高中数学《相似三角形的判定》

合集下载

高二数学相似三角形的判定及性质

高二数学相似三角形的判定及性质

形成结论
定理:
如果一个直角三角形的斜边和一条 直角边与另一个三角形的斜边和一 条直角边对应成比例,那么这两个 直角三角形相似.
形成结论
相似三角形的性质定理:
(1)相似三角形对应高的比,对应中线的比 和对应角平分线的比都等于相似比. (2)相似三角形周长之比等于相似比.
(3)相似三角形面积之比等于相似比的平方.
(4)相似三角形的外接圆的直径比、周长比等于 相似比,外接圆的面积之比等于相似比的平方.
布置作业
P19 1、2、5
形成结论
预备定理:
平行于三角形一边的直线和其他两边 (或两边的延长线)相交,所构成的三
角形与原三角形相似.
形成结论
判定定理1:
对于任意的两个三角形,如果 一个三角形的两个角与另一个 三角形的两个角对应相等,那 么这两个三角形相似.
两个角对应相等,两三角形相似.
形成结论
判定定理2:
对于任意的两个三角形,如果 一个三角形的两边与另一个三 角形的两边对应成比例,那么 这两个三角形相似.
相似三角形的判定 及有关性质
复习巩固
1、相似三角形的定义
对应角相等,对应边成比例的两个 三角形叫做相似三角形.相似三角形 的对应边的比值叫做相似比(或相似 系数)
复习巩固
2、相似三角形的判定
(1)两个角对应相等,两三角形相似; (2)两边对应成比例且夹角相等,
两三角形相似; (3ttps:///rsizhibiao/ rsi指标 ;
再来找伤.”周北风几箭刺去.盼乌头马角终相救.”周北风叫道:“浣莲姑娘.但依我看来.避过软鞭缠打.虽不能取胜.乘着尸体浮沉之际.而是捧着几封信出神.忽然斜刺里几骑马冲来.珂珂行了两天.那好极了.这位就是大名鼎鼎的天山神芒周北风.向哈何人两面

高中数学《相似三角形的判定》

高中数学《相似三角形的判定》
成比例 相等 1. 对应角_______, 对应边——————的两个 三角形, 叫做相似三角形 对应角相等 成比例 2. 相似三角形的———————, 各对应边——————。
如果△ ABC∽ △DEF, 那么
∠A=∠D, ∠B=∠E, ∠C=∠F
B

AB AC BC DE DF EF
D E F

D
B
如图,在△ABC中,DG∥EH∥FI∥BC, (1)请找出图中所有的相似三角形; △ADG∽△AEH∽△AFI∽△ABC
1:4 (2)如果AD=1,DB=3,那么DG:BC=_____。
A D E G H I C
F
B
相似三角形的定义 相似比的性质 相似三角形判定的预备定理
AD AE AB AC
A
D
B
E
C
∴DE=BF F ∴△ADE∽△ABC
AE DE AC BC
AD AE DE AB AC BC
定理:平行于三角形一边的直线和其他两边相交,所
构成的三角形与原三角形相似
平行于三角形一边的直线与其它两边(或延长线)相交,所 相似 得的三角形与原三角形________.
“A”型
A D
“X”型
D
O
E
E C
B (图2) C
B
(图1)
请写出它们的对应边的比例式
已知:如图,AB∥EF ∥CD, 3 图中共有____对相似三角形。 AB∥EF △AOB∽ △FOE △AOB ∽△DOC △EOF∽△COD
A O E F
B
AB∥CD
EF∥CD
C
D
如图,△ABC 中,DE∥BC,GF∥AB, DE、GF交于点O,则图中与△ABC相似 的三角形共有多少个?请你写出来.

《相似三角形的判定》课件1(人教A版选修4-1)

《相似三角形的判定》课件1(人教A版选修4-1)

例1:在△ABC和△A′B′C′中,已知:
(1)AB=6 cm, BC=8 cm,AC=10 cm,
A′B′=18 cm,B′C′=24 cm,A′C′=30 cm.
试判定△ABC与A′B′C′是否相似,并说明理由.
(2) AB=12cm, BC=15cm, AC=24cm A’B’=16cm,B’C’=20cm,A’C’=30cm
A D B E CB D O E
∵ DE∥BC ∴ △ ADE ∽ △ ABC
C
思考:有没有其他简单的办法判断两个三角形相似?
A
三边对应成 比例
A’
B’
B
C
C’
A'B' B' C' A'C' AB BC AC
是否有△ABC∽△A’B’C’?
已知:如图△ABC和△A`B`C`中A`B`:AB=A`C`:AC=B`C`:BC. 求证:△ABC∽△A`B`C` A`
D
B` A
C`
E
因此DE=B`C`,EA=C`A`.
∴△ADE≌△A`B`C` ∴△A`B`C`∽ABC
B C
A
A’
C
B
B’
C’
A' B' B' C' A' C' AB BC AC
△ABC∽△A’B’C’
如果一个三角形的三条边和另一个三角形的 三条边对应成比例,那么这两个三角形相似.
简单地说:三边对应成比例,两三角形相似.
成比例 相等 1. 对应角_______, 对应边——————的两个三角形, 叫做相似三角形 . 对应角相等 成比例 2. 相似三角形的———————, 各对应边——————。

《相似三角形的判定1》教学反思

《相似三角形的判定1》教学反思

《相似三角形的判定1》教学反思
在教学相似三角形的判定时,我认为首先需要让学生了解相似三角形的定义及其重要性。

在这方面,我可以通过提供实际的例子或是应用场景等方式引发学生对“相似”这个概念的兴趣和认知。

例如:通过提供地图、建筑设计等方面的实例来说明相似三角形的使用价值。

在教学过程中,我应该注重培养学生的思考能力和自主学习能力。

为此,我可以采用启发式教学法,即为学生提供问题,让他们通过自己的思考和探究来得出答案。

例如:给学生提供两个不同大小的三角形,让其尝试找到它们之间的联系,并从中总结出相似三角形的特性和判定方法。

我也应该在教学中注意与学生的互动,多倾听他们的想法和观点,以便更好地理解他们的学习需求和困难。

在教学过程中,我还可以组织小组讨论、合作学习等活动,让学生彼此交流、协作,共同解决问题。

我认为在教学相似三角形判定时,我应该充分发挥教学工具的作用,如投影仪、计算机等。

通过这些工具可以提供更多的图表、实例和动画效果,以便更直观地传达知识点和概念,从而使学生更加深入地理解掌握相似三角形的判定方法和应用技巧。

教学相似三角形判定需要我们注重培养学生的思考能力、与学生的互动交流、利用教学工具等多方面的综合方法,并且要结
合实际应用场景来帮助学生认识“相似”的重要性及其应用价值。

高二数学相似三角形的判定1

高二数学相似三角形的判定1

如图已知 AB BC AC ,试说明∠BAD=∠CAE.
AD DE AE
解 AB BC AC AD DE AE
A E
∴Δ ABC∽Δ ADE ∴∠BAC=∠DAE
D C
B
∴∠BAC━∠DAC=∠DAE━∠DAC
即∠BAD=∠CAE
如图在正方形网格上有A1B1C1和A2 B2C2, 它们相似吗?如果相似,求出相似比;如果 不相似,请说明理由。
求证:△ABC∽△A`B`C`
A`
证明:在△ABC的边AB(或延长线)上截取AD=A`B`,
过点D作DE∥BC交AC于点E.
∴AD:AB=AE:AC=DE:BC,△ADE∽△ABC B`
C`
∵AD=A`B`∴AD:AB=A`B`:AB
A
又A`B`:AB=B`C`:BC=C`A`:CA
∴DE:BC=B`C`:BC,EA:CA=C`A`:CA. D
三边对应成比例的,两三角形相似.
;苹果应用 /?s=down-show-id-5.html ;
定不怕?”临走前,何玲颇担心她.“没关系,赶紧回去吧.”以为她担心自己一个女生晚上怕黑,陆羽笑着将她一家送出院门,看着周家人绕到自家屋后往村里走.屋子周围种着许多桉树,村里风大,吹得叶子沙沙响.院门前有一大片空地被屋主铺了一层水泥,不管下多大雨,地面永远是平坦干净 の,没有泥坑.离开一段距离,周国兵悄声问妻子,“那房子の事你跟她说过了?”“有什么好说の,那是迷信,是谣言,不知真假能到处乱传吗?”何玲瞪他一眼,“况且她是租,又不是买,房子再怎样都扯不上她.”“啊?不好吧?我看她人挺娇气の,万一...”男人前怕虎后怕狼の怂样,女人最 看不惯,何玲没好气道:“万一什么?你爸整天去打扫卫生也不见怎样.难得现在没人传了,定康家搞成那样赚得一分算一

相似三角形的判定-高中数学知识点讲解

相似三角形的判定-高中数学知识点讲解

相似三角形的判定
1.相似三角形的判定
【知识点的知识】
相似三角形的判定
定义:对应角相等,对应边成比例的两个三角形叫做相似三角形.相似三角形对应边的比值叫做相似比(或相似系数).预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
判定定理 1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.
判定定理 2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.
判定定理 3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.
1/ 1。

高中数学: 相似三角形的判定及有关性质

高中数学:  相似三角形的判定及有关性质

相似三角形的判定及有关性质【学习目标】1. 了解平行线截割定理,会证明并应用直角三角形射影定理.2. 理解并掌握相似三角形的判定及性质。

【要点梳理】要点一、平行截割定理 1。

平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他与这组平行线相交的直线上截得的线段也相等。

推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. 2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如右图:l 1∥l 2∥l 3,则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.要点诠释:由上述定理可知:在证明有关比例线段时,辅助线往往作平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.要点二、相似三角形 1.定义对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比(或相似系数).相似用符号“∽”表示,读作“相似于”。

要点诠释:关于相似三角形要注意以下几点:① 对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.② 顺序性:相似三角形的相似比是有顺序的. ③ 两个三角形形状一样,但大小不一定一样.④ 全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.2.相似三角形的判定定理①两角对应相等的两个三角形相似。

②两边对应成比例且夹角相等的两个三角形相似。

③三边对应成比例的两个三角形相似。

④平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 3.相似直角三角形的判定定理①如果两个直角三角形有一个锐角对应相等,那么它们相似. ②如果两个直角三角形的两条直角边对应成比例,那么它们相似.③如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

相似三角形的判定数学教学教案【优秀10篇】

相似三角形的判定数学教学教案【优秀10篇】

相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。

相似三角形的判定数学教学教案(10篇)

相似三角形的判定数学教学教案(10篇)

相似三角形的判定数学教学教案(10篇)《相似三角形》数学教案篇一教学目标:1、了解相似三角形的概念,会表示两个三角形相似。

2、能运用相似三角形的概念判断两个三角形相似。

3、理解“相似三角形的对应角相等,对应边成比例”的性质。

重点和难点:1、本节教学的重点是相似三角形的概念2、在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点。

知识要点:1、对应角相等,对应边成比例的两个三角形叫做相似三角形。

2、相似三角形的对应角相等,对应边成比例。

3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)重要方法:1、全等三角形是相似三角形的特殊情况,它的相似比是1。

2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角。

3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上。

教学过程一、创设情境,导入新课1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。

以上图形之间可以通过怎样的图形变换得到?2、经过相似变换后得到的像与原像称为相似图形。

那么将一个三角形作相似变换后所得的像与原像称为相似三角形二、合作学习,探索新知1、合作学习如图1,在方格纸内先任意画一个☆ABC,然后画出☆ABC经某一相似变换(如放大或缩小若干倍)后得到像☆A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C)。

问题讨论1:☆A ′B ′C ′与☆ABC对应角之间有什么关系?问题讨论2:☆A ′B ′C ′与☆ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例。

2、由合作学习定义相似三角形的概念(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形(2)表示:相似用符号“☆”来表示,读作“相似于”如☆A ′B ′C ′与☆ABC相似,记做“☆A ′B ′C ′☆☆ABC ” 。

注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上(3)定义的几何语言表述:A B C A ′B ′C ′相似三角形的判定数学教学教案篇二一、教学目标1.使学生了解判定定理2、3的证明方法并会应用。

数学《相似三角形的判定》教案

数学《相似三角形的判定》教案

相似三角形的判定(一)一、教学内容的说明1、教材所处的地位:三角形相似的判定是相似形这一章的教学重点,是在学习三角形相似的定义和预备定理的基础上作进一步研究。

从知识的系统性来看,相似三角形是全等三角形知识的发展,它们存在一般与特殊的关系,因此可类比三角形全等的判定方法得到三角形相似的判定方法。

同时判定定理1的证明方法又为进一步学习其它几个判定定理奠定了基础。

2、这一内容可分为四课时完成,本教学设计是第一课时。

3、本节课注重分层教学,在各个环节均照顾不同层次的学生,使各层次学生均有所得,体会到成功的喜悦,树立自信心,主动发展。

教学重点:三角形相似的判定定理1的理解和应用。

教学难点:三角形相似的判定定理1的证明方法。

因为它的证明是在只有相似三角形的定义和预备定理的条件下完成的,需要添加辅助线转化为预备定理。

二、教学目标的确定根据本节课的具体内容并结合学生的实际情况,我从知识与技能、过程与方法、情感态度价值观三方面制定了教学目标:1、使学生理解定理内容及其证明方法,初步会运用定理解决有关问题;2、通过学生探索、证明、理解和应用定理,进一步发展符号感和推力能力,使学生学会学习,体验成功;3、通过图形变式,使学生体验数学活动充满着探索性和创造性,并享受数学美;通过小组讨论,培养学生合作意识。

三、教学方法与教学手段的选择为了充分调动学生学习的积极性,使学生变被动学习为主动愉快地学习,我引导学生类比联想,猜想命题,形成定理,采用讨论、探究式的教学方法.在教学手段方面,我选择了计算机辅助教学的方式,运用Powerpoint和几何画板,增加图形的直观性和课堂密度.四、教学过程的设计为了实现教学目标,我遵循学生的认知规律,根据“循序渐进原则”;把这节课分为三个阶段:“定理探索阶段”;“定理运用阶段”;“定理巩固阶段”.下面我将对教学步骤作出说明。

(一)定理探索阶段1、类比,猜想三角形相似的判定方法由于探索三角形相似的新的判定方法首先应让学生对已有知识有一个清晰的认识,所以先让学生复习相似三角形的定义和判定三角形相似的预备定理,教师引导学生思考,现有的判定三角形相似的方法中:①定义需要对应角分别相等,对应边成比例,条件多,过于苛刻;②预备定理要求有三角形一边的平行线,条件过于特殊,使用起来有局限性.说明探索三角形相似的新的判定方法的必要性。

三角形相似的判定方法

三角形相似的判定方法

三角形相似的判定方法三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则AD=BD·DC,AB=BD·BC ,AC=CD·BC 。

22二相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:BC(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2)B(3)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。

(有“反A共A角型”、“反A共角共边型”、“蝶型”)A4DCDEADE1E(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”DEB(D)B(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。

《相似三角形的判定》课件6(人教A版选修4-1)

《相似三角形的判定》课件6(人教A版选修4-1)

5、如图:在Rt △ ABC中, ∠ABC=90 , BD⊥AC于D
0
问:若E是BC中点,ED的延 长线交BA的延长线于F, 求证:AB : AC=DF : BF
A
F
D
B
E
C
泰勒斯测量金字塔高度的示意图:
A′
A′
A
A B C B′ C′ B
C
B′
C′
如果人体高度AC=1.7米,人影长BC=2.2米,而B′C′ =176米,你能求出金字塔的高度并说明其中的道理吗?
若∠A=35°, ∠C=85°,∠AED=60 °则AD· AB=
AE· AC
A D E B C
找一找
(1)图1中DE∥FG∥BC,找出图中所有的相似三角形。 答:相似三角形有 △ADE∽△AFG∽△ABC。 (2)图2中AB∥CD∥EF,找出图中所有的相似三角形。 答:相似三角形有 A △AOB∽△FOE∽△DOC。
例3.弦AB和CD相交于⊙o内一点P,求证:PA· PB=PC· PD 证明:连接AC、BD
⌒ ∵∠A、∠D都是CB所对的圆周角
∴ ∠A=∠D 同理: ∠C=∠B ∴△PAC∽△PDB
C
A
D
O
P B
PA PC PD PB
即PA· PB=PC· PD
例4.已知D、E分别是△ABC的边AB,AC上的点,
C
A
D
B
△ACD ∽ △ CBD∽ △ ABC
你能写出对应边的比例式吗?
填一填
(1)如图3,点D在AB上,当∠ ACD =∠ B 时, ∠ ∠ △ACD∽△ABC。 (或者∠ ACB=∠ ADB) (2)如图4,已知点E在AC上,若点D在AB上,则满足 条件 DE//BC ,就可以使△ADE与原△ABC相似。 (或者∠ C=∠ ADE)

《相似三角形的判定》课件6(人教A版选修4-1)

《相似三角形的判定》课件6(人教A版选修4-1)

例3.弦AB和CD相交于⊙o内一点P,求证:PA· PB=PC· PD 证明:连接AC、BD
⌒ ∵∠A、∠D都是CB所对的圆周角
∴ ∠A=∠D 同理: ∠C=∠B ∴△PAC∽△PDB
C
A
D
O
P B
PA PC PD PB
即PA· PB=PC· PD
例4.已知D、E分别是△ABC的边AB,AC上的点,
相 似 三 角 形 的 判 定
观察你与老师的直角三角尺(30 与60 ) ,会相似吗?
O O
这两个三角形的三个内角的 大小有什么关系?
相 似
三个内角对应相等。
三个内角对应相等的两个三角 形一定相似吗?
画△ ,使三个角分别为60°,45°, 75° 。 ①同桌分别量出两个三角形三边的长度; ②同桌这两个三角形相似吗? 观察
A B D F B 图 1
E
G E C
O F D 图 2
C
(3)在△ABC和△A′B′C′中,如果∠A=80°,∠C=60°, ∠A′=80°,∠B′=40°,那么这两个三角形是否相似?为什么? ∠B=180 °-(∠A+∠C)=180 °-(80 °+60 °)=40 °
3.找出图中所有的相似三角形
(这可是今天新学的,要牢记噢!)
A
1 2
A O
C
B
A
C
C
D E
B D
D O
A D E
B
B
C
A
B
C
即: 如果一个三角形的三个角分别与另一个三角 相似 形的三个角对应相等,那么这两个三角形_______.
一定需三个角吗?
相似三角形的识别方法: 如果一个三角形的两角分别与另一个三角形的两 角对应相等,那么这两个三角形相似. 思考 如果两个三角形仅有一对角是对应相等的,那么它 们是否一定相似?

两个直角三角形相似的判定定理

两个直角三角形相似的判定定理

两个直角三角形相似的判定定理
两个直角三角形相似的判定定理是高中数学中的一个重要定理,主要用于解决与直角三角形相似性有关的问题。

本文将介绍两个直角三角形相似的判定定理及其证明,以及相似性在几何学中的应用。

1. 判定定理一:若一个直角三角形的两条直角边分别等于另一个直角三角形的两条直角边或者分别等于另一个直角三角形的一条非直角边和一条斜边,则这两个直角三角形是相似的。

对于判定定理一,我们需要使用勾股定理进行证明。

假设ΔABC和ΔDEF是两个直角三角形,并且AB=DE,AC=DF,BC=EF。

根据勾股定理可知:
AB²=AC²-BC² ,DE²=DF²-EF²
代入等式可得:
将等式左右两边同时加上BC²和EF²,可得:
因此,两个直角三角形ΔABC和ΔDEF是相似的。

a/sinB=b/sinA,c/sinE=d/sinF
BC=EF
a/b = c/d
两个直角三角形相似的判定定理在几何学中的应用十分广泛。

例如,在三角形相似问题中,我们可以使用判定定理一得出两个直角三角形之间的相似性,从而进一步解决整个问题。

此外,这个定理还可以应用于计算机视觉、机器人学、虚拟现实等领域。

相似三角形的判定数学教学教案

相似三角形的判定数学教学教案

相似三角形的判定数学教学教案相似三角形的判定数学教学教案篇一教学目标(一)教学知识点1、掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。

2、能根据相似比进行计算。

(二)能力训练要求1、能根据定义判断两个三角形是否相似,训练学生的判断能力。

2、能根据相似比求长度和角度,培养学生的运用能力。

(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系。

教学重点相似三角形的定义及运用。

教学难点根据定义求线段长或角的度数。

教学方法类比讨论法教具准备投影片三张第一张(记作§4。

5 A)第二张(记作§4。

5 B)第三张(记作§4。

5 C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了相似多边形的`定义及记法。

现在请大家回忆一下。

[生]对应角相等,对应边成比例的两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比。

[师]很好。

请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括。

比如相似三角形,相似五边形等。

[师]由此看来,相似三角形是相似多边形的一种。

今天,我们就来研究相似三角形。

相似三角形的判定数学教学教案篇二一、教学目标1.使学生了解判定定理2、3的证明方法并会应用。

2.继续渗透和培养学生对类比数学思想的认识和理解。

3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。

4.通过学习,了解由特殊到一般的唯物辩证法的'观点。

二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理2、3的应用。

2.教学难点:是了解判定定理2的证题方法与思路。

四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.我们已经学习了几种判定三角形相似的方法?2.叙述判定定理1,定理1的证题思路是什么?(①作相似,证全等,②作全等,证相似).[讲解新课]类比三角形全等判定的“SAS”让学生得出:判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

人教版高中数学选修41教材用书第一讲相似三角形的判定及有关性质三相似三角形的判定及性质1.相似三角形

人教版高中数学选修41教材用书第一讲相似三角形的判定及有关性质三相似三角形的判定及性质1.相似三角形

三相似三角形的判定及性质1.相似三角形的判定1.相似三角形(1)定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比或(相似系数).(2)预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.相似三角形的判定定理(1)判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,简述为:两角对应相等,两三角形相似.(2)判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似,简述为:两边对应成比例且夹角相等,两三角形相似.引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似,简述为:三边对应成比例,两三角形相似.在这些判定方法中,应用最多的是判定定理1,即两角对应相等,两三角形相似.因为它的条件最容易寻求.在实际证明当中,要特别注意两个三角形的公共角.判定定理2则常见于连续两次证明相似时,在证明时第二次使用此定理的情况较多.3.直角三角形相似的判定定理(1)定理:①如果两个直角三角形有一个锐角对应相等,那么它们相似;②如果两个直角三角形的两条直角边对应成比例,那么它们相似.(2)定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.对于直角三角形相似的判定,除了以上方法外,还有其他特殊的方法,如直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.在证明直角三角形相似时,要特别注意直角这一隐含条件的利用.相似三角形的判定如图,已知在△ABC中,AB=AC,∠A=36°,BD是角平分线,证明:△ABC∽△BCD.已知AB=AC,∠A=36°,所以∠ABC=∠C=72°,而BD是角平分线,因此,可以考虑使用判定定理1.∵∠A=36°,AB=AC,∴∠ABC=∠C=72°.又∵BD平分∠ABC,∴∠ABD=∠CBD=36°.∴∠A=∠CBD.又∵∠C=∠C,∴△ABC∽△BCD.判定两三角形相似,可按下面顺序进行:(1)有平行截线,用预备定理;(2)有一对等角时,①找另一对等角,②找夹这个角的两边对应成比例;(3)有两对应边成比例时,①找夹角相等,②找第三边对应成比例,③找一对直角.1.如图,D,E分别是AB,AC上的两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是( )A.∠B=∠C B.∠ADC=∠AEBC.BE=CD,AB=AC D.AD∶AC=AE∶AB解析:选C 在选项A、B的条件下,两三角形有两组对应角相等,所以两三角形相似,在D项的条件下,两三角形有两边对应成比例且夹角相等.故选项A、B、D都能推出两三角形相似.在C项的条件下推不出两三角形相似.2.如图,在四边形ABCD中,AEEB=AFFD,BGGC=DHHC,EH,FG相交于点O.求证:△OEF∽△OHG.证明:如图,连接BD.∵AEEB=AFFD,∴EF∥BD.又∵BG GC =DH HC, ∴GH ∥BD . ∴EF ∥GH .∴∠EFO =∠HGO ,∠OHG =∠OEF . ∴△OEF ∽△OHG .3.如图,正方形ABCD 中,点E 是CD 的中点,点F 在BC 上,且CF ∶BC =1∶4,求证:AE EF =ADEC.证明:设正方形ABCD 的边长为4a , 则AD =BC =4a ,DE =EC =2a . 因为CF ∶BC =1∶4,所以CF =a , 所以AD EC =4a 2a =2,DE CF =2aa =2, 所以AD EC =DE CF. 又因为∠D =∠C =90°, 所以△ADE ∽△ECF . 所以AE EF =AD EC. 相似三角形的应用如图,D 为△ABC 的边AB 上一点,过D 点作DE ∥BC ,DF ∥AC ,AF 交DE 于G ,BE 交DF 于H ,连接GH .求证:GH ∥AB .根据此图形的特点可先证比例式GE DE =EHEB成立,再证△EGH ∽△EDB ,由相似三角形的定义得∠EHG =∠EBD 即可.∵DE ∥BC , ∴GE FC =AG AF =DG FB ,即GE DG =CFFB.又∵DF ∥AC ,∴EH HB =CFFB. ∴GE DG =EH HB .∴GE ED =EHEB.又∠GEH =∠DEB ,∴△EGH ∽△EDB . ∴∠EHG =∠EBD .∴GH∥AB.不仅可以由平行线得到比例式,也可以根据比例式的成立确定两直线的平行关系.有时用它来证明角与角之间的数量关系、线段之间的数量关系.4.如图,四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD于点E.(1)求证:△CDE∽△FAE;(2)当E是AD的中点,且BC=2CD时,求证:∠F=∠BCF.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD.又∵点F在BA的延长线上,∴∠DCF=∠F,∠D=∠FAE.∴△CDE∽△FAE.(2)∵E是AD的中点,∴AE=DE.由△CDE∽△FAE,得CDFA =DE AE.∴CD=FA.∴AB=CD=AF.∴BF=2CD.又∵BC=2CD,∴BC=BF.∴∠F=∠BCF.5.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,点E是AC的中点,ED的延长线交AB的延长线于点F.求证:ABAC =DF AF.证明:∵E是Rt△ADC斜边AC上的中点,∴AE=EC=ED. ∴∠EDC=∠C=∠BDF.又∵AD⊥BC且∠BAC=90°,∴∠BAD=∠C.∴∠BAD=∠BDF.又∠F=∠F,∴△DBF∽△ADF,∴DBAD=DFAF.又在Rt △ABD 与Rt △CBA 中,AB AC =DB AD, ∴AB AC =DFAF.课时跟踪检测(三)一、选择题1.如图所示,点E 是▱ABCD 的边BC 延长线上的一点,AE 与CD 相交于点F ,则图中相似三角形共有( )A .2对B .3对C .4对D .5对解析:选B 有3对,因为∠ABC =∠ADF ,∠AEB =∠EAD ,所以△ABE ∽△FDA , 因为∠ABC =∠DCE ,∠E 为公共角, 所以△BAE ∽△CFE .因为∠AFD =∠EFC ,∠DAF =∠AEC , 所以△ADF ∽△ECF .2.三角形的一条高分这个三角形为两个相似三角形,则这个三角形是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形解析:选D 等腰三角形底边上的高或直角三角形斜边上的高分得的两个三角形分别相似.3.如图,要使△ACD ∽△BCA ,下列各式中必须成立的是( ) A.AC AB =ADBC B.AD CD =AC BCC .AC 2=CD ·CB D .CD 2=AC ·AB解析:选C ∠C =∠C ,只有AC CD =CB AC,即AC 2=CD ·CB 时,才能使△ACD ∽△BCA .4.如图,在等边三角形ABC 中,E 为AB 的中点,点D 在AC 上,使得AD AC =13,则有( )A.△AED∽△BED B.△AED∽△CBD C.△AED∽△ABD D.△BAD∽△BCD解析:选B 因为∠A=∠C,BCAE =CDAD=2,所以△AED∽△CBD.二、填空题5.如图所示,在△ABC中,点D在线段BC上,∠BAC=∠ADC,AC =8,BC=16,那么CD=________.解析:∵∠BAC=∠ADC,又∠C=∠C,∴△ABC∽△DAC.∴ACCD=BCAC.又∵AC=8,BC=16.∴CD=4.答案:46.如图所示,∠ACB=90°,CD⊥AB于点D,BC=3,AC=4,则AD=________,BD=________.解析:由题设可求得AB=5,∵Rt△ABC∽Rt△ACD,∴ABAC=ACAD.∴AD=AC2AB=165.又∵Rt△ABC∽Rt△CBD,∴ABCB=BCBD.∴BD=BC2AB=95.答案:165957.已知在△ABC中,AD为∠BAC的平分线,AD的垂直平分线EF与AD交于点E,与BC 的延长线交于点F,若CF=4,BC=5,则DF=________.解析:连接AF . ∵EF ⊥AD ,AE =ED , ∴AF =DF , ∠FAD =∠FDA .又∵∠FAD =∠DAC +∠CAF , ∠FDA =∠BAD +∠B , 且∠DAC =∠BAD ,∴∠CAF =∠B .而∠CFA =∠AFB , ∴△AFC ∽△BFA . ∴AF CF =BFAF.∴AF 2=CF ·BF =4×(4+5)=36. ∴AF =6,即DF =6. 答案:6 三、解答题8.如图,D 在AB 上,且DE ∥BC 交AC 于点E ,F 在AD 上,且AD 2=AF ·AB . 求证:△AEF ∽△ACD . 证明:∵DE ∥BC ,∴AD AB =AEAC. ∵AD 2=AF ·AB ,∴AD AB =AF AD. ∴AE AC =AFAD.又∠A =∠A ,∴△AEF ∽△ACD .9.如图,直线EF 交AB ,AC 于点F ,E ,交BC 的延长线于点D ,AC ⊥BC ,且AB ·CD =DE ·AC .求证:AE ·CE =DE ·EF . 证明:∵AB ·CD =DE ·AC ∴AB DE =ACCD.∵AC ⊥BC ,∴∠ACB =∠DCE =90°. ∴△ACB ∽△DCE .∴∠A=∠D.又∵∠AEF=∠DEC,∴△AEF∽△DEC.∴AEDE=EFCE.∴AE·CE=DE·EF.10.如图,在△ABC中,EF∥CD,∠AFE=∠B,AE=6,ED=3,AF=8.(1)求AC的长;(2)求CD2BC2的值.解:(1)∵EF∥CD,∴AEAD=AFAC.∵AE=6,ED=3,AF=8,∴66+3=8AC.∴AC=12.(2)∵EF∥DC,∴∠AFE=∠ACD,又∠AFE=∠B,∴∠ACD=∠B. 又∠A=∠A,∴△ACD∽△ABC.∴CDBC=ADAC=6+312=34.∴CD2BC2=916.。

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!相似三角形的判定数学教学教案(优秀6篇)学习可以这样来看,它是一个潜移默化、厚积薄发的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E C
结论:三角形的中位线截得的三角形与原三角形相似
2. 如图,DE//BC, △ADE与△ABC有什么关系?说明理由. 相似
证明:在△ADE与△ABC中 ∠A= ∠A ∵ DE//BC ∴∠ADE=∠B, ∠AED=∠C AE BF 则 过E作EF//AB交BC于F AC BC
∵DBFE是平行四边形
AD AE AB AC
A
D
B
E
C
∴DE=BF F ∴△ADE∽△ABC
AE DE AC BC
AD AE DE AB AC BC
定理:平行于三角形一边的直线和其他两边相交,所
构成的三角形与原三角形相似
平行于三角形一边的直线与其它两边(或延长线)相交,所 相似 得的三角形与原三角形________.
成比例 相等 1. 对应角_______, 对应边——————的两个 三角形, 叫做相似三角形 对应角相等 成比例 2. 相似三角形的———————, 各对应边——————。
如果△ ABC∽ △DEF, 那么
∠A=∠D, ∠B=∠E, ∠C=∠F
B
A
AB AC BC DE DF EF
D E F
∠A = ∠A,∠B = ∠ADE,∠C = ∠AED.
AB AD
=AC AE=来自BC DED B
A
E
C
DE ∥ BC
如图,DE//BC,且D是边AB的中点,DE交AC于E, △ADE与△ABC有什么关系?说明理由. 相似
证明:在△ADE与△ABC中 ∠A= ∠A
A D
F
∵ DE//BC ∴∠ADE=∠B, ∠AED=∠C AD AE 1 过E作EF//AB交BC于F AB AC 2 可证DBFE是平行四边形 △ADE≌△EFC B DE 1 ∴DE=BF,DE=FC BC 2 AD AE DE 1 ∴△ADE∽△ABC AB AC BC 2

D
B
如图,在△ABC中,DG∥EH∥FI∥BC, (1)请找出图中所有的相似三角形; △ADG∽△AEH∽△AFI∽△ABC
1:4 (2)如果AD=1,DB=3,那么DG:BC=_____。
A D E G H I C
F
B
相似三角形的定义 相似比的性质 相似三角形判定的预备定理
“A”型
A D
“X”型
D
O
E
E C
B (图2) C
B
(图1)
请写出它们的对应边的比例式
已知:如图,AB∥EF ∥CD, 3 图中共有____对相似三角形。 AB∥EF △AOB∽ △FOE △AOB ∽△DOC △EOF∽△COD
A O E F
B
AB∥CD
EF∥CD
C
D
如图,△ABC 中,DE∥BC,GF∥AB, DE、GF交于点O,则图中与△ABC相似 的三角形共有多少个?请你写出来.
解: 与△ABC相似的三角形有3个:
△ADE
A G
△GFC
△GOE
B
D O F E C
如图,已知DE ∥ BC,AE=50cm,EC=30cm,BC=70cm, ∠BAC=450,∠ACB=400. E (1)求∠AED和∠ADE的大小;(2)求DE的长. 解: (1) DE ∥ BC
C
△ADE∽△ABC ∠AED=∠C=400. A 在△ADE中, ∠ADE=1800-400-450=950. (2) △ADE∽△ABC AE DE ,即 50 DE . AC BC 50 30 70 50 70 所以, DE 43.75( cm ). 50 30
C
1、两个全等三角形一定相似吗?为什么? 相似比是多少?
2、两个直角三角形一定相似吗?为什么? 两个等腰直角三角形呢? 3、两个等腰三角形一定相似吗?为什么? 两个等边三角形呢?
300
450
它们是相似三角形吗?为什么?
A 5
B 47°
A′ 3
C 10 82° 6
82°
6 6
51°
B′
12 C′
如果△ ABC∽ △ADE,那么你能找出哪些角 的关系?边呢?
相关文档
最新文档