.41,结果精确到0.1米)解析如图,过点D作DF⊥BC于点F,由题意可得四边形DFOE是矩形,(1分)∵DE∥BC,∴∠B=∠α=30°,(2分)在Rt△DFB中,DF=EO=25m,∠B=30°,=25×√3≈43.25(m),(5分)∴BF=DFtan∠B∵CO=BF+OF-BC,BC=11m,OF=DE=6.5m,∴CO=43.25+6.5-11=38.75(m),(7分)在Rt△AOC中,∠ACO=∠β=45°,∴AO=CO=38.75≈38.8(m).答:文峰塔高大约38.8m.(9分)7.(2021许昌禹州二模,19)2020年11月10日,“雪龙2”起航!中国第37次南极考察队从上海出发,执行南极考察任务.已知“雪龙2”船上午9时在B市的南偏东25°方向上的点A处,且在C岛的北偏东58°方向上,已知B市在C岛的北偏东28°方向上,且距离C岛248km.此时,“雪龙2”船沿着AC方向以25km/h的速度运动.请你计算“雪龙2”船大约几点钟到达C 岛?(结果精确到1 km ,参考数据:√3≈1.73,sin 53°≈45,cos 53°≈35,tan 53°≈43)解析 过点A 作AD ⊥BC 于点D ,由题意知,∠ABC =28°+25°=53°,∠ACB =58°-28°=30°,BC =248 km , 设AD =x km ,在Rt △ABD 中,∵∠ABD =53°, ∴BD =AD tan ∠ABD =AD tan53°≈34x (km ),在Rt △ACD 中,∵∠ACD =30°, ∴CD =ADtan ∠ACD =ADtan30°=√3x (km ), ∵BD +CD =BC , ∴34x +√3x =248, 解得x ≈100(km ), ∴AD =100(km ), ∴AC =2AD =200(km ), ∴200÷25=8(h ), ∴9+8=17.答:“雪龙2”船大约17点钟到达C岛.思路分析本题考查的是解直角三角形的应用—方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键,过点A作AD⊥BC于点D,构建直角三角形,利用正切的定义表示出BD、CD,列出方程、解方程即可解答.8.(2020郑州二模,19)图1是一台实物投影仪,图2是它的示意图,折线BA-AO表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可在竖直平面内转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量,AO=6.4cm,CD=8cm,AB=40cm,BC=45cm.(1)如图2,∠ABC=70°,BC∥OE.填空:①∠BAO=°;②投影探头的端点D到桌面OE的距离是cm;(2)如图3,将(1)中的BC向下旋转,当∠ABC=30°时,求投影探头的端点D到桌面OE的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,sin40°≈0.64,cos40°≈0.77)解析(1)①160.(2分)②36.(5分)提示:(1)①如图1,作AG∥BC,由平行线的性质得解.②如图2,延长OA交BC于点F,在Rt△ABF中,AF=AB·sin70°≈40×0.94=37.6cm.则AF+AO-CD=36cm.(2)如图3,过点D作DH⊥OE于点H,过点B作BM⊥CD,与DC的延长线相交于点M,过点A作AF⊥BM于点F,则∠MBA=70°,∵∠ABC=30°,∴∠CBM=40°.∴MC=BC sin40°≈45×0.64=28.8cm,又AF=AB sin70°≈40×0.94=37.6cm,∴FO=AF+AO=37.6+6.4=44(cm).∴DH=FO-MC-CD=44-28.8-8=7.2(cm).答:投影探头的端点D到桌面OE的距离为7.2cm.(9分)思路分析本题考查的是解直角三角形的应用.(1)①作AG∥BC,由平行线的性质得解;②延长OA交BC于点F,构造Rt△ABF,用锐角三角函数求得AF的长,由线段的和差求解.(2)作辅助线构造Rt△ABF和Rt△BMC,解直角三角形,由线段的和差求解即可.。
河南省中考数学总复习三角形第五节解直角三角形及其应用好题随堂演练
解直角三角形及其应用好题随堂演练1.(2018·天津)cos 30°的值等于( ) A.22B.32C .1D. 32.(2017·怀化)如图,在平面直角坐标系中,点A 的坐标为(3,4),那么sin α的值是( )A.35B.34C.45D.433.(2018·宜昌)如图,要测量小河两岸相对的两点P ,A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得PC =100米,∠PCA=35°,则小河宽PA 等于( )A .100 sin 35°米B .100 sin 55°米C .100 tan 35°米D .100 tan 55°米4.(2018·金华) 如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A.tan αtan β B.sin βsin α C.sin αsin β D.cos βcos α5. (2018·重庆A 卷)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE =7米,升旗台坡面CD 的坡度i =1∶0.75,坡长CD =2米.若旗杆底部到坡面CD 的水平距离BC =1米,则旗杆AB 的高度约为( )(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)A .12.6米B .13.1米C .14.7米D .16.3米6.(2018·广州)如图,旗杆高AB =8 m ,某一时刻,旗杆影子长BC =16 m ,则tan C =________.7.(2018·枣庄)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,则大厅两层之间的高度为______________米.(结果保留两位有效数字,参考数据:sin 31°=0.515,cos 31°=0.857,tan 31°=0.601)图①图②8.(2018·焦作一模)某校教学楼AB 的后面有一建筑物CD ,在距离CD 的正后方30米的观测点P 处,以22°的仰角测得建筑物的顶端C 恰好挡住教学楼的顶端A ,而在建筑物CD 上距离地面3米高的E 处,测得教学楼的顶端A 的仰角为45°,求教学楼AB 的高度.(参数数据:sin 22°≈38,cos 22°≈1516,tan 22°≈25)9.(2018·濮阳一模)如图,线段AB 、CD 分别表示甲、乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A 、D.从D 点测得B 点的仰角α为60°,从C 点测得B 点的仰角β为30°,甲建筑物的高AB =30米. (1)求甲、乙两建筑物之间的距离AD ; (2)求乙建筑物的高CD.10.(2018·安阳一模)4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A ,小江抓着风筝线的一端站在D 处,他从牵引端E 测得风筝A 的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC =30米)的居民楼顶B 处测得风筝A 的仰角是45°.已知小江与居民楼的距离CD =40米,牵引端距地面高度DE =1.5米,根据以上条件计算风筝距地面的高度.(结果精确到0.1米.参考数据:sin 67°≈1213,cos 67°≈513,tan 67°≈125,2≈1.414)参考答案1.B 2.C 3.C 4.B 5.B 6.127.6.28.解:如解图,作EF⊥AB 于F ,则四边形EFBD 是矩形. ∵∠AEF=45°,∠AFE=90°,∴∠AEF=∠EAF=45°,∴EF=AF ,设EF =AF =x ,则BD =EF =x , 在Rt△ABP 中,∵AB=x +3,PB =30+x , ∴tan 22°≈25=x +330+x ,解得x =15,经检验:x =15是原方程的根, ∴AB=x +3=18 m.答:教学楼AB 的高度为18 m. 9.解:(1)如解图,作CE⊥AB 于点E ,在Rt△ABD 中,AD =AB tan α=303=103(米);答:甲、乙两建筑物之间的距离AD 为103米. (2)在Rt△ABC 中,CE =AD =103米, BE =CE·tan β=103×33=10(米), 则CD =AE =AB -BE =30-10=20(米). 答:乙建筑物的高度DC 为20米.10.解:如解图,作AM⊥CD 于M ,作BF⊥AM 于F ,EH⊥AM 于H. ∵∠ABF=45°,∠AFB=90°,∴AF=BF ,设AF =BF =x ,则CM =BF =x ,DM =HE =40-x ,AH =x +30-1.5=x +28.5, 在Rt△AHE 中,tan67°=AHHE ,∴125≈x +28.540-x, 解得x≈19.85 m.∴AM≈19.85+30=49.85 m. 答:风筝距地面的高度约为49.85 m.。
中考数学高频考点训练——解直角三角形的应用 (1)
中考数学高频考点训练——解直角三角形的应用 1. 如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A 到达点B 时,它经过了200m ,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B 到达点D 时,它又走过了200m ,缆车由点B 到点D 的行驶路线与水平面夹角∠β=42°,求缆车从点A 到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)2. 如图,在距某输电铁塔GH (GH 垂直地面)的底部点H 左侧水平距离60米的点B 处有一个山坡,山坡AB 的坡度i =13B 到坡顶A 的距离AB 等于40米,在坡顶A 处测得铁塔顶点G 的仰角为30°(铁塔GH 与山坡AB 在同一平面内).(1)求山坡的高度;(2)求铁塔的高度GH .(结果保留根号)3. 为了维护南海的主权, 我国对相关区域进行海空常态化立体巡航.如图, 在一次巡航中,预警机沿 AE 方向飞行, 驱护舰沿 BP 方向航行, 且航向相 同 ()AE BP ∥. 当顼紫机飞行到 A 处时,测得航行到 B 处的驱护舰的俯角为 45 ,此时 B 距离相关岛屿 P 恰为 60 千米; 当预警机飞行到 C 处 时 , 驱护舰恰好航行到预警机正下方 D 处,此时 10CD = 千米,当预警机继续飞行到 E 处时,驱护舰到达相关岛屿,P 且测得E 处的预警机的仰角为22.︒求预警机的飞行距离AE .(结果保留整数)(参考数据: sin220.37,cos220.93,tan220.40≈≈≈.)4. 如图,海面上甲、乙两船分别从A ,B 两处同时出发,由西向东行驶,甲船的速度为24n mile/h ,乙船的速度为15n mile/h ,出发时,测得乙船在甲船北偏东50°方向,且AB=10nmile ,经过20分钟后,甲、乙两船分别到达C ,D 两处.(参考值:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)(1)求两条航线间的距离;(2)若两船保持原来的速度和航向,还需要多少时间才能使两船的距离最短?(精确到0.01)5. 某课桌生产厂家研究发现,倾斜12°至24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度得桌面.新桌面的设计图如图1,AB 可绕点A 旋转,在点C 处安装一根长度一定且C 处固定,可旋转的支撑臂CD ,30AD cm =.(1)如图2,当24BAC =∠时,CD AB ⊥,求支撑臂CD 的长;(2)如图3,当12BAC =∠时,求AD 的长.(结果保留根号)(参考数据:sin 240.40≈,cos 240.91≈,tan 240.46≈,sin120.20≈)6. 如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处.已知AB=BD=800米,∠α=75°,∠β=45°,求山高DE(结果精确到1米).(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.7322=1.414)7. 地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.8. 梁子湖是驰名中外的武昌鱼的故乡,“五一”期间游人络绎不绝.现有一艘游艇载着游客在湖中游玩,如图,当游艇在A处时,艇上游客发现P1处的青山岛和P2处的梁子岛都在东北方向;当游艇向正东方向行驶30km到达B处时,游客发现梁子岛在北偏西15°方向;当游艇继续向正东方向行驶20km到达C处时,游客发现青山岛在北偏西60°方向.(1)求A处到青山岛P1处的距离;(2)求青山岛P1处与梁子岛P2处之间的距离.(计算结果均保留根号)9. 如图,建在山腰点A 处的一座“5G”发射塔AB 与地面CM 垂直,在地面C 处测得发射塔AB 的底部A 、顶端B 的仰角分别为30°、60°,在地面D 处测得发射塔AB 的底部A 的仰角为45°.(1)若设AC k =,则AD = ;(用含k 的代数式表示)(2)若测得()18318CD =米,求AB .10. 如图1,我国古建筑的大门上常常悬挂着巨大的匾额,图2中的线段BC 就是悬挂在墙壁AM 上的某块匾额的截面示意图.已知2BC =米,37MBC ∠=︒.从水平地面点D 处看点C ,仰角45ADC ∠=︒,从点E 处看点B ,仰角53AEB ∠=︒.且 4.4DE =米,求匾额悬挂的高度AB 的长.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)11. 如图,小华和同伴在春游期间,发现在某地小山坡的点E 处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE 的长度,小华站在点B 的位置,让同伴移动平面镜至点C 处,此时小华在平面镜内可以看到点E ,且BC =2.7米,CD =11.5米,∠CDE =120°,已知小华的身高为1.8米,请你利用以上的数据求出DE 的长度.(结果保留根号)12. “眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:2sin 245≈°,9cos 2410︒≈,9tan 2420︒≈)13. 河南省政府为促进农业发展,加快农村建设,计划扶持兴建一批新型钢管装配式大棚,如图1所示线段AB 、BD 分别为大棚的墙高和跨度,AC 表示保温板的长,已知墙高AB 为3米,墙面与保温板所成的角∠BAC=150°,在点D 处测得A 点、C 点的仰角分别为9°,15.6°,如图2所示求保温板AC 的长是多少米?(精确到0.1米)(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,314. 如图1是一台刷脸支付仪,由底柱、水平托板、支撑板和电子器材构成.图2是其上半部分的侧面示意图.电子器材长16cm AC =,支撑板长16cm BD =,水平托板DE 离地面的高度为120cm ,75CBD ∠=︒,60BDE ∠=︒,已知摄像头在点A 处,支撑点B 是AC 的中点,电子器材AC 可绕点B 转动,支撑板BD 可绕点D 转动.(1)如图2,求摄像头(点A )离地面的高度h (精确到0.1cm ).(2)如图3,为方便使用,把AC 绕点B 逆时针旋转15︒后,再将BD 绕点D 顺时针旋转α度,使点C 落在水平托板DE 上,求α(精确到0.1︒).(参考数据:tan26.60.5≈°,2 1.41≈3 1.73≈)15. 2021年,我市在创建全国文明城市的检查中发现,一些公交车候车亭有破损需修缮,现已更换新的公交候车亭(图1),图2所示的是侧面示意图,AB 为水平线段,CD AB ⊥,点E 为垂足, 3.56m, 2.78m AB AE ==,点C 在弧AB 上,且点O 为弧AB 所在的圆的圆心,27OAB ∠=︒,则CE 的长约为多少米?(参考数据:sin 270.45,cos 270.89,tan 2723 1.732︒≈︒≈︒≈≈,结果精确到0.01)。
中考数学复习《解直角三角形的应用解答题》专题提升训练
数学中考复习《解直角三角形的应用解答题》专题提升训练1.如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM,已知CD =45m.求楼间距MN(参考数据:tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)2.图①是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,托板长AB =115mm,支撑板长CD=70mm,且CB=35mm,托板AB可绕点C转动.(1)当∠CDE=60°时,①求点C到直线DE的距离;(计算结果保留根号)②若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在DE上,则CD旋转的角度为.(直接写出结果)(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2.sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,≈1.7)3.美丽的徒骇河穿城而过,成为市民休闲娱乐的风景带.某数学兴趣小组在一次课外活动中,测量徒骇河某段河的宽CD.如图所示,小组成员选取的点A,B是桥上的两点,点A,E,C在河岸的同一直线上,且AB⊥AC.若,AE间的距离80米,在B点处测得BD与平行于AC的直线间的夹角为30°,在点E处测得ED与直线AC之间的夹角为60°,求这段河的宽度CD.(结果保留根号)4.我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD 平行且相距1.2m,即DH=1.2m.(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)5.如图1,将一个直角三角形状的楔子(Rt△ABC)从木桩的底端点P沿水平方向打入木桩台底下,可以使木桩向上运动.如果楔子底面的倾斜角∠ABC为10°,其高度AC为1.8厘米,楔子沿水平方向前进一段距离(如箭头所示),如图2,留在外面的楔子长度HC为3厘米.(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)(1)求BH的长.(2)木桩上升了多少厘米?6.筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹筒,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A处,水沿射线AD方向泻至水渠DE,水渠DE所在直线与水面PQ平行.设筒车为⊙O,⊙O与直线PQ交于P,Q两点,与直线DE交于B,C两点,恰有AD2=BD•CD,连接AB,AC.(1)求证:AD为⊙O的切线;(2)筒车的半径为3m,AC=BC,∠C=30°.当水面上升,A,O,Q三点恰好共线时,求筒车在水面下的最大深度(精确到0.1m,参考值:≈1.4,≈1.7).7.如图,一扇窗户垂直打开,即打开到OM⊥OP的状态,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转45°到达ON位置,此时,点A、C的对应位置分别是点B、D.测出此时∠ODB为30°,BO的长为20cm.求滑动支架AC的长.(精确到1cm,≈1.41,≈1.73).8.如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)9.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM =113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)10.动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)11.某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)12.小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB=8m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D CD是多少?(结果精确到0.1m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)13.如图①是大家熟悉的柜式空调,关闭时叶片竖直向下.如图②,当启动时,出风口叶片会同步开始逆时针旋转到最大旋转角90°时返回,旋转速度是每秒10°,同时空调风从叶片口直线吹出.AB由5个叶片组成的出风口,经过测量,A点、B点距地面高度分别是170cm、145cm在空调正前方100cm处站着一个高70cm的小朋友(线段EF表示).(1)从启动开始,多长时间小朋友头顶E处感受到空调风;(2)若叶片从闭合旋转到最大角度的过程中,小朋友的头顶E处有多长时间感受到空调风;(3)当选择上下扫风模式时,叶片会旋转到最大角度后原速返回.从启动到第一次返回起始位的过程中,该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了多长时间.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).14.第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)15.一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B,C,D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32cm,∠BDE=75°,其中一段支撑杆CD=84cm,另一段支撑杆DE=70cm.(1)求BD的长.(2)求支撑杆上的点E到水平地面的距离EF是多少?(结果均取整数,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.732)16.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A=72.9°,AD=1.6m,EF=6.2m.(结果保留小数点后一位)(1)求证:四边形DEFG为平行四边形;(2)求雕塑的高(即点G到AB的距离).(参考数据:sin72.9°≈0.96,cos72.9°≈0.29,tan72.9°≈3.25)17.如图①是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图②所示,已知晾衣臂OA=OB=120cm,支撑脚OC=OD=120cm,展开角∠COD=60°,晾衣臂支架PQ=MN=80cm,且OP=OM=40cm.(1)当晾衣臂OA与支撑脚OD垂直时,求点A距离地面的高度;(2)当晾衣臂OB从水平状态绕点O旋转到OB'(D、O、B'在同一条直线上)时,点N 也随之旋转到OB'上的点N'处,求点N在晾衣臂OB上滑动的距离.18.如图1是某小区门口的门禁自动识别系统,主要有可旋转高清摄像机和其下方固定的显示屏.图2是其结构示意图,摄像机长AB=20cm,点O是摄像机旋转轴心,O为AB的中点,显示屏的上沿CD与AB平行,CD=15cm,AB与CD连接杆OE⊥AB,OE=10cm,CE=2ED,点C到地面的距离为60cm.若AB与水平地面所成的角的度数为35°.(1)求显示屏所在部分的宽度;(2)求镜头A到地面的距离.(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700,结果保留一位小数)19.图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点,现测得AB=BE=ED=CD=20cm,经多次调试发现当点B,E都在CD的垂直平分线上时(如图3所示)放置最平稳.(1)求放置最平稳时灯座DC与灯杆DE的夹角的大小;(2)当A点到水平桌面(CD所在直线)的距离为42cm﹣43cm时,台灯光线最佳,能更好的保护视力.若台灯放置最平稳时,将∠ABE调节到105°,试通过计算说明此时光线是否为最佳.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)20.为测量水城河两岸的宽度,某数学研究小组设计了三种不同的方案,他们在河岸边A 处测得河对岸的同学B恰好在正北方向,测量方案及数据如下表:.(1)哪一种方案无法计算出河两岸的宽度;(2)请选择其中一种方案计算出河两岸的宽度(精确到0.1m).(参考数据:≈1.73)参考答案1.解:如图,过点C、D分别作CE⊥PN,DF⊥PN,垂足分别为E、F,则,PN=90m,MB=DF=CE,DM=FN,CD=EF=45m,设MN=xm,在Rt△PDF中,∠PDF=55.7°,DF=MN=xm,∴PF=tan55.7°•DF≈1.47x(m),在Rt△PCE中,∠PCE=30°,CE=xm,∴PE=tan30°•CE≈0.58x(m),∵EF=PF﹣PE,即CD=PF﹣PE,∴1.47x﹣0.58x=45,解得x≈50.56(m),即MN=50.56m.2.解:(1)①如图,过点C作CF⊥DE于F,过点C、A分别作DE的平行线和垂线相交于点G,在Rt△CDF中,∠CDF=60°,CD=70mm,∴CF=CD•sin60°=70×=35(mm),即点C到直线DE的距离为35mm;②当∠DCB=70°时,∵CG∥DE,∴∠GCD=∠CDF=60°,又∵∠DCB=70°,∴∠ACG=180°﹣70°﹣60°=50°,在Rt△ACG中,AC=AC﹣BC=115﹣35=80(mm),∠ACG=50°∴AG=AC•sin50°≈80×0.8=64(mm),∴点A到直线DE的距离为AG+CF=64+35≈124(mm);(2)把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在DE上,旋转后的图形如图③所示,在Rt△B′C′D中,B′C′=35mm,C′D=CD=70mm,∴tan∠C′DB′==0.5,又∵tan26.6°≈0.5,∴∠C′DB′=26.6°,∴∠CDC′=60°﹣26.6°=33.4°,故答案为:33.4°.3.解:如图,过点B作BF⊥CD于F,则AB=CF,AC=BF,∵,AE=80米,∴AB=20米=CF,在Rt△BDF中,∠DBF=30°,设DF=x,则BF=x=AC,∴EC=AC﹣AE=(x﹣80)米,在Rt△CDE中,∠DEC=60°,CD=(20+x)米,EC=(x﹣80)米,∵tan60°=,∴=,解得,x=40+10,经检验,x=40+10是原方程的根,∴DF=(40+10)米,∴CD=CF+DF=(40+30)米,答:这段河的宽度CD的长为(40+30)米.4.解:(1)过点B作BF⊥CH,垂足为F,延长AD交BF于E,垂足为E,则AE⊥BF,由cos∠BAE=,∴cos22°=,∴,即AE=4.5m,∴DE=AE﹣AD=4.5﹣0.4=4.1(m),由sin∠BAE=,∴,∴,即BE=1.8m,∴BF=BE+EF=1.8+1.2=3(m),又,∴,即CF=4m,∴CH=CF+HF=CF+DE=4+4.1=8.1(m),即点O到岸边DH的距离为8.1m;(2)过点B作BN⊥OH,垂足为N,延长AD交BN于点M,垂足为M,由cos∠BAM=,∴,∴,即AM=2.88m,∴DM=AM﹣AD=2.88﹣0.4=2.48(m),由sin∠BAM=,∴,∴,即BM=3.84m,∴BN=BM+MN=3.84+1.2=5.04(m),∴=(m),∴OH=ON+HN=ON+DM=4.58(m),即点O到岸边的距离为4.58m.5.解:(1)在Rt△ABC中,∠ABC=10°,tan∠ABC=,则BC=≈=10(厘米),∴BH=BC﹣HC=7(厘米);(2)在Rt△ABC中,∠ABC=10°,tan∠ABC=,则PH=BH•tan∠ABC≈7×0.18≈1.26(厘米),答:木桩上升了大约1.26厘米.6.(1)证明:连接AO,并延长交⊙O于G,连接BG,∴∠ACB=∠AGB,∵AG是直径,∴∠ABG=90°,∴∠BAG+∠AGB=90°,∵AD2=BD•CD,∴,∵∠ADB=∠CDA,∴△DAB∽△DCA,∴∠DAB=∠ACB,∴∠DAB=∠AGB,∴∠DAB+∠BAG=90°,∴AD⊥AO,∵OA是半径,∴AD为⊙O的切线;(2)解:当水面到GH时,作OM⊥GH于M,∵CA=CB,∠C=30°,∴∠ABC=75°,∵AG是直径,∴∠ABG=90°,∴∠CBG=15°,∵BC∥GH,∴∠BGH=∠CBG=15°,∴∠AGM=45°,∴OM=OG=,∴筒车在水面下的最大深度为3﹣≈0.9(m).7.解:由题意可知:∠BOE=45°,BO=20cm,BE⊥OD,∴BE=OE=BO•sin45°=10(cm),在Rt△BDE中,∠BDE=30°,∴sin∠BDE=,∴BD=20cm,∵BD=AC,∴AC=20≈28(cm),答滑动支架AC的长约为28cm.8.解:(1)过点A作AE⊥l,垂足为E,设CE=x米,∵CD=60米,∴DE=CE+CD=(x+60)米,∵∠ACB=15°,∠BCD=120°,∴∠ACE=180°﹣∠ACB﹣∠BCD=45°,在Rt△AEC中,AE=CE•tan45°=x(米),在Rt△ADE中,∠ADE=30°,∴tan30°===,∴x=30+30,经检验:x=30+30是原方程的根,∴AE=(30+30)米,∴河的宽度为(30+30)米;(2)过点B作BF⊥l,垂足为F,则CE=AE=BF=(30+30)米,AB=EF,∵∠BCD=120°,∴∠BCF=180°﹣∠BCD=60°,在Rt△BCF中,CF===(30+10)米,∴AB=EF=CE﹣CF=30+30﹣(30+10)=20(米),∴古树A、B之间的距离为20米.9.解:(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,∵∠ABM=113.6°,∴∠BMH=180°﹣∠ABM=66.4°,在Rt△BMH中,∠BMH=66.4°,BM=44cm,∴MH=BM•cos66.4°≈44×0.4=17.6(cm),∵MP=26.1cm,∴BA=HP=MP﹣MH=26.1﹣=8.5(cm),∴枪身BA的长度约为8.5cm;(2)此时枪身端点A与学生额头的距离不在规定范围内,理由:延长QM交FG于点K,则KQ=50cm,∠NKM=90°,∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMK=180°﹣∠BMN﹣∠BMH=45°,在Rt△MNK中,MN=30cm,∴KM=MN•cos45°=30×=15(cm),∵KQ=50cm,∴PQ=KQ﹣KM﹣MP=50﹣15﹣26.1≈2.7(cm),∵测温时规定枪身端点A与额头距离范围为3cm~5cm,∴此时枪身端点A与学生额头的距离不在规定范围内.10.解:∵AB=34cm,BC=70cm,∴AC=AB+BC=104cm,在Rt△ACE中,sin∠BCD=,∴AE=AC•sin∠BCD≈104×0.85≈88cm.答:点A到CD的距离AE的长度约88cm.11.解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.512.解:连接MC,过点M作HM⊥NM,由题意得:∠DMC=2∠CMH,∠MCD=∠HMN=90°,AB=MC=8m,AB∥MC,∴∠CMN=180°﹣∠MNB=180°﹣118°=62°,∴∠CMH=∠HMN﹣∠CMN=28°,∴∠DMC=2∠CMH=56°,在Rt△CMD中,CD=CM•tan56°≈8×1.48≈11.8(米),∴能看到的水平地面上最远处D到他的距离CD约为11.8米.13.解:(1)如图,连接AE,过点E作EM⊥AC于M,由题意可知,CF=100cm=ME,AC=170cm,BC=145cm,EF=70cm=MC,∴AM=170﹣70=100(cm),在Rt△AEM中,AM=100cm,ME=100cm,∴∠MAE=∠AEM=45°,∴从启动开始,到小朋友头顶E处感受到空调风所用的时间为45÷10=4.5(s),答:从启动开始,4.5s小朋友头顶E处感受到空调风;(2)如图,连接BE,则BM=145﹣70=75(cm),在Rt△BEM中,∵tan∠BEM==0.75,∴∠BEM=37°,∴∠MBE=90°﹣37°=53°∴小朋友的头顶E处感受到空调风的时长为﹣=0.8(s),答:小朋友的头顶E处有0.8s的时间感受到空调风;(3)如图,当BE绕着点B旋转到BE′时,所用时间为=3.7(s),所以该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了时长为0.8+3.7×2=8.2(s),答:该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了8.2s.14.解:如图,过点E作EN⊥BC于点N,交HG于点M,则AB=AH﹣EM+EN.根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),∵HG∥BC,∴∠EGM=∠ECB=36°,在Rt△AHF中,∠AFH=40°,AF=50,∴AH=AF•sin∠AFH≈50×0.64=32(米),在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7﹣m)米,∴EM=MG•tan∠EGM=MG•tan36°≈0.73m,EM=FM•tan∠EFM=FM•tan25°≈0.47(7﹣m),∴0.73m=0.47(7﹣m),解得m≈2.7(米),∴EM≈0.47(7﹣m)=2.021(米),∴AB=AH﹣EM+EN≈32﹣2.021+40≈70(米).∴此大跳台最高点A距地面BD的距离约是70米.15.解:(1)在Rt△ABC中,∠ABC=60°,AB=32cm,∴BC=AB=16cm,∴BD=BC+CD=16+84=100(cm).(2)作DM⊥BA于点M,DN⊥EF于点N,在Rt△DBM中,sin∠DBM=,即=,∴DM=50,∵∠F=∠M=∠DNF=90°,∴四边形NFMD为矩形,∴NF=DM=50,DN∥FM,∴∠NDB=∠DBM=60°,∵∠BDE=75°,∴∠EDN=∠BDE﹣∠NDB=15°,∴在Rt△DEN中,sin∠EDN=,即sin15°=,∴EN=70sin15°,∴EF=EN+NF=50+70sin15°≈105(cm).16.(1)证明:∵AB∥CD,∴∠CDG=∠A,∵∠FEC=∠A,∴∠FEC=∠CDG,∴EF∥DG,∵FG∥CD,∴四边形DEFG为平行四边形;(2)解:如图,过点G作GP⊥AB于P,∵四边形DEFG为平行四边形,∴DG=EF=6.2,∵AD=1.6,∴AG=DG+AD=6.2+1.6=7.8,Rt△APG中,sin A=,∴=0.96,∴PG=7.8×0.96=7.488≈7.5.答:雕塑的高为7.5m.17.解:(1)过点O作OE⊥CD,垂足为E,过点A作AG⊥CD,垂足为G,过点O作OF ⊥AG,垂足为F,则OE=FG,∠FOE=90°,∵OC=OD=120cm,∠COD60°,∴∠DOE=∠COD=30°,∴OE=OD•cos30°=120×=60(cm),∴FG=OE=60cm,∵OA⊥OD,∴∠AOD=90°,∴∠AOD﹣∠DOF=∠EOF﹣∠DOF,∴∠AOF=∠DOE=30°,在Rt△AOF中,OA=120cm,∴AF=OA=60(cm),∴AG=AF+FG=(60+60)cm,∴点A距离地面的高度为(60+60)cm;(2)过点M作MK⊥OB,垂足为K,过点M作ML⊥OD,垂足为L,∵OC=OD=120cm,∠COD=60°,∴△COD是等边三角形,∴∠OCD=60°,∵OB∥CD,∴∠BOC=∠OCD=60°,在Rt△MKO中,OM=40cm,∴KO=OM•cos60°=40×=20(cm),MK=OM•sin60°=40×=20(cm),在Rt△MNK中,MN=80cm,∴NK===20(cm),∵OB=120cm,∴BN=OB﹣OK﹣NK=120﹣20﹣20=(100﹣20)cm,在Rt△OML中,∠COD=60°,∴ML=OM•sin60°=40×=20(cm),OL=OM•cos60°=40×=20(cm),在Rt△MN′L中,MN′=MN=80cm,∴N′L===20(cm),∴ON′=N′L﹣OL=(20﹣20)cm,∵OB′=OB=120cm,∴B′N′=OB′﹣ON′=(140﹣20)cm,∴B′N′﹣BN=140﹣20﹣(100﹣20)=40(cm),∴点N在晾衣臂OB上滑动的距离为40cm.18.解:(1)过点C作CM⊥DF,垂足为F,∵CD∥AB,AB与水平地面所成的角的度数为35°,∴CD与水平地面所成的角的度数为35°,∴∠DCM=35°,在Rt△DCM中,DC=15cm,∴CM=DC•cos35°≈15×0.819≈12.3(cm),∴显示屏所在部分的宽度约为12.3cm;(2)连接AC,过点A作AH⊥CM,交MC的延长线于点H,∵CE=2ED,DC=15cm,∴CE=CD=10(cm),∵O为AB的中点,∴OA=AB=10(cm),∴OA=CE=10cm,∵OA∥CE,∴四边形ACEO是平行四边形,∵OE⊥AB,∴∠AOE=90°,∴四边形ACEO是矩形,∴∠ACE=90°,AC=OE=10cm,∵∠DCM=53°,∴∠ACH=180°﹣∠ACE﹣∠DCM=55°,∴∠HAC=90°﹣∠ACH=35°,在Rt△AHC中,AH=AC•cos35°≈10×0.819=8.19(cm),∵点C到地面的距离为60cm,∴镜头A到地面的距离=8.19+60≈68.2(cm),∴镜头A到地面的距离约为68.2cm.19.解:(1)延长BE交DC于点F,由题意得:EF⊥CD,FD=CD=CD=10cm,在Rt△DEF中,DE=20cm,∴cos D===,∴∠D=60°,∴灯座DC与灯杆DE的夹角为60°;(2)过点A作AM⊥DC,交DC的延长线于点M,过点B作BG⊥AM,垂足为G,则GM=BF,∠GBF=90°,在Rt△DEF中,DE=20cm,DF=10cm,∴EF===10(cm),则GM=BF=BE+EF=(20+10)cm,∵∠ABE=105°,∴∠ABG=∠ABF﹣∠GBF=15°,在Rt△ABG中,AB=20cm,∴AG=AB⋅sin15°≈20×0.26=5.2(cm),∴AM=AG+GM=20+10+5.2≈42.5(cm),∴A点到水平桌面(CD所在直线)的距离约为42.5cm,∴此时光线最佳.20.解:(1)第一个小组的数据无法计算河宽,理由如下:∵第一小组给出的数据为BD的长,△ABC和△CDE无法建立联系,无法得到△ABC的任何一边长度,∴第二小组的数据无法计算河宽;(2)第二个小组的解法:∵∠ACB=∠ADB+∠CBD,∠ACB=60°,∠ADB=30°,∴∠ADB=∠CBD=30°,∴BC=CD=11.8m,∴AB=BC•sin60°=11.8×≈10.2(m).第三个小组的解法:设AB=xm,则AC=,AD=,∴+=23.5,解得x≈10.2.答:河宽约10.2m.。
河南省中考数学专题复习专题解直角角形的实际应用训练
专题五解直角三角形的实际应用类型一母子型(2015·河南)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin 48°≈0.74,cos 48°≈0.67,tan 48°≈1.11,3≈1.73)例1题图【分析】根据所求构造直角三角形,在直角三角形中,利用锐角三角函数的性质求解问题即可.【自主解答】如解图,延长BD交AE于点G,过点D作DH⊥AE于点H.例1题解图∵由题意,得∠DAE=∠BGH=30°,DA=6,∴GD=DA=6,∴GH=AH=DA·cos 30°=33,∴GA=6 3.设BC=x米,在Rt△GBC中,GC=BCtan∠BGC=3x.在Rt△ABC中,AC=BCtan∠BAC=xtan 48°.∵GC-AC=GA,∴3x-xtan 48°=63,解得x≈13.即大树的高度约为13米.1.(2018·泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L∶(H-H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15 m,坡度为i=1∶0.75,山坡顶部平地EM上有一高为22.5 m的楼房AB,底部A到E点的距离为4 m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9 m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?图①图②2.(2018·商丘模拟)如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4∶3,坡高BE=8米,求小船C到岸边的距离CA的长?(参考数据:3≈1.7,结果保留一位小数)3.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A 处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB 的坡度i=1∶3,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,3≈1.732)4.(2018·新乡一模)如图,为探测某座山的高度AB,某飞机在空中C处测得山顶A处的俯角为31°,此时飞机的飞行高度为CH=4千米;保持飞行高度与方向不变,继续向前飞行2千米到达D处,测得山顶A 处的俯角为50°.求此山的高度AB.(参考数据:tan 30°≈0.6,tan 50°≈1.2)5.(2018·烟台)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速,如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时,数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l 外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 71°≈0.95,cos 71°≈0.33,tan 71°≈2.90)6.(2018·河南说明与检测)如图,在电线杆CD上的C处引拉线CE,CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(参考数据:2≈1.41,3≈1.73.结果保留一位小数.)7.(2018·河南说明与检测)某数学兴趣小组在学习《锐角三角函数》以后,开展测量物体高度的实践活动,他们在河边的一点A处测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20 m(如图),你能根据以上数据求出小山的高BD吗?8.(2018·河南说明与检测)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能与底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D、F到地面的垂直距离相同),均为30 cm,点A到地面的垂直距离为50 cm,求支撑角钢CD和EF的长度各是多少厘米.(结果保留根号)9.(2018·遵义)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面 1.5 m.(计算结果精确到0.1 m,参考数据sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5 m时,吊臂AB的长为____________m;(2)如果该吊车吊臂的最大长度AD为20 m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)类型二背靠背型(2018·河南)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90 cm.低杠上点C到直线AB的距离CE的长为155 cm,高杠上点D到直线AB的距离DF的长为234 cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1 cm,参考数据sin 82.4°≈0.991,cos 82.4°≈0.132,tan 82.4°≈7.500,sin 80.3°≈0.983,cos 80.3°≈0.168,tan 80.3°≈5.850)【分析】 利用锐角三角函数,在Rt△ACE 和Rt△DBF 中,分别求出AE 、BF 的长.计算出EF.通过矩形CEFH 的性质得到CH 的长. 【自主解答】 解:在Rt△ACE 中,AE =CE tan 82.4°=155tan 82.4°≈20.7,在Rt△BDF 中,BF =DF tan 80.3°=234tan 80.3°≈40,∵在矩形CEFH 中,CH =EF ,∴CH=EF =AE +AB +BF =20.7+90+40≈151(cm). 答:高低杠间的水平距离CH 的长为151 cm.1.(2018·驻马店一模)小明利用寒假进行综合实践活动,他想利用测角仪和卷尺测量自家所住楼(甲楼)与对面邮政大楼(乙楼)的高度,现小明用卷尺测得甲楼宽AE 是8 m ,用测角仪在甲楼顶E 处与A 处测得乙楼顶部D 的仰角分别为37°和42°,同时在A 处测得乙楼底部B 处的俯角为32°,请根据小明测得数据帮他计算甲、乙两个楼的高度.(精确到0.01 m)(cos 32°≈0.85,tan 32°≈0.62,cos 42°≈0.74,tan 42°≈0.90,cos 37°≈0.80,tan 37°≈0.75)2.(2018·甘肃省卷)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA =45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:3≈1.7,2≈1.4)3.(2018·常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160 m,CD=40 m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).4.(2018·眉山)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B 、C 两地的距离.(参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)5.(2018·河南说明与检测)如图,B 地在A 地的北偏东56°方向上,C 地在B 地的北偏西19°方向上,原来从A 地到C 地的路线为A→B→C,现在沿A 地北偏东26°方向新修了一条直达C 地的公路,路程比原来少了20千米.求从A 地直达C 地的路程(结果保留整数.参考数据:2≈1.41,3≈1.73).6.(2018·河南说明与检测)如图,某数学活动小组为测量学校旗杆AB 的高度,从旗杆正前方23米处的点C 出发,沿斜面坡度i =1∶3的斜坡CD 前进4米到达点D ,在点D 处安置测角仪,测得旗杆顶部A 的仰角为37°,量得仪器的高DE 为1.5米,已知A ,B ,C ,D ,E 在同一平面内,AB⊥BC,AB∥DE,求旗杆AB 的高度.(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34.计算结果保留根号).7.(2018·河南说明与检测)中国南海是中国固有领海,我方渔政船经常在此海域执勤巡察,一天我方渔政船停在小岛A 北偏西37°方向的B 处,观察A 岛周边海域,据测算,渔政船距A 岛的距离AB 长为10海里,此时位于A 岛正西方向C 处的我方渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号,渔政船接警后,立即沿BC 航线以每小时30海里的速度前往救助,问渔政船大约需要多少分钟能到达渔船所在的C 处?(参考数据:sin 37°≈0.60,cos 37°≈0.80,sin 50°≈0.77,cos 50°≈0.64,sin 53°≈0.80,cos 53°≈0.60,sin 40°≈0.64,cos 40°≈0.77)8.(2018·河南说明与检测)如图,在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,AB=2 km.有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)9.(2018·衡阳)一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2 000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B 处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?参考答案类型一 针对训练1.解:(1)∵i EF =1∶0.75=43=EHFH,设EH =4x ,则FH =3x ,EF =(3x )2+(4x )2=5x =15, ∴x=3,∴FH=3x =9,即山坡EF 的水平宽度FH 为9 m.第1题解图(2)如解图,延长BA 、FH 交于点G ,则AG =EH =4×3=12,GH =AE =4,∴BG=BA +AG =22.5+12=34.5.设CF =y ,则CG =CF +FH +GH =y +9+4=y +13,由题知CG ∶(BG-CP)≥1.25,∴y +1334.5-0.9≥1.25,解得y≥29,∴底部C 距F 处至少29 m 远.2.解:如解图,延长DG 交CA 于点H ,得Rt△ABE 和矩形BEHG. i =BE AE =43,第2题解图∵BE=8,∴AE=6,∵DG=1.5,BG =1, ∴DH=DG +GH =1.5+8=9.5, AH =AE +EH =6+1=7. 在Rt△CDH 中,∵∠C=∠FDC=30°,DH =9.5, ∴CH=DHtan 30°=9.5 3.又∵CH=CA +AH , 即9.53=CA +7, ∴CA≈9.2(米). 答:CA 的长约是9.2米.3.解:如解图,过点B 作BF⊥AE,交EA 的延长线于点F ,作BG⊥DE 于点G.∵Rt△ABF 中,i =tan∠BAF=13=33,第3题解图∴∠BAF=30°, ∴BF=12AB =5,AF =5 3.∴BG=AF +AE =53+15. ∵Rt△BGC 中,∠CBG=45°, ∴CG=BG =53+15.Rt△ADE 中,∠DAE=60°,AE =15, ∴DE=AE·tan 60°=3AE =15 3.∴CD=CG +GE -DE =53+15+5-153=20-103≈2.7 m. 答:宣传牌CD 高约2.7米.4.解:如解图,延长BA 交CD 的延长线于点E ,则BE⊥CE,CH =BE =4千米, 设AE =x 千米,第4题解图∵Rt△ADE 中, ∠ADE=50°, ∴DE=AE tan 50°=x 1.2=56x.∴CE=56x +2.∵Rt△ACE 中,∠ACE=31°,∴AE=CE·tan 31°,即x =0.6×(56x +2),解得x =2.4,∴AB=BE -AE =4-2.4=1.6(千米). 答:山的高度AB 约为1.6千米.5.解:在Rt△APC 中,AC =PC·tan∠APC=30·tan 71°≈30×2.90=87米, 在Rt△BPC 中,BC =PCtan∠BPC=30·tan 35°≈30×0.70=21米, 则AB =AC -BC =87-21=66米,该汽车的平均速度为666=11 m/s ,∵40 km/h≈11.1 m/s,∴该车没有超速.6.解:如解图,过点A 作AH⊥CD,垂足为点H , 由题意知,四边形ABDH 为矩形,∠CAH=30°,第6题解图∴AB=DH =1.5,BD =AH =6. 在Rt△ACH 中,CH =AH·tan∠CAH, ∴CH=6·tan 30°=23(米). ∵DH=1.5,∴CD=(23+1.5)(米). 在Rt△CDE 中, ∵∠CED=60°, ∴CE=CDsin 60°=4+3≈5.7(米),答:拉线CE 的长约为5.7米. 7.解:能求出小山的高, 设小山的高BD 为x m. 在Rt△ABD 中,AD =xtan 60°.同理,在Rt△ACD 中,AD =CD tan 66°=x +20tan 66°.即x tan 60°=x +20tan 66°.解得:x≈67.4.答:小山的高BD 约为67.4 m.8.解:如解图,过点A 作AG⊥CD,垂足为点G , 则∠CAG=30°,在Rt△ACG 中,第8题解图CG =CA·sin 30°=50×12=25.由题意得GD =50-30=20, 则CD =CG +GD =25+20=45.连接FD 并延长与BA 的延长线交于点H. 由题意得∠H=30°.∵在Rt△CDH 中,CH =CDsi n 30°=2CD =90,∴EH=EC +CH =AB -BE -AC +CH =300-50-50+90=290. 在Rt△EFH 中, EF =EH·tan 30°=290×33=29033. ∴支撑角钢CD 的长度为45 cm ,EF 的长度为29033 cm.9.解:(1)11.4 【解法提示】在Rt△ABC 中, ∵∠BAC=64°,AC =5 m , ∴AB=ACcos 64°=5÷0.44≈11.4 m ;第9题解图(2)如解图,过点D 作DH⊥地面于H ,交水平线于点E , 在Rt△ADE 中,∵AD=20 m ,∠DAE=64°,EH =1.5 m ,∴DE=sin 64°×AD≈20×0.9≈18 m,即DH =DE +EH =18+1.5=19.5 m ,答:如果该吊车吊臂的最大长度AD 为20 m ,那么从地面上吊起货物的最大高度是19.5 m. 类型二1.解:如解图,过点A 作AN⊥BD 于点N ,第1题解图在Rt△DNE,tan 37°=DN EN ≈0.75=34,设DN =3x ,则EN =4x ,在Rt△DNA 中,有DN =3x ,AN =4x -8, ∵tan42°=DN AN =3x4x -8≈0.90,解得:x =12,∴DN=3×12=36,AN =4×12-8=40, 在Rt△BNA 中,由题意知∠NAB=32°, ∵tan 32°=BNAN ,∴BN=tan 32°AN≈24.8,∴DB=DN +BN =36+24.8=60.8,AC =BN =24.8, 答:甲楼的高为60.8 m ,乙楼的高为24.8 m. 2.解:如解图,过点C 作CD⊥AB 于点D , 在Rt△ADC 和Rt△BCD 中,∵∠CAB=30°,∠CBA=45°,AC =640, ∴CD=12AC =320,AD =3203,∴BD=CD =320,BC =3202, ∴AC+BC =640+3202≈1088, ∴AB=AD +BD =3203+320≈864, ∴1088-864=224(公里),答:隧道打通后与打通前相比,从A 地到B 地的路程将约缩短224公里.第2题解图3.解:如解图,过D 作DE⊥AB 于点E ,可得四边形CHED 为矩形, ∴HE=CD =40 m ,设CH =DE =x m ,在Rt△BDE 中,∠DBA=60°, ∴BE=DE tan 60°=33x m ,在Rt△ACH 中,∠BAC=30°,∴AH=CHtan 30°=3x m ,由AH +HE +EB =AB =160 m ,得3x +40+33x =160, 解得:x =303,即CH =30 3 m , 答:该段运河的河宽为30 3 m.第3题解图4.解:如解图,过点B 作BD⊥AC 于点D ,则∠BAD=60°,∠DBC=90°-37°=53°,第4题解图设AD =x ,在Rt△ABD 中,BD =ADtan∠BAD=3x , 在Rt△BCD 中,CD =BDtan∠DBC=3x×43=433x ,由AC =AD +CD 可得x +433x =13,解得:x =43-3,则BC =BD cos∠DBC =3x 35=533×(43-3)=20-53,即BC 两地的距离为(20-53)千米.5.解:如解图,过点B作BD⊥AC,垂足为D.设BD =x.第5题解图在Rt△ABD 中,∵∠BAD=56°-26°=30°, ∴AB =BD sin 30°=2x ,AD =BDtan 30°=3x.在Rt△BCD 中,∵∠C=26°+19°=45°, ∴BC=BD sin 45°=2x ,CD =BDtan 45°=x.∴AC=3x +x.由题意得AB +BC -AC =20,∴2x+2x -(3x +x)=20,解得x≈29.4. ∴AC≈2.73×29.4=80.262≈80(千米). ∴从A 地直达C 地的路程约为80千米.6.解:如解图,延长ED 交BC 延长线于点F ,则∠CFD=90°,第6题解图∵tan∠DCF=i =13=33,∴∠DCF=30°, ∵CD=4,∴DF=12CD =2,CF =CD·cos∠DCF=4×32=2 3.∴BF=BC +CF =23+23=4 3. 过点E 作EG⊥AB 于G ,则GE =BF =43,BG =EF =ED +DF =1.5+2=3.5,又∵∠AEG=37°,∴AG=GE·tan∠AEG=43·tan37°≈3 3. ∴AB=AG +BG =(33+3.5)米. 答:旗杆AB 的高度约为(33+3.5)米. 7.解:如解图,过点B 作BD⊥AC,垂足为D ,第7题解图∵在Rt△AB D 中,cos∠ABD=BD AB. ∴BD=AB·cos 37°≈10×0.8=8(海里).∵在Rt△CBD 中,cos∠CBD=BD BC, ∴BC=BD cos 50°≈80.64=12.5(海里). ∴12.5÷30=512(小时),512×60=25(分钟). ∴渔政船大约需25分钟能到达渔船所在的C 处.8.解:(1)如解图,过点P 作PD⊥AB 于点D ,设PD =x ,由题意得知,∠PBD=45°,∠PAD=30°.在Rt△BDP 中,BD =PD =x ,在Rt△PDA 中,AD =PD tan 30°=3PD =3x , ∵AB=2 km ,∴x +3x =2,解得x =3-1,∴点P 到海岸线l 的距离为(3-1) km.(2)如解图,过点B 作BF⊥CA 于点F ,在Rt△ABF 中,BF =AB·sin30°=2×12=1 km. 在△ABC 中,∠C=180°-∠BAC-∠ABC=180°-30°-45°-45°-15°=45°, ∴在Rt△BFC 中,BC =2BF =2×1= 2 km.∴点C 与点B 之间的距离为 2 km.第8题解图9.解:(1)如解图,过点C 作CP⊥AB 于P ,第9题解图。
中考专题--解直角三角形的实际应用
解直角三角形的实际应用----锐角三角函数
考情分析:
解直角三角形的实际应用为河南中考的热点,重点,近十年的考试连续出现此种题型,2015年、2018年出现在第20题位置,2020年出现在第18题位置,其他年份出现在第19题,分值为9分,属于中档题型,为考生必须掌握且容易掌握题型。
必备知识:
一、解直角三角形的概念
二、特殊角的锐角三角函数值
三、根据三角函数名记忆三角函数的定义
四、审题重点及解题的思维逻辑
两种模型:
一、并列式
二、包含式
直面真题:
模型一
例题1.(2018年中考9分)
例题1.(2017年19题9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C 在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°
≈,tan53°≈,≈1.41)
练习1.(2014年19题9分)(2014•河南)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B 测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)
练习2.(2015年20题9分)。
河南省2019年中考数学专题复习专题五解直角三角形的实际应用训练(含答案)
河南省2019年中考数学专题复习专题五解直角三角形的实际应用类型一母子型(2015·河南)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin 48°≈0.74,cos 48°≈0.67,tan 48°≈1.11,3≈1.73)例1题图【分析】根据所求构造直角三角形,在直角三角形中,利用锐角三角函数的性质求解问题即可.【自主解答】如解图,延长BD交AE于点G,过点D作DH⊥AE于点H.例1题解图∵由题意,得∠DAE=∠BGH=30°,DA=6,∴GD=DA=6,∴GH=AH=DA·cos 30°=33,∴GA=6 3.设BC=x米,在Rt△GBC中,GC=BCtan∠BGC=3x.在Rt△ABC中,AC=BCtan∠BAC=xtan 48°.∵GC-AC=GA,∴3x-xtan 48°=63,解得x≈13.即大树的高度约为13米.1.(2018·泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L∶(H-H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.AB,底部A到E点的距离为4 m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9 m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?图①图②2.(2018·商丘模拟)如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4∶3,坡高BE=8米,求小船C到岸边的距离CA的长?(参考数据:3≈1.7,结果保留一位小数)3.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A 处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB 的坡度i=1∶3,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,3≈1.732)4.(2018·新乡一模)如图,为探测某座山的高度AB,某飞机在空中C处测得山顶A处的俯角为31°,此时飞机的飞行高度为CH=4千米;保持飞行高度与方向不变,继续向前飞行2千米到达D处,测得山顶A 处的俯角为50°.求此山的高度AB.(参考数据:tan 30°≈0.6,tan 50°≈1.2)5.(2018·烟台)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速,如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时,数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l 外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 71°≈0.95,cos 71°≈0.33,tan 71°≈2.90)6.(2018·河南说明与检测)如图,在电线杆CD上的C处引拉线CE,CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(参考数据:2≈1.41,3≈1.73.结果保留一位小数.)7.(2018·河南说明与检测)某数学兴趣小组在学习《锐角三角函数》以后,开展测量物体高度的实践活动,他们在河边的一点A处测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20 m(如图),你能根据以上数据求出小山的高BD吗?8.(2018·河南说明与检测)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能与底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D、F到地面的垂直距离相同),均为30 cm,点A到地面的垂直距离为50 cm,求支撑角钢CD和EF的长度各是多少厘米.(结果保留根号)9.(2018·遵义)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面 1.5 m.(计算结果精确到0.1 m,参考数据sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5 m时,吊臂AB的长为____________m;(2)如果该吊车吊臂的最大长度AD为20 m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)类型二背靠背型(2018·河南)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90 cm.低杠上点C到直线AB的距离CE的长为155 cm,高杠上点D到直线AB的距离DF的长为234 cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1 cm,参考数据sin 82.4°≈0.991,cos 82.4°≈0.132,tan 82.4°≈7.500,sin 80.3°≈0.983,cos 80.3°≈0.168,tan 80.3°≈5.850)【分析】 利用锐角三角函数,在Rt△ACE 和Rt△DBF 中,分别求出AE 、BF 的长.计算出EF.通过矩形CEFH 的性质得到CH 的长. 【自主解答】 解:在Rt△ACE 中,AE =CE tan 82.4°=155tan 82.4°≈20.7,在Rt△BDF 中,BF =DF tan 80.3°=234tan 80.3°≈40,∵在矩形CEFH 中,CH =EF ,∴CH=EF =AE +AB +BF =20.7+90+40≈151(cm). 答:高低杠间的水平距离CH 的长为151 cm.1.(2018·驻马店一模)小明利用寒假进行综合实践活动,他想利用测角仪和卷尺测量自家所住楼(甲楼)与对面邮政大楼(乙楼)的高度,现小明用卷尺测得甲楼宽AE 是8 m ,用测角仪在甲楼顶E 处与A 处测得乙楼顶部D 的仰角分别为37°和42°,同时在A 处测得乙楼底部B 处的俯角为32°,请根据小明测得数据帮他计算甲、乙两个楼的高度.(精确到0.01 m)(cos 32°≈0.85,tan 32°≈0.62,cos 42°≈0.74,tan 42°≈0.90,cos 37°≈0.80,tan 37°≈0.75)2.(2018·甘肃省卷)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA =45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:3≈1.7,2≈1.4)3.(2018·常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160 m,CD=40 m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).4.(2018·眉山)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B 、C 两地的距离.(参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)5.(2018·河南说明与检测)如图,B 地在A 地的北偏东56°方向上,C 地在B 地的北偏西19°方向上,原来从A 地到C 地的路线为A→B→C,现在沿A 地北偏东26°方向新修了一条直达C 地的公路,路程比原来少了20千米.求从A 地直达C 地的路程(结果保留整数.参考数据:2≈1.41,3≈1.73).6.(2018·河南说明与检测)如图,某数学活动小组为测量学校旗杆AB 的高度,从旗杆正前方23米处的点C 出发,沿斜面坡度i =1∶3的斜坡CD 前进4米到达点D ,在点D 处安置测角仪,测得旗杆顶部A 的仰角为37°,量得仪器的高DE 为1.5米,已知A ,B ,C ,D ,E 在同一平面内,AB⊥BC,AB∥DE,求旗杆AB 的高度.(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34.计算结果保留根号).7.(2018·河南说明与检测)中国南海是中国固有领海,我方渔政船经常在此海域执勤巡察,一天我方渔政船停在小岛A 北偏西37°方向的B 处,观察A 岛周边海域,据测算,渔政船距A 岛的距离AB 长为10海里,此时位于A 岛正西方向C 处的我方渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号,渔政船接警后,立即沿BC 航线以每小时30海里的速度前往救助,问渔政船大约需要多少分钟能到达渔船所在的C 处?(参考数据:sin 37°≈0.60,cos 37°≈0.80,sin 50°≈0.77,cos 50°≈0.64,sin 53°≈0.80,cos 53°≈0.60,sin 40°≈0.64,cos 40°≈0.77)8.(2018·河南说明与检测)如图,在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,AB=2 km.有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)9.(2018·衡阳)一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2 000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B 处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?参考答案类型一 针对训练1.解:(1)∵i EF =1∶0.75=43=EHFH,设EH =4x ,则FH =3x ,EF =(3x )2+(4x )2=5x =15, ∴x=3,∴FH=3x =9,即山坡EF 的水平宽度FH 为9 m.第1题解图(2)如解图,延长BA 、FH 交于点G ,则AG =EH =4×3=12,GH =AE =4,∴BG=BA +AG =22.5+12=34.5.设CF =y ,则CG =CF +FH +GH =y +9+4=y +13,由题知CG∶(BG-CP)≥1.25,∴y +1334.5-0.9≥1.25,解得y≥29,∴底部C 距F 处至少29 m 远.2.解:如解图,延长DG 交CA 于点H ,得Rt△ABE 和矩形BEHG. i =BE AE =43,第2题解图∵BE=8,∴AE=6,∵DG=1.5,BG =1, ∴DH=DG +GH =1.5+8=9.5, AH =AE +EH =6+1=7. 在Rt△CDH 中,∵∠C=∠FDC=30°,DH =9.5, ∴CH=DHtan 30°=9.5 3.又∵CH=CA +AH , 即9.53=CA +7, ∴CA≈9.2(米). 答:CA 的长约是9.2米.3.解:如解图,过点B 作BF⊥AE,交EA 的延长线于点F ,作BG⊥DE 于点G.∵Rt△ABF 中,i =tan∠BAF=13=33,第3题解图∴∠BAF=30°, ∴BF=12AB =5,AF =5 3.∴BG=AF +AE =53+15. ∵Rt△BGC 中,∠CBG=45°, ∴CG=BG =53+15.Rt△ADE 中,∠DAE=60°,AE =15, ∴DE=AE·tan 60°=3AE =15 3.∴CD=CG +GE -DE =53+15+5-153=20-103≈2.7 m. 答:宣传牌CD 高约2.7米.4.解:如解图,延长BA 交CD 的延长线于点E ,则BE⊥CE,CH =BE =4千米, 设AE =x 千米,第4题解图∵Rt△ADE 中, ∠ADE=50°, ∴DE=AE tan 50°=x 1.2=56x.∴CE=56x +2.∵Rt△ACE 中,∠ACE=31°,∴AE=CE·tan 31°,即x =0.6×(56x +2),解得x =2.4,∴AB=BE -AE =4-2.4=1.6(千米). 答:山的高度AB 约为1.6千米.5.解:在Rt△APC 中,AC =PC·tan∠APC=30·tan 71°≈30×2.90=87米, 在Rt△BPC 中,BC =PCtan∠BPC=30·tan 35°≈30×0.70=21米, 则AB =AC -BC =87-21=66米,该汽车的平均速度为666=11 m/s ,∵40 km/h≈11.1 m/s,∴该车没有超速.6.解:如解图,过点A 作AH⊥CD,垂足为点H , 由题意知,四边形ABDH 为矩形,∠CAH=30°,第6题解图∴AB=DH =1.5,BD =AH =6. 在Rt△ACH 中,CH =AH·tan∠CAH, ∴CH=6·tan 30°=23(米). ∵DH=1.5,∴CD=(23+1.5)(米). 在Rt△CDE 中, ∵∠CED=60°, ∴CE=CDsin 60°=4+3≈5.7(米),答:拉线CE 的长约为5.7米. 7.解:能求出小山的高, 设小山的高BD 为x m. 在Rt△ABD 中,AD =xtan 60°.同理,在Rt△ACD 中,AD =CD tan 66°=x +20tan 66°.即x tan 60°=x +20tan 66°.解得:x≈67.4.答:小山的高BD 约为67.4 m.8.解:如解图,过点A 作AG⊥CD,垂足为点G , 则∠CAG=30°,在Rt△ACG 中,第8题解图CG =CA·sin 30°=50×12=25.由题意得GD =50-30=20, 则CD =CG +GD =25+20=45.连接FD 并延长与BA 的延长线交于点H. 由题意得∠H=30°.∵在Rt△CDH 中,CH =CDsin 30°=2CD =90,∴EH=EC +CH =AB -BE -AC +CH =300-50-50+90=290. 在Rt△EFH 中, EF =EH·tan 30°=290×33=29033. ∴支撑角钢CD 的长度为45 cm ,EF 的长度为29033 cm.9.解:(1)11.4 【解法提示】在Rt△ABC 中, ∵∠BAC=64°,AC =5 m , ∴AB=ACcos 64°=5÷0.44≈11.4 m;第9题解图(2)如解图,过点D 作DH⊥地面于H ,交水平线于点E , 在Rt△ADE 中,∵AD=20 m ,∠DAE=64°,EH =1.5 m ,∴DE=sin 64°×AD≈20×0.9≈18 m,即DH =DE +EH =18+1.5=19.5 m ,答:如果该吊车吊臂的最大长度AD 为20 m ,那么从地面上吊起货物的最大高度是19.5 m. 类型二针对训练1.解:如解图,过点A 作AN⊥BD 于点N ,第1题解图在Rt△DNE,tan 37°=DN EN ≈0.75=34,设DN =3x ,则EN =4x ,在Rt△DNA 中,有DN =3x ,AN =4x -8, ∵tan42°=DN AN =3x4x -8≈0.90,解得:x =12,∴DN=3×12=36,AN =4×12-8=40, 在Rt△BNA 中,由题意知∠NAB=32°, ∵tan 32°=BNAN ,∴BN=tan 32°AN≈24.8,∴DB=DN +BN =36+24.8=60.8,AC =BN =24.8, 答:甲楼的高为60.8 m ,乙楼的高为24.8 m. 2.解:如解图,过点C 作CD⊥AB 于点D , 在Rt△ADC 和Rt△BCD 中,∵∠CAB=30°,∠CBA=45°,AC =640, ∴CD=12AC =320,AD =3203,∴BD=CD =320,BC =3202, ∴AC+BC =640+3202≈1088, ∴AB=AD +BD =3203+320≈864, ∴1088-864=224(公里),答:隧道打通后与打通前相比,从A 地到B 地的路程将约缩短224公里.第2题解图3.解:如解图,过D 作DE⊥AB 于点E ,可得四边形CHED 为矩形,∴HE=CD =40 m ,设CH =DE =x m , 在Rt△BDE 中,∠DBA=60°, ∴BE=DE tan 60°=33x m ,在Rt△ACH 中,∠BAC=30°,∴AH=CHtan 30°=3x m ,由AH +HE +EB =AB =160 m ,得3x +40+33x =160, 解得:x =303,即CH =30 3 m , 答:该段运河的河宽为30 3 m.第3题解图4.解:如解图,过点B 作BD⊥AC于点D ,则∠BAD=60°,∠DBC=90°-37°=53°,第4题解图设AD =x ,在Rt△ABD 中,BD =AD tan∠BAD=3x , 在Rt△BCD 中,CD =BDtan∠DBC=3x×43=433x ,由AC =AD +CD 可得x +433x =13,解得:x =43-3,则BC =BD cos∠DBC =3x 35=533×(43-3)=20-53,即BC 两地的距离为(20-53)千米.5.解:如解图,过点B作BD⊥AC,垂足为D.设BD =x.第5题解图在Rt△ABD 中,∵∠BAD=56°-26°=30°, ∴AB=BD sin 30°=2x ,AD =BDtan 30°=3x.在Rt△BCD 中,∵∠C=26°+19°=45°, ∴BC=BD sin 45°=2x ,CD =BDtan 45°=x.∴AC=3x +x.由题意得AB +BC -AC =20,∴2x+2x -(3x +x)=20,解得x≈29.4. ∴AC≈2.73×29.4=80.262≈80(千米). ∴从A 地直达C 地的路程约为80千米.6.解:如解图,延长ED 交BC 延长线于点F ,则∠CFD=90°,第6题解图∵tan∠DCF=i =13=33,∴∠DCF=30°, ∵CD=4,∴DF=12CD =2,CF =CD·cos∠DCF=4×32=2 3.∴BF=BC +CF =23+23=4 3. 过点E 作EG⊥AB 于G ,则GE =BF =43,BG =EF =ED +DF =1.5+2=3.5,又∵∠AEG=37°,∴AG=GE·tan∠AEG=43·tan37°≈3 3. ∴AB=AG +BG =(33+3.5)米. 答:旗杆AB 的高度约为(33+3.5)米. 7.解:如解图,过点B 作BD⊥AC,垂足为D ,根据题意,得∠ABD=∠BAM=37°,∠CBD=∠BCN=50°,∵在Rt△ABD 中,cos∠ABD=BD AB .∴BD=AB·cos 37°≈10×0.8=8(海里).∵在Rt△CBD 中,cos∠CBD=BD BC ,∴BC=BD cos 50°≈80.64=12.5(海里).∴12.5÷30=512(小时),512×60=25(分钟).∴渔政船大约需25分钟能到达渔船所在的C 处.8.解:(1)如解图,过点P 作PD⊥AB 于点D ,设PD =x ,由题意得知,∠PBD=45°,∠PAD=30°.在Rt△BDP 中,BD =PD =x ,在Rt△PDA 中,AD =PD tan 30°=3PD =3x ,∵AB=2 km ,∴x +3x =2,解得x =3-1,∴点P 到海岸线l 的距离为(3-1) km.(2)如解图,过点B 作BF⊥CA 于点F ,在Rt△ABF 中,BF =AB·sin30°=2×12=1 km.在△ABC 中,∠C=180°-∠BAC-∠ABC=180°-30°-45°-45°-15°=45°,∴在Rt△BFC 中,BC =2BF =2×1= 2 km.∴点C 与点B 之间的距离为 2 km.第8题解图9.解:(1)如解图,过点C 作CP⊥AB 于P ,第9题解图由题意可得:∠A=30°,AC =2 000米,则CP =12AC =1 000米;答:这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离为1 000米.(2)∵在Rt△PBC 中,PC =1 000米,∠PBC=∠BPP=45°, ∴BC=2PC =1 0002米.∵这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆需要的时间为1 0002100=102<15.∴他在15分钟内能到达宾馆.。
中考专题复习拓展题型解直角三角形的实际应用
中考专题复习拓展题型解直角三角形的实际应用例1小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.例2钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,sin46°≈0.72)例3一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)例4.如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD 的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).例5.如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)例6.如图,某水上乐园有一个滑梯AB,高度AC为6米,倾斜角为60°,暑期将至,为改善滑梯AB的安全性能,把倾斜角由60°减至30°(1)求调整后的滑梯AD的长度(2)调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:≈1.41,,≈2.45)例7海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)例8为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)拓展练习:1.如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD ,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米达到F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB (单位:米)为( )A .50 B .51 C .50+1 D .1011题图 2题图 4题图2.如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC=1200m ,从飞机上看地平面指挥台B 的俯角α=30°,则飞机A 与指挥台B 的距离为( )A .1200mB .1200mC .1200mD .2400m3.已知:岛P 位于岛Q 的正西方,由岛P ,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是( ) A . B . C . D .4.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm ,∠CBD=40°,则点B 到CD 的距离为 cm (参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm ,可用科学计算器).5.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN 限速60千米/小时,为了检测车辆是否超速,在公路MN 旁设立了观测点C ,从观测点C 测得一小车从点A 到达点B 行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)6.如图所示,某数学活动小组选定测量小河对岸大树BC 的高度,他们在斜坡上D 出测得大树顶端B 的仰角是48°.若坡角∠FAE=30°,DA=6.求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)7.如图是放在水平地面上的一把椅子的侧面图,椅子高为AC ,椅面宽为BE ,椅脚高为ED ,且AC ⊥BE ,AC ⊥CD ,AC ∥ED .从点A 测得点D 、E 的俯角分别为64°和53°.已知ED=35cm ,求椅子高AC 约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)8.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).9.如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米(结果精确到1米,参考数据≈1.4,到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.≈1.7)10.如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.11.如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:≈1.7)。
【精编版】数学中考专题训练——解直角三角形的应用
中考专题训练——解直角三角形的应用1.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB =20cm,AB与墙壁AD的夹角∠α=30°,喷出的水流BC与AB形成的夹角∠ABC=80°.现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=150cm.问:安装师傅应将支架固定在离地面多高的位置?(结果精确到1cm,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73,≈1.41).2.为了完成“综合与实践”作业任务,小明和小华利用周末时间邀约一起去郊外一处空旷平坦的草地上放风筝,小明负责放风筝,小华负责测量相关数据.如图,当小明把风筝放飞到空中点P处时,小华分别在地面的点A、B处测得∠P AB=45°,∠PBA=30°,AB=200米,请你求出风筝的高度PC(点C在点P的正下方,A、B、C在地面的同一条直线上)(参考数据:≈1.414,≈1.732)3.如图1所示是一种手机平板支架,由托板、支撑板和底座构成.图2是其侧面结构示意图,支撑板CD=40mm,托板AB固定在支撑板顶点C处,且CB=40mm,托板AB 可绕点C转动,支撑板CD可绕点D转动.(1)如图2,当∠CDE=60°时,求点C到直线DE的距离;(2)如图3,当∠DCB=90°时,再将CD绕点D转动,使点B落在DE上,求此时∠CDB的度数.4.火灾是生活中最常见、最突出的一种灾难,消防车是救援火灾的主要装备.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC(10m≤AC≤20m)是可伸缩的,且起重臂AC可绕点A在一定范围内上下转动,张角∠CAE(90°≤∠CAE≤150°),转动点A距离地面的高度AE=3.5m.(1)当起重臂AC的长度为12m,张角∠CAE=120°,求云梯消防车最高点C距离地面的高度CF.(2)某日一居民家突发火灾,该居民家距离地面的高度为180m,该消防车能否实施有效救援?(参考数据:≈1.732)5.如图,是放在水平桌面上的台灯的几何图,已知台灯底座高度为2cm,固定支点O到水平桌面的距离为7.5cm,当支架OA、AB拉直时所形成的线段与点M共线且与底座垂直,此时测得B到底座的距离为31.64cm(线段AB,AO,OM的和),经调试发现,当∠OAB =115°,∠AOM=160°时,台灯所投射的光线最适合写作业,测量得A到B的水平距离(线段AC)为10cm.求:(1)∠BAC=°,OM=;(2)此时点B到桌面的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.414)6.如图1的风力发电机,风轮的三个叶片均匀分布,当风轮的叶片在风力作用下旋转时,最高点距地面145m,最低点距地面55m.如图2是该风力发电机的示意图,发电机的塔身OD垂直于水平地面MN(点O,A,B,C,D,M,N在同一平面内).(1)求风轮叶片OA的长度;(2)如图2,点A在OD右侧,且α=14.4°.求此时风叶OB的端点B距地面的高度.(参考数据:sin44.4°≈0.70,tan44.4°≈0.98)7.如图1,是某品牌的可伸缩篮球架,其侧面可抽象成图2,结点F,G,H,M,N可随着伸缩杆EF的伸缩转动,从而控制篮球圈ON离地面AB的高度,ON∥AB,主杆AH⊥AB,G,C,D均在主干AH上,结点N,G,F共线,DE∥AB,经测量,AD=150cm,DC=CG=GH=MN=GF=50cm,MH=NG=GD,∠NGD=33°,此时,EF∥AH.(结果保留小数点后一位)(1)①∠M=°,EF与AB的位置关系;②求EF的长度.(2)在图1的基础上,调节伸缩杆EF,得到图3,图4是图3的示意图,经测量,此时,篮球圈ON离地面AB的高度刚好达到国际标准305cm,求NF绕着G点顺时针旋转的度数.(参考数据:sin57°≈0.84,cos57°≈0.55,tan57°≈1.54)8.已知图1是超市购物车,图2是超市购物车侧面示意图,测得支架AC=80cm,BC=60cm,AB,DO均与地面平行.(1)若支架AC与BC之间的夹角∠ACB=90°,求两轮轮轴A,B之间的距离;(2)若OF的长度为60cm,∠FOD=120°,求点F到AB所在直线的距离.(结果精确到0.1)(参考数据:≈1.414,≈1.732)9.为应对新冠疫情,学校购进一批酒精消毒瓶(如图1),AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=8cm,BE=6cm,当按压柄△BCD按压到底时,BD转动到BD′,此BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据sin36°≈0.59,cos36°≈0.81,tan30°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)10.如图1是学生常用的一种圆规,其手柄AB=8mm,两脚BC=BD=56mm,如图2所示,当∠CBD=74°时.(1)求A离纸面CD的距离.(2)用该圆规作如图3所示正六边形,求该正六边形的周长.(参考数据:sin37°≈0.60,cos37°≈0.80,sin74°≈0.96,cos74°≈0.28,结果精确到0.1)11.住宅的采光是建楼和购房时人们所关心的问题之一.如图,住宅小区南、北两栋楼房的高度均为16.8m.已知当地冬至这天中午12时太阳光线与地面所成的角是35°.(参考数据:sin35°≈0.57;cos35°≈0.81;tan35°≈0.70)(1)要使这时南楼的影子恰好落在北楼的墙脚,两楼间的距离应为多少米(精确到0.1m)?(2)如果两栋楼房之间的距离为20m,那么这时南楼的影子是否会影响北楼一楼的采光?12.某小区门口安装了汽车出入道闸.道闸关闭时,如图①,四边形ABCD为矩形,AB长6米,AD长2米,点D距地面为0.4米.道闸打开的过程中,边AD固定,连杆AB,CD分别绕点A,D转动,且边BC始终与边AD平行.(1)如图②,当道闸打开至∠ADC=60°时,边CD上一点P到地面的距离PE为2.4米,求点P到MN的距离PF的长;(2)一辆载满货物的货车过道闸,已知货车宽2.1米,高3.2米.当道闸打开至∠ADC =53°时,货车能否驶入小区?请说明理由.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)13.如图①是某中型挖掘机,该挖掘机是由基座、主臂和伸展臂构成,图②是共侧面结构示意图(MN是基座,AB是主臂,BC是伸展臂),若主臂AB长为4米,主臂伸展角∠MAB的范围是:30°≤∠MAB≤60°,伸展臂伸展角∠ABC的范围是:45°≤∠ABC≤105°.(1)如图③,当∠MAB=45°,伸展臂BC恰好垂直并接触地面时,求伸展臂BC的长(结果保留根号);(2)若(1)中BC长度不变,当∠MAB=30°时,求该挖掘机最远(即伸展臂伸展角∠ABC最大时)能挖掘到距A水平正前方多少米的土石.(结果保留根号)14.激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?15.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM=113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)16.如图1是十五中行政楼的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转35°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2.(参考数据:sin35°≈0.6,cos35°≈0.8,≈1.4)(1)求开门过程中B与C走过的路径之和;(2)此时B与C之间的距离为多少?(结果保留一位小数)17.为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心点在最高位置与最低位置时的高度差.(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?18.某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)19.“荡秋千”一直以来都是人们喜闻乐见的休闲方式之一,某天,小鹏和小运两人玩荡秋千.左图为实际图,右图为侧面几何图.静止时秋千位于铅垂线AB上,转轴A到地面的距离AB为3m,荡秋千的起始位置为C,终点为D,点C距离地面为1.16米,安全链AC为2.3m.需要解决问题如下:(1)秋千位于起始位置点C时,安全链AC与铅垂线AB夹角(即∠CAB)的度数;(2)如果我们把荡秋千的最高点与起始点的铅直高度之差记作H,起始点至最高点的路径长记作L,H与L的比值记作P(愉悦度),据科学研究表明,当0.20<P<0.22时,可使人愉悦感最强.当小鹏用力将小运从点C推出后可达到最高点D处,此时∠CAD=100°.请问这个过程能否实现愉悦感最强?说明理由.(结果精确到0.01,参考数据:sin37°=0.6,cos37°=0.8,sin27°=0.452,π=3)20.如图①是大家熟悉的柜式空调,关闭时叶片竖直向下.如图②,当启动时,出风口叶片会同步开始逆时针旋转到最大旋转角90°时返回,旋转速度是每秒10°,同时空调风从叶片口直线吹出.AB由5个叶片组成的出风口,经过测量,A点、B点距地面高度分别是170cm、145cm在空调正前方100cm处站着一个高70cm的小朋友(线段EF表示).(1)从启动开始,多长时间小朋友头顶E处感受到空调风;(2)若叶片从闭合旋转到最大角度的过程中,小朋友的头顶E处有多长时间感受到空调风;(3)当选择上下扫风模式时,叶片会旋转到最大角度后原速返回.从启动到第一次返回起始位的过程中,该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了多长时间.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).参考答案与试题解析1.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB =20cm,AB与墙壁AD的夹角∠α=30°,喷出的水流BC与AB形成的夹角∠ABC=80°.现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=150cm.问:安装师傅应将支架固定在离地面多高的位置?(结果精确到1cm,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73,≈1.41).【分析】过点B作BG⊥D'D,垂足为G,延长EC、GB交于点F.在△GAB中先求出GB、GA,再在△F AB中求出CF,最后利用线段的和差关系求出AD.【解答】解:如图,过点B作BG⊥D'D,垂足为G,延长EC、GB交于点F.在Rt△ABG中,∠BAG=∠a=30°,AB=20cm,∴GB=AB=10cm,.在Rt△BCF中,∠FBC=180°﹣60°﹣80°=40°,BF=DE﹣BG=40(cm),∴CF=BF•tan∠FBC=40tan40°≈33.6(cm),∴AD=CE+CF﹣AG=150+33.6﹣17.3≈166(cm).答:安装师傅应将支架固定在离地面166cm的位置.2.为了完成“综合与实践”作业任务,小明和小华利用周末时间邀约一起去郊外一处空旷平坦的草地上放风筝,小明负责放风筝,小华负责测量相关数据.如图,当小明把风筝放飞到空中点P处时,小华分别在地面的点A、B处测得∠P AB=45°,∠PBA=30°,AB=200米,请你求出风筝的高度PC(点C在点P的正下方,A、B、C在地面的同一条直线上)(参考数据:≈1.414,≈1.732)【分析】设PC=x米,根据等腰直角三角形的性质用x表示出AC,根据正切的定义列出方程,解方程求出x,得到CD的长,结合图形计算,得到答案.【解答】解:设PC=x米,在Rt△ACP中,∠P AC=45°,∴AC=PC=x,∴BC=200﹣x,在Rt△BCP中,∠PBA=30°,∴tan∠PBA=,∴=,解得x=100﹣100≈100×1.732﹣100=73.2,即PC=73.2米,答:风筝的高度PC约是73.2米.3.如图1所示是一种手机平板支架,由托板、支撑板和底座构成.图2是其侧面结构示意图,支撑板CD=40mm,托板AB固定在支撑板顶点C处,且CB=40mm,托板AB 可绕点C转动,支撑板CD可绕点D转动.(1)如图2,当∠CDE=60°时,求点C到直线DE的距离;(2)如图3,当∠DCB=90°时,再将CD绕点D转动,使点B落在DE上,求此时∠CDB的度数.【分析】(1)过点C作CF⊥DE,垂足为F,在Rt△CDF中,利用锐角三角函数的定义求出CF的长,即可解答;(2)在Rt△DCB中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点C作CF⊥DE,垂足为F,在Rt△CDF中,∠CDE=60°,CD=40mm,∴CF=CD•sin60°=40×=60(mm),∴点C到直线DE的距离为60mm;(2)在Rt△DCB中,CD=40mm,CB=40mm,∴tan∠CDB===,∴∠CDB=30°,∴此时∠CDB的度数为30°.4.火灾是生活中最常见、最突出的一种灾难,消防车是救援火灾的主要装备.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC(10m≤AC≤20m)是可伸缩的,且起重臂AC可绕点A在一定范围内上下转动,张角∠CAE(90°≤∠CAE≤150°),转动点A距离地面的高度AE=3.5m.(1)当起重臂AC的长度为12m,张角∠CAE=120°,求云梯消防车最高点C距离地面的高度CF.(2)某日一居民家突发火灾,该居民家距离地面的高度为180m,该消防车能否实施有效救援?(参考数据:≈1.732)【分析】(1)过点A作AG⊥CF,垂足为F.先在Rt△AGC中求出CG,再利用直角三角形的边角间关系求出CF;(2)先计算当AC长20m、∠CAE=150°时救援的高度,再判断该消防车能否实施有效救援.【解答】解:(1)过点A作AG⊥CF,垂足为F.由题意知:四边形AEFG是矩形.∴FG=AE=3.5m,∠EAG=∠AGC=∠AGF=90°.∵∠CAE=120°,∴∠CAG=∠CAE﹣∠EAG=30°.在Rt△AGC中,∵sin∠CAG=,∴CG=AC×sin30°=12×=6(m).∴CF=CG+GF=3.5+6=9.5(m).答:云梯消防车最高点C距离地面的高度CF为9.5m.(2)过点C作CH⊥AE,交EA的延长线于点H.当AC=20m,∠CAE=150°时,∠HAC=30°.在Rt△AHC中,∵cos∠HAC=,∴AH=cos∠HAC×AC=cos30°×20=×20=10≈1.732×10=17.32(m).∴HE=AH+AE=3.5+17.32=20.82(m).由题意知,四边形HEFC是矩形,∴CF=HE=20.82m.∵20.82<180,∴该消防车不能实施有效救援.5.如图,是放在水平桌面上的台灯的几何图,已知台灯底座高度为2cm,固定支点O到水平桌面的距离为7.5cm,当支架OA、AB拉直时所形成的线段与点M共线且与底座垂直,此时测得B到底座的距离为31.64cm(线段AB,AO,OM的和),经调试发现,当∠OAB =115°,∠AOM=160°时,台灯所投射的光线最适合写作业,测量得A到B的水平距离(线段AC)为10cm.求:(1)∠BAC=45°,OM= 5.5cm;(2)此时点B到桌面的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.414)【分析】(1)延长MO交AC于点D,则∠ADO=90°,先利用平角定义求出∠AOD=20°,然后利用直角三角形的两个锐角互余可得∠DAO=70°,再利用角的和差关系可求出∠BAC,最后根据题意利用支点O到水平桌面的距离减去台灯底座高度即可求出OM的长;(2)先在Rt△ABC中,利用锐角三角函数的定义求出BC,AB的长,从而求出AO的长,然后在Rt△ADO中,利用锐角三角函数的定义求出OD的长,进行计算即可解答.【解答】解:(1)延长MO交AC于点D,则∠ADO=90°,∵∠AOM=160°,∴∠AOD=180°﹣∠AOM=20°,∴∠DAO=90°﹣∠AOD=70°,∵∠OAB=115°,∴∠BAC=∠OAB﹣∠DAO=45°,由题意得:OM=7.5﹣2=5.5(cm),故答案为:45;5.5cm;(2)在Rt△ABC中,∠BAC=45°,AC=10cm,∴BC=AC•tan45°=10(cm),AB=AC=10≈14.14(cm),由题意得:AO=31.64﹣AB﹣OM=12(cm),在Rt△ADO中,∠AOD=20°,∴OD=AO•cos20°≈12×0.94=11.28(cm),∴BC+OD+7.5=28.78(cm),∴此时点B到桌面的距离约为28.78cm.6.如图1的风力发电机,风轮的三个叶片均匀分布,当风轮的叶片在风力作用下旋转时,最高点距地面145m,最低点距地面55m.如图2是该风力发电机的示意图,发电机的塔身OD垂直于水平地面MN(点O,A,B,C,D,M,N在同一平面内).(1)求风轮叶片OA的长度;(2)如图2,点A在OD右侧,且α=14.4°.求此时风叶OB的端点B距地面的高度.(参考数据:sin44.4°≈0.70,tan44.4°≈0.98)【分析】(1)以点O为圆心,OA的长为半径作圆,延长DO交⊙O于点P,设直线DO 与⊙O交于点Q,根据题意可得PD=145m,DQ=55m,从而求出PQ的长,进而可得OA=OP=PQ,进行计算即可解答;(2)过点B作BE⊥MN,垂足为E,过点O作OF⊥BE,垂足为F,从而得∠DOF=90°,EF=OD,进而求出∠BOF=44.4°,然后在Rt△BOF中求出BF,进行计算即可解答.【解答】解:如图,以点O为圆心,OA的长为半径作圆,延长DO交⊙O于点P,设直线DO与⊙O交于点Q,由题意得:PD=145m,DQ=55m,∴PQ=PD﹣DQ=145﹣55=90(m),∴OA=OP=PQ=45(m),∴风轮叶片OA的长度为45m;(2)如图,过点B作BE⊥MN,垂足为E,过点O作OF⊥BE,垂足为F,则四边形ODEF是矩形,∴∠DOF=90°,EF=OD,由题意得:∠AOB=120°,AOD=14.4°,∴∠BOF=∠AOB+∠AOD﹣∠DOF=44.4°,∴BF=OB sin44.4°≈45×0.70=31.5(m),∵OD=PD﹣OP=145﹣45=100(m),∴EF=OD=100m,∴BE=BF+EF=131.5(m),∴此时风叶OB的端点B距地面的高度为131.5m.7.如图1,是某品牌的可伸缩篮球架,其侧面可抽象成图2,结点F,G,H,M,N可随着伸缩杆EF的伸缩转动,从而控制篮球圈ON离地面AB的高度,ON∥AB,主杆AH⊥AB,G,C,D均在主干AH上,结点N,G,F共线,DE∥AB,经测量,AD=150cm,DC=CG=GH=MN=GF=50cm,MH=NG=GD,∠NGD=33°,此时,EF∥AH.(结果保留小数点后一位)(1)①∠M=147°,EF与AB的位置关系垂直;②求EF的长度.(2)在图1的基础上,调节伸缩杆EF,得到图3,图4是图3的示意图,经测量,此时,篮球圈ON离地面AB的高度刚好达到国际标准305cm,求NF绕着G点顺时针旋转的度数.(参考数据:sin57°≈0.84,cos57°≈0.55,tan57°≈1.54)【分析】(1)①根据平行四边形的判定定理可知四边形GHMN是平行四边形,可得∠M =∠HGN=147°;由AH⊥AB,EF∥AH,可知EF⊥AB;②过G作GP⊥EF,可求FP =GF•sin57°≈50×0.84=42.0cm,由四边形GDEP为平行四边形可得GD=PE,即可求解;(2)过点G作AB的平行线PG,再过点N作PG的垂线交PG于点P,由cos∠GNP===0.55,可求∠GNP≈57°,可得∠NGP≈33°,∠NGD≈123°,即可求得∠PGD的值.【解答】解:(1)①∵GH=MN,MH=NG,∴四边形GHMN是平行四边形,∵∠NGD=33°,∴∠M=∠HGN=147°,∵AH⊥AB,EF∥AH,∴EF⊥AB,故答案为:147,垂直;②过G作GP⊥EF,垂足为P,∵∠NGD=33°,∴∠FGP=57°,∴FP=GF•sin57°≈50×0.84=42.0cm,∵GP⊥EF,EF⊥AB,∴GP∥AB,又∵DE∥AB,∴GP∥DE,∵EF∥AH,∴四边形GDEP为平行四边形,∴GD=PE,∴EF=DG+PF=50+50+42≈142.0cm;(2)过点G作AB的平行线PG,再过点N作PG的垂线交PG于点P.∴NP=305﹣50﹣50﹣150=55cm,∵NG=GD=100cm,∴cos∠GNP===0.55,∴∠GNP≈57°,∴∠NGP≈33°,∴∠NGD≈123°,∴∠PGD≈123°﹣33°=90°,故NF绕着G点顺时针旋转了90°.8.已知图1是超市购物车,图2是超市购物车侧面示意图,测得支架AC=80cm,BC=60cm,AB,DO均与地面平行.(1)若支架AC与BC之间的夹角∠ACB=90°,求两轮轮轴A,B之间的距离;(2)若OF的长度为60cm,∠FOD=120°,求点F到AB所在直线的距离.(结果精确到0.1)(参考数据:≈1.414,≈1.732)【分析】(1)根据勾股定理求出AB的长度即可;(2)作辅助线,分别求出C点到AB的距离,F点到直线DO的距离,求和即可.【解答】解:(1)∵支架AC与BC之间的夹角(∠ACB)为90°,∴AB===100(cm),即两轮轮轴A,B之间的距离为100cm;(2)过C点作CH⊥AB于H,过F点作FG⊥DO延长线与G,则扶手F到AB所在直线的距离为FG+CH,∵OF的长度为60cm,∠FOD=120°,∴∠FOG=180°﹣120°=60°,∵∠G=90°,∴∠F=30°,∴OG=OF=30,∴FG=30,由(1)知AB=100,AC=80,BC=60,∴S△ABC=AC•BC=AB•CH,即×100×CH=×60×80,解得CH=48,∴FG+CH=48+30≈48+30×1.732≈100.0cm,即扶手F到AB所在直线的距离为100.0cm.9.为应对新冠疫情,学校购进一批酒精消毒瓶(如图1),AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=8cm,BE=6cm,当按压柄△BCD按压到底时,BD转动到BD′,此BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据sin36°≈0.59,cos36°≈0.81,tan30°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【分析】(1)由平行线的性质可求得∠D'BE=72°,从而可求得∠DBD'=36°,利用弧长公式即可求解;(2)过点D作DG⊥BD'于点G,过E作EH⊥BD'于点H,可求得DG=4.72cm,HE=5.7cm,利用平行线的性质可求解.【解答】解:(1)∵BD′∥EF,∠DBE=∠BEF=108°,∴∠D'BE=180°﹣∠BEF=72°,∴∠DBD'=∠DBE﹣∠D'BE=36°,∵BD=8cm,∴点D转动到点D′的路径长为:(cm);(2)过点D作DG⊥BD'于点G,过E作EH⊥BD'于点H,如图,Rt△BDG中,DG=BD•sin36°≈8×0.59=4.72(cm),Rt△BEH中,HE=BE•sin72°=6×0.95=5.7(cm),∴DG+HE=10.42cm,∵BD'∥EF,∴点D到直线EF的距离约为10.42cm.10.如图1是学生常用的一种圆规,其手柄AB=8mm,两脚BC=BD=56mm,如图2所示,当∠CBD=74°时.(1)求A离纸面CD的距离.(2)用该圆规作如图3所示正六边形,求该正六边形的周长.(参考数据:sin37°≈0.60,cos37°≈0.80,sin74°≈0.96,cos74°≈0.28,结果精确到0.1)【分析】(1)连接CD,延长AB交CD于点E,则AE⊥CD,利用等腰三角形的三线合一性质可得∠CBE=37°,CD=2CE,然后在Rt△BCE中,利用锐角三角函数的定义求出BE的长,最后进行计算即可解答;(2)在Rt△BCE中,利用锐角三角函数的定义求出CE的长,从而求出CD的长,进而求出正六边形的边长,然后进行计算即可解答.【解答】解:(1)连接CD,延长AB交CD于点E,则AE⊥CD,∵BC=BD=56mm,∴∠CBE=∠CBD=37°,CD=2CE,在Rt△BCE中,BE=BC•cos37°≈56×0.8=44.8(mm),∵AB=8mm,∴AE=AB+BE=8+44.8=52.8(mm),∴A离纸面CD的距离约为52.8mm;(2)在Rt△BCE中,∠CBE=37°,BC=56mm,∴CE=BC•sin37°≈56×0.6=33.6(mm),∴CD=2CE=67.2(mm),∴正六边形的边长为67.2mm,∴正六边形的周长=6×67.2=403.2(mm),∴正六边形的周长约为403.2mm.11.住宅的采光是建楼和购房时人们所关心的问题之一.如图,住宅小区南、北两栋楼房的高度均为16.8m.已知当地冬至这天中午12时太阳光线与地面所成的角是35°.(参考数据:sin35°≈0.57;cos35°≈0.81;tan35°≈0.70)(1)要使这时南楼的影子恰好落在北楼的墙脚,两楼间的距离应为多少米(精确到0.1m)?(2)如果两栋楼房之间的距离为20m,那么这时南楼的影子是否会影响北楼一楼的采光?【分析】(1)根据直角三角形的边角关系进行计算即可;(2)根据直角三角形的边角关系计算出AN即可.【解答】解:(1)如图1,由题意可知,AB=CD=16.8m,∠ADB=35°∵tan∠ADB=,∴≈0.7,∴BD≈24.0米,答:两楼间的距离应为24.0m;(2)如图2,过点M作MN∥BD,在Rt△AMN中,BD=20m=MN,∠AMN=35°,∴AN=tan35°×MN≈14.0(m),∴MD=AB﹣AN=16.8﹣14.0=2.8(m),答:这时南楼的影子会影响北楼一楼的采光,且影子在CD的高度为2.8 m.12.某小区门口安装了汽车出入道闸.道闸关闭时,如图①,四边形ABCD为矩形,AB长6米,AD长2米,点D距地面为0.4米.道闸打开的过程中,边AD固定,连杆AB,CD分别绕点A,D转动,且边BC始终与边AD平行.(1)如图②,当道闸打开至∠ADC=60°时,边CD上一点P到地面的距离PE为2.4米,求点P到MN的距离PF的长;(2)一辆载满货物的货车过道闸,已知货车宽2.1米,高3.2米.当道闸打开至∠ADC=53°时,货车能否驶入小区?请说明理由.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)在Rt△PDQ中,由∠PDQ=30°得出DQ=2,进而求出FP即可;(2)当∠ADC=53°,PE=3.2米时,求出PF,与2.1米比较即可得出答案.【解答】解:(1)如图,过点D作DQ⊥PE,垂足为Q,由题意可知,∠ADC=60°,PE=2.4米,QE=0.4米,在Rt△PDQ中,∠PDQ=30°,PQ=2.4﹣0.4=2(米),∴tan30°=,∴DQ==2(米),∴PF=AB﹣DQ=(6﹣2)(米),(2)当∠ADC=53°,PE=3.2米时,则∠DPQ=53°,PQ=3.2﹣0.4=2.8(米),∴DQ=PQ•tan53°≈2.8×1.33=3.724(米),∴PF=6﹣3.724≈2.276(米),∵2.276>2.1,∴能通过.13.如图①是某中型挖掘机,该挖掘机是由基座、主臂和伸展臂构成,图②是共侧面结构示意图(MN是基座,AB是主臂,BC是伸展臂),若主臂AB长为4米,主臂伸展角∠MAB的范围是:30°≤∠MAB≤60°,伸展臂伸展角∠ABC的范围是:45°≤∠ABC≤105°.(1)如图③,当∠MAB=45°,伸展臂BC恰好垂直并接触地面时,求伸展臂BC的长(结果保留根号);(2)若(1)中BC长度不变,当∠MAB=30°时,求该挖掘机最远(即伸展臂伸展角∠ABC最大时)能挖掘到距A水平正前方多少米的土石.(结果保留根号)【分析】(1)根据题意可得:∠BCA=90°,然后在Rt△ABC中,利用锐角三角函数的定义求出BC的长,即可解答;(2)过点B作BD⊥AC,垂足为D,根据题意可得:∠MAB=30°,∠ABC=105°时,伸展臂伸展的最远,从而利用三角形内角和定理求出∠ACD=45°,然后在RtABD中,利用锐角三角函数定义求出AD的长,再在Rt△BCD中,利用锐角三角函数的定义求出CD的长,进行计算即可解答.【解答】解:(1)如图:由题意得:∠BCA=90°,在Rt△ABC中,∠MAB=45°,AB=4米,∴BC=AB•sin45°=4×=2(米),∴伸展臂BC的长为2米;(2)过点B作BD⊥AC,垂足为D,由题意得:∠MAB=30°,∠ABC=105°时,伸展臂伸展的最远,∴∠ACB=180°﹣∠ABC﹣∠MAB=45°,在RtABD中,AB=4米,∴AD=AB•cos30°=4×=2(米),在Rt△BCD中,BC=2米,CD=BC•cos45°=2×=2(米),∴AC=AD+CD=(2+2)米,∴该挖掘机最远能挖掘到距A水平正前方(2+2)米的土石.14.激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.15.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM=113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)【分析】(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,利用平行线的性质可得∠BMH=66.4°,然后在Rt△BMH中,利用锐角三角函数的定义求出MH的长,从而求出HP的长,即可解答;(2)延长QM交FG于点K,则KQ=50cm,∠NKM=90°,利用平角定义先求出∠NMK 的度数,再在Rt△NMK中,利用锐角三角函数的定义求出KM的长,从而求出PQ的长,进行比较即可解答.【解答】解:(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,∵∠ABM=113.6°,∴∠BMH=180°﹣∠ABM=66.4°,在Rt△BMH中,∠BMH=66.4°,BM=44cm,∴MH=BM•cos66.4°≈44×0.4=17.6(cm),∵MP=26.1cm,∴BA=HP=MP﹣MH=26.1﹣17.6=8.5(cm),∴枪身BA的长度约为8.5cm;(2)此时枪身端点A与学生额头的距离不在规定范围内,理由:延长QM交FG于点K,则KQ=50cm,∠NKM=90°,∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMK=180°﹣∠BMN﹣∠BMH=45°,在Rt△MNK中,MN=30cm,∴KM=MN•cos45°=30×=15(cm),∵KQ=50cm,∴PQ=KQ﹣KM﹣MP=50﹣15﹣26.1≈2.7(cm),。
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)1.如图,小明为了测量学校旗杆CD的高度,在地面离旗杆底部C处22米的A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,求旗杆的高度CD.(结果精确到0.1米)【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】2.如图,在一次数学实践活动中,小明同学为了测量学校旗杆EF的高度,在观测点A处观测旗杆顶点E的仰角为45°,接着小明朝旗杆方向前进了7m到达C点,此时,在观测点D处观测旗杆顶点E的仰角为60°.假设小明的身高为1.68m,求旗杆EF的高度.(结果保留一位小数.参考数据:√2≈1.414,√3≈ 1.732)3.如图,在徐州云龙湖旅游景区,点A为“彭城风华”观演场地,点B为“水族展览馆”,点C为“徐州汉画像石艺术馆”.已知∠BAC=60°,∠BCA=45°,AC=1640m.求“彭城风华”观演场地与“水族展览馆”之间的距离AB(精确到1m).(参考数据:√2≈1.41,√3≈1.73)4.大连作为沿海城市,我们常常可以在海边看到有人海钓.小华陪爷爷周末去东港海钓,爷爷将鱼竿AB摆成如图所示.已知AB=2.4m,在有鱼上钩时,鱼竿与地面的夹角∠BAD=45°.此时鱼线被拉直,鱼线BO= 3m.点O恰好位于海面,鱼线BO与海面OH的夹角∠BOH=60°.求海面OH与地面AD之间的距离DH的长.(结果保留一位小数,参考数据:√2=1.414,√3=1.73)5.让运动挥洒汗水,让青春闪耀光芒.重庆某中学倡议全校师生“每天运动一小时,快乐学习每一天”,响应学校号召,小明决定早睡早起,每天步行上学.如图,小明家在A处,学校在C处,从家到学校有两条线路,他可以从点A经过点B到点C,也可以从点A经过点D到点C.经测量,点B在点A的正北方向,AB=300米.点C在点B的北偏东45°;点D在点A的正东方向,点C在点D的北偏东30°方向CD=2900米.(1)求BC的长度(精确到个位);(2)小明每天步行上学都要从点A到点C,路线一;从点A经过点B到点C,路线二;从点A经过点D到点C,请计算说明他走哪一条路线较近?(参考数据:√2≈1.414,√3≈1.732,√6≈2.449)6.拉杆箱是外出旅行常用工具.某种拉杆箱示意图如图所示(滚轮忽略不计),箱体截面是矩形BCDE,BC 的长度为60cm,两节可调节的拉杆长度相等,且与BC在同一条直线上.如图1,当拉杆伸出一节(AB)时,AC与地面夹角∠ACG=53°;如图2,当拉杆伸出两节(AM、MB)时,AC与地面夹角∠ACG=37°,两种情况下拉杆把手A点距离地面高度相同.求每节拉杆的长度.(参考数据:sin53°≈45,sin37°≈35,tan53°≈4 3,tan37°≈34)7.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间,小刚站在雕像前,自C处测得雕像顶A的仰角为53°,小强站凤栖堂门前的台阶上,自D处测得雕像顶A的仰角为45°,此时,两人的水平距离EC为0.45m,已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.8.如图为某景区平面示意图,C为景区大门,A,B,D分别为三个风景点.经测量,A,B,C在同一直线上,且A,B在C的正北方向,AB=240米,点D在点B的南偏东75∘方向,在点A的东南方向.(参考数据:√2≈1.414,√3≈1.732)(1)求B,D两地的距离;(结果精确到0.1米)(2)大门C在风景点D的南偏西60∘方向,景区管理部门决定重新翻修CD之间的步道,求CD间的距离.9.小明和小玲游览一处景点,如图,两人同时从景区大门A出发,小明沿正东方向步行60米到一处小山B处,再沿着BC前往寺庙C处,在B处测得亭台D在北偏东15°方向上,而寺庙C在B的北偏东30°方向上,小玲沿着A的东北方向上步行一段时间到达亭台D处,再步行至正东方向的寺庙C处.(1)求小山B与亭台D之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C处.(结果精确到个位,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)10.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动,同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长.(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33)11.【综合与实践】如图1,光线从空气射入水中会发生折射现象,其中α代表入射角,β代表折射角.学习小组查阅资料了解到,若n=sinαsinβ,则把n称为折射率.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【实践操作】如图2,为了进一步研究光的折射现象,学习小组设计了如下实验:将激光笔固定在MN处,光线可沿PD照射到空容器底部B处,将水加至D处,且BF=12cm时,光点移动到C处,此时测得DF=16cm,BC=7cm四边形ABFE是矩形,GH是法线.【问题解决】(1)求入射角∠PDG的度数;(2)请求出光线从空气射入水中的折射率n.12.数学兴趣小组设计了一款含杯盖的奶茶纸杯(如图1),图2为该纸杯的透视效果图,在图3的设计草图中,由AF、线段EF和ED构成的图形为杯盖部分,其中AF、与ED均在以AD为直径的⊙O上,且AF= ED,G为EF的中点,点G是吸管插孔处(忽略插孔直径和吸管直径),由点A,B,C,D构成的图形(杯身部分)为等腰梯形,已知杯壁AB=13.6cm,杯底直径BC=5.8cm,杯壁与直线l的夹角为84°.(1)求杯口半径OD的长;(2)若杯盖顶FE=3.2cm,吸管BH=22cm,当吸管斜插,即吸管的一端与杯底点B重合时,求吸管漏出杯盖部分GH的长.(参考数据:sin84∘≈0.995,cos84∘≈0.105,tan84∘≈9.514,√15.93≈3.99,17.5222≈307.02,√315.43≈17.76,结果精确到0.1cm).13.为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高AB为2cm,∠ABC=150°,支架BC为18cm,面板长DE为24cm,CD为6cm.(厚度忽略不计)(1)求支点C离桌面l的高度:(计算结果保留根号)(2)小吉通过查阅资料,当面板DE绕点C转动时,面板与桌面的夹角α满足30°≤α≤70°时,能保护视力.当α从30°变化到70°的过程中,问面板上端E离桌面l的高度是增加了还是减少了?增加或减少了多少?(精确到0.1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)14.如图,四边形ABCD是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C的正东方设置了休息区K,其中休息区K在景点A的南偏西30°方向800√2米处,景点A在景点B的北偏东75°方向,景点B和休息区K两地相距400√5米(∠ABK<90°),景点D分别在休息区K、景点A的正东方向和正南方向.(参考数据:√2≈1.41,√5≈2.24,√6≈2.45)(1)求步道AB的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C一起向正东出发,不久到达休息区K,他们发现有两条路线到达景点A,于是小宏想比赛看谁先到达景点A.他们分别租了一辆共享单车,两人同时在K点出发,小明选择①K−B−A路线,速度为每分钟320米;小宏选择②K−D−A路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A呢?15.某公园里有一座凉亭,亭盖呈圆锥状,如图所示,凉亭的顶点为O,点O在圆锥底面、地面上的正投影分别为点O1,O2,点P为圆锥底面的圆上一点,数据显示,该圆锥的底面半径为2米(即O1P=2米),圆锥底面离地面的高度为3米(即O1O2=3米).(1)若OO1=2米,求圆锥的侧面积;(2)现计划对亭盖的外部进行喷漆作业,需测算亭盖的外部面积(即圆锥的侧面积).因凉亭内堆积建筑材料,导致无法直接测量OO2的高度,工人先在水平地面上选取观测点A,B(A,B,O2在同一直线上),利用测角仪分别测得点O的仰角为α,β,其中tanα=12,tanβ=25,再测得A,B两点间的距离为m米(即AB=MN=m米),已知测角仪的高为1米(即MA=NB=QO2=1米),求亭盖的外部面积(用含m的代数式表示).16.赤水河畔的“美酒河”三个大字,是世界上最大的摩崖石刻汉字.小茜想测量绝壁上“美”字AG的高度,根据平面镜反射原理可推出入射光线与镜面的夹角等于反射光线与镜面的夹角(如图中∠DEC=∠AEB,∠DFC=∠GFB),具体操作如下:将平面镜水平放置于E处,小茜站在C处观测,俯角∠MDE=45°时,恰好通过平面镜看到“美”字顶端A处(CD为小茜眼睛到地面的高度),再将平面镜水平放置于F处观测,俯角∠MDF=36.9°时,恰好通过平面镜看到“美”字底端G处.测得BE=163.3m,CE=1.5m,点C,E,F,B在同一水平线上,点A,G,B在同一铅垂线上.(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75)(1)CD的高度为__________m,CF的长为__________m;(2)求“美”字AG的高度.17.风能是一种清洁无公害的可再生能源,利用风力发电非常环保.如图1所示,是一种风力发电装置;如图2为简化图,塔座OD建在山坡DF上(坡比i=3:4,DE垂直于水平地面EF,O,D,E三点共线),坡面DF长10m,三个相同长度的风轮叶片OA,OB,OC可绕点O转动,每两个叶片之间的夹角为120°;当叶片静止,OA与OD重合时,在坡底F处向前走25米至点M处,测得点O处的仰角为53°,又向前走23.5米至点N处,测得点A处的仰角为30°(点E,F,M,N在同一水平线上).(1)求叶片OA的长;(2)在图2状态下,当叶片绕点O顺时针转动90°时(如图3),求叶片OC顶端C离水平地面EF的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,√3≈1.7,结果保留整数)18.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A,B 两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A,E,F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.26cos15°≈0.97tan15°≈0.27√2≈1.41)19.春天是踏青的好季节小明和小华决定去公园出游踏青.如图已知A为公园入口景点B位于A点东北方向400√2米处景点E位于A点南偏东30°方向景点B在景点E的正北方向景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.景点F既位于景点E的正东方向又位于景点D的正南方向.DF=400米.(参考数据:√2≈1.41,√3≈1.73,sin37.5°≈35,cos37.5°≈45,tan37.5°≈34)(1)求BE的长;(精确到个位)(2)小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/分小明在景点B、C处各停留了10分钟、5分钟.小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/分.小华在景点E、F处各停留了9分钟、8分钟.请通过计算说明:小明和小华谁先到达景点D处.20.如图是一种家用健身卷腹机由圆弧形滑轨⌒AB可伸缩支撑杆AC和手柄AD构成.图①是其侧面简化示意图.滑轨⌒AB支撑杆AC与手柄AD在点A处连接其中D A B三点在一条直线上.(1)如图① 固定∠DAC=120°,若BC=30√6cm,AC=60cm,求∠ABC的度数;(2)如图② 固定∠DAC=100°若AC=50cm,∠ABC=30°时圆弧形滑轨AB所在的圆恰好与直线BC 相切于点B求滑轨⌒AB的长度.(结果精确到0.1 参考数据:π取3.14 sin70°≈0.940)参考答案:1.解:由题意得BE⊥CD于EBE=AC=22米∠DBE=32°在Rt△DBE中DE=BE⋅tan∠DBE=22×0.62≈13.64(米)CD=CE+DE=1.5+13.64≈15.14(米)答:旗杆的高CD约为15.14米.2.解:延长AD交EF于点G设EG=x∵AD∥BF,EF⊥BF∵AG⊥EF∵∠B=∠F=∠AGF=90°∵四边形ABFG是矩形∠AGE=90°∵∠EAG=45°∵∠AEG=90°−∠EAG=45°∵AG=EG=x∵AD=7∵DG=x−7∵∠EDG=60°=√3∵tan∠EDG=EGDG=√3∵xx−7∵x=7(3+√3)2∵EG=7(3+√3)2∵GF=AB=1.68∵EF=EG+GF=7(3+√3)2+1.68≈7(3+1.732)2+1.68 =16.562+1.68=18.242≈18.2.故旗杆EF的高度约18.2m.3.解:过B作BH⊥AC于H设AH=xm∵∠BAC=60°∵∠ABH=90°−60°=30°∵AB=2AH=2xm∵tanA=tan60°=BHAH=√3∵BH=√3xm∵∠BCA=45°∠BHC=90°∵△BHC是等腰直角三角形∵CH=BH=√3xm∵AH+CH=√3x+x=AC=1640≈600.7∵x=√3+1∵AB=2x≈1201(m).答:“彭城风华”观演场地与“水族展览馆”之间的距离AB约是1201m.4.解:过点B作BC⊥OH交OH于点C延长AD交BC于点E∵四边形DECH是矩形∵DH=CE.根据题意可知∠BAD=45°,∠BOH=60°在Rt△ABE中AB=2.4m∵sin∠BAE=BEAB即sin45°=BE2.4=1.2×1.41=1.692.解得BE=2.4×√22在Rt△BOC中BO=3m∵sin∠BOC=BCBO即sin60°=BC3=1.5×1.73=2.595解得BC=3×√32∵DH=CE=BC−BE=0.903≈0.9(m).所以海面OH与地面AD之间得距离DH的长0.9m.5.(1)解:过点C作CM⊥AD交AD的延长线于点M过点B作BN⊥AM交AM于点N过点D作DH⊥BN 交BN于点H.由题可知:∠CBN=45°∠A=90°∠CDM=60°.∵四边形ABNM、四边形ABHD、四边形DMNH都是矩形△BCN是等腰直角三角形.在Rt△CMD中∵∠CDM=60°CD=2900米∵DM=12DC=1450米CM=√3DM=1450√3米∵AB=MN=300米∵CN=CM−MN=(1450√3−300)米在Rt△CBN中∠CBN=45°∵CB=√2CN=(1450√6−300√2)米≈3127米答:BC的长度为3127米.(2)解:路线一:AB+BC=(300+1450√6−300√2)米≈3427米∵AM=BN=CN=(1450√3−300)米∵AD=AM−DM=(1450√3−1750)米∵路线二:AD+CD=(1450√3+1150)米≈3361米∵3427<3361∵路线二较近.6.解:如图1 作AF⊥CG垂足为F设AB=xcm则AC=60+x∵sin53°=AFAC =AF60+x∴AF=(60+x)⋅sin53°如图2 作AH⊥CG垂足为H则AC=60+2x∴AH=(60+2x)⋅sin37°∵AF=AH∴(60+x)⋅sin53°=(60+2x)⋅sin37°∴4(60+x)5=3(60+2x)5解得:x=30.答:每节拉杆的长度为30cm.7.(1)解:∵凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∵DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∵由题意得四边形NFDE是矩形∵FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∵FD=MF=(x−0.15)m∵NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∵tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.8.(1)解:过点B作BP⊥AD于点P由题意知∠BAD=45∘∠CBD=75∘∴∠ADB=30∘∠ABP=45∘=∠A∴BD=2BP AP=BP在Rt△ABP中AB=240米∴AP=BP=AB=120√2(米)sin45∘∴BD=2BP=240√2≈339.4(米).答:B、D两地的距离约为339.4米;(2)解:过点B作BM⊥CD于点M由(1)得BD=2BP=240√2(米)∵∠CDB=180∘−60∘−75∘=45∘∠CBD=75∘∠DCB=60∘∴∠DBM=45∘=∠CDB∴BM=DM在Rt△BDM中BD=240√2sin45∘=BMBD∴BM=DM=BD⋅sin45∘=240√2×√2=240(米)2在Rt△BCM中∠CBM=75∘−45∘=30∘∴CM=BM⋅tan30∘=80√3(米)∴DC=DM+CM=240+80√3(米).9.解:(1)作BE⊥AD于点E由题意知AB=60∠A=45°∠ABD=90°+15°=105°∠CBA=90°+30°=120°在Rt△ABE中在Rt△BDE中ED=√3BE=30√6BD=2BE=60√2∴小山B与亭台D之间的距离60√2米(2)延长AB作DF⊥BA于点F作CG⊥BA于点G则∠CBG=180°−∠CBA=60°由题意知CD∥AB∵四边形CDFG是矩形∵CG=DF,CD=FG.∵AE=30√2ED=30√6∴AD=30√2+30√6在Rt△AFD中DF=AF=√2=30+30√3CG=DF=30+30√3米在Rt△BCG中BG=√3=10√3+30∴CD=FG=AB+BG−AF=60−20√3∴S玲=AD+CD=30√2+30√6+60−20√3≈141.2米S明=AB+BC=60+60+20√3≈154.6米∵141.2<154.6且两人速度一致∴小玲先到.答:小玲先到达寺庙C处.10.解:如图:延长CD交AB于点H则四边形CMBH为矩形∴CM=HB=20在Rt△ACH中∠AHC=90°∠ACH=18.4°∴tan∠ACH=AH CH∴CH=AHtan∠ACH=AHtan18.4°≈AH0.33在Rt△ECH中∠EHC=90°∠ECH=37°∴tan∠ECH=EH CH∴CH=EHtan∠ECH=EHtan37°≈EH0.75设AH=x.∵AE=9∴EH=x+9∴x0.33=x+90.75解得x≈7.1∴AB=AH+HB≈7.1+20=27.1≈27(米).答:点A到地面的距离AB的长约为27米.11.(1)解:如图1 ∵GH∥FB∴∠DBF=∠PDG,∵BF=12cm,DF=16cm,∴tan∠DBF=DFBF=1612=43,∵tan53°≈4 3∴入射角∠PDG约为53°.(2)解:如图2 作DM⊥AB于点T在Rt△BDF中BF=12cm,DF=16cm∴BD=√DF2+BF2=20cm,在Rt△DTC中TC=DF−BC=16−7=9cm,DT=BF=12cm∴CD=√DT2+TC2=√122+92=15cm,∴光线从空气射入水中的折射率∴光线从空气射入水中的折射率n=43.12.(1)解:过点B作BP⊥AD于点D过点C作CQ⊥AD于点Q延长BC到点R ∵四边形BCQP是矩形∵BC=QP BP=CQ∵AB=13.6cm杯底直径BC=5.8cm杯壁与直线l的夹角为84°点A B C D构成的图形(杯身部分)为等腰梯形∵AD∥BC CD=AB=13.6cm QP=BC=5.8cm∵∠A=∠D=∠DCR=84°∵BP=CQ CD=AB∵Rt△ABP≌Rt△DCQ(HL)∵AP=DQ∵AP=DQ=CDcosD=13.6×0.105=1.428(cm)CQ=CDsinD=13.6×0.995=13.532(cm)∵AD=2AP+PQ=DQ=2×1.428+5.8=8.656(cm)AD=4.328≈4.3(cm)∵OD=12故杯口半径OD的长为4.3cm.(2)解:连接GO并延长交BC于点N∵G为EF的中点EF=1.6(cm)∵GO⊥EF,EG=FG=12连接FD∵ AF=ED,∵∠EFD=∠ADF,∵AD∥EF∵GO⊥AD∵ AD∥BC∵GO⊥BC∵NO=13.532(cm)∵GO=√(4.3)2−(1.6)2≈4.0(cm)∵GN≈17.532(cm)∵GB=√(17.532)2+(2.9)2≈17.77(cm)∵GH=BH−GB=22−17.77≈4.2(cm)13.(1)解:过点C作CF⊥l于点F过点B作BM⊥CF于点M∴∠CFA=∠BMC=∠BMF=90°.由题意得:∠BAF=90°∴四边形ABMF为矩形∴MF=AB=2cm∠ABM=90°.∵∠ABC=150°∴∠MBC=60°.∵BC=18cm∴CM=BC⋅sin60°=18×√32=9√3(cm).∴CF=CM+MF=(9√3+2)cm.答:支点C离桌面l的高度为(9√3+2)cm;(2)解:过点C作CN∥l过点E作EH⊥CN于点H∴∠EHC=90°.∵DE=24cm CD=6cm∴CE=18cm.当∠ECH=30°时EH=CE⋅sin30°=18×12=9(cm);当∠ECH=70°时EH=CE⋅sin70°≈18×0.94=16.92(cm);∴16.92−9=7.92≈7.9(cm)∴当α从30°变化到70°的过程中面板上端E离桌面l的高度是增加了增加了约7.9cm.14.(1)解:由题意得∠DAK=30°∠BAD=75°∠D=90°AK=800√2米BK=400√5米∵∠BAK=∠BAD−∠DAK=75°−30°=45°过点K作KH⊥AB于H则∠AHK=∠BHK=90°∵△AHK为等腰直角三角形∵AH=KH=√22AK=√22×800√2=800米∵BH=√BK2−KH2=√(400√5)2−8002=400米∵AB=AH+BH=800+400=1200米;(2)解:∵AK=800√2∠DAK=30°∠D=90°∵DK=12AK=400√2米AD=AK·cos30°=800√2×√32=400√6米∵路线②K−D−A的路程为KD+AD=400√2+400√6≈1544米∵小宏到达景点A的时间为1544÷240≈6.43分钟∵路线①K−B−A的路程为KB+BA=400√5+1200≈2096米∵小明到达景点A的时间为2096÷320≈6.55分钟∵6.43<6.55∵小宏先到达景点A.15.(1)解:由题意得:∠OO1P=90°.∵OO1=2米O1P=2米∴OP=2√2(米).∴圆锥的侧面积=π×2√2×2=4√2π(米2).答:圆锥的侧面积为4√2π平方米;(2)解:由题意得:∠OQM=90°.设OQ长x米.∵tanα=1 2∴MQ=2x米.∵MN=m米∴NQ=(m+2x)米.∵tanβ=2 5∴xm+2x =25.解得:x=2m.∵O1O2=3米QO2=1米∴OO1=2m+1−3=(2m−2)米.∵O1P=2米∠OO1P=90°.∴OP=√22+(2m−2)2=√4m2−8m+8=2√m2−2m+2(米).∴圆锥的侧面积=π×2√m2−2m+2×2=4π√m2−2m+2(米2).答:亭盖的外部面积为4π√m2−2m+2平方米.16.(1)解:∵∠MDE=45°∴∠DEC=45°∵DC⊥BC∴△DCE是等腰直角三角形∴DC=CE=1.5m 在Rt△DCF中∠DFC=36.9°DC=1.5m∴DF=DCsin36.9°=1.50.60=2.5(m)∴CF=√DF2−DC2=√2⋅52−1⋅52=2(m);故答案为:1.52;(2)∵∠DEC=45°∴∠AEB=45°∴∠BAE=45°∴AB=BE=163.3m由题意可知∠MDF=36.9°∴∠GFB=∠DFC=∠MDF=36.9°∵EF=CF−CE=2−1.5=0.5(m)∴BF=163.3−0.5=162.8(m)在Rt△BFG中BG=tan∠GFB⋅BF≈0.75×162.8=122.1(m)∴AG=163.3−122.1=41.2(m)即“美”字的高度AG约为41.2m.17.(1)解:∵DE垂直于水平地面EF∵∠E=90°∵坡比i=3:4∵DE EF =34设DE=3xm则EF=4xm ∵坡面DF长10m∵(3x)2+(4x)2=102解得:x=2(负值舍去)∵DE=6m EF=8m∵MF=25m∵ME=MF+EF=33m由题意得:∠OME=53°=44m∵OE=ME⋅tan53°≈33×43∵MN=23.5m∵NE=ME+MN=56.5m.由题意得:∠N=30°≈32m∵AE=NE⋅tan30°=56.5×√33∵OA=OE−AE=44−32=12m.(2)如图过点C作CH⊥OE于点M CG⊥NE于G∵∠CHE=∠HEG=∠CGE=∠CHO=90°∵四边形HEGC是矩形∵EH=CG∵叶片绕点O顺时针转动90°∵∠AOE=90°∵∠AOC=120°∵∠COH=30°由题意得:OC=OA=12m=6√3m∵OH=OCcos∠COH=12×√32∵CG=HE=OE−OH=44−6√3≈34m.∵叶片OC顶端C离水平地面EF的距离为34m.18.(1)解:在Rt△ABE中∠AEB=90°∠A=15°AE=576m∴AB=AEcosA =576cos15°≈594(m).答:索道AB的长约为594m.(2)延长BC交DF于点G∵BC∥AF DF⊥AF∴DG⊥CG.∵四边形BEFG为矩形.∴EF=BG.∵CD=AB≈594m∠DCG=45°∴CG=CD·cos∠DCG≈594×cos45°=297√2(m).∴AF=AE+EF=AE+BG=AE+BC+CG≈576+50+297√2≈1045(m).答:水平距离AF的长约为1045m19.(1)解:如图所示过点A作AH⊥BE于点H∵∠BAH=45°,AB=400√2米∴AH=BH=√22AB=400米∵∠AEB=30°∴HE=√3AH=400√3米AE=2AH=800米∴BE=400+400√3≈1092(米).∴BE长约1092米.(2)解:小华先到达景点D处理由如下:如图过点C作CN⊥EF于点N过点D作DM⊥BE于点M交CN于点G则四边形BCNE和四边形DFNG都是矩形∴BC=EN BE=CN=(400+400√3)米GN=DF=400米DG=NF∴CG=CN−GN=400√3米∵景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.∴BC=310(米)∠DCN=37.5°在Rt△CGD中cos∠DCN=CGCD tan∠DCN=DGCG∴CD=CGcos37.5°=400√345≈865(米)DG=CG⋅tan37.5°=400√3×34≈519(米)∴EF=EN+NF=BC+DG≈829(米)∵小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/秒.小明在景点B、C处各停留了10分钟、5分钟∴小明的游览时间为400√2+310+86572+10+5≈39(分钟)在Rt△AEH中AH=400米∠EAH=60°∴AE=AHcos60°=40012=800(米)∵小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/秒.小华在景点E、F处各停留了9分钟、8分钟∴小华的游览时间为800+829+40096+9+8≈38(分钟)∴小华的游览时间更短先到达景点D处.20.(1)解:如图过点C作CE⊥AB垂足为E∵∠DAC=120°∴∠EAC=180°−∠DAC=60°在Rt△AEC中AC=60cm∴CE=AC⋅sin60°=60×√32=30√3(cm)在Rt△BEC中BC=30√6cm∴sin∠EBC=ECBC=√330√6=√22∴∠ABC=45°∴∠ABC的度数约为45°;(2)解:如图过点A作AF⊥BC垂足为F∵圆弧形滑轨⌒AB所在的圆恰好与直线BC相切于点B ∴过点B作HB⊥BC作AB的垂直平分线MG交HB于点O连接OA∴OB=OA∴圆弧形滑轨⌒AB所在的圆的圆心为O∵∠DAC=100°∠ABC=30°∴∠ACF=∠DAC−∠ABC=100°−30=70°在Rt△AFC中AC=50cm∴AF=AC⋅sin70°≈50×0.940=47(cm)在Rt△AFB中∠ABC=30°∴AB=2AF=2×47=94(cm)∵OB⊥BC∴∠OBC=90°∴∠OBA=∠OBC−∠ABC=60°∴△OBA为等边三角形∴OB=AB=94cm∠BOA=60°∴滑轨⌒AB的长度=60π×94180≈98.4(cm)∴滑轨AB⌒AB的长度约为98.4cm.。
中考数学复习专题(五)解直角三角形的实际应用(含答案)
(湖南株洲第23题)如图示一架水平飞行的无人机AB 的尾端点A 测得正前方的桥的左端点P 的俯角为α其中tanα=23,无人机的飞行高度AH 为5003米,桥的长度为1255米. ①求点H 到桥左端点P 的距离;②若无人机前端点B 测得正前方的桥的右端点Q 的俯角为30°,求这架无人机的长度A B .【答案】①求点H 到桥左端点P 的距离为250米;②无人机的长度AB 为5米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC =AH =5003,∠BQC =30°, ∴CQ =tan 30BC︒=1500米,∵PQ =1255米,∴CP =245米,∵HP =250米,∴AB =HC =250﹣245=5米.答:这架无人机的长度AB 为5米..考点:解直角三角形的应用﹣仰角俯角问题.(内蒙古通辽第22题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角030=⊥EOA ,在OB 的位置时俯角060=∠FOB .若EF OC ⊥,点A 比点B 高cm 7.求(1)单摆的长度(7.13≈);(2)从点A 摆动到点B 经过的路径长(1.3≈π).【答案】(1)单摆的长度约为18.9cm(2)从点A摆动到点B经过的路径长为29.295cm则在Rt△AOP中,OP=OAcos∠AOP=12 x,在Rt△BOQ中,OQ=OBcos∠BOQ=32x,由PQ=OQ﹣OP 3﹣12x=7,解得:x3(cm),.答:单摆的长度约为18.9cm;(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB3,∴∠AOB=90°,则从点A摆动到点B经过的路径长为907+73180π⨯()≈29.295,答:从点A摆动到点B经过的路径长为29.295cm.考点:1、解直角三角形的应用﹣仰角俯角问题;2、轨迹.(湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD 两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【答案】4.2m.考点:解直角三角形的应用.(海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度B C.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.(乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救≈≈≈,结果取整数)援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】试题分析:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在Rt△BCE中,根据三角函数可求CE,EB,在Rt△AFC中,根据勾股定理可求AC,再根据路程÷时间=速度求解即可.试题解析:辅助线如图所示:答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题(浙江省绍兴市)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)【答案】(1)38°;(2)20.4m.【解析】试题分析:(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.试题解析:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.考点:1.解直角三角形的应用﹣仰角俯角问题;2.应用题;3.等腰三角形与直角三角形.(·湖北随州·8分)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.解:如图,过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=1620×=810,∵BC=857.5,CF=EG,∴BF=BC﹣CF=47.5,在Rt△BEF中,tan∠BEF=,∴EF=BF,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=,∴AF=EF×tan∠AEF,∴x+47.5=3×47.5,∴x=95,答:雕像AB的高度为95尺.2. (·吉林·7分)如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)解:如图,∠B=α=43°,在Rt△ABC中,∵sinB=,∴AB=≈1765(m).答:飞机A与指挥台B的距离为1765m.3.(·江西·8分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)解:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.4. (·辽宁丹东·10分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.5.(·四川宜宾)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A 点的仰角β=60°,求树高AB(结果保留根号)解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.6.(·湖北黄石·8分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米.(·湖北荆门·6分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小和小明同时分别从A处和B 处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小的行走速度为米/秒.若小明与小同时到达山顶C处,则小明的行走速度是多少?解:过点C 作CD ⊥AB 于点D ,设AD =x 米,小明的行走速度是a 米/秒, ∵∠A =45°,CD ⊥AB ,∴AD =CD =x 米, ∴AC =x .在Rt △BCD 中, ∵∠B =30°, ∴BC ===2x ,∵小的行走速度为米/秒.若小明与小同时到达山顶C 处,∴=,解得a =1米/秒.答:小明的行走速度是1米/秒.8.(·四川内江)(9分)如图,禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B 两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).[考点]三角函数、解决实际问题。
河南省中考数学专题复习专题五解直角三角形的实际应用训练
专题五解直角三角形的实际应用类型一母子型(2015·河南)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin 48°≈0.74,cos 48°≈0.67,tan 48°≈1.11,3≈1.73)例1题图【分析】根据所求构造直角三角形,在直角三角形中,利用锐角三角函数的性质求解问题即可.【自主解答】如解图,延长BD交AE于点G,过点D作DH⊥AE于点H.例1题解图∵由题意,得∠DAE=∠BGH=30°,DA=6,∴GD=DA=6,∴GH=AH=DA·cos 30°=33,∴GA=6 3.设BC=x米,在Rt△GBC中,GC=BCtan∠BGC=3x.在Rt△ABC中,AC=BCtan∠BAC=xtan 48°.∵GC-AC=GA,∴3x-xtan 48°=63,解得x≈13.即大树的高度约为13米.1.(2018·泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L∶(H-H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15 m,坡度为i=1∶0.75,山坡顶部平地EM上有一高为22.5 m的楼房AB,底部A到E点的距离为4 m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9 m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?图①图②2.(2018·商丘模拟)如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4∶3,坡高BE=8米,求小船C到岸边的距离CA的长?(参考数据:3≈1.7,结果保留一位小数)3.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A 处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB 的坡度i=1∶3,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,3≈1.732)4.(2018·新乡一模)如图,为探测某座山的高度AB,某飞机在空中C处测得山顶A处的俯角为31°,此时飞机的飞行高度为CH=4千米;保持飞行高度与方向不变,继续向前飞行2千米到达D处,测得山顶A 处的俯角为50°.求此山的高度AB.(参考数据:tan 30°≈0.6,tan 50°≈1.2)5.(2018·烟台)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速,如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时,数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l 外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 71°≈0.95,cos 71°≈0.33,tan 71°≈2.90)6.(2018·河南说明与检测)如图,在电线杆CD上的C处引拉线CE,CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(参考数据:2≈1.41,3≈1.73.结果保留一位小数.)7.(2018·河南说明与检测)某数学兴趣小组在学习《锐角三角函数》以后,开展测量物体高度的实践活动,他们在河边的一点A处测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20 m(如图),你能根据以上数据求出小山的高BD吗?8.(2018·河南说明与检测)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能与底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D、F到地面的垂直距离相同),均为30 cm,点A到地面的垂直距离为50 cm,求支撑角钢CD和EF的长度各是多少厘米.(结果保留根号)9.(2018·遵义)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面 1.5 m.(计算结果精确到0.1 m,参考数据sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5 m时,吊臂AB的长为____________m;(2)如果该吊车吊臂的最大长度AD为20 m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)类型二背靠背型(2018·河南)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90 cm.低杠上点C到直线AB的距离CE的长为155 cm,高杠上点D到直线AB的距离DF的长为234 cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1 cm,参考数据sin 82.4°≈0.991,cos 82.4°≈0.132,tan 82.4°≈7.500,sin 80.3°≈0.983,cos 80.3°≈0.168,tan 80.3°≈5.850)【分析】 利用锐角三角函数,在Rt△ACE 和Rt△DBF 中,分别求出AE 、BF 的长.计算出EF.通过矩形CEFH 的性质得到CH 的长. 【自主解答】 解:在Rt△ACE 中,AE =CE tan 82.4°=155tan 82.4°≈20.7,在Rt△BDF 中,BF =DF tan 80.3°=234tan 80.3°≈40,∵在矩形CEFH 中,CH =EF ,∴CH=EF =AE +AB +BF =20.7+90+40≈151(cm). 答:高低杠间的水平距离CH 的长为151 cm.1.(2018·驻马店一模)小明利用寒假进行综合实践活动,他想利用测角仪和卷尺测量自家所住楼(甲楼)与对面邮政大楼(乙楼)的高度,现小明用卷尺测得甲楼宽AE 是8 m ,用测角仪在甲楼顶E 处与A 处测得乙楼顶部D 的仰角分别为37°和42°,同时在A 处测得乙楼底部B 处的俯角为32°,请根据小明测得数据帮他计算甲、乙两个楼的高度.(精确到0.01 m)(cos 32°≈0.85,tan 32°≈0.62,cos 42°≈0.74,tan 42°≈0.90,cos 37°≈0.80,tan 37°≈0.75)2.(2018·甘肃省卷)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA =45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:3≈1.7,2≈1.4)3.(2018·常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160 m,CD=40 m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).4.(2018·眉山)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B 、C 两地的距离.(参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)5.(2018·河南说明与检测)如图,B 地在A 地的北偏东56°方向上,C 地在B 地的北偏西19°方向上,原来从A 地到C 地的路线为A→B→C,现在沿A 地北偏东26°方向新修了一条直达C 地的公路,路程比原来少了20千米.求从A 地直达C 地的路程(结果保留整数.参考数据:2≈1.41,3≈1.73).6.(2018·河南说明与检测)如图,某数学活动小组为测量学校旗杆AB 的高度,从旗杆正前方23米处的点C 出发,沿斜面坡度i =1∶3的斜坡CD 前进4米到达点D ,在点D 处安置测角仪,测得旗杆顶部A 的仰角为37°,量得仪器的高DE 为1.5米,已知A ,B ,C ,D ,E 在同一平面内,AB⊥BC,AB∥DE,求旗杆AB 的高度.(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34.计算结果保留根号).7.(2018·河南说明与检测)中国南海是中国固有领海,我方渔政船经常在此海域执勤巡察,一天我方渔政船停在小岛A 北偏西37°方向的B 处,观察A 岛周边海域,据测算,渔政船距A 岛的距离AB 长为10海里,此时位于A 岛正西方向C 处的我方渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号,渔政船接警后,立即沿BC 航线以每小时30海里的速度前往救助,问渔政船大约需要多少分钟能到达渔船所在的C 处?(参考数据:sin 37°≈0.60,cos 37°≈0.80,sin 50°≈0.77,cos 50°≈0.64,sin 53°≈0.80,cos 53°≈0.60,sin 40°≈0.64,cos 40°≈0.77)8.(2018·河南说明与检测)如图,在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,AB=2 km.有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)9.(2018·衡阳)一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2 000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B 处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?参考答案类型一 针对训练1.解:(1)∵i EF =1∶0.75=43=EHFH,设EH =4x ,则FH =3x ,EF =(3x )2+(4x )2=5x =15, ∴x=3,∴FH=3x =9,即山坡EF 的水平宽度FH 为9 m.第1题解图(2)如解图,延长BA 、FH 交于点G ,则AG =EH =4×3=12,GH =AE =4,∴BG=BA +AG =22.5+12=34.5.设CF =y ,则CG =CF +FH +GH =y +9+4=y +13,由题知CG∶(BG-CP)≥1.25,∴y +1334.5-0.9≥1.25,解得y≥29,∴底部C 距F 处至少29 m 远.2.解:如解图,延长DG 交CA 于点H ,得Rt△ABE 和矩形BEHG. i =BE AE =43,第2题解图∵BE=8,∴AE=6,∵DG=1.5,BG =1, ∴DH=DG +GH =1.5+8=9.5, AH =AE +EH =6+1=7. 在Rt△CDH 中,∵∠C=∠FDC=30°,DH =9.5, ∴CH=DHtan 30°=9.5 3.又∵CH=CA +AH , 即9.53=CA +7, ∴CA≈9.2(米). 答:CA 的长约是9.2米.3.解:如解图,过点B 作BF⊥AE,交EA 的延长线于点F ,作BG⊥DE 于点G.∵Rt△ABF 中,i =tan∠BAF=13=33,第3题解图∴∠BAF=30°, ∴BF=12AB =5,AF =5 3.∴BG=AF +AE =53+15. ∵Rt△BGC 中,∠CBG=45°, ∴CG=BG =53+15.Rt△ADE 中,∠DAE=60°,AE =15, ∴DE=AE·tan 60°=3AE =15 3.∴CD=CG +GE -DE =53+15+5-153=20-103≈2.7 m. 答:宣传牌CD 高约2.7米.4.解:如解图,延长BA 交CD 的延长线于点E ,则BE⊥CE,CH =BE =4千米, 设AE =x 千米,第4题解图∵Rt△ADE 中, ∠ADE=50°, ∴DE=AE tan 50°=x 1.2=56x.∴C E =56x +2.∵Rt△ACE 中,∠ACE=31°,∴AE=CE·tan 31°,即x =0.6×(56x +2),解得x =2.4,∴AB=BE -AE =4-2.4=1.6(千米). 答:山的高度AB 约为1.6千米.5.解:在Rt△APC 中,AC =PC·tan∠APC=30·tan 71°≈30×2.90=87米, 在Rt△BPC 中,BC =PCtan∠BPC=30·tan 35°≈30×0.70=21米, 则AB =AC -BC =87-21=66米,该汽车的平均速度为666=11 m/s ,∵40 km/h≈11.1 m/s,∴该车没有超速.6.解:如解图,过点A 作AH⊥CD,垂足为点H , 由题意知,四边形ABDH 为矩形,∠CAH=30°,第6题解图∴AB=DH =1.5,BD =AH =6. 在Rt△ACH 中,CH =AH·tan∠CAH, ∴CH=6·tan 30°=23(米). ∵DH=1.5,∴CD=(23+1.5)(米). 在Rt△CDE 中, ∵∠CED=60°, ∴CE=CDsin 60°=4+3≈5.7(米),答:拉线CE 的长约为5.7米. 7.解:能求出小山的高, 设小山的高BD 为x m. 在Rt△ABD 中,AD =xtan 60°.同理,在Rt△ACD 中,AD =CD tan 66°=x +20tan 66°.即x tan 60°=x +20tan 66°.解得:x≈67.4.答:小山的高BD 约为67.4 m.8.解:如解图,过点A 作AG⊥CD,垂足为点G , 则∠CAG=30°,在Rt△ACG 中,第8题解图CG =CA·sin 30°=50×12=25.由题意得GD =50-30=20, 则CD =CG +GD =25+20=45.连接FD 并延长与BA 的延长线交于点H. 由题意得∠H=30°.∵在R t△CDH 中,CH =CDsin 30°=2CD =90,∴EH=EC +CH =AB -BE -AC +CH =300-50-50+90=290. 在Rt△EFH 中, EF =EH·tan 30°=290×33=29033. ∴支撑角钢CD 的长度为45 cm ,EF 的长度为29033 cm.9.解:(1)11.4 【解法提示】在Rt△ABC 中, ∵∠BAC=64°,AC =5 m , ∴AB=ACc os 64°=5÷0.44≈11.4 m ;第9题解图(2)如解图,过点D 作DH⊥地面于H ,交水平线于点E , 在Rt△ADE 中,∵AD=20 m ,∠DAE=64°,EH =1.5 m ,∴DE=sin 64°×AD≈20×0.9≈18 m,即DH =DE +EH =18+1.5=19.5 m ,答:如果该吊车吊臂的最大长度AD 为20 m ,那么从地面上吊起货物的最大高度是19.5 m. 类型二针对训练1.解:如解图,过点A 作AN⊥BD 于点N ,第1题解图在Rt△DNE,tan 37°=DN EN ≈0.75=34,设DN =3x ,则EN =4x ,在Rt△DNA 中,有DN =3x ,AN =4x -8, ∵tan42°=DN AN =3x4x -8≈0.90,解得:x =12,∴DN=3×12=36,AN =4×12-8=40, 在Rt△BNA 中,由题意知∠NAB=32°, ∵tan 32°=BNAN ,∴BN=tan 32°AN≈24.8,∴DB=DN +BN =36+24.8=60.8,AC =BN =24.8, 答:甲楼的高为60.8 m ,乙楼的高为24.8 m. 2.解:如解图,过点C 作CD⊥AB 于点D , 在Rt△ADC 和Rt△BCD 中,∵∠CAB=30°,∠CBA=45°,AC =640, ∴CD=12AC =320,AD =3203,∴BD=CD =320,BC =3202, ∴AC+BC =640+3202≈1088, ∴AB=AD +BD =3203+320≈864, ∴1088-864=224(公里),答:隧道打通后与打通前相比,从A 地到B 地的路程将约缩短224公里.第2题解图3.解:如解图,过D 作DE⊥AB 于点E ,可得四边形CHED 为矩形,∴HE=CD =40 m ,设CH =DE =x m , 在Rt△BDE 中,∠DBA=60°, ∴BE=DE tan 60°=33x m ,在Rt△ACH 中,∠BAC=30°,∴AH=CHtan 30°=3x m ,由AH +HE +EB =AB =160 m ,得3x +40+33x =160, 解得:x =303,即CH =30 3 m , 答:该段运河的河宽为30 3 m.第3题解图4.解:如解图,过点B 作BD⊥AC于点D ,则∠BAD=60°,∠DBC=90°-37°=53°,第4题解图设AD =x ,在Rt△ABD 中,BD =ADtan∠BAD=3x , 在Rt△BCD 中,CD =BDtan∠DBC=3x×43=433x ,由AC =AD +CD 可得x +433x =13,解得:x =43-3,则BC =BD cos∠DBC =3x 35=533×(43-3)=20-53,即BC 两地的距离为(20-53)千米.5.解:如解图,过点B作BD⊥AC,垂足为D.设BD =x.第5题解图在Rt△ABD 中,∵∠BAD=56°-26°=30°, ∴AB=BD sin 30°=2x ,AD =BDtan 30°=3x.在Rt△BCD 中,∵∠C=26°+19°=45°, ∴BC=BD sin 45°=2x ,CD =BDtan 45°=x.∴AC=3x +x.由题意得AB +BC -AC =20,∴2x+2x -(3x +x)=20,解得x≈29.4. ∴AC≈2.73×29.4=80.262≈80(千米). ∴从A 地直达C 地的路程约为80千米.6.解:如解图,延长ED 交BC 延长线于点F ,则∠CFD=90°,第6题解图∵tan∠DCF=i =13=33,∴∠DCF=30°, ∵CD=4,∴DF=12CD =2,CF =CD·cos∠DCF=4×32=2 3.∴BF=BC +CF =23+23=4 3. 过点E 作EG⊥AB 于G ,则GE =BF =43,BG =EF =ED +DF =1.5+2=3.5,又∵∠AEG=37°,∴AG=GE·tan∠AEG=43·tan37°≈3 3. ∴AB=AG +BG =(33+3.5)米. 答:旗杆AB 的高度约为(33+3.5)米. 7.解:如解图,过点B 作BD⊥AC,垂足为D ,根据题意,得∠ABD=∠BAM=37°,∠CBD=∠BCN=50°,∵在Rt△ABD 中,cos∠ABD=BD AB .∴BD=AB·cos 37°≈10×0.8=8(海里).∵在Rt△CB D 中,cos∠CBD=BD BC ,∴BC=BD cos 50°≈80.64=12.5(海里).∴12.5÷30=512(小时),512×60=25(分钟).∴渔政船大约需25分钟能到达渔船所在的C 处.8.解:(1)如解图,过点P 作PD⊥AB 于点D ,设PD =x ,由题意得知,∠PBD=45°,∠PAD=30°.在Rt△BDP 中,BD =PD =x ,在Rt△PDA 中,AD =PDtan 30°=3PD =3x ,∵AB=2 km ,∴x +3x =2,解得x =3-1,∴点P 到海岸线l 的距离为(3-1) km.(2)如解图,过点B 作BF⊥CA 于点F ,在Rt△ABF 中,BF =AB·sin30°=2×12=1 km.在△ABC 中,∠C=180°-∠BAC-∠ABC=180°-30°-45°-45°-15°=45°,∴在Rt△BFC 中,BC =2BF =2×1= 2 km.∴点C 与点B 之间的距离为 2 km.第8题解图9.解:(1)如解图,过点C 作CP⊥AB 于P ,第9题解图由题意可得:∠A=30°,AC =2 000米,则CP =12AC =1 000米;答:这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离为1 000米.(2)∵在Rt△PBC 中,PC =1 000米,∠PBC=∠BPP=45°, ∴BC=2PC =1 0002米.∵这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆需要的时间为1 0002100=102<15.∴他在15分钟内能到达宾馆.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五解直角三角形的实际应用类型一母子型(2015·河南)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin 48°≈0.74,cos 48°≈0.67,tan 48°≈1.11,3≈1.73)例1题图【分析】根据所求构造直角三角形,在直角三角形中,利用锐角三角函数的性质求解问题即可.【自主解答】如解图,延长BD交AE于点G,过点D作DH⊥AE于点H.例1题解图∵由题意,得∠DAE=∠BGH=30°,DA=6,∴GD=DA=6,∴GH=AH=DA·cos 30°=33,∴GA=6 3.设BC=x米,在Rt△GBC中,GC=BCtan∠BGC=3x.在Rt△ABC中,AC=BCtan∠BAC=xtan 48°.∵GC-AC=GA,∴3x-xtan 48°=63,解得x≈13.即大树的高度约为13米.1.(2018·泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L∶(H-H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15 m,坡度为i=1∶0.75,山坡顶部平地EM上有一高为22.5 m的楼房AB,底部A到E点的距离为4 m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9 m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?图①图②2.(2018·商丘模拟)如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4∶3,坡高BE=8米,求小船C到岸边的距离CA的长?(参考数据:3≈1.7,结果保留一位小数)3.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A 处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB 的坡度i=1∶3,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,3≈1.732)4.(2018·新乡一模)如图,为探测某座山的高度AB,某飞机在空中C处测得山顶A处的俯角为31°,此时飞机的飞行高度为CH=4千米;保持飞行高度与方向不变,继续向前飞行2千米到达D处,测得山顶A 处的俯角为50°.求此山的高度AB.(参考数据:tan 30°≈0.6,tan 50°≈1.2)5.(2018·烟台)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速,如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时,数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l 外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 71°≈0.95,cos 71°≈0.33,tan 71°≈2.90)6.(2018·河南说明与检测)如图,在电线杆CD上的C处引拉线CE,CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(参考数据:2≈1.41,3≈1.73.结果保留一位小数.)7.(2018·河南说明与检测)某数学兴趣小组在学习《锐角三角函数》以后,开展测量物体高度的实践活动,他们在河边的一点A处测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20 m(如图),你能根据以上数据求出小山的高BD吗?8.(2018·河南说明与检测)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D、F到地面的垂直距离相同),均为30 cm,点A到地面的垂直距离为50 cm,求支撑角钢CD和EF的长度各是多少厘米.(结果保留根号)9.(2018·遵义)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5 m.(计算结果精确到0.1 m,参考数据sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5 m时,吊臂AB的长为____________m;(2)如果该吊车吊臂的最大长度AD为20 m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)类型二背靠背型(2018·河南)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90 cm.低杠上点C到直线AB的距离CE的长为155 cm,高杠上点D到直线AB的距离DF的长为234 cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1 cm,参考数据sin 82.4°≈0.991,cos 82.4°≈0.132,tan 82.4°≈7.500,sin 80.3°≈0.983,cos 80.3°≈0.168,tan 80.3°≈5.850)例2题图的性质得到CH 的长. 【自主解答】 解:在Rt△ACE 中,AE =CE tan 82.4°=155tan 82.4°≈20.7,在Rt△BDF 中,BF =DF tan 80.3°=234tan 80.3°≈40,∵在矩形CEFH 中,CH =EF ,∴CH=EF =AE +AB +BF =20.7+90+40≈151(cm). 答:高低杠间的水平距离CH 的长为151 cm.1.(2018·驻马店一模)小明利用寒假进行综合实践活动,他想利用测角仪和卷尺测量自家所住楼(甲楼)与对面邮政大楼(乙楼)的高度,现小明用卷尺测得甲楼宽AE 是8 m ,用测角仪在甲楼顶E 处与A 处测得乙楼顶部D 的仰角分别为37°和42°,同时在A 处测得乙楼底部B 处的俯角为32°,请根据小明测得数据帮他计算甲、乙两个楼的高度.(精确到0.01 m)(cos 32°≈0.85,tan 32°≈0.62,cos 42°≈0.74,tan 42°≈0.90,cos 37°≈0.80,tan 37°≈0.75)2.(2018·甘肃省卷)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA =45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:3≈1.7,2≈1.4)3.(2018·常州)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160 m,CD=40 m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).4.(2018·眉山)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B 、C 两地的距离.(参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)5.(2018·河南说明与检测)如图,B 地在A 地的北偏东56°方向上,C 地在B 地的北偏西19°方向上,原来从A 地到C 地的路线为A→B→C,现在沿A 地北偏东26°方向新修了一条直达C 地的公路,路程比原来少了20千米.求从A 地直达C 地的路程(结果保留整数.参考数据:2≈1.41,3≈1.73).6.(2018·河南说明与检测)如图,某数学活动小组为测量学校旗杆AB 的高度,从旗杆正前方23米处的点C 出发,沿斜面坡度i =1∶3的斜坡CD 前进4米到达点D ,在点D 处安置测角仪,测得旗杆顶部A 的仰角为37°,量得仪器的高DE 为1.5米,已知A ,B ,C ,D ,E 在同一平面内,AB⊥BC,AB∥DE,求旗杆AB 的高度.(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34.计算结果保留根号).7.(2018·河南说明与检测)中国南海是中国固有领海,我方渔政船经常在此海域执勤巡察,一天我方渔政船停在小岛A 北偏西37°方向的B 处,观察A 岛周边海域,据测算,渔政船距A 岛的距离AB 长为10海里,此时位于A 岛正西方向C 处的我方渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号,渔政船接警后,立即沿BC 航线以每小时30海里的速度前往救助,问渔政船大约需要多少分钟能到达渔船所在的C 处?(参考数据:sin 37°≈0.60,cos 37°≈0.80,sin 50°≈0.77,cos 50°≈0.64,sin 53°≈0.80,cos 53°≈0.60,sin 40°≈0.64,cos 40°≈0.77)8.(2018·河南说明与检测)如图,在一笔直的海岸线l上有A、B两个观测站,A在B的正东方向,AB=2 km.有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)9.(2018·衡阳)一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2 000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?参考答案类型一 针对训练1.解:(1)∵i EF =1∶0.75=43=EHFH,设EH =4x ,则FH =3x ,EF =(3x )2+(4x )2=5x =15, ∴x=3,∴FH=3x =9,即山坡EF 的水平宽度FH 为9 m.第1题解图(2)如解图,延长BA 、FH 交于点G ,则AG =EH =4×3=12,GH =AE =4,∴BG=BA +AG =22.5+12=34.5.设CF =y ,则CG =CF +FH +GH =y +9+4=y +13,由题知CG ∶(BG-CP)≥1.25,∴y +1334.5-0.9≥1.25,解得y≥29,∴底部C 距F 处至少29 m 远.2.解:如解图,延长DG 交CA 于点H ,得Rt△ABE 和矩形BEHG. i =BE AE =43,第2题解图∵BE=8,∴AE=6,∵DG=1.5,BG =1, ∴DH=DG +GH =1.5+8=9.5, AH =AE +EH =6+1=7. 在Rt△CDH 中,∵∠C=∠FDC=30°,DH =9.5, ∴CH=DHtan 30°=9.5 3.又∵CH=CA +AH , 即9.53=CA +7, ∴CA≈9.2(米). 答:CA 的长约是9.2米.3.解:如解图,过点B 作BF⊥AE,交EA 的延长线于点F ,作BG⊥DE 于点G.∵Rt△ABF 中,i =tan∠BAF=13=33,第3题解图∴∠BAF=30°, ∴BF=12AB =5,AF =5 3.∴BG=AF +AE =53+15. ∵Rt△BGC 中,∠CBG=45°, ∴CG=BG =53+15.Rt△ADE 中,∠DAE=60°,AE =15, ∴DE=AE·tan 60°=3AE =15 3.∴CD=CG +GE -DE =53+15+5-153=20-103≈2.7 m. 答:宣传牌CD 高约2.7米.4.解:如解图,延长BA 交CD 的延长线于点E ,则BE⊥CE,CH =BE =4千米, 设AE =x 千米,第4题解图∵Rt△ADE 中, ∠ADE=50°, ∴DE=AE tan 50°=x 1.2=56x.∴CE=56x +2.∵Rt△ACE 中,∠ACE=31°,∴AE=CE·tan 31°,即x =0.6×(56x +2),解得x =2.4,∴AB=BE -AE =4-2.4=1.6(千米). 答:山的高度AB 约为1.6千米.5.解:在Rt△APC 中,AC =PC·tan∠APC=30·tan 71°≈30×2.90=87米, 在Rt△BPC 中,BC =PCtan∠BPC=30·tan 35°≈30×0.70=21米, 则AB =AC -BC =87-21=66米,该汽车的平均速度为666=11 m/s ,∵40 km/h≈11.1 m/s,∴该车没有超速.6.解:如解图,过点A 作AH⊥CD,垂足为点H , 由题意知,四边形ABDH 为矩形,∠CAH=30°,第6题解图∴AB=DH =1.5,BD =AH =6. 在Rt△ACH 中,CH =AH·tan∠CAH, ∴CH=6·tan 30°=23(米). ∵DH=1.5,∴CD=(23+1.5)(米). 在Rt△CDE 中, ∵∠CED=60°, ∴CE=CDsin 60°=4+3≈5.7(米),答:拉线CE 的长约为5.7米. 7.解:能求出小山的高, 设小山的高BD 为x m. 在Rt△ABD 中,AD =xtan 60°.同理,在Rt△ACD 中,AD =CD tan 66°=x +20tan 66°.即x tan 60°=x +20tan 66°.解得:x≈67.4.答:小山的高BD 约为67.4 m.8.解:如解图,过点A 作AG⊥CD,垂足为点G , 则∠CAG=30°,在Rt△ACG 中,第8题解图CG =CA·sin 30°=50×12=25.由题意得GD =50-30=20, 则CD =CG +GD =25+20=45.连接FD 并延长与BA 的延长线交于点H. 由题意得∠H=30°.∵在Rt△CDH 中,CH =CDsi n 30°=2CD =90,∴EH=EC +CH =AB -BE -AC +CH =300-50-50+90=290. 在Rt△EFH 中, EF =EH·tan 30°=290×33=29033. ∴支撑角钢CD 的长度为45 cm ,EF 的长度为29033 cm.9.解:(1)11.4 【解法提示】在Rt△ABC 中, ∵∠BAC=64°,AC =5 m , ∴AB=ACcos 64°=5÷0.44≈11.4 m ;第9题解图(2)如解图,过点D 作DH⊥地面于H ,交水平线于点E , 在Rt△ADE 中,∵AD=20 m ,∠DAE=64°,EH =1.5 m ,∴DE=sin 64°×AD≈20×0.9≈18 m,即DH =DE +EH =18+1.5=19.5 m ,答:如果该吊车吊臂的最大长度AD 为20 m ,那么从地面上吊起货物的最大高度是19.5 m. 类型二1.解:如解图,过点A 作AN⊥BD 于点N ,第1题解图在Rt△DNE,tan 37°=DN EN ≈0.75=34,设DN =3x ,则EN =4x ,在Rt△DNA 中,有DN =3x ,AN =4x -8, ∵tan42°=DN AN =3x4x -8≈0.90,解得:x =12,∴DN=3×12=36,AN =4×12-8=40, 在Rt△BNA 中,由题意知∠NAB=32°, ∵tan 32°=BNAN ,∴BN=tan 32°AN≈24.8,∴DB=DN +BN =36+24.8=60.8,AC =BN =24.8, 答:甲楼的高为60.8 m ,乙楼的高为24.8 m. 2.解:如解图,过点C 作CD⊥AB 于点D , 在Rt△ADC 和Rt△BCD 中,∵∠CAB=30°,∠CBA=45°,AC =640, ∴CD=12AC =320,AD =3203,∴BD=CD =320,BC =3202, ∴AC+BC =640+3202≈1088, ∴AB=AD +BD =3203+320≈864, ∴1088-864=224(公里),答:隧道打通后与打通前相比,从A 地到B 地的路程将约缩短224公里.第2题解图3.解:如解图,过D 作DE⊥AB 于点E ,可得四边形CHED 为矩形, ∴HE=CD =40 m ,设CH =DE =x m ,在Rt△BDE中,∠DBA=60°,∴BE=DEtan 60°=33x m,在Rt△ACH中,∠BAC=30°,∴AH=CHtan 30°=3x m,由AH+HE+EB=AB=160 m,得3x+40+33x=160,解得:x=303,即CH=30 3 m,答:该段运河的河宽为30 3 m.第3题解图4.解:如解图,过点B作BD⊥AC于点D,则∠BAD=60°,∠DBC=90°-37°=53°,第4题解图设AD=x,在Rt△ABD中,BD=ADtan∠BAD=3x,在Rt△BCD中,CD=BDtan∠DBC=3x×43=433x,由AC=AD+CD可得x+433x=13,解得:x=43-3,则BC=BDcos∠DBC=3x35=533×(43-3)=20-53,即BC两地的距离为(20-53)千米.5.解:如解图,过点B作BD⊥AC,垂足为D.设BD=x.第5题解图在Rt△ABD中,∵∠BAD=56°-26°=30°, ∴AB =BD sin 30°=2x ,AD =BDtan 30°=3x.在Rt△BCD 中,∵∠C=26°+19°=45°, ∴BC=BD sin 45°=2x ,CD =BDtan 45°=x.∴AC=3x +x.由题意得AB +BC -AC =20,∴2x+2x -(3x +x)=20,解得x≈29.4. ∴AC≈2.73×29.4=80.262≈80(千米). ∴从A 地直达C 地的路程约为80千米.6.解:如解图,延长ED 交BC 延长线于点F ,则∠CFD=90°,第6题解图∵tan∠DCF=i =13=33,∴∠DCF=30°, ∵CD=4,∴DF=12CD =2,CF =CD·cos∠DCF=4×32=2 3.∴BF=BC +CF =23+23=4 3. 过点E 作EG⊥AB 于G ,则GE =BF =43,BG =EF =ED +DF =1.5+2=3.5,又∵∠AEG=37°,∴AG=GE·tan∠AEG=43·tan37°≈3 3. ∴AB=AG +BG =(33+3.5)米. 答:旗杆AB 的高度约为(33+3.5)米. 7.解:如解图,过点B 作BD⊥AC,垂足为D ,第7题解图∵在Rt△AB D 中,cos∠ABD=BD AB . ∴BD=AB·cos 37°≈10×0.8=8(海里). ∵在Rt△CBD 中,cos∠CBD=BD BC , ∴BC=BD cos 50°≈80.64=12.5(海里). ∴12.5÷30=512(小时),512×60=25(分钟). ∴渔政船大约需25分钟能到达渔船所在的C 处.8.解:(1)如解图,过点P 作PD⊥AB 于点D ,设PD =x ,由题意得知,∠PBD=45°,∠PAD=30°.在Rt△BDP 中,BD =PD =x ,在Rt△PDA 中,AD =PD tan 30°=3PD =3x , ∵AB=2 km ,∴x +3x =2,解得x =3-1,∴点P 到海岸线l 的距离为(3-1) km.(2)如解图,过点B 作BF⊥CA 于点F ,在Rt△ABF 中,BF =AB·sin30°=2×12=1 km. 在△ABC 中,∠C=180°-∠BAC-∠ABC=180°-30°-45°-45°-15°=45°,∴在Rt△BFC 中,BC =2BF =2×1= 2 km.∴点C 与点B 之间的距离为 2 km.第8题解图9.解:(1)如解图,过点C 作CP⊥AB 于P ,第9题解图由题意可得:∠A=30°,AC =2 000米,则CP =12AC =1 000米; 答:这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离为1 000米.(2)∵在Rt△PBC 中,PC =1 000米,∠PBC=∠BPP=45°, ∴BC=2PC =1 0002米.∵这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆需要的时间为1 0002100=102<15. ∴他在15分钟内能到达宾馆.。