八(上)数学竞赛练习题(5)
八年级(上)数学竞赛试题及答案(新人教版)
八年级(上)数学竞赛试卷考试时间:100分钟 总分:100分一、精心填一填(本题共10题,每题3分,共30分)1.函数a 的取值范围是_____________、2.如图1,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________. 3.计算:20072-2006×2008=_________图1 图24、写出一个图象经过点(-1,-1),且不经过...第一象限的函数表达式 5.已知点P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则(a+b )2005的值为 .6.如图2,△ABC 中边AB 的垂直平分线分别交BC 、AB于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是_______7.如图3,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.8、如图4,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有 个。
9.如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有y x y x y x -+=* 则()()31*191211**=10.如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.FEDACB图 5图4 二、相信你一定能选对!(本题共6题,每题3分,共18分) 11.下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d ) 12.已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是( )(A )x >0 (B )x <0 (C )x <1 (D )x >1A B C D12 AEBO F C图3图6 图713.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C 14.某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( ) A 、从图中可以直接看出喜欢各种球类的具体人数; B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系 15.已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ). A .2 B .-4 C .-2或-4 D .2或-416.设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定 三、认真解答,一定要细心哟!(各6分,共18分) 17. 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=2。
第一学期八年级数学竞赛练习题6份
第一学期八年级数学竞赛练习题1 (1)第一学期八年级数学竞赛练习题2 (7)第一学期八年级数学竞赛练习题3 (13)第一学期八年级数学竞赛练习题4 (17)第一学期八年级数学竞赛练习题5 (22)第一学期八年级数学竞赛练习题6 (25)第一学期八年级数学竞赛练习题1(满分120分,时间120分钟)一、选择题(每小题5分,共40分)1.已知一列数a 1,a 2,a 3…a n 中,a 1=0,a 2=2a 1+1,a 3=2a 2+1,…a n+1=2a n +1 ,则a 2004-a 2003的个位数字是( )A. 2B. 4C. 6D. 82. 在△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是( ) A.14 B.4 C.14或4 D.以上都不正确3. 如图,四边形ABCD 是正方形,直线l 1,l 2,l 3分别通过A ,B ,C 三点,且a//b//c ,若a 与b 的距离为5,b 与c 的距离为7,则正方形ABCD 的面积等于( )A. 70B.74C.144D.1484.已知对于任意有理数a 、b,关于x,y 的二元一次方程:(a +b)x -(a -b)y =a -b 都有一组公共解,则这个公共解为( ) A.00x y =⎧⎨=⎩ B.11x y =-⎧⎨=⎩ C. 12x y =⎧⎨=⎩ D.01x y =⎧⎨=-⎩5. 把自然数n 的各位数字之和记S(n),如:n =38,S(n)=3+8=11;n =247,S(n)=2+4+7=13, 若对于某个自然数n 满足:n -S(n)=2007,则n 的最大值是( ) A.2019 B.2021 C.2023 D.20256. 如图是一个由几块相同的小正方体搭成的立体图形的三视图,则这堆立体图形中的小正方体共有( )块。
A. 7B. 8C. 9D. 107. 已知p 、q 均是质数,且满足5p 2+3q=59,则以p+3、1-p+q 、2p+q-4为边长的三角形的形状( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形8. 某校准备开办一些学生课外活动的兴趣班,有计算机班、奥数班、英语口语班和音乐艺术班,结果反映热烈。
八年级上数学竞赛练习题含答案
八年级上数学竞赛练习题含答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( ) A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( ) 个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A到G,再顺次拉动开关,即又从A到G,…,他这样拉动了1999次开关后,则开着的灯是()A、、 C、 D、、已知13xx-=,那么多项式3275x x x--+的值是()A.11 B.9 C.7 D.57、线段12y x a=-+(1≤x≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A.6 B.8 C.9 D.108、已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,用S、P分别表示四边形ABCD的面积和周长;S1、P1分别表示四边形EFGH的面积和周长.设K = SS1,K1 =PP1,则下面关于K、K1的说法正确的是().、K1均为常值为常值,K1不为常值不为常值,K1为常值、K1均不为常值二、填空题1、如图,△ABC是一个等边三角形,它绕着点P旋转,可以与等边△ABD重合,则这样的点P有_______个。
八年级上学期数学竞赛试题(含答案)
八年级上学期数学竞赛试题(含答案)题号 一 二 三 四 五 得分 得分一、选择题(每题3分,共42分)将唯一正确答案的代号字母填在下面的表格内: 题号 1 2 345 6 7 8 9 10 11 12 13 14 答案1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称的图形有2.已知三角形两边长分别为3和5,则第三边a 的取值范围是 A .53<<a B .83<<a C .52<<a D .82<<a 3.下列运算错误的是 A .333532a a a -=B .633a a a ÷=C .325()()()a b b a a b --=-D .236m n m n +⨯=4. 一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为 A .8 B .9 C .10 D .125. 计算45(210)(410)-⨯⨯⨯的正确结果是A. 20210-⨯B. 9210⨯C. 9810⨯D. 9810-⨯ 6.下列各式由左边到右边的变形中,是分解因式的为A B C DA .ay ax y x a +=+)(B .4)4(442+-=+-x x x xC .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162++-=+-7. 若321()44m n x y x y x ÷=,则,m n 的值分别是A.6,1m n ==B.5,1m n ==C.5,0m n ==D.6,0m n ==8.下列分式运算中正确的是 A. a acb bc= B.x y y x x y x y --=+- C.321x y x xy x +=+ D. 0.33100.20.525a b a ba b a b++=++9.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是A. AB =AD ,AC =AEB. AB =AD ,BC =DEC. AC =AE ,BC =DED. 以上都不对10.在平面直角坐标系中,已知点(,3)A m 与点(4,)B n 关于y 轴对称,那么2015()m n + 的值为A .1-B .1C .20157-D .2015711.如果214x x c ++是一个完全平方式,那么常数c 的值可以是 A .49 B .169 C .49±D .169±12.对于任何整数a ,多项式2(35)4a +-都能第9题图A.被9整除B.被a 整除C.被1a +整除D.被1a -整除13.如图,在直角ABC △中,90C =∠,30B =∠,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若3AC =,1CE =,则△DBE 的周长为 A .13+ B .23+C .231+D .33+14. 如图为杨辉三角系数表,它的作用是指导读者按规律写出形如()n a b +(其中 n 为正整数)展开式的系数,例如:(a +b )=a +b ,(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,那么6()a b +展开式中前四项系数分别为A .1,5,6,8B .1,5,6,10C .1,6,15,18D .1,6,15,20二、填空题:(每题3分,共15分)答案直接填在题中横线上. 15. 计算:()2323x x ⋅-= .16. 分解因式:(1)(3)4x x -++=___________. 17.若分式2244x x x --+的值为0,则x 的值为 .18. 如图,在△ABC 中,AB =6,BC =8,∠B =60°,将第18题图第13题图E DCBA△ABC沿射线BC 的方向平移2个单位后,得到△'''A B C ,连 接'A C ,则△''A B C 的周长为________.19. 新定义一种运算:22@()()a b a b a b =+--,下面给出关于这种运算的几个结论:①1@(2)8-=-;②@@a b b a =;③若@0a b =,则a 一定为0;④若0a b +=,那么2(@)(@)8a a b b a +=.其中正确结论的序号是 . 三、开动脑筋,你一定能做对!(本大题共3小题,共19分)20. (本题共6分)如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F ,若AC =BD , AB =ED ,BC =BE ,求证:∠ACB =12∠AFB .21.(本题共7分)先化简再求值:已知y x A +=2,y x B -=2,求代数式22()(2)A B x y --的值,其中1x =-,2y =.F E DCBA第20题图22.(本题共6分)如图所示,ABC △中,110BAC ∠=︒,点D,E,F 分别在线段AB 、BC 、AC 上,且BD =BE ,CE =CF ,求DEF ∠的度数.四、认真思考,你一定能成功!(本大题共2小题,共21分)23.(12分)如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究:(1)由图观察易知A (0,4)关于直线l 的对称点A '的坐标为(4,0),请在图中分别 标明B(5,2) 、C(-2,3) 关于直线l 的对称第22题图FEDCBA点B'、C'的位置,并写出他们的坐标:B'、C';归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点(,)P a b关于第一、三象限的角平分线l的对称点P'的坐标为(不必证明);运用与拓广:(3)已知两点D(1,-2)、E(-1,-3),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.(要有必要的画图说明,并保留作图痕迹)24.(本题共9分)设kxy=,是否存在实数k,使得代数式5x?若能,请求出所有满足条件的k的值;----能化简为2()(2)3(2)x y x y x x y若不能,请说明理由.五、相信自己,加油呀!(本大题共2小题,共23分)25. (11分)已知:△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图1,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)如图2,若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?如果是,请写出证明过程;如果不是,请说明理由.26.(本题12分)阅读材料: 分解因式:223x x +-解:原式=22113x x ++-- =2(21)4x x ++-=2(1)4x +- =(12)(12)x x +++-=(3)(1)x x +-此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题: (1)分解因式: 2243m mn n -+;(2)无论m 取何值,代数式232015m m -+总有一个最小值,请你尝试用配FE DCBA方法求出它的最小值.八年级数学试题参考答案及评分建议15. 518x 16. 2(1)x + 17. 2x =- 18. 18 19.①②④三、解答题(共63分)20. (本题共6分)证明:∵AC =BD , AB =ED ,BC =BE , ∴△ABC ≌△DEB ,……………………………………………2分 ∴∠ACB=∠EBD,…………………………………………………3分 ∵∠AFB 是△BFC 的外角,∴∠AFB=∠ACB+∠EBD , ∴∠AFB=2∠ACB ,即∠ACB =12∠AFB.…………………………………………………6分 21.(本题共7分)解:原式=8(2)xy x y -=22816x y xy -…………………………… 5 分当1,2x y =-=时,原式=16+64=80. ……………………………… 7 分 22.(本题共6分)解:不妨设∠B=x ,∠C =y ,则在△BDE 中,∵BD =BE ,∴∠B ED =12(180°-x ),同理在在△CEF中,∵CE =CF ,∴∠CEF =12(180°-y ),………………2分 因为∠B ED +∠DEF +∠CEF =180°,FEDCBA∴∠DEF =180°-(∠B ED +∠CEF )=180°-11(180)(180)22x y ⎡⎤-+-⎢⎥⎣⎦=1()2x y +……………………………4分 又∵110BAC ∠=︒,∴18011070x y +=︒-︒=︒,故∠DEF =170352⨯︒=︒.………6分 23.(本题共9分)解:能.……………………………………………………………1分假设存在实数k ,因为()(2)3(2)x y x y x x y ----=224x y -+,………………3分将kx y =代入,原式=224()x kx -+=22(4)k x -,………………………………5分∵22(4)k x -=25x ,∴245k -=,………………………………………………7分29k =,得3k =±.……………………………………………………………………9分24.(12分) 解:(1)由图可知,'(2,5)B ,'(3,2)C -;…………………………4分(2)由(1)可知,关于直线l 对称的点'(,)P b a ;……………………………………7分(3)作出点E 关于直线l 对称点F ,连接FD ,则QF =QE ,故EQ +QD =FQ +QD =FD.……………………………………………………12分25. (11分)证明:(1)连结AD , ∵AB AC =,∠BAC =90°,D 为BC 的中点,∴AD ⊥ BC ,BD =AD ,∴∠B =∠DAC =45°又BE =AF ,∴△BDE ≌△ADF (SAS )∴ED =FD ,∠BDE =∠ADF∴∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠BDA =90°∴△DEF 为等腰直角三角形 …………………………… 5分(2)若E ,F 分别是AB ,CA 延长线上的点,如图所示.连结AD ∵AB =AC ,∠BAC =90°, D 为BC 的中点,∴AD =BD ,AD ⊥BC ∴∠DAC =∠ABD =45°,∴∠DAF =∠DBE =135°,又AF =BE ,∴△DAF ≌△DBE (SAS ),∴FD =ED ,∠FDA =∠EDB , ∴∠EDF =∠EDB +∠FDB =∠FDA +∠FDB =∠ADB =90°,∴△DEF 仍为等腰直角三角形.…………………………………………………11分26.(本题12分)解:(1)222224344m mn n m mn n n -+=-+- …………1分22(2)m n n =-- ………………………………3分 (3)()m n m n =--;………………………………6分(2)232015m m -+222333()()201522m m =-+-+…………………………7分 2233()()201522m =--+233()201224m =-+,………………………………8分 ∵23()02m -≥,∴2333()20122012244m -+≥,…………………………11分 即代数式232015m m -+的最小值为320124.…………………………………12分(备注:在解答题中,考生若用其它解法,应参照本评分标准给分)。
八年级上学期数学竞赛试题(含答案)
分解因式:
解:原式=
=
=
=
=
此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:
(1)分解因式: ;
(2)无论 取何值,代数式 总有一个最小值,请你尝试用配方法求出它的最小值.
∵ = ,∴ ,………………………………………………7分
,得 .……………………………………………………………………9分
24.(12分)解:(1)由图可知, , ;…………………………4分
(2)由(1)可知,关于直线 对称的点 ;……………………………………7分
(3)作出点E关于直线 对称点F,连接FD,则QF=QE,故EQ+QD=FQ+QD=FD.
∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°,
∴△DEF仍为等腰直角三角形.…………………………………………………11分
26.(本题12分)解:(1) …………1分
………………………………3分
;………………………………6分
(2) …………………………7分
,………………………………8分
∴△DEF为等腰直角三角形 …………………………… 5分
(2)若E,F分别是AB,CA延长线上的点,如图所示.连结AD
∵AB=AC,∠BAC=90°, D为BC的中点,∴AD=BD,AD⊥BC
∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,
又AF=BE,∴△DAF≌△DBE(SAS),∴FD=ED,∠FDA=∠EDB,
3.下列运算错误的是
A. B.
八年级上数学竞赛练习题含答案
八年级上数学竞赛练习题含答案Newly compiled on November 23, 2020八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( ) A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( ) 个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A到G,再顺次拉动开关,即又从A到G,…,他这样拉动了1999次开关后,则开着的灯是()A、、 C、 D、、已知13xx-=,那么多项式3275x x x--+的值是()A.11 B.9 C.7 D.57、线段12y x a=-+(1≤x≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A.6 B.8 C.9 D.108、已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,用S、P分别表示四边形ABCD的面积和周长;S1、P1分别表示四边形EFGH的面积和周长.设K = SS1,K1 =PP1,则下面关于K、K1的说法正确的是().、K1均为常值为常值,K1不为常值不为常值,K1为常值、K1均不为常值二、填空题1、如图,△ABC是一个等边三角形,它绕着点P旋转,可以与等边△ABD重合,则这样的点P有_______个。
初中数学八年级上数学竞赛试题含答案
初中数学八年级上数学竞赛试题含答案Newly compiled on November 23, 20200 1 2-1A 八年级(上)数学竞赛试题一、填空题:(40分)1、在ABC Rt ∆中,b a 、为直角边,c 为斜边,若14=+b a ,10=c ,则ABC ∆的面积是 ;2、计算:=⋅27 311 ;3 313÷⨯= ;2 3 2 +-= ; 3、某位老师在讲实数时,画了一个图(如图1),即以数轴的单位长线段为边作一个正方形,然后以0点为圆心,正方形的对角线长为半径画图,交x 轴于一点A ,作这样的图是用来说明 ;42,又出现了一个方格体正向下运动,为了使所有图案消失,你必须按 后 才能拼一个完整图案,从而使图案自动消失(游戏机有此功能)。
5、如图3,=∠+∠+∠+∠+∠+∠F E D C B A ;6、图4是一住宅小区的长方形花坛图样,阴影部分是草地,空地是四块同样的菱形,则草地与空地的面积之比为 ;(6)7、如图5,一块白色的正方形木板,边长是cm 18,上面横竖各有两根木条(阴影部分),宽都是cm 2,则白色部分面积是 2cm ;8、如图6,一块正方形地板由全等的正方形瓷砖铺成,这地板上的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是 ; 二、选择题:(30分)9、CD 是ABC Rt ∆斜边AB 上的高,若2=AB ,1:3:=BC AC ,则CD 为( )A 、51B 、52 C 、53D 、5410、如图,长方形ABCD 中,3=AB ,4=BC ,若将该矩形折叠,使C 点与A 点重合,则折痕EF 的长为( )A 、B 、3.75C 、D 、 11、如果a a -=-1 1 ,则a 的取值范围是( )A 、1=aB 、10<<aC 、0≥aD 、10≤≤a 12、若2 2 -+-x x 有意义,则x 的取值为( )A 、2>xB 、2<xC 、2≤xD 、2=x13、如上中图所示,一块边长为cm 10的正方形木板ABCD ,在水平桌面上绕点D 按顺时针方向转到D C B A ''''的位置时,顶点B 从开始到结束所经过的路径为( ) A 、cm 20 B 、cm 220 C 、cm 10π D 、cm 25π14、如上右图所示,设ABCD 边上任意一点,设CMB ∆的面积为2S ,CDM ∆的面积为S ,AMD ∆的面积为1S ,则有( )A 、21S S S +=B 、21S S S +> C 、21S S S +< D 、不能确定 三、画图题:(12分)15、如图,历史上最有名的军师诸葛亮,率精骑兵与司马懿对阵,诸葛亮一挥羽扇,军阵瞬时由左图变为右图,其实只移动了其中的3骑而己,请问如何移动(在图形上画出来即可)16、有一等腰梯形纸片,其上底和腰长都是a ,下底的长是a 2,你能将它剪成形状、大小完全一样的四块吗若能,请画出图形。
八年级上册数学竞赛题试卷
一、选择题(每题5分,共25分)1. 下列各数中,正数是()A. -2.5B. -3.6C. -0.5D. 02. 已知a=2,b=-3,那么a²+b²的值是()A. 7B. 13C. 17D. 233. 下列各数中,有理数是()A. √9B. √16C. √25D. √-94. 已知x=3,y=-2,那么x+y的值是()A. 5B. 1C. -5D. -15. 下列各式中,分式是()A. 2xB. 3x+4C. 5/xD. x-1二、填空题(每题5分,共25分)6. 3/4的倒数是______。
7. 已知x²=16,那么x的值是______。
8. (-2)³的值是______。
9. 下列各数中,负数是______。
10. 2/3的平方根是______。
三、解答题(每题15分,共45分)11. (1)已知a=2,b=-3,求a²+b²的值。
(2)已知x²=9,求x的值。
12. 已知一元二次方程2x²-3x+1=0,求该方程的解。
13. 已知一元一次方程3x-5=2x+4,求x的值。
四、应用题(每题20分,共40分)14. 某班有男生x人,女生y人,已知男生人数是女生人数的2倍,求男生和女生人数之和。
15. 小明有若干个苹果,第一天吃了1/3,第二天又吃了2个,这时还剩12个苹果,求小明原来有多少个苹果。
答案:一、选择题1. C2. B3. C4. A5. C二、填空题6. 4/37. ±38. -89. -2 10. ±√6三、解答题11. (1)a²+b²=2²+(-3)²=4+9=13(2)x²=9,则x=±312. 2x²-3x+1=0x²-3/2x+1/2=0(x-1/2)²=0x-1/2=0x=1/213. 3x-5=2x+4x=9四、应用题14. 男生人数是女生人数的2倍,设女生人数为y,则男生人数为2y。
八年级(上)竞赛数学试题(含答案)
八年级竞赛数学试题及答案一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个....是符合题意的,把正确答案前字母序号填在下面表格相应的题号下。
题号 1 2 3 4 5 6 7 8 9 10 11 12答案1.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数2.下列运算正确的是()A.3a+2a=5a2B.x2﹣4=(x+2)(x﹣2)C.(x+1)2=x2+1 D.(2a)3=6a33.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)2 4.如图,将等腰直角三角形沿虚线裁去顶角后,∠ 1+∠ 2=()A.225°B.235°C.270°D.300°5.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F 6.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°7.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=D C.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠P AE.则说明这两个三角形全等的依据是( ) A.SAS B.ASA C.AAS D.SSS8.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个10.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4 B.3 C.6 D.511.如图,平面直角坐标系中,已知定点A(1,0)和B(0,1),若动点C在x轴上运动,则使△ABC为等腰三角形的点C有( )个A. 5B. 4C. 3D. 212、.当x=1时,ax+b+1的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8D.16二、填空(每题4分,共32分)13. 如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置.若∠1=55°,则∠2的度数为 .14.如图,△ABC 中,∠C =90°,∠BAC =60°,AD 是角平分线,若BD =8,则CD 等于 .15.分解因式:﹣x 2+4xy ﹣4y 2= .16.若9x 2﹣kxy +4y 2是一个完全平方式,则k 的值是 . 17.一个多边形的内角和是它的外角和的4倍,这个多边形是 边形. 18.已知x 为正整数,当时x = 时,分式的值为负整数.19. 已知1024x y xy +==,,则()2x y -的值是 .20.比较255,344,433,522的大小,用“<”号连接为: 三、解答下列各题(满分52分)21.(每小题4分,本题满分8分)分解因式: (1)3x 2﹣12x +12 (2)ax 2﹣4a .22. (每小题5分,本题满分15分)计算与化简 (1)(3-x )(3+x )+(1+x )2,(2)(﹣)÷.(3)÷23. (本题满分8分)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:△ACD≌△BCE;(2)若CE=16,BE=21,求AE的长.24.(本题满分10分)如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD 于点G.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.25. (本题满分5分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:已知x2﹣2xy+2y2+6y+9=0,求xy的值;26. (本题满分6分).我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?八年级数学试题参考答案及评分标准(这里只提供了一种解法或证法,其他证法,只要合理,照常得分)一、1-12,BBDCC A DACB BA二、13.115°14.4 15. ﹣(x﹣2y)2.16、±12.17、十.18、3,4,5,8;19、4;20、522<255<433<344三、解答题.21、(1)解:原式=3(x2﹣4x+4)--------------------2分=3(x﹣2)2,-------------4分(2)解:ax2﹣4a=a(x2﹣4)--------------------------2分=a(x﹣2)(x+2).-----------------------4分22、(1)解:原式=9-x2+1+2x+x2 -------------------3分=2x+10 ---------------------------5分(2)解:原式=•--------------------3分=•---------------------------4分=,------------------------------5分(3)解:÷=--------------------3分=----------------------------5分23、(1)证明:∵△ACB和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,----------------1分∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,--------------------2分在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);----------------------5分(2)∵△ACD≌△BCE,∴AD=BE=21,----------------6分∵△ECD是等边三角形,∴DE=CE=16,----------------------------7分∴AE=AD+DE=21+16=37.--------------------------8分24、(1)证明:∵ A D为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,---------1分∴∠DEF=∠DFE,∴∠AEF=∠AFE,∴AE=AF------------------------------------3分∴点A、D都在EF的垂直平分线上,∴AD垂直平分EF.--------------------------------5分(2)答:AG=3DG.-----------------------6分理由:∵∠BAC=60°,AD平分∠BAC,∴∠EAD=30°,∴AD=2DE,∠EDA=60°,-------------7分∵AD⊥EF,∴∠EGD=90°,∴∠DEG=30°--------------8分∴DE=2DG,∴AD=4DG,∴AG=3DG.---------------------------------10分25解:∵x2﹣2xy+2y2+6y+9=0,∴(x2﹣2xy+y2)+(y2+6y+9)=0,---------------------2分∴(x﹣y)2+(y+3)2=0,∴x﹣y=0,y+3=0,∴x=﹣3,y=﹣3,---------------------------------4分∴xy=(﹣3)×(﹣3)=9,即xy的值是9.--------------------------------5分26.解:(a+b+c)2的几何背景如图,-----------------------3分整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.-----------------------6分。
初二数学竞赛训练题5
练习卷51. 1.若实数a 、b 、c 、d 满足a +1=b -2=c +3=d -4,则a 、b 、c 、d 这四个实数中最大的是( )A .aB .bC .cD .d2.一个凸多边形的每一个内角都等于150°,则这个多边形所有对角线的条数共有( )A 、42条B 、54条C 、66条D 、78条3.如图是一个正方体的表面展开图,已知正方体相对两个面上的数值相同,且不相对两个面上的数值不相同,则“★”面上的数为( )A .1B .1或2C .2D .2或34.关于x 满足32537213x x x +-≥--,且23+--x x 的最大值为p ,最小值为q ,则pq 的值是( )A .6B .5C .-5D .45.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,BC =5,将腰DC 绕点D 的逆时针方向旋转90°至DE ,连结AE ,则△ADE 的面积是( )A .1B .2C .3D .46.如图,矩形ABCD 的对角线相交于点O ,AE 平分∠BAD 交BC 于E , 若∠CAE=15°则∠BOE=( )A 、30°B 、45°C 、60°D 、75°7. 若不等式a x x ≤-+-3312有解,则实数a 最小值是( )A 、1B 、2C 、4D 、68. 若实数a 、b 、c 、d 满足4321-=+=-=+d c b a ,则a 、b 、c 、d 这四个实数中最大的是( )A 、aB 、bC 、cD 、d9.已知=++++++++2009200913312211112222 ( ) A 、1 B 、20092008 C 、20102009 D 、20092010 10. 已知51=-a a ,则aa 1-=______________. 11. 一次函数)(111为正整数k k x k k y +++-=的图像与x 轴、y 轴的交点是A 、B ,O 为原点,设Rt△AB O 的面积是k S ,则=++++2009321S S S S ____________.12. 规定任意两个实数对()()d c b a ,,和:当且仅当a=c 且b=d 时,()()d c b a ,,=.定义运算“⊗”: ()()()bc ad bd ac d c b a +-=⊗,,,.若()()()0,5,2,1=⊗q p ,则=+q p _____.13. 已知△ABC 中,AB=39;BC=6;CA=3.点M 是BC 中点,过点B 作AM 延长线的垂线,垂足为D ,则线段BD 的长度是 .14. 一次棋赛,有n 个女选手和9n 个男选手,每位参赛者与其110-n 个选手各对局一次,计分方式为:胜者的2分,负者得0分,平局各自得1分。
初中数学八年级(上)数学竞赛试题(含答案)
1 2-1A 八年级〔上〕数学竞赛试题一、填空题:〔40分〕1、在ABC Rt ∆中,b a 、为直角边,c 为斜边,若14=+b a ,10=c ,则ABC ∆的面积是;2、计算:=⋅27 311 ;3 313÷⨯=;2 3 2 +-=;3、某位老师在讲实数时,画了一个图〔如图1〕,即以数轴的单位长线段为边作一个正方形,然后以0点为圆心,正方形的对角线长为半径画图,交x 轴于一点A ,作这样的图是用来说明;〔1〕4、在电子游戏中有一种方格拼图游戏,若在游戏过程中,已拼好的图案如图2,又出现了一个方格体正向下运动,为了使所有图案消失,你必须按后才能拼一个完整图案,从而使图案自动消失〔游戏机有此功能〕。
5、如图3,=∠+∠+∠+∠+∠+∠F E D C B A ;6、图4是一住宅小区的长方形花坛图样,阴影部分是草地,空地是四块同样的菱形,则草地与空地的面积之比为;<4> <5> <6>7、如图5,一块白色的正方形木板,边长是cm 18,上面横竖各有两根木条〔阴影部分〕,宽都是cm 2,则白色部分面积是2cm ;8、如图6,一块正方形地板由全等的正方形瓷砖铺成,这地板上的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,则瓷砖的总数是; 二、选择题:〔30分〕9、CD 是ABC Rt ∆斜边AB 上的高,若2=AB ,1:3:=BC AC ,则CD 为〔 〕A 、51B 、52 C 、53 D 、5410、如图,长方形ABCD 中,3=AB ,4=BC ,若将该矩形折叠,使C 点与A 点重合,则折痕EF 的长为〔 〕A 、3.74B 、3.75 C 、3.76 D 、3.77DFD)(A '11、如果a a -=-1 1 ,则a 的取值范围是〔 〕A 、1=aB 、10<<aC 、0≥aD 、10≤≤a 12、若2 2 -+-x x 有意义,则x 的取值为〔 〕A 、2>xB 、2<xC 、2≤xD 、2=x13、如上中图所示,一块边长为cm 10的正方形木板ABCD ,在水平桌面上绕点D 按顺时针方向转到D C B A ''''的位置时,顶点B 从开始到结束所经过的路径为〔 〕A 、cm 20B 、cm 220C 、cm 10πD 、cm 25π14、如上右图所示,设M 是边上任意一点,设CMB ∆的面积为2S ,CDM ∆的面积为S ,AMD ∆的面积为1S ,则有〔 〕A 、21S S S +=B 、21S S S +>C 、21S S S +<D 、不能确定 三、画图题:〔12分〕15、如图,历史上最有名的军师诸葛亮,率精骑兵与司马懿对阵,诸葛亮一挥羽扇,军阵瞬时由左图变为右图,其实只移动了其中的3骑而己,请问如何移动?〔在图形上画出来即可〕16、有一等腰梯形纸片,其上底和腰长都是a ,下底的长是a 2,你能将它剪成形状、大小完全一样的四块吗?若能,请画出图形。
八上数学竞赛(含答案)
八年级上数学竞赛试题 (时间90分钟,满分100分)一、填空题(每小题5分,共40分) 1、若01223344555)12(a x a x a x a x a x a x +++++=-,则024a a a ++的值是_2、已知b a 82=(b a ,是正整数)且,52=+b a 那么b a 82+的值是3、如图,在Rt △ABC 中,∠C=90°,∠A=35°,以直角顶点C 为旋转中心,将△ABC 旋转到△A ’B ’C 的位置,其中A ’、B ’分别是A 、B 的对应点,且点B 在斜边A ’B ’上,直角边CA ’交AB 于点D ,则∠DCA 的度数_____。
4、小王与同学约好下午4:30在学校门口见,不见不散,为此,他们在早上8:00钟两人均把自己的表对准,小王于4:30正点走到学校门口,可是同学没来,原来同学的手表比正确时间每小时慢4分钟,如果同学按他自己的手表4:30到达,则小王还要等 分钟(正确时间)5、甲、乙两位探险者到沙漠进行探险。
某日早晨7∶00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进。
上午10∶00,甲、乙二人的距离的平方是_____。
6、一个等腰三角形的周长为16,底边上的高是4,则 这个三角形的三边长分别是______,_____,_______。
7、已知:如图2,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若∠EAF=500,则∠CME +∠CNF =________。
8、如图3,将面积为2a 的正方形与面积为2b 的正方形(b>a)放在一起,则△ABC 的面积是__________。
二、选择题(每小题5分,共40分)1、如图5,正方形ABCD 的边长为1cm ,以对角线AC 为边长再作一个正方形,则正方形ACEF 的面积是( )A 、3cm 2B 、4cm 2AE D BFC图3 A BCDFE 图5ABC D FENM图2BA ∙甲组AE CD F 图612C 、5cm 2D 、2cm 22、以线段16,13,10,6ab c d ====为边,且使a ∥c 作四边形,这样的四边形( )A 、能作一个 B 、能作两个 C 、能作三个 D 、能作无数个 E 、不能作3、如图6,正方形的面积为256,点F 在AD 上,点E 在AB 的延长线上,Rt △CEF 的面积为200,则BE 的值为( )A 、10 B 、11 C 、12 D 、154、实数a 、b 满足ab=1,若11,1111a b M N a b a b=+=+++++, 则M 、N 的关系为( )A 、M>N B 、M=N C 、M<N D 、不确定 5、一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如左图),那么B 点从开始至结束走过的路径长度为( )A 、23πB 、34π C 、 4 D 、2+23π6、在甲组图形的4个图中,每个图示由4种简单图形A 、B 、C 、D (不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为B A ∙,在乙组图形的(a )、(b)、 (c)、(d )4个图中,表示“D A ∙”和“C A ∙”的是( )A 、 (a),(b)B 、 (b),(c)C 、 (c),(d)D 、 (b),(d) 7、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( ) A 、1+πB 、π2 C 、 4 D 、68、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A 到G ,再顺次拉动开关,即又从A 到G ,…,他这样拉动了1999次开关后,则开着的灯是( )A 、A.C.E.G B 、 A.C.F C 、 B.D.F D 、C.E.G乙组B A ∙C B ∙D C ∙ D B ∙ 甲组三、解答题(20分)1、已知四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,请说明:BC+DC=AC2、如图,四边形ABCD中,AB∥CD,且AB+BC=CD+AD。
初二上数学竞赛试卷及答案
一、选择题(每题5分,共50分)1. 下列数中,是质数的是()A. 15B. 16C. 17D. 182. 一个等腰三角形的底边长为10cm,腰长为12cm,则这个三角形的面积是()A. 60cm²B. 70cm²C. 80cm²D. 90cm²3. 已知方程2x+3=7,则x的值是()A. 2B. 3C. 4D. 54. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 矩形D. 等边三角形5. 一个长方体的长、宽、高分别为5cm、3cm、2cm,则这个长方体的体积是()A. 30cm³B. 40cm³C. 50cm³D. 60cm³6. 已知x²-5x+6=0,则x的值是()A. 2或3B. 1或4C. 1或6D. 2或57. 下列数中,是偶数的是()A. 3B. 4C. 5D. 68. 一个梯形的上底长为8cm,下底长为12cm,高为6cm,则这个梯形的面积是()A. 48cm²B. 60cm²C. 72cm²D. 84cm²9. 已知方程3x-4=9,则x的值是()A. 1B. 2C. 3D. 410. 下列图形中,是旋转对称图形的是()A. 正方形B. 等腰三角形C. 矩形D. 等边三角形二、填空题(每题5分,共50分)1. 5的倒数是_________。
2. 2的平方根是_________。
3. 下列数中,最小的负数是_________。
4. 下列数中,最大的正数是_________。
5. 一个圆的半径是3cm,则这个圆的直径是_________。
6. 下列图形中,是中心对称图形的是_________。
7. 下列图形中,是轴对称图形的是_________。
8. 下列图形中,是旋转对称图形的是_________。
9. 一个长方体的长、宽、高分别为5cm、3cm、2cm,则这个长方体的体积是_________。
第一学期八年级数学竞赛练习题6份
第一学期八年级数学竞赛练习题1 (1)第一学期八年级数学竞赛练习题2 (7)第一学期八年级数学竞赛练习题3 (13)第一学期八年级数学竞赛练习题4 (17)第一学期八年级数学竞赛练习题5 (22)第一学期八年级数学竞赛练习题6 (25)第一学期八年级数学竞赛练习题1(满分120分,时间120分钟)一、选择题(每小题5分,共40分)1.已知一列数a 1,a 2,a 3…a n 中,a 1=0,a 2=2a 1+1,a 3=2a 2+1,…a n+1=2a n +1 ,则a 2004-a 2003的个位数字是( )A. 2B. 4C. 6D. 82. 在△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是( ) A.14 B.4 C.14或4 D.以上都不正确3. 如图,四边形ABCD 是正方形,直线l 1,l 2,l 3分别通过A ,B ,C 三点,且a//b//c ,若a 与b 的距离为5,b 与c 的距离为7,则正方形ABCD 的面积等于( )A. 70B.74C.144D.1484.已知对于任意有理数a 、b,关于x,y 的二元一次方程:(a +b)x -(a -b)y =a -b 都有一组公共解,则这个公共解为( ) A.00x y =⎧⎨=⎩ B.11x y =-⎧⎨=⎩ C. 12x y =⎧⎨=⎩ D.01x y =⎧⎨=-⎩5. 把自然数n 的各位数字之和记S(n),如:n =38,S(n)=3+8=11;n =247,S(n)=2+4+7=13, 若对于某个自然数n 满足:n -S(n)=2007,则n 的最大值是( ) A.2019 B.2021 C.2023 D.20256. 如图是一个由几块相同的小正方体搭成的立体图形的三视图,则这堆立体图形中的小正方体共有( )块。
A. 7B. 8C. 9D. 107. 已知p 、q 均是质数,且满足5p 2+3q=59,则以p+3、1-p+q 、2p+q-4为边长的三角形的形状( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形8. 某校准备开办一些学生课外活动的兴趣班,有计算机班、奥数班、英语口语班和音乐艺术班,结果反映热烈。
初二上数学竞赛试题及答案
初二上数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. ±3D. 93. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 84. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. ±5D. 05. 以下哪个是合数?A. 2B. 3C. 4D. 56. 一个数的立方等于-8,这个数是多少?A. -2B. 2C. -8D. 87. 一个数除以2余1,除以3余2,这个数最小是多少?A. 5B. 7C. 8D. 98. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π9. 一个数的平方根是4,这个数是多少?A. 16B. -16C. ±4D. ±1610. 以下哪个是偶数?A. 1B. 2C. 3D. 5答案:1-5 B C A C B;6-10 A B B D B二、填空题(每题2分,共20分)1. 一个数的平方是16,这个数是______。
2. 如果一个数的绝对值是4,那么这个数可以是______或______。
3. 一个数的立方是27,这个数是______。
4. 一个数的倒数是1/2,这个数是______。
5. 一个数的平方根是2,这个数是______。
6. 如果一个数除以4余3,那么这个数可以是______(答案不唯一)。
7. 一个数的平方是25,这个数是______或______。
8. 一个数的立方根是3,这个数是______。
9. 一个数的平方根是-3,这个数是______。
10. 如果一个数的绝对值是3,那么这个数可以是______或______。
答案:1. ±4 2. 4, -4 3. 3 4. 2 5. 4 6. 7(答案不唯一) 7.±5 8. 27 9. 无实数解 10. 3, -3三、计算题(每题10分,共40分)1. 计算下列表达式的值:(2+3)² - 4×5 + 6。
八年级数学竞赛试题上
八年级数学竞赛试题上一、选择题(每题3分,共30分)1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 已知x^2 - 5x + 6 = 0,求x的值:A. 2B. 3C. 1, 6D. 2, 33. 下列哪个不是有理数?A. πB. √2C. 1/3D. -24. 如果一个数的平方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或15. 一个数的立方根等于它本身,这个数可能是:A. 1B. -1C. 0D. A, B, C都是6. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 15cmD. 20cm7. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 一定是负数C. 一定是非负数D. 一定是非正数8. 一个数的相反数是它本身,这个数是:A. 正数B. 负数C. 0D. 无法确定9. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 1或-110. 如果一个分数的分子和分母同时乘以或除以同一个不为0的数,分数的值:A. 变大B. 变小C. 不变D. 无法确定二、填空题(每题3分,共15分)11. 一个数的平方是36,这个数是________。
12. 一个数的立方是-8,这个数是________。
13. 如果一个圆的周长是2πr,那么它的面积是________。
14. 一个三角形的内角和是________度。
15. 如果一个分数的分子是5,分母是10,那么它的倒数是________。
三、解答题(每题5分,共25分)16. 已知a和b是方程x^2 - 4x + 4 = 0的两个根,求a^2 + b^2的值。
17. 一个长方形的长是宽的两倍,如果长增加2cm,宽增加1cm,面积增加了10平方厘米,求原长方形的长和宽。
18. 一个数列的前三项是1,2,4,求第10项的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八(上)数学竞赛练习题(5)
姓名
一、选择题
1、已知:a 、b 是正数,且a+b=2,则2214a b +++的最小值是( )
A 、13
B 、5
C 、25+
D 、7
2、四个壮小伙子正好同五个胖姑娘力量平衡,两个胖姑娘和一个壮小伙子同两个瘦姑娘势均力敌。
那么当左边是两个瘦姑娘和三个胖姑娘,右边是一个胖姑娘和四个壮小伙子时,会发生的结果是 ( )
A .左边赢;
B .右边赢;
C .恰好平衡
D .无法判断
3、有两堆数量相同的棋子.第一堆全为白色,第二堆全为黑色.现在从第一堆中取出若干个白棋子,将其放入第二堆中,充分混合后,从第二堆棋子中随机取出同样多的棋子(棋子中可能有黑有白)放到第一堆中,此时两堆棋子的数量又相同了,则下列说法正确的是( ) (A )此时第一堆中黑棋子的数量大于第二堆中白棋子的数量 (B )此时第一堆中黑棋子的数量等于第二堆中白棋子的数量 (C )此时第一堆中黑棋子的数量小于第二堆中白棋子的数量
(D )此时第一堆中黑棋子的数量与第二堆中白棋子的数量,两者大小关系无法确定 4、盒中原有8个小球,一位魔术师从中任意取几个小球,把每一个小球都变成了8个小球,将其放回盒中,他又从盒中任取一些小球,把每一个小球又都变成了8个小球后放回盒中,如此进行到某一时刻魔术师停止取变球时,盒中球的总数可能是( ) (A )2003个
(B )2004个
(B )2005个
(D )2006个
5、某个游泳池有2个进水口和一个出水口,每个进水口的进水量与时间的关系如图1所示,出水口的出水量与时间的关系如图2所示,某天早上5点到10点,该游泳池的蓄水量与时间的关系如图3所示.
图1 图2 图3
在下面的论断中:①5点到6点,打开进水口,关闭出水口;②6点到8点,同时关闭两个进水口和一个出水口;③8点到9点,关闭两个进水口,打开出水口;④10点到11点,同
时打开两个进水口和一个出水口.可能正确的是 ( )
(A )①③
(B )①④
(C )②③
(D )②④
6、如图,等腰直角三角形ABC 中,∠ACB =90°,在斜边AB 上取两点M 、N ,使∠MCN =45°.设MN =x ,BN =n ,AM =m ,则以x 、m 、n 为边的三角形的形状为( ) (A )锐角三角形 (B )直角三角形
(C )钝角三角形 (D )随x 、m 、n 的值而定
7、一根长30厘米、宽3厘米的长方形纸条,将其按照图示的过程折叠.为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,MA 的长应为( ) (A )7.5厘米 (B )9厘米
(C )10.5
厘米 (D )12厘米
8、若n 满足(n-2004)2
+(2005-n )2
=1,则(2005-n )(n-2004)等于( ) A 、-1
B 、0
C 、1
2
D 、1
二、填空题:
1、已知a *b =ab (a +1),则等式2*x =x *5中的x= ;
2、某商店以每支0.10元的价格买进1500支铅笔,如果以每支0.25元的价格出售,要保证利润不少于100元,那么至少要售出 支铅笔.
3、用计算器探索,按一定的规律排列的一组数:1,,,7.6,5,2,3,2Λ--如果从1开始依次连续选取若干个数,使他们的和大于5,那么至少要选 个数。
4、图中的大正方形的面积S 大相对于小正方形的面积S 小的倍数为 .
5、几个相同的正方形叠合在一起,该组合的正视图(即从正面看到的图形)和俯视图(即从上面看到的图形)如下所示,那么组合体中的正方体的个数至少为 ,最多 个.
6、在如下图的中国象棋盘中若建立直角坐标系后,棋子士所在位置的坐标为(-1,-2),棋子相所在的位置的坐标为(2,-2),那么棋子炮所在位置的坐标为 。
A
B
C
M
N
P
M
B
A
7、在近似计算中,有效数字的个数可以用来衡量近似数的近似程度,使计算简化。
但稍一不慎,它也会给我们带来麻烦。
如2100=1267650600228229401496703205376,某次计算中出现(2100+1010)-2100=0,请指出这次近似计算时取的有效数字的个数最多是.8、如图,用七支完全相同的新铅笔,排成一个菱形ABCD和一个等边三角形AEF,使得点E 在BC上,F在CD上,那么菱形的∠C的度数是度.
三、解答题:
1、数学集训队教练要将一份资料复印给23名队员,校内复印店规定300页以内每页1角5分,超过部分每页1角,这23份资料一起复印的费用正好是单份复印时的20倍,问这份复印资料共有几页?
2、如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形格.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长以的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表(最后一格,用含n的代数式表示):纸片的边长n 2 3 4 5 …… n
使用的纸片张数……
(2)设正方形ABCD被纸片盖住的面积(重合部分
只计一次)为S1,未被盖住的面积为S2.
①当n=2时.求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出
这样的n值;若不存在,请说明理由.
(以下正方形网格仅供作草稿纸用)
3、当等腰三角形被一条直线分割成两个较小的三角形也是等腰三角形时,原等腰三角形的顶角度数是多少?这条直线怎样画?(讨论所有可能的解,并逐一画图表示)
4、如图,一条古城河在CC′处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:DD′,EE′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A、B在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使ADD′E′EB的路程最短,这个最短路程是多少米?
B E
E′
C′
C
D′
D
第4题图
A
参考答案
一、选择题: AABA BBBB 二、填空题:
1、0或0.2;
2、1000;
3、7;
4、2;
5、8,10;
6、(-3,1);
7、20;
8、100; 三、解答题:
1、解 :设这份资料共x 页,单份复印费为a ,23份复印费为b ,则b=2Oa 。
当x >300时 a =300×15+(x -300)×10 =10x+1500
b =300×15+(23x -300)×10 =230x+1500 =20a=20(10x+1500) ∴30x =19×1500, ∴x =19×50=950 当x ≤300,23x >300 a=15x
b =300×15+(23x -300)×10 =230x+1500 =20a =20×15x ∴70x=1500,无整数解。
当23x ≤300,b =15×23x=23 a >20a ,无解。
∴x=950
1
212 ② S 1=(纸牌张数-1)×(2n -1)+n 2=25n-n 2
-l2
25n-n 2-12=72,n 2
—25n+84=0,经试验可得n=4.
3、分两种情况讨论:
(1)当直线通过等腰三角形的顶点时,有如左图的两个解:
顶角:o
90、o
108
AB =AC AD=B D DC=AC
AB =AC AD=B D AD=D C
(2)当直线通过等腰三角形的底角顶点时,有如右图的两个解。
顶角:o
36、7
180o
4、
AB =AC AD=B D DC=B C AB =AC AD=B D BD =B C A
B
C
B
C
A
D
D。