高中数学数形结合探析

合集下载

高中数学数形结合思想及其实践探究

高中数学数形结合思想及其实践探究

高中数学数形结合思想及其实践探究数学思想方法是数学知识的精髓,也是引导和促进学生将知识转化为能力的桥梁. 作为数学最基本的思想方法之一,;“;数形结合;”;思想始终贯穿于中小学数学教学的始终. 《高中数学新课程标准》指出:教学中教师;“;要注重数与形的联系,在学习数学和应用数学中不断体会数形结合的思想方法.;”; 然而在数学教学实践中,教师对数形结合思想的重要性认识不足,或因受教材编写所限,在具体教学时对数形结合思想的贯彻和落实就带有一定的盲目性和随意性. 因此在高中数学教学中,教师要根据高中数学知识的特点,注重数与形的联系,强化数形结合思想方法的渗透与训练,恰到好处地向学生充分展示知识的形成过程,使学生在学会和掌握重要数学知识的同时,不断地体会数形结合的思想方法,学会用数学思想指导知识应用,获得必要的数学应用技能,形成优良思维品质,发展数学能力.现代数学视角下的数形结合思想方法的内涵意义所谓;“;数形结合;”;,就是把数学中两个非常重要的元素;-;;-;数量关系和空间形式紧密结合起来,使代数问题与图形问题在抽象思维和形象思维的相互作用中彼此转化,代数问题几何化,几何问题代数化.由此可见,;“;数形结合;”;不仅是一种数学思想,而且也是一种数学解题工具,一种解决问题的策略意识.可以说;“;数形结合;”;的思想方法无时无刻不活跃在学生的数学学习活动之中. 在高中数学教学始终围绕;“;形;”;;“;数;”;两个角度来引导学生进行数学学习,有利于使数学中的复杂问题简单化,抽象问题具体化,有利于学生形成完整的数学概念和深层次的把握数学概念的本质,加深对数学知识的理解和记忆,构建和优化数学认知结构. 同时能使学生在积极参与教学活动的过程中,不断积累数学活动经验,提高数学思维,从而获得终身受益的数学思想方法和解决问题能力.高中数学教学中渗透数形结合思想方法的必要性1. 渗透数形结合思想方法是落实课标精神的需求《普通高中数学课程标准》指出:基本数学思想是学生的数学学习目标之一,要求学生在掌握数学基础知识的同时要掌握基本的数学技能和基本的数学思想. 因此在数学教学中应以数学知识为载体,注重数与形的联系,将数和形完美地统一起来,促进学生数形转化能力和创造性思维能力的培养.2. 渗透数形结合思想方法是发展学生思维的需求在数学教学中有效渗透数形结合思想方法,通过或是化抽象为直观,或是化技巧为程序操作,不仅能使学生数学的思考具有条理性,能多层次和多角度地来思考问题,而且可以帮助学生树立良好的现代数学思维意识,拓展学生寻找解决问题的途径和发散解题思维,促进学生在将来的学习中能自觉进行数学的思考.3. 渗透数形结合思想方法是处理好教与学的需求在数学教学实践中,不少教师对数形结合思想的重要性认识不足,对数形结合思想的贯彻和落实带有一定的盲目性和随意性,在数学知识的教学过程中不能合理布点、由浅入深,从数到形的转换过程过于简单,致使高中生对;“;数;”;和;“;形;”;的理解比较狭隘,运用数形结合法解题时出现构图不当、转换失真、数与形不等价、条件理解不深刻等问题,未能有效提高学生的解题能力.基于以上三方面的分析,可以看出,渗透数形结合思想方法既是落实课标精神的要求,也是学生发展的要求,更是彻底改善目前高中数学教与学现状的需要. 在高中数学教学中只有效渗透数形结合思想方法,才能让学生在主动参与的学习过程中不断体会数形结合的意义所在,获得终身受益的数学思想方法和解决问题的能力,促进学生数学的发展.高中数学教学中渗透数形结合思想方法的策略1. 恰当运用多媒体技术手段动态展现数形结合思想方法信息技术具有动态可视化的效果,因此教学中可以利用多媒体技术来展现数形结合方法,动态变化的演示过程不仅能将抽象的数学知识直观形象、变化有序地展示在学生面前,验证发现数学规律,培养学生的动态感,而且为学生进行建构性学习提供了有利的平台,使学生学会利用动态的眼光去看待问题.高中解析几何不仅是数和形的紧密结合,具有利用方程的性质来研究相应的几何图形的特点,而且它是把曲线,也包括直线看作按一定的几何条件运动的集合.因此教学中用多媒体把;“;数;”;和;“;形;”;的潜在关系动态地显示出来,并有针对性地加以讲解或组织学生讨论. 通过观察、验证、对比等一系列探究性活动寻找到一般规律和特殊属性,从而充分揭示教学内容中内在的辩证关系,加深学生对几何图形的感知和理解,从而培养学生用运动、变化的观点分析和解决问题的习惯,最终理解和掌握所学知识的实质.2. 在探寻知识意义的实践活动中渗透数形结合思想方法数学学习的过程不只是数学知识的习得,而应是引导学生在;“;经历;”;;“;体验;”;知识的产生、发展和形成过程中发展能力. 因此在高中数学教学中教师要创设开展数学活动的良好情境,给予学生充分的从事数学活动的时间和空间,在亲历中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,发展数学思维.如,在教学;“;函数的单调性;”;时,笔者安排了三个层次的教学活动:(1)以实际生活中的气温变化表、股市走势等让学生利用已有的知识经验进行思考;(2)出示函数图象,引导学生将图象中上升或下降的趋势用自己的语言描述出来;(3)用几何画板动态演示,让学生观察随着x值的变化,函数值f(x)是如何变化的,然后再用数学语言对图形中的上升或下降趋势加以描述. 将图象语言、符号语言、文字语言相结合,在探究、经历;“;函数单调性;”;的数学活动过程中使学生对;“;函数单调性;”;本质内涵进行理解,体验数形结合的数学思想方法. 3. 在解题过程中合理引导学生使用数形结合思想方法数学学习的目的,不仅是引导学生学会和掌握数学知识,更重要的是学会用数学思想指导知识的应用. 作为解决数学问题时;“;由数思形;”;或;“;由形思数;”;的一种数学思想,它可以有效地将数字和图形相互转化,利用形象解决抽象,实现化难为易的效果. 因此教师在平时的教学中应有意识地引导学生把数形结合的思想运用于解答数学问题中去,提高学生的分析及解决问题的能力.(1)由数思形,以形得数如:已知f(x)=x2+4x+3,求f(x)在闭区间[-3,1]上的最大值、最小值.分析:f(x)=x2+4x+3=(x+2)2-1图象的开口向上,对称轴x=-2,作此二次函数的大致草图(如图1),对称轴在区间内,并在区间中点的左侧,故f(x)max=f(1)=8,f(x)min=f(-2)=-(2)由形思数,以数论形如:如图2,AB为半圆O的直径,且AB=2,P是延长线上一点,且OP=2,Q为半圆上任一点,以PQ为一边向△OPQ的外部作等边三角形PQR,求四边形OPRQ的面积的最大值,并求当四边形OPRQ面积最大值时∠QOP的值.分析:要确定四边形面积的最大值,必须由题目条件结合图形,把面积的表达式写出来.设∠QOP=θ,则在△OPQ中,由余弦定理可得PQ2=5-4cosθ,故.四边形OPRQ面积的最大值为,此时θ-=,所以θ=.在引导学生对知识的反思的过程中提炼数形结合思想高中数学很多知识点屮都蕴含数形结合思想,可以说贯穿于高中数学学习的始终. 然而在数学问题解决的过程中,很多教师往往就题论题,告知学生此题可利用数形结合思想来解,这样不利于学生达到真正意义上的理解和接受. 因此教师要彻底改变重视;“;教;”;而忽略;“;学;”;的现状,不仅要在整体上做好分类,有目的、有计划地选取典型例题进行分析和讲解,而且还应积极引导学生进行反思与归纳,在对知识的反思的过程中提炼数形结合思想,从而构建完整的数形结合解决问题的策略体系.总之,在高中数学教学中教师要从着眼于学生数学能力的提高的视角,在数学教学中体现对数形结合思想方法的关注和重视,注重学生数学思想方法的激活,让学生从解决问题的方法和过程中感悟与体会数学思想方法,在亲历自主探究解决问题的过程中实现知识的完整建构,促进学生数形转化、迁移思维与分析问题及、解决问题能力的提升,发展数学素养。

例谈“数形结合”思想在高考数学中的应用

例谈“数形结合”思想在高考数学中的应用

2024年3月上半月㊀学习指导㊀㊀㊀㊀例谈 数形结合 思想在高考数学中的应用∗◉湖北江汉大学数学与大数据系㊀周㊀岭㊀许㊀璐㊀㊀著名数学家华罗庚曾说过: 数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休 .所谓 数形结合 就是把抽象的数学语言㊁数量关系与直观的几何图形㊁位置关系结合起来,通过 以形助数或 以数解形 ,即通过抽象思维与形象思维的结合,将复杂问题简单化,抽象问题具体化,达到实现优化解题路径的目的,起到事半功倍的效果.下面将结合高考数学试题实例,分析说明 数形结合 思想在解决问题中的作用和简捷.1数形结合思想在解析几何中的应用例1㊀(2023年全国新高考Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则s i n α=(㊀㊀).A.1㊀㊀㊀B .154㊀㊀C .104㊀㊀D.64分析:此题可以先将圆的方程化为标准形式,设出切线方程,利用点到直线的距离公式求出两条切线的斜率,最后利用夹角公式求得s i n α的值,但是计算相对复杂.解析:依题意,圆的方程可化为(x -2)2+y 2=5.图1如图1,得到圆心C (2,0),r =5,P (0,-2).所以|P C |=22.设过点P 的两条切线为P A 和P B ,则øA P B =α,可得s i nα2=r |P C |=522=104,c o sα2=1-(s i n α2)2=64.所以s i n α=2s i nα2c o s α2=154.故选:B .例2㊀(2023年新高考I 卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ңʅF 1B ң,F 2A ң=-23F 2B ң,则C 的离心率为.分析:此题常见解法是设出点A ,B 的坐标,利用已知条件列出三个方程,再解出方程求得点A ,B 的坐标,进而得出双曲线C 的离心率.这样计算量会很大,如果利用数形结合的思想结合双曲线的定义求其离心率将会大大简化计算.解析:由F 2A ң=-23F 2B ң,得|F 2A ||F 2B |=23.设|F 2A |=2x ,则|F 2B |=3x ,|A B |=5x ,|F 1B |=|F 2B |=3x .由双曲线的定义,得|A F 1|=|A F 2|+2a =2x +2a .设øF 1A F 2=θ,则s i n θ=3x 5x =35,所以c o s θ=45=2x +2a5x,解得=a ,则|A F 1|=4a ,|A F 2|=2a .图2如图2,在әF 1A F 2中,由余弦定理,可得c o s θ=16a 2+4a 2-4c 216a2=45.整理,得5c 2=9a 2.故e =c a =355.点评:这类题目考查了学生 数学抽象 的核心素养.解决此类题的关键在于将数学符号语言和图形语言相互转化,利用图形的直观性,结合相关定义㊁公式即可快速解题.2数形结合思想在立体几何中的应用例3㊀(2022年新高考I 卷)已知正方体A B C D GA 1B 1C 1D 1,则(㊀㊀).A.直线B C 1与D A 1所成的角为90ʎB .直线B C 1与C A 1所成的角为90ʎC .直线B C 1与平面B B 1D 1D 所成的角为45ʎD.直线B C 1与平面A B C D 所成的角为45ʎ分析:此题可以通过建立空间直角坐标系来判断各选项是否正确,但计算较繁琐.解析:选项A ,B 的判断略.93∗基金项目:江汉大学研究生科研创新基金项目 基于新课标新课改背景下提升中学生数学学科核心素养的探究 ,项目编号为K Y C X J J 202350;教育部产学合作协调育人2022年第一批立项项目 基于P y t h o n 的大数据分析与应用课程混合教学模式探索 ,项目编号为220506627242057.学习指导2024年3月上半月㊀㊀㊀图3如图3所示,连接A1C1,设A1C1ɘB1D1=O,连接B O.由B B1ʅ平面A1B1C1D1,C1O⊂平面A1B1C1D1,得C1OʅB1B.因为C1OʅB1D1,B1D1ɘB1B=B1,所以C1Oʅ平面B B1D1D,所以øC1B O为直线B C1与平面B B1D1D的夹角.设正方体棱长为1,则C1O=22,B C1=2,于是s i nøC1B O=C1O B C1=12.所以直线B C1与平面B B1D1D所成的角为30ʎ,故选项C错误.因为C1Cʅ平面A B C D,所以øC1B C为直线B C1与平面A BC D的夹角,易得øC1B C=45ʎ,故选项D正确.综上所述,此题选:A B D.点评:本题主要考查立体几何中直线与直线的夹角㊁直线与平面的夹角,是对学生 逻辑推理 直观想象核心素养的考查.此题如果通过建系来计算,将比较复杂,耗时较长;若采取 传统 方法,结合图形并运用立体几何㊁三角函数相关知识,即可快速㊁直观作出判断.3数形结合思想在函数中的应用例4㊀(2021年全国乙卷)设aʂ0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则有(㊀㊀).A.a<b B.a>b C.a b<a2D.a b>a2分析:此题如果利用导数知识来求该函数的极大值点,再通过a与b的大小来判断选项将非常复杂.如果通过数形结合先考虑函数的零点情况,注意零点附近左右两侧函数值是否变号,结合极大值点的性质,对a进行分类画出该函数的图象再来判断选项将大大简化了问题,既直观又方便快捷[1].解析:若a=b,则f(x)=a(x-a)3为单调函数,无极值点,不符合题意,故aʂb.所以f(x)有x=a和x=b两个不同零点,且在x=a附近左右两侧不变号,在x=b附近左右两侧变号.因为x=a为函数f(x)=a(x-a)2(x-b)的极大值点,所以f(x)在x=a附近左右都小于0.①当a<0时,由x>b,f(x)ɤ0,画出f(x)的图象如图4所示.由b<a<0,得a b>a2.图4㊀㊀㊀图5②当a>0时,由x>b,f(x)>0,画出f(x)的图象如图5所示.由b>a>0,得a b>a2.综上a b>a2成立.故选:D.例5㊀(2021年新高考I卷)已知O为坐标原点,点A(1,0),P1(c o sα,s i nα),P2(c o sβ,-s i nβ),P3(c o s(α+β),s i n(α+β)),则(㊀㊀).A.|O P1ң|=|O P2ң|B.|A P1ң|=|A P2ң|C.O Aң O P3ң=O P1ң O P2ңD.O Aң O P1ң=O P2ң O P3ң分析:此题如果画出图形,利用数形结合思想解题,既直观又简捷.图6解析:如图6,可得|O P1ң|=|O P2ң|=1,故选项A正确.仅当α=-β时,|A P1ң|=|A P2ң|成立.故选项B错误.由O Aң O P3ң=|O Aң| |O P3ң|c o s(α+β),O P1ң O P2ң=|O P1ң| |O P2ң| c o s(α+β),|O Aң|=|O P3ң|=|O P1ң|=|O P2ң|=1,可知O Aң O P3ң=O P1ң O P2ң.故选项C正确.观察图象,易得‹O Aң,O P1ң›=α,‹O P2ң,O P3ң›=α+2β.故选项D错误.此题应选:A C.例6㊀(2021年新高考I卷)若过点(a,b)可以作曲线y=e x的两条切线,则(㊀㊀).A.e b<a B.e a<bC.0<a<e b D.0<b<e a分析:此题要求作出曲线y=e x的两条切线,通过几何图形进行直观想象,很容易判断各选项是否正确.解析:作出y=e x的图象.易得,若想作出切线,点(a,b)需在曲线y=e x的下方和x轴上方,如图7,即b<e a.图7㊀㊀图8但点(a,b)在x轴及其下方时,仅能作出一条切线,如图8.所以点(a,b)需在y轴上方,即b>0.综上,可得0<b<e a.故选:D.综上所述,在高考数学中利用数形结合思想解题往往可以起到简化计算㊁提高解题效率的作用.因此,平时教学中教师应通过数形结合思想丰富的展现形式不断对其进行渗透,促进学生数与形相互转换的能力,刺激学生学习数学的欲望,引导学生投入到数形结合分析的专题探究中[2],从而达到数学抽象思维具象化㊁发散化的教学目的,最终达到提升学生核心素养和全面发展的教育目的.参考文献:[1]常国良.数学教学中渗透直观想象素养的三重境界[J].教学与管理,2020(31):62G64.[2]李兆芹.探究数形结合思想如何有效运用于高中数学教学[J].数学学习与研究,2018(5):43.Z04。

数形结合思想在高中数学教学中的运用研究

数形结合思想在高中数学教学中的运用研究

数形结合思想在高中数学教学中的运用研究摘要:数形结合思想是数学教学中的重要理念,通过将数学和几何形式结合,可以更加直观地理解数学知识,提高学生的学习兴趣和学习效果。

本文将从数形结合思想在高中数学教学中的意义和重要性、数形结合思想在解决实际问题中的应用以及数形结合思想在高中数学教学中的实际操作等方面展开研究,希望能够为高中数学教学提供一定的参考和借鉴。

关键词:数形结合思想;高中数学教学;实际问题;应用研究;教学操作一、引言二、数形结合思想在高中数学教学中的意义和重要性1. 提高学习兴趣数学教学中,通过数形结合思想,可以使抽象的数学知识更加具体和直观,从而提高学生的学习兴趣。

通过图形展示不同的数学定理和问题,可以使学生更容易理解和记忆,从而激发学习兴趣,增加学习动力。

2. 加深理解数形结合思想可以帮助学生更深入地理解数学概念和原理。

通过观察图形、几何形状和数学关系,学生可以更加直观地理解数学知识,从而更容易掌握和运用。

3. 培养思维能力数形结合思想可以培养学生的空间想象力和逻辑推理能力,提高学生的数学思维水平。

通过观察、研究和推理,学生可以更好地理解和运用数学知识,提高解决问题的能力。

三、数形结合思想在解决实际问题中的应用数形结合思想在解决实际问题中有着广泛的应用,特别是在几何问题和应用题中往往能够发挥出更大的作用。

1. 几何问题2. 应用题在应用题中,数形结合思想可以帮助学生更加直观地理解和解决各种实际问题。

通过图形展示一个实际问题的几何形式,可以更容易地建立数学模型,从而更容易地解决应用题。

1. 利用图形展示数学知识2. 引导学生观察、分析和推理。

数形结合思想在高中数学教学中的应用分析

数形结合思想在高中数学教学中的应用分析

数形结合思想在高中数学教学中的应用分析
数形结合思想是通过将数学与几何相结合的方式来解决问题,它充分利用了几何图形
的直观性和数学公式的精确性。

在高中数学教学中,数形结合思想可以被广泛应用于各种
数学概念和技巧的讲解,以及问题的解决。

在几何学中,数形结合思想可以用于解决诸如平面面积、体积等问题。

例如,如果我
们将一个三角形分成两个小的三角形,那么它们的面积加起来就等于原来的三角形的面积。

这就是数形结合思想的应用。

在高中数学教学中,这个思想可以用于教学基本几何概念,
例如勾股定理,三角形面积,正方体体积等。

另一方面,数形结合思想在代数学中也有重要的应用。

例如,在解方程的时候,我们
可以通过画出函数图像,通过图像的交点得到解方程的方法。

在高中数学教学中,这个思
想可以用于数学分析和高等代数的教学中。

此外,数形结合思想也可以用于数学模型的建立和实际问题的解决。

例如,当我们需
要解决一个有关面积或体积的实际问题时,我们可以通过用数学公式计算出形状的尺寸,
然后用这些尺寸来计算出我们所需要的面积或体积。

在高中数学教学中,这个思想可以用
于实际应用问题的教学中,例如纯算题,数学建模竞赛等等。

总之,数形结合思想在高中数学教学中的应用非常广泛。

它可以用于解决几何和代数
问题,用于建立数学模型,和解决实际问题。

更重要的是,数形结合思想可以帮助学生更
好地理解和运用数学知识,拓展他们对数学的视野,进而对数学产生了浓厚的兴趣。

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用1. 引言1.1 数形结合在高中数学教学中的重要性数目。

感谢理解!数形结合在高中数学教学中的重要性体现在多个方面。

数形结合可以帮助学生更深入地理解数学概念,将抽象的数学知识具体化,让学生更直观地感受到数学的美妙之处。

数形结合可以促进学生的逻辑思维能力和空间想象能力的发展,培养学生解决问题的能力。

数形结合还能够激发学生学习数学的兴趣,提高他们学习数学的积极性与主动性。

通过数形结合的教学方法,学生可以更全面地理解数学知识,将数学与实际生活中的问题联系起来,提高数学学习的效果和质量。

数形结合在高中数学教学中扮演着重要的角色,为学生提供了更丰富多彩的学习体验,有助于他们全面提升数学素养。

2. 正文2.1 数形结合的教学方法数、格式等。

数形结合在高中数学教学中的巧妙应用是一种非常重要的教学方法,它通过结合数学中的符号和几何中的图形,使学生更直观地理解抽象的数学概念。

在进行数形结合的教学时,教师需要运用多样化的教学方法,以激发学生的学习兴趣和提高他们的学习效果。

教师可以通过举例说明的方式引入数形结合的概念,让学生从具体的实例中感受数学与几何之间的联系。

在解决几何问题时,可以让学生通过画图的方式将问题可视化,再通过数学方法解决问题,从而深刻理解数学与几何之间的联系。

教师可以组织学生进行小组讨论或合作学习,让他们互相交流思想,共同探讨解决问题的方法。

通过互动交流,学生可以更好地理解数形结合的概念,并且在实践中加深对知识的理解。

教师还可以借助现代化的技术手段,如数学软件或在线资源,来辅助数形结合的教学。

通过多媒体教学,学生可以更直观地感受到数学与几何之间的联系,提高学习效果。

2.2 数形结合在几何学习中的应用数目、格式要求等。

数形结合在几何学习中起着至关重要的作用,通过将数学知识与几何图形相结合,可以帮助学生更好地理解几何概念,提高他们的几何思维能力。

在高中数学教学中,数形结合可以应用于各种几何问题的解决中,如计算三角形的面积、判断平行四边形的性质等。

浅谈高中数学教学中的“数形结合”

浅谈高中数学教学中的“数形结合”

图 1

成 立.
例 4 当 1 <n < 6时 , 求证: a >
解 析 :“ > _ 1㈢

b ), ( C, 0), ( 0, d) .
( 6 — 1)l n a >
由 F, G分 别 为 A B, C D 中点 ,
知 F ( 一 旦 2 , 一 b ) , G ( 专 , 导 ) .
又 E 同时 在 AC, B D 的垂 直

\ /
( n 一 1 ) 1 n “ 一 半 l > D — l .
设 函数 l ,( ) =l n x, 则 其 图 像 必 过 点 C( 1 , 0 ) , 在 图像 上 任取 两 点 A( “ , l n a) ,
波利亚在《 怎样解题 》 一 书 中说 : “ 数 学 解 题 是 命 题 的 连 续
的变 换 . ” 可见“ 转化” 是 解 题 的 重要 手 段 . 而数 形 结 合 , 是 转 化 的重 要 方 法 之 一 . 纵 观 近 年 来 的高 考 , 熔“ 数” 和“ 形” 于 一 体 的 试 题 屡 见不 鲜 . 本 文就 运 用 “ 数形 结合” 进 行 解 题 的 常 见题 型 进行分类解析.
一 2 f

『 J
图 3
特 定 的 问题 , 可以被转化为一个图形 , 那 么 思 想 就 整 体 地 把 握
了问题 , 并且能创造性地思索问题的解法. ”
即— l n a l n l >
得证

数学 教学 中 的 数 形结合 浅 谈 4 . 利 用 图 形 求最 值 例 2 解不等式 l 3 x -2 l +I 3 十1 l ≤6 ( ∈ R) .

浅析高中数学课堂中数形结合思想在函数解题中的运用

浅析高中数学课堂中数形结合思想在函数解题中的运用
Байду номын сангаас
2 . 建立数形结合模 型 , 处理量与量之间的变化关系
函数 的性质在高考中 占有 较高 比重 ,其在 函数知识 的学 习中
此, 高 中数 学教学要求教师在教 学过程 中重视对学 生数 形结合思
想 的培 养 , 这样 对学生准确解读 题 目的含义 、 把握解题 的思路 、 做 也是一个十分重要 的知识点。然而学生对于 函数 的性质 即函数 中 出正确 的解答有很大帮助。数学教师要把 向学生渗透数形结合 的 量 与量之 间的关系一直视为一 大难题 ,之所 以形成这种局 面是 因 思想 和方 法作为 日常教学 任务 , 培养学生形成数形 结合的思考逻 为这方 面的知识 内容较为抽象 , 理解起来存在一 定难度 。 为了克服
辑与解题思维 , 进而提高教学效率。
这种不利 的教学现状 ,教师可以将数形结合 的教学方法融人 日常 2 . 数形结合 的思想运用于函数解题过程 , 可 以提高速度和效率 教 学活动 中, 借 助直 观形象 的图形达到帮助学生理解 知识 , 鼓励学 数形结合作 为一种有效 的函数解题途径 , 能够帮助 我们将复 生使用数形结合思想处理相关数学 问题 。如题 : “ 已知方程 X 2 1 4 X  ̄ 杂抽象的问题变得具 体 , 更易于解答 , 在实际应用 中大大提高 了解 3 = m有 4个 根 , 求实数 m 的取值范 围” 此题并 不涉及方 程根的具 题速度与效率。 在运用数形结合的方法解答 函数题 目时 , 对 于给出 体值 , 只求根的个数 , 而求方程 根的个数 问题可 以转化为求两条 曲 的 图象形式的函数 ,可以先把 图形语言转化为两数之 间的数量关 线 的交点 的个 数问题来解 决 , 即求解 函数 y = x 2 - 4 x + 3与函数 y = t r t 系 以便更客观地分析 , 然后正确地思考和解决 ; 对于 已知 的函数数 图象 的交点 的个数。 如此一来 , 原本抽象 的数量变化关 系就变得 十 量关 系之 间的问题 , 我们可 以根据其 具有 的几何意 义进行图形转 分具体 , 数形模 型的建立就是准确快速解答 的前提 。 化, 从而能够更加直观地观察和解 决 , 并 由此得 出正确 的答案和结 三、 数形结合思想方 法在 函数教学中的运用 策略 论。 数形结合 的方法在解题运用中还必须遵循相关的实施原则 , 其 原则 如下 : ( 1 ) 敏 锐 细致 的洞 察力 , 准确地 抓住 不 同图形 所 包含 1 . 借助数形转化关 系帮助学生准确理解函数概念 高 中数学教师设计 函数概念课程时 , 应引导学生学习和掌握数

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用数形结合是指数学中将数学概念与图形形式相结合,通过使用图形直观地表示数学问题,从而加深学生对数学概念的理解和记忆。

在高中数学教学中,数形结合的巧妙应用可以使学生更加深入地理解和掌握数学知识,并能够更好地应用于解决实际问题。

数形结合可以帮助学生更加形象地理解几何图形的性质。

以平行四边形为例,传统教学中通常使用文字和符号来描述平行四边形的定义和性质,但学生往往难以直观地理解其几何特征。

而将平行四边形的定义和性质与相应的图形形式结合起来,可以使学生通过观察图形直观地感受到其特点,从而更好地理解和记忆。

数形结合还可以帮助学生更加直观地理解数学中的变量和函数关系。

在函数的教学中,常常使用符号和公式来表述函数关系,但对于学生来说,往往难以把握函数图形与其代数表达的对应关系。

而通过绘制函数图形,可以使学生直观地观察到函数关系的变化规律,从而更加深入地理解和掌握函数的性质和特点。

数形结合在解决数学问题中也有着巧妙的应用。

以解方程为例,传统的解方程方法往往通过运算步骤来推导出方程的解,但对于一些复杂的方程,运算步骤往往会较为繁杂,学生容易迷失在计算中。

而通过数形结合的方法,可以将方程转化为图形问题,通过观察图形解决方程,不仅更能激发学生的兴趣,还能够简化解题过程,提高解题效率。

在几何证明中,数形结合也有着重要的应用价值。

几何证明通常需要通过逻辑推理和形式化的描述来确立结论,而对于一些复杂的几何证明,学生往往难以从中找到突破口。

而通过数形结合的方法,可以将几何问题转化为数学问题,通过对数学关系或性质的推导来解决几何证明,从而使学生更加直观地理解几何问题的本质,提高几何证明的能力。

数中见形,形中有数浅谈“数形结合”在数学教学中的作用

数中见形,形中有数浅谈“数形结合”在数学教学中的作用

数中见形,形中有数浅谈“数形结合”在数学教学中的作用我们需要理解“数形结合”是什么意思。

简单来说,它是将数学中的抽象概念与具体的形象联系起来,通过图形、图像等视觉化的方法来帮助学生更容易地理解数学知识。

这种教学方法能够让学生从感官上去感受数学,使得数学不再是一堆无法触摸的概念,而是有形的、可视的东西。

这样的教学方法对于学生来说是非常有益的,因为它可以帮助他们更好地理解数学概念,并且激发他们对数学学习的兴趣。

在数学教学中,“数形结合”的教学方法可以应用于各个年级的教学中。

在小学阶段,可以通过教学资料的图形化呈现来帮助学生理解加减乘除等基本运算,让他们在视觉上感受数学运算的结果。

在初中阶段,可以通过几何图形的绘制来教学,让学生更清楚地理解几何图形的性质和相关的定理。

而在高中阶段,可以通过图形化的方法来教授微积分、线性代数等抽象的数学内容,让学生更轻松地理解并掌握这些概念。

除了在不同年级的教学中应用,数学教学中的各个知识点也可以通过“数形结合”来更好地呈现出来。

在教学整数的时候,可以通过图示整数的线段和点的表示方式来让学生理解正整数、负整数和零的概念,从而更好地掌握整数运算的规则。

在三角函数的教学中,可以通过图形化的方法来让学生理解三角函数的周期性和性质,从而更好地掌握三角函数的计算和应用。

通过这种方法,学生可以更好地掌握数学知识,并且在实际的问题中更好地应用数学知识。

“数形结合”在数学教学中的应用也可以帮助学生培养一些重要的思维能力。

图形化的教学方法可以让学生更好地理解抽象的数学概念,从而培养他们的空间想象力和逻辑思维能力。

通过绘制图形、图像来解决数学问题,可以激发学生的创造力和表达能力。

这种教学方法也可以拓展学生的思维方式,培养他们的综合思考和解决问题的能力。

并非所有的数学知识都适合通过图形化的方法来教学。

有些概念和定理可能比较抽象,很难通过图形化的方法来表达。

在实际的教学中,教师需要根据具体的教学内容和学生的学习情况来灵活运用“数形结合”的教学方法。

高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想

思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用数形结合是高中数学教学中的一个重要部分,它是数学与几何的深度融合,也是把具体图形化为数学概念的一种实用技巧。

数形结合在高中数学教学中的应用非常广泛,可以帮助学生深刻理解各种数学概念和定理,增强学生对数学的兴趣和学科钻研能力,下面将来介绍数形结合在高中数学教学中的详细应用。

1.平面向量与几何关系的数形结合平面向量是高中数学中的一个重要概念,它与几何关系的数形结合可以帮助学生更直观地理解平面向量的性质和作用。

例如,在解平面向量共线性问题时,我们可以将向量作为几何图形表示出来,通过数学分析这些图形之间的几何关系,来判断向量是否共线;在证明平面向量的一些基本定理时,我们也可以利用图形直观地验证定理的正确性。

这种数形结合的方法既可以提高学生的几何直观能力,又可以加深其对平面向量理论的认识和理解。

2.集合论中的数形结合集合论是高中数学中的重要分支,它研究集合和元素的关系,是数学中最基本和最抽象的概念之一。

在集合论中,我们可以利用数形结合来进一步深入理解集合和元素之间的关系。

例如,在研究集合的交、并、差等操作时,我们可以用图形表示出它们之间的集合关系,通过直观的方式来理解集合操作的本质。

同时,在研究包含问题时,我们也可以利用集合的图形来方便地表示出它们之间的元素关系。

3.函数图像的数形结合函数是高中数学中的重要概念,它是用来描述自变量和因变量之间的对应关系。

在研究函数图像时,我们可以利用数形结合方法来增加学生的视觉感受力,使得学生更加直观地理解函数的性质和特点。

例如,在研究一元一次和二次函数的图像时,我们可以用几何图形代表函数的性质和特点,来直观地理解函数的增减性、单调性、零点、极值以及对称轴等特征,从而提高学生的图像思维能力和实际应用能力。

立体几何是高中数学中的一项重要内容,它是数学与空间结合的一种具体体现。

在研究立体几何的问题时,我们可以利用数形结合的方法来进行分析和推理。

浅析数形结合思想在高中数学中的应用

浅析数形结合思想在高中数学中的应用

浅析数形结合思想在高中数学中的应用数与形是数学中最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。

数形结合的结合思想,包含“以形助数”和“以数辅形”两个方面,其应用大致分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,二是借助于数的精确性和规范严密性来阐明形的某些属性。

以数思形,以形想数,做好数形转化。

运用数形结合思想应遵循的原则:(1)等价性原则;(2)双方性原则;(3)简单性原则。

数形结合思想常解决以下问题:(1)构建函数模型结合图像研究参数的取值范围,方程根的范围,量与量之间的大小关系,函数的最值问题和证明不等式等;(2)构建立体几何模型研究代数问题;(3)构建解析几何中的斜率,截距,距离等模型研究最值问题;(4)构建方程模型,求根的个数等。

例1:设函数f(x)=,若f(x)无最大值,则实数a的取值范围是()。

解析:如下图作出函数g(x)=x3-3x与直线y=-2x的图象,它们的交点是A(-1,2),O(0,0),B(1,-2),由g`(x)=3x2-3,知x=-1是函数g(x)的极大值点。

①当a=0时,f(x)=,因此f(x)的最大值是f(-1)=2。

②由图象知当a≥-1时,f(x)有最大值是f(-1)=2;只有当a<-1时,由a3-3a<-2a,因此f (x)无最大值,所以所求a的范围是(-∞,-1),故填:(-∞,-1)。

点评:分段函数含字母参数求最值问题,通过把“数”化为“形”来解决,直观形象。

例2:(2017浙江,21节选)如右上图,已知抛物线x2=y,点A(-,)B(,),抛物线上的点P(x,y)(-<x<)。

过点B作直线AP的垂线Q。

求|PA|·|PQ|的最大值。

解析:联立直线AP与BQ的方程,解得点Q的横坐标是xQ=,因为|PA|=1+k2(x+)=1+k2(k+1),|PQ|=1+k2(xQ-x)=- ,所以|PA||PQ|=-(k-1)(k+1)3,令f(k)=-(k-1)(k+1)3,因为f`(k)=-(4k-2)(k+1)2,所以f(k)在区间(-1,)上单调递增,(,1)上单调递减,因此当k=时,|PA|·|PQ|取得最大值。

数形结合思想在数学教学中的实践探析

数形结合思想在数学教学中的实践探析

数形结合思想在数学教学中的实践探析【摘要】本文就数形结合思想在数学教学中的实践进行了探析。

在介绍了该研究的背景、研究意义和研究目的。

接着在详细阐述了数形结合思想的理论基础,以及在数学教学中的应用和实践探索,包括初中和高中阶段的具体案例。

在结论部分总结了数形结合思想对数学教学的促进作用,并展望了未来的发展方向。

通过本文的探讨,读者可以深入了解数形结合思想在数学教学中的重要性和实际应用,为教学实践提供参考。

【关键词】数形结合思想、数学教学、实践探析、理论基础、应用、初中数学教学、高中数学教学、评价、促进作用、展望未来1. 引言1.1 背景介绍数不满足要求,可以继续添加相关内容。

数学教学一直是教育领域的重要内容之一,而数形结合思想作为数学教学的一种新理念,近年来逐渐受到关注。

数形结合思想强调数学与几何的结合,强调通过图形的直观形象性来加深学生对数学概念的理解和应用能力。

随着教育理念的不断更新和教学方法的不断改进,越来越多的教师开始尝试将数形结合思想融入到数学教学中,取得了一定的成效。

这一理念的具体应用和实践探索还存在一定的挑战和争议。

有必要对数形结合思想在数学教学中的实践进行深入探讨,从而为教师教学实践提供一定的借鉴和指导。

本文旨在通过分析数形结合思想的理论基础和在数学教学中的应用实践,探索该理念在实际教学中的作用与价值,为提升数学教学质量提供一定的参考。

1.2 研究意义数目、格式要求等等。

数形结合思想在数学教学中的实践探析是当前数学教育领域的热点问题之一,探讨数学教学中数形结合的方式和方法,对于提高学生的数学能力和创新思维具有重要意义。

数形结合思想有助于激发学生对数学的兴趣,从而增强他们学习数学的主动性和积极性。

数形结合思想可以帮助学生更好地理解数学知识,使抽象的数学概念变得更加具体和形象。

通过数形结合思想的应用,学生可以更好地理解数学知识与实际生活的联系,促进数学教学与实际应用的结合。

数形结合思想在数学教学中的应用,有助于培养学生的综合思维能力和解决问题的能力,提高他们的创新意识和实践能力。

高三数学数形结合的解题方法与技巧分析

高三数学数形结合的解题方法与技巧分析

高三数学数形结合的解题方法与技巧分析数学与数形结合是高中阶段数学学习中一个非常重要的话题,通过数学和数形相结合可以更好地理解和记忆数学概念和定理,提高解题能力和创新思维水平。

本文将从以下两个方面来分析高三数学数形结合解题的方法与技巧:一、数形结合的优势数学和数形结合的主要优势在于能够直观地展现数学概念和定理,帮助学生更深入地理解数学知识。

在解题中利用数形结合的方法,可以让学生通过对图形的观察、分析和推理,更深层次地理解和应用数学概念和定理。

比如,在解决立体几何问题时,如果能够将模型构建完整,按照比例缩小,将其投影到二维平面上,然后在平面图形中寻找和应用几何知识,就可以更好地促进学生对几何学和代数学的理解和融合。

此外,数形结合的方法也能够激发学生解题的兴趣和好奇心,吸引他们积极参与学习过程,探索数学的奥秘。

在具体解题时,数形结合也有一些具体的方法和技巧,下面简单介绍一下:1. 绘制图形。

在解决几何问题时,首先要绘制出几何图形,并标注出已知条件和需求,这可以帮助我们更好地理解和分析问题。

2. 利用运动方法。

在解决三角函数、立体几何等问题时,可以运用类似“旋转”、“平移”等运动方法,来变换图形的形态,使问题更加清晰、简单。

3. 利用相似与比例。

在解决几何和代数相关的问题时,可以利用相似性和比例关系,将问题转化成易于计算和解决的形式。

4. 利用投影与视角。

在解决立体几何问题时,可以利用三视图或进行透视投影,将三维的情形转变为平面图形,在平面图形中进行理解和计算。

5. 利用变量与方程。

在解决代数问题时,可以引入变量,建立数学模型,并用方程或不等式来描述问题,进而求解未知量。

总之,数学和数形结合有着不可替代的优势和方法,通过分析和应用这些方法和技巧,可以提高学生的解题能力,促进学生的数学思维的发展。

同时,学生也需要不断地锻炼和实践,确保数学和数形结合这种方法真正落地并取得成效。

运用数形结合思想巧解高中数学题例析

运用数形结合思想巧解高中数学题例析

运用数形结合思想巧解高中数学题例析正文高中数学题目往往给学生带来了很大的困扰,尤其是在运用数形结合思想巧解题目时更是难上加难。

今天我们将通过几个例子来演示如何运用数形结合思想巧解高中数学题目。

例一:已知一个等边三角形的边长为a,求其高和面积。

解题思路:首先我们可以通过数学公式得出等边三角形的高和面积,公式如下:1. 等边三角形的高为:sqrt(3)/2*a2. 等边三角形的面积为:sqrt(3)/4*a^2接着我们可以通过数形结合思想来验证这两个公式。

我们可以画出等边三角形的图形,然后利用勾股定理来计算三角形的高和面积。

解题过程:首先我们画出一个等边三角形ABC,边长为a,然后我们假设高为h。

根据勾股定理,我们可以得到:a^2 = h^2 + (a/2)^2通过这个等式,我们可以求解出h的值,即:h = sqrt(3)/2 * a接着我们计算三角形的面积,根据公式S=1/2*底*高,我们可以得到三角形的面积为:S = sqrt(3)/4*a^2。

通过这种数形结合思想,我们不仅验证了等边三角形的高和面积的公式,而且更加深入地理解了这些公式的意义。

例二:已知梯形的上底长为a,下底长为b,高为h,求其面积。

解题思路:梯形的面积公式为:S=(a+b)*h/2我们可以通过数形结合思想,将梯形拆分成两个三角形和一个矩形,然后分别计算它们的面积来求解梯形的面积。

解题过程:首先我们将梯形拆分成上下两个三角形和一个矩形。

然后我们分别计算这两个三角形和一个矩形的面积,然后相加起来就是梯形的面积。

三角形1的底长为a,高为h,面积为:Sa=1/2*a*h三角形2的底长为b,高为h,面积为:Sb=1/2*b*h矩形的长为(a+b),宽为h,面积为:Sc=(a+b)*h最后将这三个部分的面积相加起来就是梯形的面积,即:S=Sa+Sb+Sc=(a+b)*h/2通过这种数形结合思想,我们可以更加直观地理解梯形的面积公式,并且能够灵活地应用到解题过程中。

数形结合思想在高中数学教学中的有效运用

数形结合思想在高中数学教学中的有效运用

数形结合思想在高中数学教学中的有效运用1. 几何问题的解决在传统的几何教学中,往往只强调几何定理的运用和推导,缺乏对实际问题的应用和解释。

而数形结合思想则可以帮助学生更好地理解几何问题,并将其与实际问题相结合。

通过数学模型的建立和图形的绘制,学生可以更加直观地理解几何知识,并且能够将其运用到实际生活中解决问题。

在求解几何问题时,可以通过建立坐标系和绘制图形,将几何问题转化为代数问题,从而更好地理解和解决问题。

2. 函数与图形的关系在高中数学中,函数与图形是一个重要的内容,学生需要掌握函数的性质与图形的特征。

数形结合思想可以帮助学生更好地理解函数与图形之间的关系。

通过构建函数的图象,分析图象的性质,学生可以更直观地理解函数的变化规律和特点,从而更好地掌握函数的概念和性质。

通过图象的变化和变化规律,学生也可以更好地理解函数的意义和应用,使抽象的函数概念变得更加具体和直观。

3. 统计问题的分析在统计学中,数据的收集、整理和分析是一个重要的内容,而数形结合思想可以帮助学生更加直观地理解和应用统计知识。

在统计问题的分析中,可以通过建立数学模型和绘制统计图表,帮助学生更好地理解数据的特点和规律,从而更好地进行数据的分析和应用。

数形结合思想还可以帮助学生理解统计数据与生活实际的联系,加深对统计知识的理解和运用。

1. 提高学生的学习兴趣和积极性数形结合思想可以帮助学生更加直观地理解数学知识,使抽象的数学概念变得更加具体和直观。

通过数学模型的建立和图形的绘制,学生可以更好地理解和应用数学知识,从而提高了他们对数学学习的兴趣和积极性。

相比传统的教学方法,数形结合思想更能激发学生的学习兴趣,使他们更愿意投入到数学学习中去。

2. 培养学生的数学思维和创造力数形结合思想注重培养学生的数学思维和创造力,可以帮助学生更好地理解和运用数学知识,培养他们的数学思维和创造力。

通过数学模型的建立和图形的绘制,学生需要运用数学知识解决实际问题,从而锻炼了他们的数学思维和创造力。

数形结合在高中数学教学中的运用探究

数形结合在高中数学教学中的运用探究

数形结合在高中数学教学中的运用探究1. 引言1.1 背景介绍数统计等。

以下是关于背景介绍的内容:随着科技的不断发展和社会对人才的需求,培养学生的创新能力和实践能力已成为教育工作者的重要任务。

数形结合教学正是符合这一需求的一种教学方式,能够促进学生的思维发展,培养他们的创新意识和实践能力。

探索数形结合在高中数学教学中的运用具有重要的意义和价值,有助于提升教育教学质量,推动教育改革和学生素质教育的发展。

1.2 研究意义数形结合在高中数学教学中的具体运用不仅仅是为了帮助学生掌握知识点,更重要的是培养学生的数学思维能力和创新意识。

通过将抽象的数学概念与具体的形象相结合,可以让学生在实际问题中灵活运用数学知识,并培养他们的逻辑思维和解决问题的能力。

研究数形结合在高中数学教学中的运用具有重要的意义。

深入探究数形结合的教学方法和效果,可以有效指导教师在教学实践中更好地运用这种方法,提高教学质量和学生的学习效果。

也有助于促进数学教学方法的创新和发展,推动教育改革,提升教育质量。

2. 正文2.1 数形结合的教学方法引导学生从具体的形象入手,通过观察、实践和感知,逐步建立起数学概念和规律。

教师可以使用教学实物、教具或模型等多种形式,让学生直观地感受数学的抽象性和普适性。

注重培养学生的思维能力和创造性思维。

数形结合的教学方法强调训练学生的逻辑推理能力、空间想象能力和问题解决能力,引导学生运用数学知识去解决现实生活中的问题。

鼓励学生进行合作学习和独立探究。

教师可以设计一些富有启发性的问题,让学生通过小组合作或个人探究的方式去发现数学规律,激发他们的学习兴趣和探究欲望。

结合现代技术手段,如数学软件、数学建模等,辅助数形结合教学。

通过多媒体教学、虚拟实验等方式,增强学生的学习体验,提高教学效果。

数形结合的教学方法注重实践性、启发性和互动性,旨在激发学生的学习兴趣和学习动力,提高他们的数学思维能力和问题解决能力。

【字数:249】2.2 数形结合在数学教学中的具体运用数形结合在数学教学中的具体运用是一种较为实用和直观的教学手段,可以帮助学生更加深入地理解抽象的数学概念。

运用数形结合思想巧解高中数学题例析

运用数形结合思想巧解高中数学题例析

运用数形结合思想巧解高中数学题例析例题1:已知直角三角形ABC中,\angle B=90^\circ, AB=3, BC=4.过点B画高BD交AC于点D,求\bigtriangleup ABD的面积。

解析:在解决这个问题时,我们可以通过数形结合的思想来进行分析。

我们可以通过勾股定理知道AC=5。

然后我们可以通过计算直角三角形ABC的面积,S_{\bigtriangleup ABC}=\frac{1}{2}\times 3\times 4=6。

接着,我们可以通过计算直角三角形ABC在AC上的高BD,可以用\frac{1}{2}AB\times BC=6可以得到BD=1.5。

接下来,我们可以计算\bigtriangleup ABD的面积,S_{\bigtriangleup ABD}=\frac{1}{2}\times 3\times 1.5=2.25。

\bigtriangleup ABD的面积为2.25。

通过这个例题我们可以看到,通过数形结合的思想,我们可以用较为简洁的步骤来解决这个问题,使得我们更清晰地理解题目,找到更加直观的解法。

例题2:已知f(x)=x^2+bx+c是一个以x为自变量的二次函数,且f(2)+f(3)=26,f(4)=19,求b,c的值。

解析:对于这个问题,我们可以通过数形结合的思想来进行分析。

我们可以通过函数值的计算得到f(2)=4+2b+c,f(3)=9+3b+c,f(4)=16+4b+c。

由f(2)+f(3)=26可得13+5b+2c=26,所以5b+2c=13。

由f(4)=19可得16+4b+c=19,所以4b+c=3。

通过解这个方程组可以得到b=5,c=3。

例题3:已知椭圆的离心率为\frac{1}{2},长轴的长为8,求其短轴的长。

解析:对于这个问题,我们可以通过数形结合的思想来进行分析。

椭圆的离心率定义为e=\frac{\sqrt{a^2-b^2}}{a},其中a为长轴的长,b为短轴的长。

数形结合,提升函数教学有效性

数形结合,提升函数教学有效性

数形结合,提升函数教学有效性函数教学是高中数学的重点内容之一,也是学生学习数学的难点之一。

如何提升函数教学的有效性,激发学生学习的兴趣和提高学生的学习效果,是每个数学教师需要思考和解决的问题。

本文将从数形结合的角度探讨如何提升函数教学的有效性。

数形结合是指将数学知识与几何图形相结合,通过图形的展示和分析来理解和解决数学问题。

在函数教学中,数形结合可以有效地帮助学生理解函数的概念、性质和应用,提升函数教学的有效性。

具体来说,数形结合在函数教学中主要体现在以下几个方面:一、图像展示函数的性质函数的图像是函数概念的直观展现,可以帮助学生理解函数的性质。

通过数学软件或手绘图像,可以展示函数的增减性、奇偶性、周期性等性质,帮助学生直观地理解函数性质的表现形式。

可以通过展示正弦函数的图像来让学生理解周期函数的性质;通过展示指数函数和对数函数的图像来让学生理解函数的增减性和反比例关系等。

二、几何解释函数的应用函数在数学中有着广泛的应用,如物理、化学、经济等领域。

通过数形结合,可以将函数的应用问题转化为图形问题,通过图像展示和分析,让学生更容易理解和解决实际问题。

可以通过图像展示函数的变化趋势来解释物理或经济中的变化规律;通过图像展示函数的积分面积来解释函数在概率和统计中的应用等。

三、图形优化函数的理解数学软件如Geogebra、Desmos等可以方便地展示各种函数的图像,教师可以利用这些软件,通过动态展示和比较不同函数的图像,来帮助学生更好地理解函数的性质。

可以通过Geogebra展示正弦函数和余弦函数的图像,并比较它们的周期、相位差等性质,让学生直观地感受周期函数的性质。

二、引导学生通过图形发现函数的规律教师可以设计一些图形发现的问题,让学生通过观察图像来发现函数的性质和规律。

可以给学生出一些关于函数图像的性质问题,让学生通过观察图像、比较不同函数的图像来总结函数的性质,培养学生的观察力和总结能力。

三、将函数的应用问题转化为图形问题四、鼓励学生用图像解决问题数形结合可以有效地提升函数教学的有效性,激发学生学习的兴趣和提高学生的学习效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学数形结合探析
一、“数形结合”的重要性
“数”与“形”作为数学中最古老最重要的两个方面,一直就是一对矛盾体。

正如矛和盾总是同时存在一样,有“数”必有“形”,有“形”就有“数”。

华罗庚先生曾说过:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。

切莫忘,几何代数统一体,永远联系,切莫分离!”寥寥数语,把数形之妙说得淋漓尽致。

“数形结合”作为数学中的一种重要思想,在高中数学中占有极其重要的地位。

事实上,数形结合思想,就是用联系的观点,根据数的结构特征,构造出与之相适应的图形,利用图形的性质和规律,解决“数”的问题;或将图形的部分信息或全部信息转化成“数”的信息,弱化或消除“形”的推理,从而将“形”的问题转化成数量关系来解决。

利用数形结合,能够有效地讲解有关基本概念、定理,培养学生的能力,解题中运用它能够使复杂的问题“形象”、明了化,提高学生分析,解决问题的能力等。

以往的“数形结合”大多出现在教师的习题课中,以灌输为主,这并不完全符合新课程理念。

应寻找一种办法,能使学生在上“数形结合”的习题课之前就自主地发现数形结合的存在,并自然地使用数形结合的方法解题。

二、关注细节,让学生主动“数形结合”
本人在去年所教的2011届毕业班学生中,发现一个普遍的问题:一些能用“数形结合”巧解的题目,在自己做题时却想不到用“数形结合”,等老师提示后才恍然大悟,但下次再碰到却还是想不到要用“数形结合”。

本人认为,学生出现这样的问题,老师肯定是有责任的。

问题应该是出在前面两年打基础的时候。

所以在教新高一时,在平时上课中(包括新课和习题课),有目的地强化了一些细节,具体做法如下:第一步,在新课中“数”、“形”并进,让学生见“数”想到“形”,见“形”不忘“数”。

例如:在必修1第一章“集合”内容中,除了在数集运算中借助于画数轴解决外,还要重视韦恩图的运用。

韦恩图作为集合的第三种表示方法,往往容易被学生忽略,如果老师上课时多用用韦恩图来处理集合的交、并、补等运算,学生就会感受到问题一旦形象化了,运算会很方便。

在必修5第二章“数列”内容中,用函数图像表示出等差等比数列的通项公式,这样学生就能很容易地分辨出等差数列和等比数列的通项公式。

把等差数列的前项和公式画成函数图像,就能帮助学生理解等差数列的的最值问题。

在讲解有关可以用数形结合解题的题目时,调动学生的积极性,运用分组讨论等形式让学生感受到数形结合的便捷和乐趣。

第二步,习题课中让“数”“形”之妙体现出来。

在讲解有关可以用数形结合解题的题目时,调动学生的积极性,运用分组讨论等形式让学生感受到数形结合的便捷和乐趣。

总之,在教学中要注重数形结合思想方法的培养,在培养学生数形结合思想的过程中, 要充分挖掘教材内容, 将数形结合思想渗透于具体的问题中, 在解决问题中让学生正确理解“数”与“形”的相对性, 使之有机地结合起来。

当然, 要掌握好数形结合的思想方法并能灵活运用, 就要熟悉某些问题的图形背景, 熟悉有关数学式中各参数的几何意义, 建立结合图形思考问题的习惯, 在学习中不断摸索, 积累经验, 加深和加强对数形结合思想方法的理解和运用。

用数学思想指导知识,方法的灵活运用,培养思维的深刻性、抽象性;通过组织引导对解法的简洁性的反思评估、不断优化思维品质、培养思维的严谨性、批判性。

丰富的合理的联想,是对知识的深刻理解及类比、转化、数形结合、函数与方程等数学思想运用的必然。

数学方法、数学思想的自学运用往往使我们运算简捷、推理机敏,是提高数学能力的必由之路。

“授之以鱼 ,不如授之以渔”,方法的掌握、思想的形成 ,才能最终使学生受益终生。

参考文献:
[1] 王君芬. 例谈数学教学中的数形结合[J]. 黑龙江科技信息, 2009, (14)
[2] 蔡东兴. 数形结合思想方法的应用[J]. 高中数学教与学, 2009, (02)
[3] 贾宏伟. 新课标下高中数学学习的几种思想方法[J]. 新西部, 2008, (11)
[4] 刘军刚. 新数形结合的应用浅析[J]. 新课程研究(基础教育), 2008, (04)。

相关文档
最新文档