初中数学一次函数基本题型综合
一次函数必考题型
一次函数必考题型
一次函数是初中数学中一个重要的概念,它在中考中也常常出现。
以下是一些一次函数的必考题型:
1. 求函数解析式:中考中最重要的一次函数题型之一,要求通
过已知条件求函数的解析式。
通常需要利用函数的单调性、极值等性质进行求解。
2. 求函数值域:一次函数的值域是它的定义域的扩大,也是中
考中常见的题型之一。
通常需要利用函数的单调性、端点值等性质进行求解。
3. 绘制函数图像:一次函数的图像在中考中也常常出现。
绘制
函数图像通常需要利用函数的解析式和定义域、值域等条件进行求解。
4. 求函数的最值:一次函数的最值通常是通过求导的方法进行
求解的。
在中考中,要求求函数的最值通常需要利用函数的单调性、极值等性质进行求解。
5. 与函数相关的应用题:一次函数在中考中也常常出现在应用
题中。
通常需要利用函数的思想和方法进行求解。
总之,一次函数是初中数学中一个重要的概念,它在中考中也常常出现。
考生需要熟练掌握一次函数的基本概念和性质,并能够利用这些性质进行求解。
一次函数常见题型
一次函数常见题型一次函数常见题型常见题型一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。
其中求一次函数解析式就是一类常见题型。
现以部分中考题为例介绍几种求一次函数解析式的常见题型。
希望对大家的学习有所帮助。
一. 定义型例1. 已知函数是一次函数,求其解析式。
解:由一次函数定义知,故一次函数的解析式为注意:利用定义求一次函数解析式时,要保证。
如本例中应保证二. 点斜型例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。
解:一次函数的图像过点(2,-1) ,即故这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。
三. 两点型已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。
解:设一次函数解析式为由题意得故这个一次函数的解析式为四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:设一次函数解析式为由图可知一次函数的图像过点(1,0)、(0,2) 有故这个一次函数的解析式为五. 斜截型例5. 已知直线与直线平行,且在y轴上十. 开放型例10. 已知函数的图像过点A(1,4),B(2,2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。
解:(1)若经过A、B两点的函数图像是直线,由两点式易得 (2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以是双曲线,解析式为 (3)其它(略)十一. 几何型例11. 如图,在平面直角坐标系中,A、B 是x轴上的两点,,,以AO、BO为直径的半圆分别交AC、BC于E、F两点,若C点的坐标为(0,3)。
(1)求图像过A、B、C三点的二次函数的解析式,并求其对称轴;(2)求图像过点E、F的一次函数的解析式。
解:(1)由直角三角形的知识易得点A( ,0)、B( ,0),由待定系数法可求得二次函数解析式为,对称轴是 (2)连结OE、OF,则、。
(人教版初中数学)一次函数解析式常见题型分析
求一次函数解析式常见题型解析
1.定义型:例1. 已知函数是一次函数,求其解析式.
二. 点斜型:例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式.
三. 两点型:已知某个一次函数的图像与x轴、y轴
的交点坐标分别是(-2,0)、(0,4),则这个函数
的解析式为_____________.
四. 图像型:例4. 已知某个一次函数的图像如图所
示,则该函数的解析式为__________.
五. 斜截型:例5. 已知直线与直线
平行,且在y轴上的截距为2,则直线的解析式为___________.
六. 平移型:例6. 把直线向下平移2个单位得到的图像解析式为
___________.
七. 实际应用型:例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为
___________.
八. 面积型:例8. 已知直线与两坐标轴所围成的三角形面积等于4,则直线解析式为__________.
九. 开放型:例10. 一次函数的图像经过(-1,2)且函数y的值随x的增大而增大,请你写出一个符合上述条件的函数关系式 .。
一次函数综合题(解析版)--2024年中考数学压轴题专项训练
一次函数综合题通用的解题思路:(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x 的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.1(2024•鼓楼区一模)如图,直线y =-3x +6与⊙O 相切,切点为P ,与x 轴y 轴分别交于A 、B 两点.⊙O 与x 轴负半轴交于点C .(1)求⊙O 的半径;(2)求图中阴影部分的面积.【分析】(1)由OP =OA ⋅sin60°,即可求解;(2)由图中阴影部分的面积=S 扇形COP -S ΔPOC ,即可求解.【解答】解:(1)对于直线y =-3x +6,令y =-3x +6=0,则x =23,即OA =23,由一次函数的表达式知,OB =6,则tan ∠BAC =OB AO =623=3,则∠BAC =60°连接OP ,则OP ⊥AB ,则OP =OA ⋅sin60°=23×32=3;(2)过点P 作PH ⊥AC 于点H ,∵∠POH =30°,则∠POC =150°,PH =12OP =32,则图中阴影部分的面积=S 扇形COP -S ΔPOC =150°360°×π×32-12×3×32=15π-94.【点评】本题考查了一次函数和圆的综合运用,涉及到圆切线的和一次函数的性质,解直角三角形,面积的计算等,综合性强,难度适中.2(2023•宿豫区三模)如图①,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =-2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,ΔABC 的面积为s .(1)当t =2时,求点B 的坐标;(2)s 关于t 的函数解析式为s =14t 2+bt -54t -1或t 5 a t +1 t -5 (-1<t <5),其图象如图②所示,结合图①、②的信息,求出a 与b 的值;(3)在直线l 2上是否存在点A ,使得∠ACB =90°,若存在,请求出此时点A 的坐标;若不存在,请说明理由.【分析】(1)解法一:先根据t =2可得点A (-2,2),因为B 在直线l 1上,所以设B (x ,x +1),利用y =0代入y =x +1可得G 点的坐标,在Rt ΔABG 中,利用勾股定理列方程可得点B 的坐标;解法二:根据可以使用y =x +1与x 轴正半轴夹角为45度来解答;(2)先把(7,4)代入s =14t 2+bt -54中计算得b 的值,计算在-1<t <5范围内图象上一个点的坐标值:当t =2时,根据(1)中的数据可计算此时s =94,可得坐标2,94,代入s =a (t +1)(t -5)中可得a 的值;(3)存在,设B (x ,x +1),如图5和图6,分别根据两点的距离公式和勾股定理列方程可解答.【解答】解:(1)解法一:如图1,连接AG ,当t =2时,A (-2,2),设B (x ,x +1),在y =x +1中,当x =0时,y =1,∴G (0,1),∵AB ⊥l 1,∴∠ABG =90°,∴AB 2+BG 2=AG 2,即(x +2)2+(x +1-2)2+x 2+(x +1-1)2=(-2)2+(2-1)2,解得:x 1=0(舍),x 2=-12,∴B -12,12;解法二:如图1-1,过点B 作BE ⊥x 轴于E ,过点A 作AH ⊥BE 于H ,当x =0时,y =1,当y =0时,x +1=0,则x =-1,∴OF =OG =1,∵∠GOF =90°,∴∠OGF =∠OFG =45°,∴BE =EF ,∵∠ABD =90°,∴∠ABH =∠BAH =45°,∴ΔABH 是等腰直角三角形,∴AH =BH ,当t =2时,A (-2,2),设B (x ,x +1),∴x +2=2-(x +1),∴x =-12,∴B -12,12 ;(2)如图2可知:当t =7时,s =4,把(7,4)代入s =14t 2+bt -54中得:494+7b -54=4,解得:b =-1,如图3,过B 作BH ⎳y 轴,交AC 于H ,由(1)知:当t =2时,A (-2,2),B -12,12 ,∵C (0,3),设AC 的解析式为:y =kx +n ,则-2k +n =2n =3 ,解得k =12n =3 ,∴AC 的解析式为:y =12x +3,∴H -12,114,∴BH =114-12=94,∴s=12BH⋅|x C-x A|=12×94×2=94,把2,9 4代入s=a(t+1)(t-5)得:a(2+1)(2-5)=94,解得:a=-1 4;(3)存在,设B(x,x+1),当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴ΔABD是等腰直角三角形,∴AB=BD,∵A(-2,t),D(-2,-1),∴(x+2)2+(x+1-t)2=(x+2)2+(x+1+1)2,(x+1-t)2=(x+2)2,x+1-t=x+2或x+1-t=-x-2,解得:t=-1(舍)或t=2x+3,RtΔACB中,AC2+BC2=AB2,即(-2)2+(t-3)2+x2+(x+1-3)2=(x+2)2+(x+1-t)2,把t=2x+3代入得:x2-3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(-2,9);当x=0时,如图6,此时,A(-2,3),综上,点A的坐标为:(-2,9)或(-2,3).【点评】本题考查二次函数综合题、一次函数的性质、等腰直角三角形的判定和性质、三角形的面积、两点间距离公式等知识,解题的关键是灵活运用所学知识解决问题.3(2023•溧阳市一模)如图1,将矩形AOBC放在平面直角坐标系中,点O是原点,点A坐标为(0,4),点B坐标为(5,0),点P是x轴正半轴上的动点,连接AP,ΔAQP是由ΔAOP沿AP翻折所得到的图形.(1)当点Q落在对角线OC上时,OP= 165 ;(2)当直线PQ经过点C时,求PQ所在的直线函数表达式;(3)如图2,点M是BC的中点,连接MP、MQ.①MQ的最小值为;②当ΔPMQ是以PM为腰的等腰三角形时,请直接写出点P的坐标.【分析】(1)通过Q 点在OC 上,可以通过∠BOC 的三角函数和∠OAP 的三角函数来导出对应的边的关系,求得结果;(2)通过直角ΔAQC 中,得到QC 的长度,然后通过OP =PQ =x ,可以在Rt ΔBCP 中,得到对应的x 值然后求出结果;(3)通过QA =OA =4,可得出Q 点的运动轨迹,是以A 点为圆心,4为半径长度的圆弧,从而可知,MA 的连线上的Q 点为最短的MQ 长度,通过分类讨论,PM =PQ ,PM =QM ,PQ =QM 来求得对应的P 的坐标.【解答】解:(1)如图1,∵∠OAP +∠AOE =90°,∠BOC +∠AOE =90°,∴∠OAP =∠BOC ,又∵∠AOP =∠OBC =90°,∴ΔOAP ∽ΔBOC ,∴OP BC =OA OB ,即OP 4=45,∴OP =165,故答案为:165;(2)如图,∵AQ ⊥PQ ,∴∠AQC =90°,∴QC =AC 2-AQ 2=52-42=3,∵AQ =AO =4,设OP =PQ =x ,则CP =3+x ,PB =5-x ,∴CP 2=BP 2+BC 2,(3+x )2=(5-x )2+42,x =2,∴P 点的坐标为(2,0),将P (2,0)和C (5,4)代入y =kx +b 中,0=2k +b 4=5k +b ,解得:k =43b =-83,∴PQ 所在直线的表达式为:y =43x -83;(3)如图,①∵AQ =AO =4,∴Q 点的运动轨迹,是以A 为圆心,4为半径的圆弧,∴MQ 的最小值在AM 的连线上,如图,MQ ′即为所求,∵M 是BC 中点,CM =12BC =2,∴AM =52+22=29,MQ ′=MA -AQ ′=29-4,故答案为:29-4;②如图,设OP =PQ =x ,BP =5-x ,∴PM 2=(5-x )2+22=x 2-10x +29,当PM =PQ 时,PM 2=PQ 2,∴x 2-10x +29=x 2,x =2910,∴P 2910,0,当MP =MQ 时,如图,若点Q 在AC 上,则AQ =OA =4,∵MP =MQ ,MB =MC ,∠PBM =∠QCM ,∴ΔPMB ≅ΔQMC (HL ),∴PB =QC ,QC =AC -AQ =5-4=1,∴PB =1,∴OP =BO -PB =5-1=4,∴P (4,0);若点Q 在AC 上方时,由对称性可知OM =MQ ,∵MQ =MQ ,∴MO =MP ,∴P (10,0);当MQ =PQ 时,不符合题意,不成立,故P 点坐标为P 2910,0或P (4,0)或(10,0).【点评】本题考查一次函数的图象及应用,通过一次函数坐标图象的性质,三角函数的性质,全等三角形的性质和勾股定理,来求得对应的解.4(2022•启东市模拟)我们知道一次函数y =mx +n 与y =-mx +n (m ≠0)的图象关于y 轴对称,所以我们定义:函数y =mx +n 与y =-mx +n (m ≠0)互为“M ”函数.(1)请直接写出函数y =2x +5的“M ”函数;(2)如果一对“M ”函数y =mx +n 与y =-mx +n (m ≠0)的图象交于点A ,且与x 轴交于B ,C 两点,如图所示,若∠BAC =90°,且ΔABC 的面积是8,求这对“M ”函数的解析式;(3)在(2)的条件下,若点D 是y 轴上的一个动点,当ΔABD 为等腰三角形时,请求出点D 的坐标.【分析】(1)根据互为“M ”函数的定义,直接写出函数y =2x +5的“M ”函数;(2)现根据已知条件判断ΔABC 为等腰直角三角形,再根据互为“M ”函数的图象关于y 轴对称,得出OA =OB =OC ,再根据函数解析式求出点A 、B 、C 的坐标,再根据ΔABC 的面积是8求出m 、n 的值,从而求出函数解析式;(3)ΔABD 为等腰三角形,分以A 为顶点,以B 为顶点,以D 为顶点三种情况讨论即可.【解答】(1)解:根据互为“M ”函数的定义,∴函数y =2x +5的“M ”函数为y =-2x +5;(2)解:根据题意,y =mx +n 和y =-mx +n 为一对“M 函数”.∴AB =AC ,又∵∠BAC =90°,∴ΔABC 为等腰直角三角形,∴∠ABC =∠ACB =45°,∵OB =OC ,∴∠BAO =∠CAO =45°,∴OA =OB =OC ,又∵S ΔABC =12×BC ×AO =8且BC =2AO ,∴AO =22,∵A 、B 、C 是一次函数y =mx +n 与y =-mx +n (m ≠0)的图象于坐标轴的交点,∴A (0,n ),B -n m ,0 ,C n m ,0,∵OA =OB =n ,∴n m=22,∴m =1,∴y =x +22和y =-x +22;(3)解:根据等腰三角形的性质,分情况,∵AO =BO =22,∴AB =4,由(2)知,A (0,22),B (-22,0),C (22,0),∴①以A 为顶点,则AB =AD ,当点D 在点A 上方时,AD =22+4,当点D 在点A 下方时,AD =22-4,∴D 1(0,22+4),D 2(0,22-4),②以B 为顶点,则BA =BD ,此时点D 在y 轴负半轴,∴D 3(0,-22),③以D 为顶点,则DA =DB ,此时D 为坐标原点,∴D 4(0,0).∴D 点坐标为D 1(0,22+4),D 2(0,22-4),D 3(0,-22),∴D 4(0,0).【点评】本题考查一次函数的综合应用,以及新定义、等腰三角形的性质等知识,关键是理解新定义,用新定义解题.5(2024•新北区校级模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =4,NH =1,点G 的坐标为(8,0).(1)点P 与点Q 的速度之比v 1v 2的值为 85 ;AB AD的值为;(2)如果OM =15.①求线段NF 所在直线的函数表达式;②求FG 所在曲线的函数表达式;③是否存在某个时刻t ,使得S ≥154?若存在,求出t 的取值范围:若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 4,P 的速度v 1=AB 4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =15,AB =CD =53AD =10,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②设FG 所在的曲线的数解析式为S =a (t -6)2+k (a ≠0),把F 5,154,G (8,0)代入解析式求得a ,k 值即可求解答;③利用待定系数法求出直线MN 的函数解析式,当S =154时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =4,NH =1,G (8,0),∴N (4,0),H (5,0),由图象可知:t =4时,Q 与E 重合,t =5时,P 与B 重合,t =8时,P 与C 重合,∴Q 的速度v 2=DE 4,P 的速度v 1=AB 5,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB5DE 4=AB 5⋅4DE =85,∵P 从A 到B 用了5秒,从B 到C 用了3秒,∴AB =5v 1,BC =3v 1,∴AB =53BC ,∴AB :AD 的值为53,故答案为:85,53;(2)①∵OM =15,∴M (0,15),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =15,∵AB :AD =53,DE =12AB ,∴DE =56AD ,∴12AD ⋅56AD =15,∴AD =BC =6(舍去负值),∴AB =CD =53AD =10,∴v 2=DE 4=54,当t =5时,DQ =v 2t =54×5=254,∴QE =DQ -DE =254-5=54,此时P 与B重合,∴S ΔEPQ =12EQ ⋅BC =12×54×6=154,∴F 5,154 ,设直线NF 的解析式为S =kt +b (k ≠0),将N (4,0)与F 5,154 代入得:4k +b =05k +b =154,∴k =154b =-15 ,∴线段NF 所在直线的函数表达式为S =154t -15(4<t ≤5);②设FG所在的曲线的数解析式为S=1254t-5(16-2t)=-54t2+15t-40,∴FG所在的曲线的函数解析式为S=-54t2+15t-40(5≤t≤8);③存在,分情况讨论如下:当Q在DE上,P在AB上时,∵直线MN经过点M(0,15),N(4,0),可求得直线MN的解析式为S=-54t+15(0≤t≤4),当s=154时,-154t+15=154,∴x=3,∵s随x的增大而减小,∴当0≤x≤3时,S≥154,当Q在CE上,P在BC上时,直线NF的解析式为S=154t-15(4<t≤5);由F5,15 4知:当t=5时,S=154,当S=154时,-54t2+15t-40=154,∴t=7或5,由图象知:当5≤x≤7,x的取值范围为0≤t≤3或5≤t≤7.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.6(2024•梁溪区校级模拟)在平面直角坐标系xOy 中,二次函数y =-ax 2+3ax +4a 的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴正半轴交于点C ,直线y =12x 交于第一象限内的D 点,且ΔABC 的面积为10.(1)求二次函数的表达式;(2)点E 为x 轴上一点,过点E 作y 轴的平行线交线段OD 于点F ,交抛物线于点G ,当GF =5OF 时,求点G 的坐标;(3)已知点P (n ,0)是x 轴上的点,若点P 关于直线OD 的对称点Q 恰好落在二次函数的图象上,求n 的值.【分析】(1)在y =-ax 2+3ax +4a 中,令y =0得A (-1,0),B (4,0),根据ΔABC 的面积为10,即得OC =4,C (0,4),用待定系数法即得二次函数的表达式为y =-x 2+3x +4;(2)设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),由GF =5OF ,可得-m 2+52m +4=5×52m ,即可解得G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,设Q (r ,s ),可得K n +r 2,s 2 ,即得s 2=12×n +r 2,n +r =2s ①,又r 2+s 2=n 2,(n +r )(n -r )=s 2②,可解得r =35n ,s =45n ,故Q 35n ,45n ,代入y =-x 2+3x +4得45n =-35n 2+3×35n +4,解得n =5或n =-209.【解答】解:(1)如图:在y =-ax 2+3ax +4a 中,令y =0得-ax 2+3ax +4a =0,解得x =4或x =-1,∴A (-1,0),B (4,0),∴AB =5,∵ΔABC 的面积为10,∴12AB ⋅OC =10,即12×5⋅OC =10,∴OC =4,∴C (0,4),把C (0,4)代入y =-ax 2+3ax +4a 得:4a =4,∴a =1,∴二次函数的表达式为y =-x 2+3x +4;(2)如图:设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),∴OF =m 2+12m 2=52m ,GF =-m 2+3m +4-12m =-m 2+52m +4,∵GF =5OF ,∴-m 2+52m +4=5×52m ,解得m =2或m =-2(舍去),∴G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,如图:∵P (n ,0)关于直线对称点为Q ,∴OQ =OP =|n |,K 是PQ 中点,设Q (r ,s ),∴K n +r 2,s 2,∵K 在直线y =12x 上,∴s 2=12×n +r 2,整理得:n +r =2s ①,∵OT 2+QT 2=OQ 2,∴r 2+s 2=n 2,变形得:(n +r )(n -r )=s 2②,把①代入②得:2s (n -r )=s 2,∵s ≠0,∴n -r =s2③,由①③可得r =35n ,s =45n ,∴Q 35n ,45n ,∵Q 在抛物线y =-x 2+3x +4上,∴45n =-35n 2+3×35n +4,解得n =5或n =-209,答:n 的值为5或-209.【点评】本题考查一次函数、二次函数综合应用,涉及待定系数法,三角形面积,对称变换等知识,解题的关键是用含n 的代数式表示Q 的坐标.7(2023•邗江区校级一模)如图1,在平面直角坐标系中,直线l :y =-33x +43分别与x 轴、y 轴交于点A 点和B 点,过O 点作OD ⊥AB 于D 点,以OD 为边构造等边ΔEDF (F 点在x 轴的正半轴上).(1)求A 、B 点的坐标,以及OD 的长;(2)将等边ΔEDF ,从图1的位置沿x 轴的正方向以每秒1个单位的长度平移,移动的时间为t (s ),同时点P 从E 出发,以每秒2个单位的速度沿着折线ED -DF 运动(如图2所示),当P 点到F 点停止,ΔDEF 也随之停止.①t =3或6(s )时,直线l 恰好经过等边ΔEDF 其中一条边的中点;②当点P 在线段DE 上运动,若DM =2PM ,求t 的值;③当点P 在线段DF 上运动时,若ΔPMN 的面积为3,求出t 的值.【分析】(1)把x =0,y =0分别代入y =-33x +43,即可求出点A 、B 的坐标,求出∠BAO =30°,根据直角三角形的性质,即可得出OD =12OA =6;(2)①当直线l 分别过DE 、DF 、EF 的中点,分三种情况进行讨论,得出t 的值,并注意点P 运动的最长时间;②分点P 在直线l 的下方和直线l 上方两种情况进行讨论,求出t 的值即可;③分点P 在DN 之间和点P 在NF 之间两种情况进行讨论,求出t 的值即可.【解答】解:(1)令x =0,则y =43,∴点B 的坐标为(0,43),令y =0,则-33x +43=0,解得x =12,∴点A 的坐标为(12,0),∵tan ∠BAO =OB OA=4312=33,∴∠BAO =30°,∵OD ⊥AB ,∴∠ODA =90°,∴ΔODA 为直角三角形,∴OD =12OA =6;(2)①当直线l 过DF 的中点G 时,∵ΔDEF 为等边三角形,∴∠DFE =60°,∵∠BAO =30°,∴∠FGA =60°-30°=30°,∴∠FGA =∠BAO ,∴FA =FG =12DF =3,∴OF =OA -FA =9,∴OE =OF -EF =9-6=3,∴t =3;当l 过DE 的中点时,∵DE ⊥l ,DG =EG ,∴直线l 为DE 的垂直平分线,∵ΔDEF 为等边三角形,∴此时点F 与点A 重合,∴t =12-61=6;当直线l 过EF 的中点时,运动时间为t =12-31=9;∵点P 从运动到停止用的时间为:6+62=6,∴此时不符合题意;综上所述,当t =3s 或6s 时,直线l 恰好经过等边ΔEDF 其中一条边的中点,故答案为:3或6;②∵OE =t ,AE =12-t ,∠BAO =30°,∴ME =6-t2,∴DM =DE -EM =t2,∵EP =2t ,∴PD =6-2t ,当P 在直线l 的下方时,∵DM =23DP ,∴t 2=23(6-2t ),解得:t =2411;当P 在直线l 的上方时,∵DM =2DP ,∴t2=2(6-2t ),解得t =83;综上所述:t 的值为2411或83;③当3<t ≤6时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DN -DP =t -(2t -6)=6-t ,∵∠DNM =30°,∴边MN 的高h =12PN =3-12t ,∵ΔPMN 的面积为3,∴12×32t 3-12t =3,整理得:t 2-6t +8=0,解得t =2(舍)或t =4当点P 在NF 之间时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DP -DN =2t -6-t =t -6,∵∠DNM =30°,∴∠FNA =∠DNM =30°,∴边MN 的高h =12PN =12t -3,∵ΔPMN 的面积为3,∴12×32t 12t -3 =3,解得t =3+17(舍)或t =3-17(舍),综上所述,t 的值为4s .【点评】本题主要考查了一次函数的性质、等边三角形的性质、直角三角形的性质、利用三角函数解直角三角形,熟练掌握含30°的直角三角形的性质并注意进行分类讨论是解题的关键.8(2023•武进区校级模拟)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 交点).(1)已知点A -12,0,B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 与点C 的坐标.【分析】(1)①根据点B 位于y 轴上,可以设点B 的坐标为(0,y ).由“非常距离”的定义可以确定|0-y |=2,据此可以求得y 的值;②设点B 的坐标为(0,y ).因为-12-0 ≥|0-y |,所以点A 与点B 的“非常距离”最小值为-12-0 =12;(2)①设点C 的坐标为x 0,34x 0+3 .根据材料“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”知,C 、D 两点的“非常距离”的最小值为-x 0=34x 0+2,据此可以求得点C 的坐标;②根据“非常距离”的定义,点E 在过原点且与直线y =34x +3垂直的直线上,且C 与E 的横纵坐标差相等时,点C 与点E 的“非常距离”取最小值,据此求出C 与E 的坐标及“非常距离”的最小值.【解答】解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵-12-0 =12≠2,∴|0-y |=2,解得,y =2或y =-2;∴点B 的坐标是(0,2)或(0,-2);②点A 与点B 的“非常距离”的最小值为12.(2)①如图2,当点C 与点D 的“非常距离”取最小值时,需要根据运算定义“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”解答,此时|x 1-x 2|=|y 1-y 2|.即AC =AD ,∵C 是直线y =34x +3上的一个动点,点D 的坐标是(0,1),∴设点C 的坐标为x 0,34x 0+3 ,∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为:|x 0|=87,此时C -87,157;②如图3,当点E 在过原点且与直线y =34x +3垂直的直线上,且CF =EF 时,点C 与点E 的“非常距离”最小,设E (x ,y )(点E 位于第二象限).则y x=-43x 2+y 2=1 ,解得x =-35y =45,故E -35,45.设点C 的坐标为x 0,34x 0+3 ,-35-x 0=34x 0+3-45,解得x0=-8 5,则点C的坐标为-8 5,95,点C与点E的“非常距离”的最小值为1.【点评】本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.9(2023•海安市一模)对于平面直角坐标系xOy中的图形W和点P,给出如下定义:F为图形W上任意一点,将P,F两点间距离的最小值记为m,最大值记为M,称M与m的差为点P到图形W的“差距离”,记作d(P,W),即d(P,W)=M-m,已知点A(2,1),B(-2,1)(1)求d(O,AB);(2)点C为直线y=-1上的一个动点,当d(C,AB)=1时,点C的横坐标是 (2-5)或(5-2,) ;(3)点D为函数y=x+b(-2≤x≤2)图象上的任意一点,当d(D,AB)≤2时,直接写出b的取值范围.【分析】(1)画出图形,根据点P到图形W的“差距离”的定义即可解决问题.(2)如图2中,设C(m,-1).由此构建方程即可解决问题.(3)如图3中,取特殊位置当b=6时,当b=-4时,分别求解即可解决问题.【解答】解:(1)如图1中,∵A(2,1),B(-2,1),∴AB⎳x轴,∴点O到线段AB的最小距离为1,最大距离为5,∴d(O,AB)=5-1.(2)如图2中,设C(m,-1).当点C在y轴的左侧时,由题意AC-2=1,∴AC=3,∴(2-m)2+22=9,∴m=2-5或2+5(舍弃),∴C(2-5,-1),当点C在y轴的右侧时,同法可得C(5-2,-1),综上所述,满足条件的点C的坐标为(2-5,-1)或(5-2,-1).故答案为:(2-5,-1)或(5-2,-1).(3)如图3中,当b=6时,线段EF:y=x+6(-2≤x≤2)上任意一点D,满足d(D,AB)≤2,当b=-4时,线段E′F′:y=x-4(-2≤x≤2)上任意一点D′,满足d(D′,AB)≤2,观察图象可知:当b≥6或b≤-4时,函数y=x+b(-2≤x≤2)图象上的任意一点,满足d(D,AB)≤2.【点评】本题属于一次函数综合题,考查了一次函数的性质,点P到图形W的“差距离”的定义等知识,解题的关键是理解题意,学会利用参数解决问题,学会寻找特殊位置解决问题,属于中考创新题型.10(2022•姑苏区校级模拟)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(-2,3),点P(m,n).(1)①若m=2,n=4,则点M,N,P的“最佳三点矩形”的周长为18,面积为;②若m=2,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=-2x+5上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,当且仅当点M,N,P的“最佳三点矩形”面积为12时,-2≤m≤-1或1≤m≤3,直接写出抛物线的解析式.【分析】(1)①利用“最佳三点矩形”的定义求解即可,②利用“最佳三点矩形”的定义求解即可;(2)①利用“最佳三点矩形”的定义求得面积的最小值为12,②由“最佳三点矩形”的定义求得正方形的边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,5,点P的坐标为(-1,7)或(4,-3);(3)利用“最佳三点矩形”的定义画出图形,可分别求得解析式.【解答】解:(1)①如图,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(-2,3),∴|x M-x N|=6,|y M-y N|=2.又∵m=2,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=-1或5.(2)如图,①由图象可得,点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=-2x+5,可得x分别为1,2;结合图象可知:1≤m≤2;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,4;∴点P的坐标为(-1,7)或(4,-3);(3)设抛物线的解析式为y=ax2+bx+c,经过点(-1,1),(1,1),(3,3),∴a -b +c =1a +b +c =19a +3b +c =3,a =14b =0c =34,∴y =14x 2+34,同理抛物线经过点(-1,3),(1,3),(3,1),可求得抛物线的解析式为y =-14x 2+134,∴抛物线的解析式y =14x 2+34或y =-14x 2+134.【点评】本题主要考查了一次函数的综合题,涉及点的坐标,正方形及矩形的面积及待定系数法求函数解析式等知识,解题的关键是理解运用好“最佳三点矩形”的定义.11(2022•太仓市模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =3,NH =1,点G 的坐标为(6,0).(1)点P 与点Q 的速度之比v 1v 2的值为 32 ;AB :AD 的值为;(2)如果OM =2.①求线段NF 所在直线的函数表达式;②是否存在某个时刻t ,使得S ≥23?若存在,求出t 的取值范围;若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 3,P 的速度v 1=AB4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =2,AB =CD =2AD =4,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②利用待定系数法求出直线MN 的函数解析式,当S =23时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =3,NH =1,G (6,0),∴N (3,0),H (4,0),由图象可知:t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,∴Q 的速度v 2=DE 3,P 的速度v 1=AB4,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB4DE 3=AB 4⋅3DE =AB 4⋅312AB =32,∵P 从A 到B 用了4秒,从B 到C 用了2秒,∴AB =4v 1,BC =2v 1,∴AB =2BC ,∴AB :AD 的值为2,故答案为:32,2;(2)①∵OM =2,∴M (0,2),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =2,∵AB :AD =2,∴AD =DE =12AB ,∴12AD 2=2,∴AD =BC =DE =2,AB =CD =2AD =4,∴v 2=DE 3=23,当t =4时,DQ =v 2t =23×4=83,∴QE =DQ -DE =83-2=23,此时P 与B 重合,∴S ΔEPQ =12EQ ⋅BC =12×23×2=33,∴F 4,23,设直线NF 的解析式为S =kx +b (k ≠0),将N (3,0)与F 4,23 代入得:3k +b =04k +b =23 ,∴k =23b =-2,∴线段NF 所在直线的函数表达式为S =23x -2(3<x ≤4);②存在,分情况讨论如下:当Q 在DE 上,P 在AB 上时,∵直线MN 经过点M (0,2),N (3,0),同理求得直线MN 的解析式为S =-23x +2(0≤x ≤3),当s =23时,-23x +2=2,∴x =2,∵s随x的增大而减小,∴当0≤x≤2时,S≥23,当Q在CE上,P在AB上时,直线NF的解析式为S=23x-2(3<x≤4),由F4,2 3知:当x=4时,S=23,当Q在CE上,P在BC上时,SΔEPQ=12EQ⋅CP,∵DQ=v2t=23t,∴EQ=DQ-DE=23t-2,∵v1=AB4=44=1,∴AB+BP=v1t=t,∵AB+BC=4+2=6,∴CP=6-t,∴S=1223t-2(6-t)=-13t2+3t-6(4<x≤6),当S=23时,-13t2+3t-6=23,∴t=4或5,由图象知:当4<x≤5时,S≥2 3,综上,S≥23时,x的取值范围为0≤x≤2或4≤x≤5.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.12(2022•邗江区校级一模)在平面直角坐标系xOy中,对于点P和线段ST,我们定义点P关于线段ST的线段比k=PSST(PS<PT)PTST(PS≥PT) .(1)已知点A(0,1),B(1,0).①点Q(2,0)关于线段AB的线段比k= 22 ;②点C(0,c)关于线段AB的线段比k=2,求c的值.(2)已知点M(m,0),点N(m+2,0),直线y=x+2与坐标轴分别交于E,F两点,若线段EF上存在点使得这一点关于线段MN的线段比k≤14,直接写出m的取值范围.【分析】(1)①求出QA、QB、AB,根据线段比定义即可得到答案;②方法同①,分c>0和c≤0讨论;(2)分两种情况,画出图象,根据线段比定义,分别在M(N)为“临界点”时列出不等式,即可得到答案.【解答】解:(1)①∵A(0,1),B(1,0),Q(2,0),∴AB=2,QA=5,QB=1,根据线段比定义点Q(2,0)关于线段AB的线段比k=QBAB=22;故答案为:22;②∵A (0,1),B (1,0),C (0,c ),∴AB =2,AC =|1-c |,BC =1+c 2,AC 2=1+c 2-2c ,BC 2=1+c 2,当c >0时,AC 2<BC 2,即AC <BC ,由C (0,c )关于线段AB 的线段比k =2可得:|1-c |2=2,解得c =3或c =-1(舍去),∴c =3,当c ≤0时,AC 2≥BC 2,即AC ≥BC ,由C (0,c )关于线段AB 的线段比k =2可得:1+c 22=2,解得c =3(舍去)或c =-3,∴c =-3,综上所述,点C (0,c )关于线段AB 的线段比k =2,c =3或c =-3;(2)∵直线y =x +2与坐标轴分别交于E ,F 两点,∴E (-2,0),F (0,2),∵点M (m ,0),点N (m +2,0),∴MN =2,N 在M 右边2个单位,当线段EF 上的点到N 距离较小时,分两种情况:①当M 、N 在点E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴NE MN≤14,即-2-(m +2)2≤14,解得:m ≥-92,②当N 在E 右侧,M 在E 左侧时,过M 作MG ⊥EF 于G ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴GM MN ≤14,即GM 2≤14,∴GM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴GM =22EM ,∴22EM ≤12,即22[(m +2)-(-2)]≤12,解得m ≤-4+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到N 距离较小时,-92≤m ≤-4+22,当线段EF 上的点到M 距离较小时,也分两种情况:①当N 在E 右侧,M 在E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴ME MN≤14,即-2-m 2≤14,解得m ≥-52,②当M 、N 在点E 右侧时,过M 作MH ⊥EF 于H ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴HM MN ≤14,即HM 2≤14,∴HM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴HM =22EM ,∴22EM ≤12,即22[m -(-2)]≤12,解得:m ≤-2+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到M 距离较小时,-52≤m ≤-2+22,综上所述,线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,则-92≤m ≤-4+22或-52≤m ≤-2+22.【点评】本题考查一次函数应用,解题的关键是读懂线段比的定义,找出“临界点”列不等式.13(2022•泰州)定义:对于一次函数y 1=ax +b 、y 2=cx +d ,我们称函数y =m (ax +b )+n (cx +d )(ma +nc ≠0)为函数y 1、y 2的“组合函数”.(1)若m =3,n =1,试判断函数y =5x +2是否为函数y 1=x +1、y 2=2x -1的“组合函数”,并说明理由;(2)设函数y 1=x -p -2与y 2=-x +3p 的图像相交于点P .①若m +n >1,点P 在函数y 1、y 2的“组合函数”图像的上方,求p 的取值范围;②若p ≠1,函数y 1、y 2的“组合函数”图像经过点P .是否存在大小确定的m 值,对于不等于1的任意实数p ,都有“组合函数”图像与x 轴交点Q 的位置不变?若存在,请求出m 的值及此时点Q 的坐标;若不存在,请说明理由.【分析】(1)由y =5x +2=3(x +1)+(2x -1),可知函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得P (2p +1,p -1),当x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p-1)(m +n ),根据点P 在函数y 1、y 2的“组合函数”图象的上方,有p -1>(p -1)(m +n ),而m +n >1,可得p <1;②由函数y 1、y 2的“组合函数” y =m (x -p -2)+n (-x +3p )图象经过点P ,知p -1=m (2p +1-p -2)+n (-2p -1+3p ),即(p -1)(1-m -n )=0,而p ≠1,即得n =1-m ,可得y =(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,即(3-4m )p +(2m -1)x -2m =0,即可得m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【解答】解:(1)函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”,理由如下:∵3(x +1)+(2x -1)=3x +3+2x -1=5x +2,∴y =5x +2=3(x +1)+(2x -1),∴函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得x =2p +1y =p -1 ,∴P (2p +1,p -1),∵y 1、y 2的“组合函数”为y =m (x -p -2)+n (-x +3p ),∴x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p -1)(m +n ),∵点P 在函数y 1、y 2的“组合函数”图象的上方,∴p -1>(p -1)(m +n ),∴(p -1)(1-m -n )>0,∵m +n >1,∴1-m -n <0,∴p -1<0,∴p <1;②存在m =34时,对于不等于1的任意实数p ,都有“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0),理由如下:由①知,P (2p +1,p -1),∵函数y 1、y 2的“组合函数”y =m (x -p -2)+n (-x +3p )图象经过点P ,∴p -1=m (2p +1-p -2)+n (-2p -1+3p ),∴(p -1)(1-m -n )=0,∵p ≠1,∴1-m -n =0,有n =1-m ,∴y =m (x -p -2)+n (-x +3p )=m (x -p -2)+(1-m )(-x +3p )=(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,变形整理得:(3-4m )p +(2m -1)x -2m =0,∴当3-4m =0,即m =34时,12x -32=0,∴x =3,∴m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【点评】本题考查一次函数综合应用,涉及新定义,函数图象上点坐标的特征,一次函数与一次方程的关系等,解题的关键是读懂“组合函数“的定义.14(2024•钟楼区校级模拟)在同一平面内,具有一条公共边且不完全重合的两个全等三角形,我们称这两个三角形叫做“共边全等”.(1)下列图形中两个三角形不是“共边全等”是③;AB,点E、F分别在AC、BC边(2)如图1,在边长为6的等边三角形ABC中,点D在AB边上,且AD=13上,满足ΔBDF和ΔEDF为“共边全等”,求CF的长;(3)如图2,在平面直角坐标系中,直线y=-3x+12分别与直线y=x、x轴相交于A、B两点,点C是OB 的中点,P、Q在ΔAOB的边上,当以P、B、Q为顶点的三角形与ΔPCB“共边全等”时,请直接写出点Q 的坐标.【分析】(1)由于第③个图不符合共边要求,所以图③即为答案;(2)DF为两个全等三角形的公共边,由于F点在BC边上,E在AC边上,两个三角形的位置可以如图②,在公共边异侧,构成一个轴对称图形,也可以构成一个平行四边形(将图③的两条最长边重合形成),分两类讨论,画出图形,按照图②构图,会得到一个一线三等角模型,利用相似,列出方程来解决,按照平行四边形构图,直接得到ΔADE为等边三角形,计算边长即可求得;(3)由题目要求,可以知道两个全等三角形的公共边为PB边,由于要构成ΔPCB,所以P点只能在OA和OB边上,当P在OA边上,两个三角形可以在PB同侧,也可以在PB异侧,当在PB异侧构图时,可以得到图3和图4,在图3中,当在PB同侧构图时,可以得到图6,当P在OB边上时,Q只能落在OA上,得到图7,利用已知条件,解三角形,即可求出Q点坐标.【解答】解:(1)①②均符合共边全等的特点,只有③,没有公共边,所以③不符合条件,∴答案是③;(2)①如图1,当ΔBDF≅ΔEFD,且是共边全等时,∠BFD=∠EDF,∴DE⎳BC,∵ΔABC是等边三角形,∴ΔADE是等边三角形,AB=2,∵AD=13∴DE=AE=BF=2,∴CF=BC-BF=4,②如图2,当ΔBDF≅ΔEDF,且是共边全等时,BD=DE=6-AD=4,∠DEF=∠B=60°,EF=BF,∴∠AED+∠FEC=120°,又∠AED+∠EDA=120°,。
初中数学一次函数基础测试题含答案解析
初中数学一次函数基础测试题含答案解析一、选择题1.已知正比例函数0()y mx m =≠中,y 随x 的增大而减小,那么一次函数y mx m =-的图象大致是如图中的( )A .B .C .D .【答案】D【解析】【分析】由y 随x 的增大而减小即可得出m <0,再由m <0、−m >0即可得出一次函数y mx m =-的图象经过第一、二、四象限,对照四个选项即可得出结论.【详解】解:∵正比例函数y =mx (m≠0)中,y 随x 的增大而减小,∴m <0,∴−m >0,∴一次函数y =mx−m 的图象经过第一、二、四象限.故选:D .【点睛】本题考查了一次函数的图象、正比例函数的性质以及一次函数图象与系数的关系,熟练掌握“k <0,b >0⇔y =kx +b 的图象在一、二、四象限”是解题的关键.2.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .2【答案】A【解析】【分析】根据已知可得点C 的坐标为(-2,1),把点C 坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB 是矩形,∴BC=OA=2,AC=OB=1,∵点C 在第二象限,∴C 点坐标为(-2,1),∵正比例函数y =kx 的图像经过点C ,∴-2k=1,∴k=-12, 故选A. 【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.3.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】 解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.4.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C【解析】【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案.【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),当x >2时,y<0.故答案为:x >2.故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.5.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y=−4x和y=kx+b的图象相交于点A(m,−8),∴−8=−4m,解得:m=2,故A点坐标为(2,−8),∵kx+b>−4x时,(k+4)x+b>0,则关于x的不等式(k+4)x+b>0的解集为:x>2.故选:A.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.6.正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为()A.B.C.D.【答案】B【解析】【分析】根据图象分别确定k的取值范围,若有公共部分,则有可能;否则不可能.【详解】根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.7.已知正比例函数y=kx(k≠0)经过第二、四象限,点(k﹣1,3k+5)是其图象上的点,则k的值为()A.3 B.5 C.﹣1 D.﹣3【答案】C【解析】【分析】把x=k﹣1,y=3k+5代入正比例函数y=kx解答即可.【详解】把x=k﹣1,y=3k+5代入正比例函数的y=kx,可得:3k+5=k (k ﹣1),解得:k 1=﹣1,k 2=5,因为正比例函数的y=kx (k≠0)的图象经过二,四象限,所以k <0,所以k=﹣1,故选C .【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.8.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )A .4个B .3个C .2个D .1个 【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y =x 是一次函数,符合题意;(2)y =2x ﹣1是一次函数,符合题意; (3)y =1x是反比例函数,不符合题意; (4)y =2﹣3x 是一次函数,符合题意;(5)y =x 2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B .【点睛】 此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( ) A .2-B .1-C .1D .2【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,解得n=2.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.11.下列各点在一次函数y=2x ﹣3的图象上的是( )A .( 2,3)B .(2,1)C .(0,3)D .(3,0【答案】B【解析】【分析】把各点分别代入一次函数y=2x ﹣3进行检验即可.【详解】A 、2×2﹣3=1≠3,原式不成立,故本选项错误;B 、2×2﹣3=1,原式成立,故本选项正确;C 、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;D 、2×3﹣3=3≠0,原式不成立,故本选项错误,故选B .【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.12.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.13.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm 【答案】B【解析】【分析】【详解】由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CHAC BC AB =,即AC BC3412CH CH AB 55⋅⨯=⇒==.∴如图,点E (3,125),F (7,0).设直线EF 的解析式为y kx b =+,则123k b {507k b =+=+,解得:3 k5 {21 b5=-=.∴直线EF 的解析式为321y x55=-+.∴当x5=时,()3216PD y5 1.2cm555==-⨯+==.故选B.14.如图,已知直线1y x b=+与21y kx=-相交于点P,点P的横坐标为1-,则关于x 的不等式1x b kx+≤-的解集在数轴上表示正确的是().A.B.C.D.【答案】D【解析】试题解析:当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.考点:一次函数与一元一次不等式.15.函数()312y m x=+-中,y随x的增大而增大,则直线()12y m x=---经过() A.第一、三、四象限B.第二、三、四象限C.第一、二、四象限D.第一、二、三象限【答案】B【解析】【分析】根据一次函数的增减性,可得310m+>;从而可得10m--<,据此判断直线()12y m x =---经过的象限.【详解】解:Q 函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.16.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.17.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )A .x <﹣2B .﹣2<x <﹣1C .x <﹣1D .x >﹣1【答案】B【解析】【分析】 由图象得到直线y=kx+b 与直线y=4x+2的交点A 的坐标(-1,-2)及直线y=kx+b 与x 轴的交点坐标,观察直线y=4x+2落在直线y=kx+b 的下方且直线y=kx+b 落在x 轴下方的部分对应的x 的取值即为所求.【详解】∵经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),∴直线y =kx +b 与直线y =4x +2的交点A 的坐标为(﹣1,﹣2),直线y =kx +b 与x 轴的交点坐标为B (﹣2,0),又∵当x <﹣1时,4x +2<kx +b ,当x >﹣2时,kx +b <0,∴不等式4x +2<kx +b <0的解集为﹣2<x <﹣1.故选B .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:k =即直线OA 的解析式为:y x =将点A '的横坐标为4y =-即点A '的坐标为4)-∵点A 向右平移6个单位得到点A '∴B '的坐标为(046)2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b 过一、二、四象限,则函数值y 随x 的增大而减小,因而k <0;图象与y 轴的正半轴相交则b >0,因而一次函数y=-bx+k 的一次项系数-b <0,y 随x 的增大而减小,经过二四象限,常数项k <0,则函数与y 轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A .【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.20.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【答案】C【解析】【分析】 由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案.【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3),∴-3=-6+b ,解得:b=3,∴一次函数的解析式为y=-6x+3,∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴,∴这个一次函数的图象一定经过一、二、四象限,故选:C .【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.。
初中数学解题技巧专题---一次函数与几何图形的综合问题
第2页共3页
参考答案与解析 .1 16 解析:如图,∵点 ,A B 的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB=90°,
==BC24=x×-54,6=上∴16,在.即∴R线2t△x段-AB6B=CC扫4中,过,解的由得面勾x积股=为定5.即理16得O. AA′=C=5,∴BCC2C-′=AABA2=′=45,-∴1=A′C4.′=∴4S.▱∵BCC点′B′C=′在C直C′线·CAy
9
Hale Waihona Puke AP OP OA 2 AP OP OA 2
S△ABP
1 2AP·OB
1 2
9 2
3
27 4
S△ABP
1 2AP·OB
=12×32×3=94.综上所述,△ABP 的面积为247或94. 3.解:(1)∵点 P 在直线 y=-x+10 上,且点 P 在第一象限内,∴x>0 且 y>0,即-x
+10>0,解得 ∵点 0<x<10. A(8,0),∴OA=8,∴S=12OA·|yP|=12×8×(-x+10)=-4x+ . 40(0<x<10)
= ,∴ , , , , , … ∵ = - , = - , = - ,…∴ B2B3 8 B1(2 0) B2(6 0) B3(14 0) . 2 22 2 6 23 2 14 24 2
Bn
的横坐标为 - 故答案为 - 2n+1 2.
2n+1 2.
B直∴形3(线点2A217,ByB.=212C的(3x21--On坐-111是标),,上正为2…,n-方(2∴,,1形)点∴3,)点A,解∴2同B析的An1理:坐的B1∵可标坐=y得为标O=A点为(x21=-,(B21113n-,)的与.1,∴坐∵x2点标四轴n-为边交B11()形于4的.,点坐A72)B标A.21C,为∵2∴C(B11,1点是(210正A),.1方的2∵1形-坐C,1标1A)∴,为2∥AB(2x12B(,2轴21=0,,).A2点22∵C-1A四=12)边在2,,
八年级数学一次函数综合测试(一)(北师版)(含答案)
学生做题前请先回答以下问题问题1:一次函数的图象是什么?正比例函数的图象呢?问题2:k,b的意义:k反应图象的_____;b表示一次函数图象和____轴交点的______.问题3:对于一次函数y=kx+b来讲,当k>0时,图象必过第_______象限;当k<0,时,图象必过第_____象限;当b>0时,图象必过第______象限;当b<0时,图象必过第_____象限.一次函数综合测试(一)(北师版)一、单选题(共11道,每道9分)1.下列各曲线中表示y是x的函数的是()A. B.C. D.答案:D解题思路:根据函数的定义:一般地,如果在一个变化过程中有两个变量x和y,并且对于变量的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数.故选D.试题难度:三颗星知识点:函数的概念2.下列函数:①;②;③;④;⑤;⑥.其中是一次函数的有( )A.4个B.3个C.2个D.1个答案:A解题思路:本题主要考查一次函数的定义.一次函数的定义满足的条件是:k,b是常数,且,自变量的次数是1.根据一次函数的定义可知,①②④⑥是一次函数,即是一次函数的有4个.故选A试题难度:三颗星知识点:一次函数的定义3.设点A(a,b)是正比例函数图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0B.2a﹣3b=0C.3a﹣2b=0D.3a+2b=0答案:D解题思路:把点A(a,b)代入正比例函数,得,﹣3a=2b即,3a+2b=0故选D.试题难度:三颗星知识点:一次函数图象上点的坐标特征4.在平面直角坐标系中,若直线经过第一、三、四象限,则直线不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限答案:A解题思路:∵直线经过第一、三、四象限∴k>0,b<0∴y=bx-k过第二、三、四象限,不经过第一象限故选A试题难度:三颗星知识点:一次函数的图象与性质5.已知直线y=kx+b,若k+b=-99,kb=100,则该直线经过( )A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限答案:D解题思路:∵kb=100>0,∴k,b同号,∵k+b=-99<0,∴,∴直线y=kx+b经过第二、三、四象限.故选D.试题难度:三颗星知识点:一次函数的性质6.已知一次函数y=kx+b,若图象不经过第一象限,则( )A.k<0,b>0B.k<0,b≥0C.k<0,b<0D.k<0,b≤0答案:D解题思路:∵一次函数y=kx+b的图象不经过第一象限,∴该图象过第二、四象限或第二、三、四象限,∴k<0,b≤0.故选D.试题难度:三颗星知识点:一次函数的性质7.已知一次函数y=kx+b经过(2,-1),(-3,4)两点,则它的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限答案:C解题思路:∵(2,-1),(-3,4)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的表达式为y=-x+1,画图可知,一次函数y=-x+1的图象不经过第三象限.故选C.试题难度:三颗星知识点:待定系数法求一次函数表达式8.一次函数的图象经过点A(5,3),且与直线y=2x-3无交点,则这个一次函数的表达式为( )A.y=2x-7B.y=2x+7C.y=-2x-7D.无法确定答案:A解题思路:设该一次函数的表达式为y=kx+b,∵一次函数y=kx+b的图象与直线y=2x-3无交点,∴k=2,∵一次函数y=kx+b的图象经过点A(5,3),∴2×5+b=3,解得b=-7,∴该一次函数的表达式为y=2x-7,故选A.试题难度:三颗星知识点:待定系数法求一次函数表达式9.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限答案:A解题思路:∵k>0∴一次函数y=kx+5的图象经过第一、二、三象限∵k′<0∴一次函数y=k′x+7的图象经过第一、二、四象限可画出如下草图:两直线交点在第一象限故选A.试题难度:三颗星知识点:两条直线相交10.若点A(2,-3),B(4,3),C(5,a)在同一条直线上,则a的值为( )A.6或-6B.6C.-6D.6或3答案:B解题思路:设直线AB的函数表达式为y=kx+b,∵直线AB过点A(2,-3),B(4,3),∴,解得,∴直线AB的函数表达式为y=3x-9,又∵点C在直线AB上,∴当x=5时,y=a=3×5-9=6,即a=6.故选B.试题难度:三颗星知识点:坐标与表达式互转11.已知点M(4,3)和点N(1,-2),点P在y轴上,则当PM+PN最小时,点P的坐标是( )A.(0,0)B.(0,1)C.(0,-1)D.(-1,0)答案:C解题思路:如图,作点M关于y轴的对称点M′,连接M′N,则直线M′N与y轴的交点即为使PM+PN最小的点.设点M′,N所在直线的表达式是y=kx+b,∵M′(-4,3),N(1,-2)在直线y=kx+b上,∴,∴,∴,∴当x=0时,y=-1,∴图象与y轴交于点(0,-1).故选C.试题难度:三颗星知识点:轴对称-最短路线问题。
一次函数易错题压轴题题型归纳及方法
一次函数易错题压轴题题型归纳及方法一次函数是初中数学中的一个重要概念,也是学生们在学习数学过程中比较容易犯错的一个知识点。
对于一次函数的易错题和压轴题,我们需要系统地进行归纳和总结,并提出解题方法,以帮助学生能够更好地掌握这一知识点。
一、基本概念回顾在深入讨论一次函数的易错题和压轴题之前,我们首先需要对一次函数的基本概念进行回顾。
一次函数是指数学中的一种线性函数,其表达式为y=kx+b,其中k和b是常数,且k不等于0。
在一次函数中,自变量x的最高次数为1,因此该函数的图像是一条直线。
二、易错题归纳1. 混淆斜率和截距的概念:有时候学生容易将斜率和截距的概念搞混,导致在解题过程中出现错误。
2. 计算斜率时忽略符号:在计算斜率的过程中,学生们有时会忽略负号,导致最终答案错误。
3. 表达式化简不熟练:一次函数的题目中经常涉及表达式的化简,学生们在这一环节容易出现错误。
4. 不懂得应用一次函数的实际意义:能否准确地将一次函数应用于实际问题,也是学生容易出错的地方。
三、压轴题题型归纳1. 给定直线上两点,求斜率和截距。
2. 要求根据实际问题建立一次函数,并回答相应问题。
3. 给定一次函数的图像,要求根据图像提取信息并回答相应问题。
4. 要求根据一次函数的表达式,分析其斜率和截距的意义。
四、解题方法1. 深入理解斜率和截距的意义:斜率代表着函数图像的倾斜程度,截距则代表了函数图像与y轴的交点。
深入理解斜率和截距的意义,能够帮助学生更好地理解一次函数的图像特征。
2. 多做实际问题练习:通过大量的实际问题练习,能够帮助学生更好地理解一次函数在实际生活中的应用,从而提高解题能力。
3. 注意符号和计算过程:在解题过程中,学生需要特别注意符号的运用,以及化简表达式的计算过程,避免因为粗心而导致错误。
五、个人观点对于一次函数的易错题和压轴题,我认为学生需要在掌握基本概念的基础上,注重理解和应用。
只有深入理解一次函数的特点和应用,才能够更好地解决易错题和应对压轴题。
专题08 一次函数与方程、不等式的综合问题-2023年初中数学8年级下册同步压轴题(学生版)
专题08 一次函数与方程、不等式的综合问题 类型一、一次函数与方程综合例.如图,一次函数y kx b =+的图像与x 轴的交点坐标为()2,0-,则下列说法正确的有( ).A .y 随x 的增大而减小B .0k >,0b <C .当2x >-时,0y <D .关于x 的方程0kx b +=的解为2x =-【变式训练1】直线y =ax +b (a ≠0)过点A (0,2),B (1,0),则关于x 的方程ax +b =0的解为( ) A .x =0B .x =2C .x =1D .x =3【变式训练2】如图,直线y =kx +b (k ≠0)与x 轴交于点(﹣5,0),下列说法正确的是( )A .k >0,b <0B .直线y =bx +k 经过第四象限C .关于x 的方程kx +b =0的解为x =﹣5D .若(x 1,y 1),(x 2,y 2)是直线y =kx +b 上的两点,若x 1<x 2,则y 1>y 2【变式训练3】如图,一次函数y kx b =+的图象经过点()0,4,则下列结论正确的是( )A .图像经过一、二、三象限B .关于x 方程0kx b +=的解是4x =C .0b <D .y 随x 的增大而减小【变式训练4】一次函数(0)y kx b k =+≠的图象如图所示,则关于x 的不等式20kx b +>的解集是( )A .2x >-B .2x <-C .2x <D .2x >类型二、一次函数与不等式综合例.如图,已知函数y =3x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得不等式3x +b >ax ﹣3的解集是( )A .x >﹣2B .x <﹣2C .﹣2<x <0D .x >0【变式训练1】如图,一次函数y =kx +b (k >0)的图像过点()1,0-,则不等式()20k x b -+>的解集是( )A .x >-3B .x >-2C .x >1D .x >2【变式训练2】如图,一次函数y =kx +b 的图象经过点(4,0),(0,4),那么关于x 的不等式0<kx +b <4的解集是______.【变式训练3】如图,一次函数y =kx +b 与y =x +2的图象交于点P (m ,5),则关于x 的不等式kx +b >x +2的解集是______.【变式训练4】如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,点P 的横坐标为﹣1,则关于x 的不等式kx ﹣1<x +b 的解集为______.课后训练1.已知不等式0ax b +<的解是2x >-,下列有可能是函数y ax b =+的图像的是( )A .B .C .D .2.如图所示为两个一次函数的图象,则关于x ,y 的方程1122y k x b y k x b =+⎧⎨=+⎩的解为________.3.函数y ax =和y kx b =+的图象相交于点()2,1A -,则方程ax kx b =+的解为______.4.已知一次函数y kx b =-(k 、b 为常数,且0k ≠,0b ≠)与13y x =的图象相交于点1(,)2M a ,则关于x 的方程1()3k x b -=的解为x =____________. 5.如图,直线1:1l y x =+与直线2:l y mx n =+相交于点()1,2P ,则关于x 的不等式1x mx n +≥+的解集为______.6.如图,直线1y kx =+与直线2y x b =-+交于点()1,2A ,由图象可知,不等式12kx x b +≥-+的解为______.7.数形结合是解决数学问题常用的思想方法.如图,直线21y x =-与直线()0y kx b k =+≠相交于点()2,3P .根据图象可知,关于x 的不等式21x kx b ->+的解集是______8.如图,直线l 1:y 1=ax +b 经过(﹣3,0),(0,1)两点,直线l 2:y 2=kx ﹣2;①若l 1∥l 2,则k 的值为 _____;②当x <1时,总有y 1>y 2,则k 的取值范围是 ________.9.如图,一次函数y kx b =+的图象与x 轴交于点A (3,0),与y 轴交于点B (0,4),与正比例函数y ax =的图象交于点C ,且点C 的横坐标为2,则不等式ax kx b <+的解集为______.10.直线y=kx+b与直线y=5﹣4x平行,且与直线y=﹣3(x﹣6)相交,交点在y轴上,求直线y=kx+b对应的函数解析式.。
初中数学一次函数知识点总复习有答案解析(1)
初中数学一次函数知识点总复习有答案解析(1)一、选择题1.一次函数y mx n =-+结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.2.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-.∴s 的取值范围是362s -<≤-. 故选B. 考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.3.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .22B .2C .5D .3【答案】D【解析】【分析】【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣x+22=22,则A (0,22),当y=0时,﹣x+22=0,解得x=22,则B (22,0),所以△OAB 为等腰直角三角形,则AB=2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到PM=22OP OM -=21OP -,当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=.故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.4.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A .24y x =+B .24y x =-+C .31y x =+D .31y x -=-【答案】B【解析】【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.【详解】设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.5.甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲立刻原速返回,乙继续以原速步行前往火车站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程y (米)与时间t (分)的函数关系如图所示,则下列结论错误的是( )A .他们步行的速度为每分钟80米;B .出租车的速度为每分320米;C .公司与火车站的距离为1600米;D .出租车与乙相遇时距车站400米.【答案】D【解析】【分析】 根据图中一条函数的折返点的纵坐标是480,我们可得知,甲走了480米后才发现了没带票的,然后根据返回公司用时12分钟,速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,则可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然后判别即可.【详解】解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变, 即:甲步行的速度为每分钟480806=米,乙步行的速度也为每分钟80米, 故A 正确;又∵甲乙再次相遇时是16分钟,∴16分乙共走了80161280?米,由图可知,出租车的用时为16-12=4分钟,∴出租车的速度为每分12804320?米, 故B 正确;又∵相遇后,坐出租车去火车站比预计早到3分钟,设公司与火车站的距离为x 米, 依题意得:12380320x x =++,解之得:1600x , ∴公司与火车站的距离为1600米,出租车与乙相遇时距车站1600-1280=320米. 故C 正确,D 不正确.故选:D .【点睛】本题通过考查一次函数的应用来考查从图象上获取信息的能力.要注意题中分段函数的意义.6.如图,直线y=kx+b (k≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A.x>﹣2 B.x<﹣2 C.x>4 D.x<4【答案】A【解析】【分析】求不等式kx+b>4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2,∴不等式kx+b>4的解集是x>-2,故选A.【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.7.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km ,故①正确,小轿车的速度是:40÷(60﹣20)=1km /min ,故②正确,a =1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km /min ,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷10(0.5)7⨯﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.8.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【答案】C【解析】【分析】 由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案.【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3),∴-3=-6+b ,解得:b=3,∴一次函数的解析式为y=-6x+3,∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴,∴这个一次函数的图象一定经过一、二、四象限,故选:C .【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y随x的增大而减小;当b>0时,图象与y轴交于正半轴;当b<0时,图象与y轴交于负半轴.9.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小10.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A .+1y x =B .4455y x =-C .1y x =-D .33y x =-【答案】C【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l 的函数解析式为y kx b =+,则320k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,所以直线l 的解析式为1y x =-. 故选:C .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.11.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m £ 【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m £,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.已知正比例函数0()y mx m =≠中,y 随x 的增大而减小,那么一次函数y mx m =-的图象大致是如图中的( )A .B .C.D.【答案】D【解析】【分析】由y随x的增大而减小即可得出m<0,再由m<0、−m>0即可得出一次函数y mx m=-的图象经过第一、二、四象限,对照四个选项即可得出结论.【详解】解:∵正比例函数y=mx(m≠0)中,y随x的增大而减小,∴m<0,∴−m>0,∴一次函数y=mx−m的图象经过第一、二、四象限.故选:D.【点睛】本题考查了一次函数的图象、正比例函数的性质以及一次函数图象与系数的关系,熟练掌握“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.13.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>12B.12<x<32C.x<32D.0<x<32【答案】B 【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC -CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()A.1.5cm B.1.2cm C.1.8cm D.2cm【答案】B【解析】【分析】【详解】由图2知,点P在AC、CB上的运动时间时间分别是3秒和4秒,∵点P的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt△ABC中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则123k b {507k b =+=+, 解得:3k 5{21b 5=-=.∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .15.关于一次函数y=3x+m ﹣2的图象与性质,下列说法中不正确的是( ) A .y 随x 的增大而增大B .当m≠2时,该图象与函数y=3x 的图象是两条平行线C .若图象不经过第四象限,则m >2D .不论m 取何值,图象都经过第一、三象限 【答案】C 【解析】 【分析】根据一次函数的增减性判断A ;根据两条直线平行时,k 值相同而b 值不相同判断B ;根据一次函数图象与系数的关系判断C 、D . 【详解】A 、一次函数y=3x+m ﹣2中,∵k=3>0,∴y 随x 的增大而增大,故本选项正确;B 、当m≠2时,m ﹣2≠0,一次函数y=3x+m ﹣2与y=3x 的图象是两条平行线,故本选项正确;C 、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m ﹣2≥0,即m≥2,故本选项错误;D 、一次函数y=3x+m ﹣2中,∵k=3>0,∴不论m 取何值,图象都经过第一、三象限,故本选项正确. 故选:C .【点睛】本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.16.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:砝码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.【答案】B【解析】【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案.【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x+b,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x+2.显然当y=7.5时,x=275,故选B.【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.17.一次函数y=x-b的图像,沿着过点(1,0)且垂直于x轴的直线翻折后经过点(4,1),则b的值为()A.-5 B.5 C.-3 D.3【答案】C【解析】【分析】先根据一次函数沿着过点(1,0)且垂直于x轴的直线翻折后经过点(4,1)求出函数经过的点,再用待定系数法求解即可. 【详解】解:∵过点(1,0)且垂直于x 轴的直线为x=1,∴根据题意,y =x -b 的图像关于直线x=1的对称点是(4,1), ∴y =x -b 的图像过点(﹣2,1), ∴把点(﹣2,1)代入一次函数得到:12b =--, ∴b=﹣3, 故C 为答案. 【点睛】本题主要考查了与一次函数图像有关的知识点,求出从沿某直线翻折后经过的点求函数图像经过哪个点是解题的关键,并掌握用待定系数法求解.18.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D 【解析】试题解析:当x >-1时,x+b >kx-1, 即不等式x+b >kx-1的解集为x >-1. 故选A .考点:一次函数与一元一次不等式.19.下列函数:①y x =;②4zy =;③4y x=,④21y x =+其中一次函数的个数是( ) A .1B .2C .3D .4【解析】 【分析】根据一次函数的定义条件进行逐一分析即可. 【详解】①y=x 是一次函数,故①符合题意; ②4zy =是一次函数,故②符合题意; ③4y x=自变量次数不为1,故不是一次函数,故③不符合题意; ④y=2x+1是一次函数,故④符合题意. 综上所述,是一次函数的个数有3个, 故选:C . 【点睛】此题考查了一次函数的定义,解题关键在于掌握一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1.20.已知直线y=2x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )A .12<k <1 B .13<k <1 C .k >12D .k >13【答案】A 【解析】 【分析】由直线y=2x-1与y=x-k 可列方程组求交点坐标,再通过交点在第四象限可求k 的取值范围. 【详解】解:设交点坐标为(x ,y )根据题意可得 21y x y x k =-⎧⎨=-⎩ 解得 112x ky k =-⎧⎨=-⎩∴交点坐标()112k,k -- ∵交点在第四象限,∴10120k k -⎧⎨-⎩>< ∴112k << 故选:D .本题考查了两条直线相交坐标问题,掌握平面直角坐标系内点的坐标特点是解题的关键.。
求一次函数解析式常见题型解析
求一次函数解析式常见题型解析一次函数解析式的求法在初中数学内容中占有举足轻重的作用,如何把这一部分内容学得扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学们有所帮助。
第一种情况:直接或间接已知函数是一次函数,采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。
例1. 已知函数()2833m y m x-=-+是一次函数,求其解析式。
解析:由一次函数定义知3m =-,故一次函数的解析式为33y x =-+注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证30m -≠。
例2. 已知y -1与x +1成正比例,且当x =1时,y =5.求y 与x 的函数关系式; 解析: ∵y -1与x +1成正比例,∴可假设y -1=k (x +1)又当x =1时,y =5,代入求出k =2, 所以y -1=2(x +1),变形为y =2x +3注意:“两个量成正比例”和“两个量是正比例函数关系”是完全一致的,题目中已知y -1与x +1成正比例就可以假设y -1=k (x +1)。
二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。
当12k k =,12b b ≠时,1l ∥2l ,解决问题时要抓住平行的直线k 值相同这一特征。
例1 . 把直线21y x =+向下平移2个单位得到的图像解析式为___________。
解析:直线21y x =+向下平移得到的直线与直线21y x =+平行∴可设把直线21y x =+向下平移2个单位得到的图像解析式为b x y +=2直线21y x =+与y 轴交点为(0,1)向下平移2个单位得到的点为(0,-1)∴可代入b x y +=2求出b =-1 ∴所求解析式为12-=x y例2 . 已知直线y kx b =+与直线2y x =-平行,且与x 轴交点横坐标为1,则直线的解析式为___________。
初中数学函数知识点和常见题型总结
函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。
函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。
函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。
换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。
一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。
注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。
平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。
2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。
3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。
3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。
2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。
一次函数知识要点与经典题型
1500 1000 500 y/米 1500 1000 1000 500 500 x/分钟 O 10 20 30 40 50 O 10 20 30 40 50 x/分钟 O 10 20 30 40 50 x/分钟 O 1000 500 x/分钟 10 20 30 40 50 y/米 1500 y/米 1500 y/米
A
.
B
.
C
.
D
.
五、用描点法画函数的图象的一般步骤: 1、列表(表中给出一些自变量的值及其对 应的函数值。) 注意:列表时自变量由小到大,相差一样, 有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐 标,相应的函数值为纵坐标,描出表格中数值对应的 各点。 3、连线:(按照横坐标由小到大的顺序把所描的各点 用平滑的曲线连接起来)。
4000 y(米3)
1000
O 20 30 x (天)
3.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、 乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先 出发,从部队基地到该小镇只有唯一通道,且路程为24km. 如图是他们行走的路程关于时间的函数图象,四位同学观 察此函数图象得出有关信息,其中正确的个数是( D ) A.1 B.2 C.3 D.4
(3)一次函数图象与坐标轴交点坐标求法
①代数法
②图象法
1.已知一次函数y=(m-4)x+3-m,当 m为何值时, (1)Y随x值增大而减小; m<4 (2)直线过原点; m=3 (3)直线与直线y=-2x平行; m=2 (4)直线不经过第一象限; 3≤ m<4 (5)直线与x轴交于点(2,0) m=5 (6)直线与y轴交于点(0,-1) m=-4 (7)直线与直线y=2x-4交于点 (a,2) m=5.5 m
[中考数学]求一次函数解析式常见题型解析
求一次函数解析式常见题型解析一次函数解析式的求法在初中数学内容中占有举足轻重的作用,如何把这一部分内容学得扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学们有所帮助。
第一种情况:直接或间接已知函数是一次函数,采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。
例1. 已知函数()2833m y m x-=-+是一次函数,求其解析式。
解析:由一次函数定义知3m =-,故一次函数的解析式为33y x =-+注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证30m -≠。
例2. 已知y -1与x +1成正比例,且当x =1时,y =5.求y 与x 的函数关系式; 解析: ∵y -1与x +1成正比例,∴可假设y -1=k (x +1)又当x =1时,y =5,代入求出k =2, 所以y -1=2(x +1),变形为y =2x +3注意:“两个量成正比例”和“两个量是正比例函数关系”是完全一致的,题目中已知y -1与x +1成正比例就可以假设y -1=k (x +1)。
二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。
当12k k =,12b b ≠时,1l ∥2l ,解决问题时要抓住平行的直线k 值相同这一特征。
例1 . 把直线21y x =+向下平移2个单位得到的图像解析式为___________。
解析:直线21y x =+向下平移得到的直线与直线21y x =+平行∴可设把直线21y x =+向下平移2个单位得到的图像解析式为b x y +=2直线21y x =+与y 轴交点为(0,1)向下平移2个单位得到的点为(0,-1)∴可代入b x y +=2求出b =-1 ∴所求解析式为12-=x y例2 . 已知直线y kx b =+与直线2y x =-平行,且与x 轴交点横坐标为1,则直线的解析式为___________。
难点探究专题:一次函数的综合与新定义型函数(7类热点题型讲练)(解析版--初中数学北师大版8年级上册
第08讲难点探究专题:一次函数的综合与新定义型函数(7类热点题型讲练)目录【类型一一次函数图象共存综合问题】..................................................................................................................1【类型二一次函数含参数中的图象和性质】..........................................................................................................4【类型三一次函数中平移问题】..............................................................................................................................9【类型四一次函数中的规律探究问题】................................................................................................................14【类型五一次函数——分段函数】........................................................................................................................18【类型六绝对值的一次函数】................................................................................................................................21【类型七新定义型一次函数】.. (27)【类型一一次函数图象共存综合问题】例题:(2023秋·黑龙江哈尔滨·九年级哈尔滨市虹桥初级中学校校考开学考试)如图,一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,且0mn ≠)的图象的是()A .①和③B .②和③C .①和④D .②和④【答案】D【分析】利用正比例函数的图象和一次函数的图象逐一判断即可求解.【详解】解:①、由正比例函数图象得:0mn <,由一次函数图象得:0m >,且0n >,则0mn >,则①错误,故不符合题意;②、由正比例函数图象得:0mn <,由一次函数图象得:0m >,且0n <,则0mn <,则②正确,故符合题意;③、由正比例函数图象得:0mn >,由一次函数图象得:0m >,且0n <,则0mn <,则③错误,故不符④、由正比例函数图象得:0mn >,由一次函数图象得:0m <,且0n <,则0mn >,则④正确,故符合题意,故选D .【点睛】本题考查了正比例函数的图象和一次函数的图象,熟练掌握其图象是解题的关键.【变式训练】1.(2023春·湖北咸宁·八年级校考阶段练习)如图所示,两条直线1y ax b =+与2y bx a =+在同一直角坐标系中的图像位置可能是()A .B .C .D .【答案】A【分析】根据选项,结合一次函数图像与表达式系数的关系逐项判断即可得到答案.【详解】解:A 、由选项中直线1y ax b =+的图像可知0,0a b ><,则断定直线2y bx a =+图像正确,该选项符合题意;B 、由选项中直线1y ax b =+的图像可知0,0a b >>,则断定直线2y bx a =+图像错误,该选项不符合题意;C 、由选项中直线1y ax b =+的图像可知0,0a b ><,则断定直线2y bx a =+图像错误,该选项不符合题意;D 、由选项中直线1y ax b =+的图像可知0,0a b >>,则断定直线2y bx a =+图像错误,该选项不符合题意;故选:A .【点睛】本题考查一次函数图像与表达式系数的关系,掌握此类题型的解题方法是解决问题的关键.2.(2023秋·湖北咸宁·九年级统考开学考试)如图,一次函数y mx n =+与正比例函数y mnx =(m ,n 为常数,且0mn ≠)的图象是()A .B .C .D .【答案】A【分析】分别分析四个选项中一次函数和正比例函数m 和n 的符号,即可进行解答.【详解】解:A 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn <,符合题意;B 、由一次函数图象得:0,0m n <>,由正比例函数图象得:0mn >,不符合题意;C 、由一次函数图象得:0,0m n >>,由正比例函数图象得:0mn <,不符合题意;D 、由一次函数图象得:0,0m n ><,由正比例函数图象得:0mn >,不符合题意;【点睛】本题主要考查了一次函数和正比例函数的图象,解题的关键是掌握一次函数和正比例函数图象与系数的关系.3.(2023春·河北承德·八年级统考期末)在同一平面直角坐标系中,函数y ax b =-和y bx a =+的图象可能是()A .B .C .D .【答案】D【分析】对于每个选项,先确定一个解析式所对应的图象,根据一次函数图象与系数的关系确定a 、b 的符号,然后根据此符号看另一个函数图象的位置是否正确.【详解】解:A 、若函数y ax b =-图象经过第一、三、四象限,则0a >,0b >,此时函数y bx a =+的图象应经过第一、二、三象限;若函数y ax b =-图象经过第一、二、四象限时,则a<0,0b <时,此时函数y bx a=+的图象应经过第二、三、四象限,故选项A 错误,不符合题意;B 、若函数y ax b =-图象经过第一、二、四象限时,则a<0,0b <时,此时函数y bx a =+的图象应经过第二、三、四象限,故选项B 错误,不符合题意;C 、若函数y ax b =-图象经过第一、二、三象限,则0a >,0b <,此时函数y bx a =+的图象应经过第一、二、四象限;若函数y ax b =-图象经过第二、三、四象限时,则a<0,0b >时,此时函数y bx a =+的图象应经过第一、三、四象限,故选项C 错误,不符合题意;D 、若函数y ax b =-图象经过第一、二、三象限,则0a >,0b <,此时函数y bx a =+的图象应经过第一、三、四象限;若函数y ax b =-图象经过第一、三、四象限时,则0a >,0b >时,此时函数y bx a =+的图象应经过第一、二、三象限,故选项D 正确,符合题意;故选:D .【点睛】此题主要考查了一次函数的图象与性质,正确记忆一次函数图象经过象限与系数关系是解题关键.4.(2023春·四川绵阳·八年级东辰国际学校校考阶段练习)在同一坐标系中,直线1l :()3y k x k =-+和2l :y kx =-的位置可能是()A .B .C .D .【答案】B【分析】根据正比例函数和一次函数的图像与性质,对平面直角坐标系中两函数图像进行讨论即可得出答案.【详解】A 、由正比例函数图像可知0k -<,即0k >,故由一次函数图像与y 轴的交点在原点的上方,故选项A 不符合题意;B 、由正比例函数图像可知0k -<,即0k >,故由一次函数图像与y 轴的交点在原点的上方,但()3k -无法判断正负,因此增减都可以,故选项B 符合题意;C 、由正比例函数图像可知0k ->,即0k <,故由一次函数图像与y 轴的交点在原点的下方,故选项C 不符合题意;D 、由正比例函数图像可知0k -<,即0k >,故由一次函数图像与y 轴的交点在原点的上方,故选项D 不符合题意;故选B .【点睛】本题主要考查的是正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像与性质是解决本题的关键.【类型二一次函数含参数中的图象和性质】例题:(2023春·山东滨州·八年级统考期末)对于y 关于x 的函数()3y k x k =-+(k 是常数,3k ≠),下列结论中正确结论的序号是()①其图象是一条直线;②其图象必经过点()1,3-;③若其图象经过第二、三、四象限,则k 的取值范围是0k <;④若y 随x 的增大而增大,则其图象与y 轴的交点必定在正半轴上.A .①②③④B .①②③C .②③④D .①③④【答案】A【分析】根据一次函数的图象和性质,逐一进行判断后,即可得出结论.【详解】解:∵()3y k x k =-+(k 是常数,3k ≠),∴y 是关于x 的一次函数,其图象是一条直线,故①正确;当=1x -时,()33y k k =--+=,∴其图象必经过点()1,3-;故②正确;当其图象经过第二、三、四象限时,300k k -<⎧⎨<⎩,解得:0k <,故③正确;若y 随x 的增大而增大,则:30k ->,∴3k >,则其图象与y 轴的交点必定在正半轴上,故④正确;故选A .【点睛】本题考查一次函数的图象和性质.熟记一次函数的图象和性质,是解题的关键.【变式训练】∴与两个坐标轴围成的三角形面积是B 、∵320k ->,∴203k >>,∴一次函数y 随x 增大而增大,如图所示,∴若12>a a ,则12b b >,∴()()12120a a b b -->,故B 错;C 、假设一次函数不经过第三象限,则需0k <,320k ->,由B 得:当320k ->时,0k >,∴一次函数32y kx k =+-的图象一定经过第三象限,故C 错;D 、当0t >时,要想732tx kx k +>+-,则0327k t k =>⎧⎨-<⎩,解得:03k k >⎧⎨<⎩,即03k <<,如图所示,当0t <时,要想732tx kx k +>+-,则0k t =<即可,如图所示,综上所述:k 的取值范围是03k <<或0k <,故D 正确;故选:D .【点睛】本题考查了一次函数的图象与性质,灵活运用所学知识是关键.2.(2023春·江西南昌·八年级统考期末)对于一次函数()y kx k 1k 0=+-≠,下列叙述正确的是()A .当01k <<时,函数图象经过第一、二、三象限B .当0k <时,y 随x 的增大而增大C .当1k >时,函数图象一定交于y 轴的负半轴D .函数图象一定经过点()1,1--【答案】D【分析】根据一次函数图象与系数的关系对A 、B 、C 进行判断,根据一次函数图象上点的坐标特征对D 进行判断.【详解】解:A .当01k <<时,10k -<,函数图象经过第一、三、四象限,故A 错误,不符合题意;B .当0k <时,y 随x 的增大而减小,故B 错误,不符合题意;C .当1k >时,10k ->,函数图象一定交于y 轴的正半轴,故C 错误,不符合题意;D .把=1x -代入1y kx k =+-得,()111y k k =⨯-+-=-,所以函数图象一定经过点()1,1--,故D 正确,符合题意;故选:D .【点睛】本题考查了一次函数图象与系数的关系:一次函数y kx b =+(k b 、为常数,0k ≠)是一条直线,当0k >时,图象经过一、三象限,y 随x 的增大而增大,当0k <时,图象经过二、四象限,y 随x 的增大而减小,图象与y 轴的交点坐标为()0b ,.3.(2023春·福建泉州·八年级统考期末)对于一次函数3(0)y kx k k =++≠,下列结论正确的是()A .当0k >时,y 随着x 的增大而减小B .当0k <时,y 随着x 的增大而增大C .当1k =-时,图象一定经过点(0,1)-D .当0k ≠时,图象一定经过点(1,3)-【答案】D【分析】由题意知,当0k >时,y 随着x 的增大而增大,进而可判断A 的正误;当0k <时,y 随着x 的增大而减小,进而可判断B 的正误;当1k =-时,2y x =-+,当0x =,2y =,即图象经过点(0,2),进而可判断C 的正误;当0k ≠时,()13y k x =++,当=1x -,3y =,即图象一定经过点(1,3)-,进而可判断D 的正误.【详解】解:由题意知,当0k >时,y 随着x 的增大而增大,A 错误,故不符合要求;当0k <时,y 随着x 的增大而减小,B 错误,故不符合要求;当1k =-时,2y x =-+,当0x =,2y =,即图象经过点(0,2),C 错误,故不符合要求;当0k ≠时,()13y k x =++,当=1x -,3y =,即图象一定经过点(1,3)-,D 正确,故符合要求;故选:D .【点睛】本题考查了一次函数的图象与性质.解题的关键在于对知识的熟练掌握与灵活运用.4.(2023春·广东珠海·八年级统考期末)关于x 的一次函数()12y k x k =--+(k 为常数且1k ≠),①当0k =时,此函数为正比例函数;②无论k 取何值,此函数图象必经过(1,1);③若函数图象同时经过点(,)m a 和点1,1)(m a ++(m ,a 为常数),则2k =-;④无论k 取何值,此函数图象都不可能同时经过第二、三、四象限,上述结论中正确的序号有()A .①②B .②③C .②④D .③④【答案】C【分析】根据一次函数的性质依次判断即可.【详解】解:①当0k =时,则2y x =-+,为一次函数,故①错误;②整理得:()12y x k x =--+,∴1x =时,1y =,∴此函数图象必经过(1,1),故②正确;解得4a=,故④说法正确;综上,正确的说法有①④,故答案为:①④.【点睛】本题考查的是两条直线相交或平行问题,一次函数图象与系数的关系,数形结合解题是关键.【类型三一次函数中平移问题】(1)求直线l对应的函数表达式;(2)求四边形ABDC的面积.【答案】(1)54 y x =-(2)42 51.(2023春·全国·八年级专题练习)若点()1,2P -在直线3y kx =+上,把直线3y kx =+的图像向上平移2个单位,所得的直线表达式为______.【答案】55y x =-+【分析】把点()1,2P -代入3y kx =+中,确定直线的解析式,再运用直线的平移规律计算即可.【详解】点()1,2P -代入3y kx =+中,得23k -=+,解得5k =-,∴直线的解析式为53y x =-+,∴53y x =-+的图像向上平移2个单位得到的解析式为55y x =-+.故答案为:55y x =-+.【点睛】本题考查了解析式与点的坐标的关系,直线平移的规律,熟练掌握直线平移的规律是解题的关键.2.(2023·全国·九年级专题练习)在平面直角坐标系中,将直线3y x =先向左平移2个单位长度,再向下平移3个单位长度,平移后的新直线与x 轴的交点为()0m ,,则m 的值为___________.【答案】1-【分析】根据平移的规律求出平移后的直线解析式,然后代入()0m ,,即可求出m 的值.【详解】解:将直线3y x =先向左平移2个单位长度,再向下平移3个单位长度后得到3(2)3y x =+-,即33y x =+,∴平移后的直线与x 轴交于()0m ,,∴033m =+,解得1m =-,故答案为1-.【答案】8【分析】根据函数图象中的数据可以分别求得矩形的边长【详解】解:如图所示,过点B 、D 分别作21y x =+的平行线,交由图象和题意可得431AE =-=,871CF =-=,BE DF =则22512AB BE AE =-=-=,31BC BF CF =+=+=【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5.(2023·陕西西安·西北大学附中校考模拟预测)将直线1l 平移到直线2l ,直线【答案】()1,4D --【分析】根据一次函数与坐标轴的交点可求形,根据线段AB 在平移过程中扫过的图形面积为可求解.【详解】解:如图,连接,AC BD 对于直线443y x =+,令0y =,【点睛】本题考查了一次函数的平移,待定系数法求解析式,求一次函数与坐标轴围成的三角形的面积,根据平移求得解析式是解题的关键.【类型四一次函数中的规律探究问题】例题:(2023·全国·九年级专题练习)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,点A1,A2,A3,A4,…在直线l上,点C1,C2,C3,C4,…在x轴正半轴上,则A4的坐标是_____;n A的坐标是_____.【答案】(7,8)(2n-1-1,2n-1)【分析】由题意可得A1,A2,A3,A4的坐标,可得点A坐标规律,即可求解.【详解】解:由题意可得正方形OA1B1C1边长为1,正方形A2B2C2C1的边长为2,正方形A3B3C3C2的边长为4,…正方形AnBnCnCn-1的边长为2n-1,∴A1(0,1),A2(1,2),A3(3,4),A4(7,8),…,An(2n-1-1,2n-1),故答案为:(7,8),(2n -1-1,2n -1).【点睛】本题考查一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明确题意,利用数形结合的思想解答.【变式训练】【答案】()212n -【分析】分别过点1B 、2B ,3B 作x 1222142422A A B S =⨯⨯== ,23312A AB S = ∵1B 在1233y x =+,且1B 的横坐标为∴()11,1B ,∴111OC B C CA ===,【答案】1675【分析】关键一次函数图像上点的坐标特征,得到形的面积,得到变化规律进行求解.【详解】解:∵()111,B y 、2B 1311y =⨯+=,1y =⨯【类型五一次函数——分段函数】(2)根据函数图像可知,这个函数图像不关于观察函数图像可知,此函数没有最小值,故【点睛】本题主要考查了一次函数的图像与性质,解题的关键在于能够熟练掌握一次函数的图像与性质.【变式训练】m>时,设点(P m (3)当3【类型六绝对值的一次函数】下面是小慧的探究过程,请补充完成:(1)函数1y x =-的自变量x 的取值范围是(2)列表,找出y 与x 的几组对应值.其中,(3)在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)函数1y x =-的最小值为____________(5)结合函数的图象,写出该函数的其他性质(一条即可)【答案】(1)任意实数(2)2(3)见解析(4)0(5)x <1时,y 随x 增大而减小;x >1(4)由函数图象可知,函数的最小值为0.故答案为:0.(5)x<1时,y随x增大而减小;x>1时,y随x增大而增大;图象关于直线y=1对称(写一条即可).【点睛】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.【变式训练】(4)小明根据画出的函数图象,写出此函数的两条性质.【答案】(1)任意实数(2)1(3)见解析(4)见解析(4)解:由函数图象可知,①函数有最小值为0;②当x>-1时,y随x的增大而增大;③图象关于过点(-1,0)且垂直于【点睛】本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,画出相应的函数图象,(3)在如图的直角坐标系中:①描出上表中各对对应值的坐标的点,并根据描出的各点,画出该函数的大致图象;②根据函数图象可得,该函数的最小值为__________;③结合函数图象,写出该函数除②外的一条性质:____________.【答案】(1)x 的取值范围是全体实数(2)①1m =﹐②9n =-(3)①见解析;②1;③函数关于y 轴对称【分析】(1)没做要求一次函数自变量取值范围都是全体实数(2)①把x =0代入函数即可求得m 的值②y =10代入函数即可求得n (3)①作图见解析②由图可见最小值为1③言之有理即可.【详解】解:(1)自变量x 的取值范围是全体实数;(2)①1m =﹐②9n =-﹔(3)①图象如图所示.②最小值为1;③函数关于y 轴对称(2)通过观察图象,写出该函数的一条性质:(3)利用学过的平移知识,说说函数的平面直角坐标系画出函数y=|x﹣【答案】(1)见解析;(2)当x>x>时,y随(2)由图象可知,当0故答案为当0x >时,y 随x 的增大而增大(答案不唯一);(3)函数|4|1y x =-+是由函数||y x =向右平移4个单位,再向上平移1个单位得来的,利用(1)中给出的平面直角坐标系画出函数|4|1y x =-+图象如图所示.【点睛】本题考查了一次函数的图象和性质,坐标与图形变换-平移,能根据图象得出正确信息是解此题的关键.【类型七新定义型一次函数】由-3x +2=4,得x =23-1.(2023秋·安徽六安·八年级校考期末)在平面直角坐标系xOy 中,对于点(),P x y 和(),Q x y ',给出如下定义:如果()()00y x y y x ⎧≥⎪=<'⎨-⎪⎩,那么称点Q 为点P 的“关联点”,例如:点()2,3的“关联点”为点()2,3,点()2,3-的“关联点”为点()2,3--(1)点()3,3-的“关联点”为(),a b ,则a b +=______;(2)①如果点()2,1P '-是一次函数1y x =+图象上点P 的“关联点”,那么点P 的坐标为______;②如果点(),2Q m '是一次函数1y x =+图象上点Q 的“关联点”,求点Q 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数基本题型综合
题型一、点的坐标
方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;
若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;
若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;
2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;
3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,
则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限
题型二、关于点的距离的问题
方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;
任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;
点(,)A A A x y
1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;
2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;
3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;
4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛
⎫⎛⎫
-
⎪ ⎪⎝⎭⎝⎭
,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)
、H (3,4),则G 、H 两点之间的距离是_________;
5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;
6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________
题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时,()2
323y k x x =-++-是一次函数;
2、当m_____________时,()21345m y m x x +=-+-是一次函数;
3、当m_____________时,()21445m y m x x +=-+-是一次函数;
4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________;
题型四、函数图像及其性质 方法:
k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度;
b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。
☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。
当 时,两直线垂直。
当 时,两直线相交。
当 时,两直线交于y 轴上同一点。
☆特殊直线方程:
X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。
2、对于函数1223
y x =-, y 的值随x 值的________而增大。
3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。
5、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。
6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。
7、已知一次函数
(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?
题型五、待定系数法求解析式
方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。
☆ 已知是直线或一次函数可以设y=kx+b (k ≠0);
☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。
1、若函数y=3x+b 经过点(2,-6),求函数的解析式。
2、直线y=kx+b 的图像经过A (3,4)和点B (2,7),
3、如图1表示一辆汽车油箱里剩余油量y (升)与行驶时间x (小时)之间的关系.求油箱里所剩油y (升)与行驶时间x (小时)之间的函数关系式,并且确定自变量x 的取值范围。
4、一次函数的图像与y=2x-5平行且与x 轴交于点(-2,0)求解析式。
5、若一次函数y=kx+b 的自变量x 的取值范围是-2≤x ≤6,相应的函数值的范围是-11≤y ≤ 9,求此函数的解析式。
6、已知直线y=kx+b 与直线y= -3x +7关于y 轴对称,求k 、b 的值。
7、已知直线y=kx+b 与直线y= -3x +7关于x 轴对称,求k 、b 的值。
8、已知直线y=kx+b 与直线y= -3x +7关于原点对称,求k 、b 的值。
题型六、平移
方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
1. 直线y=5x-3向左平移2个单位得到直线 。
2. 直线y=-x-2向右平移2个单位得到直线
3. 直线y=
21
x 向右平移2个单位得到直线 4. 直线y=22
3
+-x 向左平移2个单位得到直线
5. 直线y=2x+1向上平移4个单位得到直线
6. 直线y=-3x+5向下平移6个单位得到直线
7. 直线x y 31
=
向上平移1个单位,再向右平移1个单位得到直线 。
8. 直线14
3
+-=x y 向下平移2个单位,再向左平移1个单位得到直线________。
9. 过点(2,-3)且平行于直线y=2x 的直线是____ _____。
10. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.
11.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________;
12.直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n上,则a=____________;
题型七、交点问题及直线围成的面积问题
方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;
复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);
往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;
1、直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。
2、已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB
3、已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y
轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C;
(1) 分别写出两条直线解析式,并画草图; (2) 计算四边形ABCD 的面积;
(3) 若直线AB 与DC 交于点E ,求△BCE 的面积。
4、 如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,
p )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,△AOP 的面积为6; (1) 求△COP 的面积;
(2) 求点A 的坐标及p 的值;
(3) 若△BOP 与△DOP 的面积相等,求直线BD 的函数
解析式。
5、已知:经过点(-3,-2),它与x 轴,y 轴分别交于点B 、A ,直
线
经过点(2,-2),且与y 轴交于点C (0,-3),它与x 轴交于点D
(1)求直线的解析式; (2)若直线与交于点P ,求
的值。
O
x
y -3
4
6
-2
F
E
D C
B A
(2,p)
y
x
P O F E D C
B A
6. 如图,已知点A(2,4),B(-2,2),C(4,0),求△ABC的面积。