四川南充白塔中学2018-2019年初一下年中考试数学试题
南充市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
南充市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)某公司有员工700人,元旦要举行活动,如图是分别参加活动的人数的百分比,规定每人只允许参加一项且每人均参加,则不下围棋的人共有()A. 259人B. 441人C. 350人D. 490人【答案】B【考点】扇形统计图【解析】【解答】解:700×(1﹣37%)=700×63%=441(人),故答案为:B.【分析】不下围棋的人数的百分比是1﹣37%,不下围棋的人共有700×(1﹣37%)人,即可得解.2、(2分)若一个数的平方根是±8,那么这个数的立方根是()A. 4B. ±4C. 2D. ±2【答案】A【考点】平方根,立方根及开立方【解析】【解答】解:一个数的平方根是±8,则这个数是64,则它的立方根是4.故答案为:A【分析】根据平方根的定义,这个数应该是(±8)2=64,再根据立方根的定义求出64的立方根即可。
3、(2分)如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是()A. B. C. D.【答案】B【考点】图形的平移【解析】【解答】解:观察可知,平移后的图形,上下火柴棒方向不变,位置改变;左右火柴棒,往中间移动,方向不变,位置改变.只有B符合.故答案为:B【分析】平移是由方向和距离决定的,不改变图形的形状和大小,所以选B.4、(2分)某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示.根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()A. 46人B. 38人C. 9人D. 7人【答案】D【考点】扇形统计图【解析】【解答】解:因为顾客中对商场的服务质量表示不满意的占总体的百分比为:1﹣9%﹣46%﹣38%=7%,所以100名顾客中对商场的服务质量不满意的有100×7%=7人.故答案为:D【分析】先根据扇形统计图计算D所占的百分比,然后乘以顾客人数可得不满意的人数.5、(2分)已知同一平面上的两个角的两条边分别平行,则这两个角()A. 相等B. 互补C. 相等或互补D. 不能确定【答案】C【考点】平行线的性质【解析】【解答】解:如图:①∠B和∠ADC的两边分别平行,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∴∠B=∠ADC,②∠B和∠CDE的两边分别平行,∵∠ADC+∠CDE=180°,∴∠B+∠CDE=180°.∴同一平面上的两个角的两条边分别平行,则这两个角相等或互补。
2018-2019学七年级下学期数学期中考试试题含参考答案
A.只有①正确
B.只有②正确 C.①和③正确
D.①②③都正确
6.下列各式中,可以运用平方差公式计算的是(
)
A.(a 4b)(a 4b) B.(x 2 y)(2x y) C.(3a 1)(1 3a)
D.( 1 x y)(1 x y)
2
2
7.若 ax 3y2 4x 2 12xy by 2 ,则 a,b 的值分别为
(3)一定存在∠F 吗?如有,求出∠F 的值,如不一定,指出 , 满足什么条件时,不存在∠F.
27.(本题 6 分)(1)欲求1 3 32 33 … 320 的值,可令 S 1 3 32 33 … 320 …①,将①式两边
同乘以 3,得
S
.
……②,由②式减去①式,得
11.a2 b2 __67 _,(a b)2 ___53 ;12.3.4 106 ;13. 8 ;14.∠4= 80 °; 15.__900° ;
16. k=_ ±12 ;17. 2 __ ;18. 50°_; 19.__15°_ ;20. 1 .
三、计算题(21 每小题 4 分,22 每小题 5 分 ,23 题 5 分.) 21.(1)-4;(2) 9x6 ;
.
13.已知 2m+3n=3,则 4m·8n 的值为
.
14.如图, 1 2, 3 100 ,则 4
.
15.从 n 边形一个顶点出发共可作 4 条对角线,则这个 n 边形的内角和为________.
16.若 4a2 kab 9b2 是完全平方式,则常数 k
.
17.如图,在△ABC 中,∠C 90°,AD 平分∠CAB,BC 6,BD 4,则点 D 到 AB 的距离是
四川省南充市七年级下学期数学期中考试试卷
四川省南充市七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共5题;共10分)1. (2分) (2018九下·江阴期中) 下列运算中正确的是()A . a3·a4=a12B . (-a2)3=-a6C . (ab)2=ab2D . a8÷a4=a22. (2分)如图,在三角形ABC中,∠ACB=90°,CD⊥AB于点D,则图中小于平角的角的个数为()A . 5B . 6C . 7D . 83. (2分)若x2﹣ax+16是完全平方式,则a=()A . 4B . 8C . ±4D . ±84. (2分)下列多项式中不能用平方差公式分解的是()A . a2-b2B . -x2-y2C . 49x2-y2z2D . 16m4n2-25p25. (2分)下列运算正确的是()A . x2+x4=x6B . (﹣x3)2=x6C . 2a+3b=5abD . x6÷x3=x2二、填空题 (共10题;共12分)6. (1分) (2017八上·盂县期末) 英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖,石墨烯目前是世界上最薄也是最坚硬的纳米材料,同时还是导电性最好的材料,其原理厚度仅0.00000000034米,将0.00000000034这个数用科学记数法表示为________.7. (1分)a2•a3=________8. (3分)根据题意,列出关于x的方程(不必解方程):(1)要锻造一个直径为10cm,高为8cm的圆柱体毛坯,应截取直径为8cm的圆钢多长?设应截取直径为8cm 的圆钢x cm,则可列出方程________ ;(2)某人存了一笔三年定期存款,年利率为4.25%,今年到期后,连本带息取出11275元,他三年前存了多少元?设他三年前存了x元,则可列出方程________ .(3)把2005个正整数1,2,3,4,…,2005按如图方式排列成一个表,用一正方形框在表中任意框住4个数,被框住的4个数之和能否等于416?设正方形框中左上角的一个数为x,则可列出方程________ .9. (1分) (2017七下·武进期中) 已知m+n=,mn=5,则(2-m)(2-n)的值为________.10. (1分)(2016·泰州) 如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为________cm.11. (1分) (2017七下·敦煌期中) 如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=65°,∠B=40°,则∠ACE为________.12. (1分)一个四边形的边长依次为a、b、c、d,且a2+b2+c2+d2﹣2ac﹣2bd=0,则这个四边形的形状是________13. (1分) (2017八下·西城期末) 如图,在 ABCD中,CH⊥AD于点H , CH与BD的交点为E.如果,,那么 ________14. (1分)一小圆柱形油桶的直径是8 cm,高为6 cm,另一大圆柱形的油桶的直径是10 cm,且它的容积是小圆柱的油桶容积的2.5倍,如果设大圆柱油桶的高为x cm,可建立方程为________.15. (1分)计算:(x﹣1)2﹣(x+2)(x﹣2)=________ .三、解答题 (共10题;共102分)16. (5分) (2016七上·龙海期末) ①化简:(8a2b﹣5ab2)﹣2(3a2b﹣4ab2)②先化简,再求值:3x2+(2x2﹣3x)﹣(5x2﹣4x+1),其中x=﹣1.17. (10分) (2019八下·南岸期中) 因式分解:(1) 4ab2﹣6a2b+2ab.(2) m2n3﹣9m2n.18. (5分) (2017九上·肇源期末) 先化简(1﹣)÷ ,再从0,﹣2,﹣1,1中选择一个合适的数代入并求值.19. (5分) (2019七下·贵池期中) 先化简,再求值:,其中,.20. (20分)用科学记数法表示纯小数,是把纯小数表示为a×10-p的形式,其中p是正整数,a是大于0小于10的整数,请把下列各数用科学记数法表示出来.(1) 0.00000015;(2) -0.00027;(3)(5.2×1.8) ×0.001;(4)1÷(2×105) 2.21. (10分) (2018八上·黑龙江期末) 如图,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E是线段AD(除去端点A、D)上一动点,EF⊥BC于点F.(1)若∠B=40°,∠DEF=10°,求∠C的度数.(2)当E在AD上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由.22. (10分)(2017九上·成都开学考)(1)分解因式:;(2)解下列不等式组,并求出该不等式组的自然数解之和.23. (12分) (2018八上·婺城期末) 定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和原三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”(1)判断下列两个命题是真命题还是假命题填“真”或“假”等边三角形必存在“和谐分割线”如果三角形中有一个角是另一个角的两倍,则这个三角形必存在“和谐分割线”.命题是________命题,命题是________命题;(2)如图2,,,,,试探索是否存在“和谐分割线”?若存在,求出“和谐分割线”的长度;若不存在,请说明理由.(3)如图3,中,,若线段CD是的“和谐分割线”,且是等腰三角形,求出所有符合条件的的度数.24. (15分) (2015七下·绍兴期中) 计算(1)a•(﹣2a)﹣(﹣2a)2(2)(4x2y2﹣2x3)÷(﹣2x)2(3).25. (10分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在P处,折痕为EC,连接AP并延长AP交CD于F点.(1)求证:四边形AECF为平行四边形;(2)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.参考答案一、单选题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、填空题 (共10题;共12分)6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共10题;共102分)16-1、17-1、17-2、18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、第11 页共11 页。
2018-2019学年七年级(下)期中数学试卷(有答案和解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共24分)1.计算a6÷a2的结果是( )A.a3 B.a4 C.a8 D.a122.二元一次方程2x+y=11的非负整数解有( )A.1个 B.2个 C.6个 D.无数个3.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A、C两点之间 B.E、G两点之间C.B、F两点之间 D.G、H两点之间4.方程3x+2y=1和2x=y+3的公共解是( )A. B. C. D.5.若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式、如在代数式a+b+c中,把a和b互相替换,得b+a+c;把a和c互相替换,得c+b+a;把b和c…;a+b+c 就是完全对称式、下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a其中为完全对称式的是( )A.①② B.②③ C.①③ D.①②③6.已知方程组的解满足x+y=3,则k的值为( )A.10 B.8 C.2 D.﹣87.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x米/秒,乙的速度为y米/秒,则下列方程组中正确的是( )A. B.C .D .8.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片的小正方形卡片((a <b <a )如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣15,则小正方形卡片的面积是( )A .10B .8C .2D .5二、填空题(每题3分,共30分)9.某细胞的直径约为0.0000102米,用科学记数法表示为 米. 10.计算:1012﹣992= .11.若(a ﹣2)x |a |﹣1+3y =1是二元一次方程,则a = .12.已知(m +n )2=7,(m ﹣n )2=3,则m 2+n 2= .13.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2= °.14.设A =(x ﹣3)(x ﹣7),B =(x ﹣2)(x ﹣8),则A 、B 的大小关系为 .15.如图,面积为3cm 2的△ABC 纸片沿BC 方向平移至△DEF 的位置,平移的距离是BC 长的2倍,则△ABC 纸片扫过的面积为 .16.如果4x 2﹣mxy +9y 2是一个完全平方式,则m =.17.如果方程组的解中x 与y 的值相等,那么a 的值是 .18.对于正整数m ,若m =pq (p ≥q >0,且p ,q 为整数),当p ﹣q 最小时,则称pq 为m 的“最佳分解”,并规定f (m )=(如:12的分解有12×1,6×2,4×3,其中,4×3为12的最佳分解,则f (12)=).关于f (m )有下列判断:①f (27)=3;②f (13)=;③f (2018)=;④f (2)=f (32);⑤若m 是一个完全平方数,则f (m )=1.其中,正确判断的序号是 . 三、解答题(共96分) 19.(8分)计算(1)(3.14﹣π)0+(﹣4)2﹣()﹣1(2)(x ﹣3)2﹣(x +2)(x ﹣2)20.(8分)因式分解 (1)a 2﹣25 (2)xy 2﹣4xy +4x 21.(8分)解方程组 (1) (2)22.(8分)先化简再求值:4(a +2)2﹣7(a +3)(a ﹣3)+3(a ﹣1)2,其中a 是最小的正整数. 23.(8分)如图,EG ⊥BC 与点G ,∠BFG =∠DAC ,AD 平分∠BAC ,试判断AD 与BC 的位置关系,并说明理由.24.(8分)小明和小丽同解一个二元一次方程组,小明正确解得,小丽因抄错了c ,解得.已知小丽除抄错c 外没有发生其他错误,求a +b +c 的值.25.(12分)拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a +2b )(a +b )=a 2+3ab +2b 2.(1)则图③可以解释为等式: .(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a 2+7ab +2b 2,并通过拼图对多项式3a 2+7ab +2b 2因式分解:3a 2+7ab +2b 2= . (3)如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个长方形的两边长(x >y ),结合图案,指出以下关系式:(1)xy =;(2)x +y =m ;(3)x 2﹣y 2=m •n ;(4)x 2+y 2=其中正确的关系式的个数有( ) A .1个 B .2个 C .3个 D .4个. 26.(12分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn +2n 2﹣6n +9=0,求m 和n 的值. ∵m 2+2mn +2n 2﹣6n +9=0∴m 2+2mn +n 2+n 2﹣6n +9=0∴(m +n )2+(n ﹣3)2=0∴m +n =0,n ﹣3=0∴m =﹣3,n =3 根据你的观察,探究下面的问题:(1)若x 2+4x +4+y 2﹣8y +16=0,求的值.(2)试说明不论x ,y 取什么有理数时,多项式x 2+y 2﹣2x +2y +3的值总是正数.(3)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=10a +8b ﹣41,且c 比a 、b 都大,求c 的取值范围.27.(12分)某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人. (1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满: ①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省线的租车方案,并求出最少租金.28.(12分)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN= °;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD 交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减计算即可. 【解答】解:a6÷a2=a6﹣2=a4.故选:B.【点评】本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.2.【分析】最小的非负整数为0,把x=0,x=1,x=2,x=3…依次代入二元一次方程2x+y=11,求y值,直至y为负数,从而得到答案.【解答】解:最小的非负整数为0,当x=0时,0+y=11,解得:y=11,当x=1时,2+y=11,解得:y=9,当x=2时,4+y=11,解得:y=7,当x=3时,6+y=11,解得:y=5,当x=4时,8+y=11,解得:y=3,当x=5时,10+y=11,解得:y=1,当x=6时,12+y=11,解得:y=﹣1(不合题意,舍去)即当x≥6时,不合题意,即二元一次方程2x+y=11的非负整数解有6个,故选:C.【点评】本题考查解二元一次方程,正确掌握代入法是解题的关键.3.【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释. 【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.【分析】组成方程组求解即可.【解答】解:解方程组得,故选:D.【点评】本题主要考查了二元一次方程的解,解题的关键是正确求出方程组的解.5.【分析】由于将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式,由于将代数式中的任意两个字母互相替换,代数式不变,根据这个定义分别将①②③进行替换,看它们都有没有改变,由此即可确定是否完全对称式. 【解答】解:①∵(a﹣b)2=(b﹣a)2,∴①是完全对称式;②ab+bc+ca中把a和b互相替换得ab+bc+ca,∴②是完全对称式;③a2b+b2c+c2a中把a和b互相替换得b2a+a2c+c2b,和原来不相等,∴不是完全对称式;故①②正确.故选:A.【点评】此题是一个阅读材料题,考查了完全平方公式,难点在于读懂题意,然后才能正确利用题意解决问题.6.【分析】理解清楚题意,运用三元一次方程组的知识,解出K的数值.【解答】解:由题意可得,2×①﹣②得y=k﹣,②﹣③得x=﹣2,代入③得y=5,则k﹣=5,解得k=8.故选:B.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.7.【分析】此题中的等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙.【解答】解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故选:A.【点评】此题是追及问题.注意:无论是哪一个等量关系中,总是甲跑的路程=乙跑的路程. 8.【分析】根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,根据整式是混合运算法则计算即可.【解答】解:图3中的阴影部分的面积为:(a﹣b)2,图2中的阴影部分的面积为:(2b﹣a)2,由题意得,(a﹣b)2﹣(2b﹣a)2=2ab﹣15,整理得,b2=5,则小正方形卡片的面积是5,故选:D.【点评】本题考查的是整式的混合运算,正确表示出两个阴影部分的面积是解题的关键. 二、填空题(每题3分,共30分)9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000102=1.02×10﹣5,故答案为:1.02×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【分析】直接利用平方差公式分解因式进而计算得出即可.【解答】解:1012﹣992=(101+99)×(101﹣99)=400.故答案为:400.【点评】此题主要考查了平方差公式的应用,熟练掌握平方差公式是解题关键.11.【分析】根据二元一次方程的定义知,未知数x的次数|a|﹣1=1,且系数a﹣2≠0. 【解答】解:∵(a﹣2)x|a|﹣1+3y=1是二元一次方程,∴|a|﹣1=1且a﹣2≠0,解得,a=﹣2;故答案是:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.【分析】利用完全平方公式计算即可求出所求.【解答】解:∵(m+n)2=m2+n2+2mn=7①,(m﹣n)2=m2+n2﹣2mn=3②,∴①+②得:2(m2+n2)=10,则m2+n2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.13.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.14.【分析】根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案. 【解答】解:∵A=(x﹣3)(x﹣7)=x2﹣10x+21,B=(x﹣2)(x﹣8)=x2﹣10x+16, ∴A﹣B=x2﹣10x+21﹣(x2﹣10x+16)=5>0,∴A>B,故答案为:A>B.【点评】本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.15.【分析】根据平移的性质可以知道四边形ACED 的面积是三个△ABC 的面积,△ABC 纸片扫过的面积为四边形ABDF 的面积=5个△ABC 的面积; 【解答】解:∵平移的距离是边BC 长的两倍, ∴BC =CE =EF ,∴四边形ACED 的面积是三个△ABC 的面积; ∴△ABC 纸片扫过的面积=S四边形ABFD=5×3=15cm 2,【点评】【点评】考查了平移的性质,考查了平移的性质,考查了平移的性质,本题的关键是得出四边形本题的关键是得出四边形ACED 的面积是三个△ABC 的面积.然后根据已知条件计算.16.【分析】这里首末两项是2x 和3y 这两个数的平方,那么中间一项为加上或减去2x 和3y 积的2倍.【解答】解:∵4x 2﹣mxy +9y 2是一个完全平方式, ∴﹣mxy =±2×2x ×3y , ∴m =±12.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 17.【分析】把y =x 代入方程组求出a 的值即可. 【解答】解:把y =x 代入方程组得:,解得:,则a 的值是3, 故答案为:3【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.【分析】先分解因数,进而找出最佳分解,即可得出结论. 【解答】解:①∵27的分解有27×1,9×3, ∴9×3为27的最佳分解,则f (12)==,故说法①错误;②∵13的分解有13×1,∴13×1为13的最佳分解,则f (13)=,故说法②正确;③∵2018的分解有2018×1,1009×2,∴1009×2为2018的最佳分解,则f (2018)=,故说法③错误;④∵2的分解有2×1,∴2×1为2的最佳分解,则f (2)=,∵32的分解有32×1,16×2,8×4,∴8×4为32的最佳分解,则f (22)==,∴f (2)=f (32),故说法④正确;⑤∵m 是一个完全平方数,设m =n 2(m >0),∴n ×n 为m 的最佳分解,则f (m )==1,故说法⑤正确,∴正确判断的序号为②④⑤,故答案为②④⑤.【点评】此题主要考查了新定义,分解因数,完全平方数的特点,能正确分解因数是解本题的关键.三、解答题(共96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(1)原式=1+16﹣2=15;(2)原式=x 2﹣6x +9﹣x 2+4=﹣6x +13.【点评】此题考查了平方差公式,完全平方公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.【分析】(1)两项考虑平方差公式;(2)提取公因式x后,再用完全平方公式.【解答】解:(1)原式=(a+5)(a﹣5);(2)原式=x(y2﹣4y+4)=x(y﹣2)2.【点评】本题考查了因式分解的平方差公式和完全平方公式.题目比较简单,掌握公式是关键.21.【分析】(1)用代入法求解方程组比较简便;(2)变形2x+y=1,可用代入法求解,亦可①×2﹣②用加减法求解.【解答】解:(1),把②代入①,得2(1﹣y)+4y=5,解得,y=,把y=代入②,得x=1﹣=﹣.∴原方程组的解为.(2)由①,得y=1﹣2x③,把③代入②,得5x+2(1﹣2x)=3,解得x=1把x=1代入③,得y=1﹣2×1=﹣1.所以原方程组的解为.【点评】本题考查的是二元一次方程组的解法,题目相对简单,掌握代入、加减消元法是解决本题的关键.22.【分析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.【解答】解:原式=4(a2+4a+4)﹣7(a2﹣9)+3(a2﹣2a+1)=4a 2+16a +16﹣7a 2+63+3a 2﹣6a +3=10a +82,最小的正整数是1,则a =1,原式=10+82=92,.【点评】此题考查整式的混合运算,注意先利用公式计算,再进一步代入求得数值即可. 23.【分析】根据角平分线的定义可得∠BAD =∠DAC ,从而可得∠BFG =∠BAD ,再根据同位角相等,两直线平行可得EG ∥AD ,然后根据EG ⊥BC 即可证明AD ⊥BC .【解答】解:AD ⊥BC .理由如下:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵∠BFG =∠DAC ,∴∠BFG =∠BAD ,∴EG ∥AD ,∴∠EGC =∠ADC ,又∵EG ⊥BC ,∴∠EGC =90°,∴∠ADC =90°,∴AD ⊥BC .【点评】本题考查了平行线的判定与角平分线的定义,找出相等的角是解题的关键. 24.【分析】因为小明的解正确,所以可以代入任何一个方程,代入①可求c 的值,代入②得a ﹣b =2;因为小丽抄错了c ,因此可以代入②中,得a ﹣3b =1,建立方程组,可以得出a 、b 的值,从而求出结论.【解答】解:将代入cx ﹣3y =﹣2①得,c +3=﹣2,c =﹣5, 将代入ax +by =2②得,a ﹣b =2③, 将代入②得,2a ﹣6b =2,a ﹣3b =1④,将③,④联立,, 解之得,所以.【点评】本题考查了二元一次方程组的解,要求方程组的字母系数,通常采用代入法,将正确的解代入即可.25.【分析】(1)看图即可得出所求的式子;(2)画出的矩形边长分别为(3a+b)和(a+2b)即可;(3)根据图中每个图形的面积之间的关系即可判断出正确的有几个.【解答】解:(1)由分析知:图③所表示的等式为:(2a+b)(a+2b)=2a2+5ab+2b2;(2)示意图如下3a2+7ab+2b2=(3a+b)(a+2b);(3)D.【点评】此题考查利用图形面积研究因式分解,同时也加深了对多项式乘多项式的理解. 26.【分析】(1)已知等式利用完全平方公式整理配方后,求出x与y的值,即可求出所求;(2)原式配方变形后,利用非负数的性质判断即可;(3)已知等式利用完全平方公式配方后,利用非负数的性质求出a与b的值,即可求出c的范围.【解答】解:(1)已知等式整理得:(x+2)2+(y﹣4)2=0,可得x+2=0,y﹣4=0,解得:x=﹣2,y=4,则原式=﹣2;(2)∵(x﹣1)2≥0,(y+1)2≥0,∴原式=(x﹣1)2+(y+1)2+1≥1>0,则不论x,y取什么有理数时,多项式x2+y2﹣2x+2y+3的值总是正数;(3)已知等式整理得:(a﹣5)2+(b﹣4)2=0,可得a﹣5=0,b﹣4=0,解得:a=5,b=4,则c的范围是5<c<9.【点评】此题考查了配方法的应用,非负数的性质:偶次幂,以及三角形三边关系,熟练掌握完全平方公式是解本题的关键.27.【分析】(1)设每辆小客车能坐x人,每辆大客车能坐y人,根据题意可得等量关系:3辆小客车座的人数+1辆大客车座的人数=105人;1辆小客车座的人数+2辆大客车座的人数=110人,根据等量关系列出方程组,再解即可;(2)①根据题意可得小客车m辆运的人数+大客车n辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金150元,大客车每辆租金250元分别计算出租金即可.【解答】解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,据题意:,解得:,答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:150×20=3000(元),方案二租金:150×11+250×4=2650(元),方案三租金:150×2+250×8=2300(元),∴方案三租金最少,最少租金为2300元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出二元一次方程或方程组.28.【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得 t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点评】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.。
白塔乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
白塔乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()A. ∠1=∠2B. ∠2=∠4C. ∠3=∠4D. ∠1+∠4=180°【答案】D【考点】平行线的判定【解析】【解答】A选项,错误,所以不符合题意;B选项,∠2与∠4不是同位角,错误,所以不符合题意;C选项,∠3与∠4不是同位角,错误,所以不符合题意;D选项,因为∠1+∠4=180°,所以a∥b,正确,符合题意;故答案为:D。
【分析】根据判断直线平行的几个判定定理即可进行判别:同位角相同,两直线平行;同旁内角互补,两直线平行内错角相等,两直线平行。
2、(2分)下列说法正确的个数有()⑴过一点有且只有一条直线与已知直线平行⑵一条直线有且只有一条垂线⑶不相交的两条直线叫做平行线⑷直线外一点到这条直线的垂线段叫做这点到这条直线的距离A. 0个B. 1个C. 2个D. 3个【答案】A【考点】点到直线的距离,平行公理及推论,平面中直线位置关系【解析】【解答】解:(1)过直线外一点有且只有一条直线与已知直线平行,故(1)错误;(2)一条直线无数条垂线,故(2)错误;(3)平面内,不相交的两条直线叫做平行线,故(3)错误;(4)直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,故(4)错误.故正确的有0个.故答案为:A.【分析】(1)当点在直线上时不能作出直线和已知直线平行;(2)一条直线由无数个点构成,所以一条直线无数条垂线;(3)平行线是指在同一平面内,不相交的两条直线;(4)点到这条直线的距离是指直线外一点到这条直线的垂线段的长度。
3、(2分)一元一次不等式的最小整数解为()A.B.C.1D.2【答案】C【考点】解一元一次不等式,一元一次不等式的特殊解【解析】【解答】解:∴最小整数解为1.故答案为:C.【分析】先求出不等式的解集,再求其中的最小整数.解一元一次不等式基本步骤:移项、合并同类项、系数化为1.4、(2分)如图,AB//CD,那么∠A , ∠D ,∠E 三者之间的关系为()A. ∠A+∠D+∠E=360°B. ∠A-∠D+∠E=180°C. ∠A+∠D-∠E=180°D. ∠A+∠D+∠E=180°【答案】B【考点】平行线的判定与性质【解析】【解答】解:过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∴∠1+∠A=180°①,∠2=∠D②由①+②得:∠1+∠A+∠2=180°+∠D∴∠A-∠D+∠AED=180°故答案为:B【分析】过点E作EF∥AB,根据平行线的性质,得出∠1+∠A=180°①,∠2=∠D②,由①+②,即可得出结论。
四川南充白塔中学2018-2019年初一下年中考试数学试题
54D3E21C BA四川南充白塔中学2018-2019年初一下年中考试数学试题数学试卷一.选择题〔本大题10小题,每题3分,共30分〕1.以下图形中,不能通过其中一个四边形平移得到旳是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏.(A) (B ) (C) (D) 2.如右图,以下能判定AB ∥CD 旳条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B .A.1B.2C.3D.4 3.如图AB ∥CD ,那么∠1=〔 〕A 、75B 、80C 、85D 、95 0〔3〕三角形按边分类可分为不等边三角形、等腰三角形和等边三角形;〔4〕三角形旳一个外角大于任何一个内角;〔5〕两条直线被第三条直线所截,内错角相等;〔6〕邻补角旳平分线互相垂直,其中真命题有〔〕A2个B3个C4个D5个5.小李家装修地面,已有正三角形形状旳地砖,现打算购 买另一种不同形状旳正多边形地砖作平面镶嵌,那么小李不 应购买旳地砖形状是()A 、正方形B 、正六边形C 、正八边形D 、正十二边形 6.用六根木条钉成如下图旳六边形木架,要使它不变形,至少要钉上木条旳根数是〔〕〔A 〕3根〔B 〕4根〔C 〕5根〔D 〕6根7、如图,棋子“车”旳坐标为〔-2,3〕,棋子“马5”旳坐标为〔1,3〕,那么棋子“炮”旳坐标为〔〕 A 、〔2,3〕B 、〔3,2〕C 、〔-2,-3〕D、〔-3,2〕 8、以下图形中,正确画出AC 边上旳高旳是〔〕(A)(B)(C)(D) 9为直线l 上三点,PA ,那么点P A 10.一个三角形旳三边a 、b 、c 均为整数,a 、b 旳差是7c 旳长能够是〔〕A 、9B 、8C 、7D 、6二、填空题〔本大题6小题,每题4分,共24分〕 11.点P 〔2m-1,3〕在第二象限,那么m 旳取值范围是。
12.正十边形旳每一个内角度数是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏.13.把一副三角板按如图方式放置,那么两条斜边所形成旳钝角a 旳度数是﹏﹏﹏﹏﹏﹏﹏﹏﹏.【第13题】14、如图,小亮从A 点动身,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照如此走下去,他第一次回到动身地A 点时,一共走了米、【第6题图】【第7题】C15.直角三角形两锐角平分线相交所成旳角是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏度。
白塔寺乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
白塔寺乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)小涛在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示-3的点重合,若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为()A. -1006B. -1007C. -1008D. -1009【答案】C【考点】实数在数轴上的表示【解析】【解答】解:设点A表示的数为a,点B表示的数为b,∵数轴上表示1的点与表示-3的点重合,∴中点为:=-1,∴,解得:,∴A点表示的数为:-1008.故答案为:-1008.【分析】设点A表示的数为a,点B表示的数为b,根据题意可知折叠点为-1,从而列出方程组,解之即可得出a值,即可得A点表示的数.2、(2分)若不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<-1B.a>-1C.a<1D.a>1【答案】A【考点】不等式的解及解集,解一元一次不等式【解析】【解答】解:根据不等式的不等号发生了改变,可知a+1<0,解得a<-1.故答案为:A【分析】根据不等式的性质3和所给不等式的解集可知a+1<0,即可求出a的取值范围.注意不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变.3、(2分)若某数的立方根等于这个数的算术平方根,则这个数等于()A. 0B. ±1C. -1或0D. 0或1【答案】D【考点】算术平方根,立方根及开立方【解析】【解答】解:∵算术平方根与立方根都等于它本身的数是0和1.故答案为:D【分析】根据立方根及算数平方根的意义,得出算术平方根与立方根都等于它本身的数是0和1。
4、(2分)如图,已知OA⊥OB,直线CD经过顶点O,若∠BOD:∠AOC=5:2,则∠BOC=()A. 28°B. 30°C. 32°D. 35°【答案】B【考点】角的运算,余角、补角及其性质,对顶角、邻补角【解析】【解答】设∠BOD=5x°,∠AOC=2x°,∵OA⊥OB,∴∠AOB=90°,∴∠BOC=(90-2x)°,∵∠BOD+∠BOC=180°,∴90-2x+5x=180,解得:x=30,∴∠BOC=30°,故答案为:B【分析】根据图形得到∠BOD与∠BOC互补,∠BOC与∠AOC互余,再由已知列出方程,求出∠BOC的度数.5、(2分)如图,是测量一物体体积的过程:(1 )将300mL的水装进一个容量为500ml的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积为下列范围内的()A.10cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下【答案】D【考点】一元一次不等式组的应用【解析】【解答】解:设玻璃球的体积为x,则有,可解得40<x<50.故一颗玻璃球的体积在40cm3以上,50cm3以下,故答案为:D.【分析】设玻璃球的体积为x,再根据题意列出不等式:4x<500-300,5x>500-300,化简计算即可得出x的取值范围.6、(2分)在数轴上标注了四段范围,如图,则表示的点落在()A. 段①B. 段②C. 段③D. 段④【答案】C【考点】实数在数轴上的表示,估算无理数的大小【解析】【解答】解:∵2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∴7.84<8<8.41,∴2.8<<2.9,∴表示的点落在段③故答案为:C【分析】分别求出2.62,2.72,2.82,2.92,32值,就可得出答案。
白塔乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
白塔乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()A. ∠1=∠2B. ∠2=∠4C. ∠3=∠4D. ∠1+∠4=180°【答案】D【考点】平行线的判定【解析】【解答】A选项,错误,所以不符合题意;B选项,∠2与∠4不是同位角,错误,所以不符合题意;C选项,∠3与∠4不是同位角,错误,所以不符合题意;D选项,因为∠1+∠4=180°,所以a∥b,正确,符合题意;故答案为:D。
【分析】根据判断直线平行的几个判定定理即可进行判别:同位角相同,两直线平行;同旁内角互补,两直线平行内错角相等,两直线平行。
2、(2分)下列说法正确的个数有()⑴过一点有且只有一条直线与已知直线平行⑵一条直线有且只有一条垂线⑶不相交的两条直线叫做平行线⑷直线外一点到这条直线的垂线段叫做这点到这条直线的距离A. 0个B. 1个C. 2个D. 3个【答案】A【考点】点到直线的距离,平行公理及推论,平面中直线位置关系【解析】【解答】解:(1)过直线外一点有且只有一条直线与已知直线平行,故(1)错误;(2)一条直线无数条垂线,故(2)错误;(3)平面内,不相交的两条直线叫做平行线,故(3)错误;(4)直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,故(4)错误.故正确的有0个.故答案为:A.【分析】(1)当点在直线上时不能作出直线和已知直线平行;(2)一条直线由无数个点构成,所以一条直线无数条垂线;(3)平行线是指在同一平面内,不相交的两条直线;(4)点到这条直线的距离是指直线外一点到这条直线的垂线段的长度。
3、(2分)一元一次不等式的最小整数解为()A.B.C.1D.2【答案】C【考点】解一元一次不等式,一元一次不等式的特殊解【解析】【解答】解:∴最小整数解为1.故答案为:C.【分析】先求出不等式的解集,再求其中的最小整数.解一元一次不等式基本步骤:移项、合并同类项、系数化为1.4、(2分)如图,AB//CD,那么∠A , ∠D ,∠E 三者之间的关系为()A. ∠A+∠D+∠E=360°B. ∠A-∠D+∠E=180°C. ∠A+∠D-∠E=180°D. ∠A+∠D+∠E=180°【答案】B【考点】平行线的判定与性质【解析】【解答】解:过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∴∠1+∠A=180°①,∠2=∠D②由①+②得:∠1+∠A+∠2=180°+∠D∴∠A-∠D+∠AED=180°故答案为:B【分析】过点E作EF∥AB,根据平行线的性质,得出∠1+∠A=180°①,∠2=∠D②,由①+②,即可得出结论。
白塔初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
白塔初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t(℃)的变化范围是()A.t>22B.t≤22C.11<t<22D.11≤t≤22【答案】D【考点】不等式及其性质【解析】【解答】解:气温最高是22℃,则t≤22;气温最低是11℃,则t≥11.故气温的变化范围11≤t≤22.故答案为:D.【分析】由最高气温是22℃,最低气温是18℃可得,气温变化范围是18≤t≤22,即可作出判断。
2、(2分)等式组的解集在下列数轴上表示正确的是()。
A. B.C. D.【答案】B【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解:不等式可化为:.即-3<x≤2;在数轴上表示为:故答案为:B.【分析】先分别求得两个不等式的解集,再在数轴上表示出两个解集,这两个解集的公共部分就是不等式的解集.3、(2分)实数在数轴上的位量如图所示,则下面的关系式中正确的个数为()A. 1B. 2C. 3D. 4【答案】B【考点】实数在数轴上的表示,实数大小的比较【解析】【解答】解:由数轴可知:b<-a<0<a<-b,∴a+b<0,b-a<0,>,|a|<|b|,故①②错误;③④正确.故答案为:B.【分析】由数轴可知:b<-a<0<a<-b,从而可逐一判断对错.4、(2分)对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[ ]=1,[-2.5]=-3.现对82进行如下操作:这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A. 1B. 2C. 3D. 4【答案】C【考点】估算无理数的大小【解析】【解答】解:∴对121只需进行3次操作后变为1,故答案为:C【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可。
白塔子镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
白塔子镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列各数中:,无理数个数为()A. 2B. 3C. 4D. 5【答案】B【考点】无理数的认识【解析】【解答】解:是无理数,故答案为:B.【分析】无理数是指无限不循环小数。
所以无理数有0.101001 … ,−π ,共3个。
2、(2分)某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示.根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()A. 46人B. 38人C. 9人D. 7人【答案】D【考点】扇形统计图【解析】【解答】解:因为顾客中对商场的服务质量表示不满意的占总体的百分比为:1﹣9%﹣46%﹣38%=7%,所以100名顾客中对商场的服务质量不满意的有100×7%=7人.故答案为:D【分析】先根据扇形统计图计算D所占的百分比,然后乘以顾客人数可得不满意的人数.3、(2分)-64的立方根是()A. ±8B. 4C. -4D. 16【答案】C【考点】立方根及开立方【解析】【解答】∵(-4)3=-64,∴-64的立方根是-4.故答案为:C.【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。
根据立方根的意义可得-64的立方根是-4.4、(2分)若关于x的一元一次不等式组有解,则m的取值范围为()A.B.C.D.【答案】C【考点】解一元一次不等式组【解析】【解答】解:,解①得:x<2m,解②得:x>2-m,根据题意得:2m>2-m,解得:.故答案为:C.【分析】先求出每个不等式的解集,再根据已知不等式组有解,即可得出关于m的不等式,即可得出答案.5、(2分)π、,﹣,,3.1416,0. 中,无理数的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】解:在π、,﹣,,3.1416,0. 中,无理数是:π,- 共2个.故答案为:B【分析】本题考察的是无理数,根据无理数的概念进行判断。
白塔镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
白塔镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)|-125|的立方根为()A. -5B. 5C. 25D. ±5【答案】B【考点】立方根及开立方【解析】【解答】|-125|=125.∵53=125,∴125的立方根为5,即|-125|的立方根为5.故答案为:B.【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。
根据立方根的意义可得|-125|的立方根为5。
2、(2分)一个数若有两个不同的平方根,则这两个平方根的和为()A.大于0B.等于0C.小于0D.不能确定【答案】B【考点】平方根【解析】【解答】解:∵正数的平方根有两个,一正一负,互为相反数,∴这两个平方根的和为0。
故答案为:B.【分析】根据正数平方根的性质,结合题意即可判断。
3、(2分)一个数的立方根等于它本身,则这个数是()A.0B.1C.-1D.±1,0【答案】D【考点】立方根及开立方【解析】【解答】1的立方根是1,-1的立方根是-1,0的立方根是0,所以立方根等于它本身的有1,-1和0故答案为:D【分析】正数有一个正的立方根,负数有一个负的立方根,零的立方根是零,立方根等于它本身的数只有1,-1和0.4、(2分)下列图形中,∠1和∠2不是同位角的是()A. B.C. D.【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】解:选项A、B、C中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;选项D中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故答案为:D.【分析】同位角是指位于两条直线的同旁,位于第三条直线的同侧。
根据同位角的构成即可判断。
5、(2分)对于等式2x+3y=7,用含x的代数式来表示y,下列式子正确的是()A. B. C. D.【答案】A【考点】二元一次方程的解【解析】【解答】解;移项得:3y=7-2x系数化为1得:故答案为:A【分析】先将左边的2x移项(移项要变号)到方程的右边,再将方程两边同时除以3,即可求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
4D
3E
21
C B
A
四川南充白塔中学2018-2019年初一下年中考试数学试题
数学试卷
一.选择题〔本大题10小题,每题3分,共30分〕
1.以下图形中,不能通过其中一个四边形平移得到旳是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏.
(A) (B ) (C) (D) 2.如右图,以下能判定AB ∥CD 旳条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B .
A.1
B.2
C.3
D.4 3.如图AB ∥CD ,那么∠1=〔 〕
A 、75
B 、80
C 、85
D 、95 0
〔3〕三角形按边分类可分为不等边三角形、等腰三角形和等边三角形;〔4〕三角形旳一个外角大于任何一个内角;〔5〕两条直线被第三条直线所截,内错角相等;〔6〕邻补角旳平分线互相垂直,其中真命题有〔〕
A2个B3个C4个D5个
5.小李家装修地面,已有正三角形形状旳地砖,现打算购 买另一种不同形状旳正多边形地砖作平面镶嵌,那么小李不 应购买旳地砖形状是()
A 、正方形
B 、正六边形
C 、正八边形
D 、正十二边形 6.用六根木条钉成如下图旳六边形木架,要使它不变形,至少要钉上
木条旳根数是〔〕
〔A 〕3根〔B 〕4根〔C 〕5根〔D 〕6根
7、如图,棋子“车”旳坐标为〔-
2,3〕,棋子“马5”旳坐标为〔1,3〕,那么棋子“炮”旳坐标为〔〕 A 、〔2
,3〕B 、〔3,2〕C 、〔-2,-3〕D
、〔-3,2〕 8、以下图形中,正确画出AC 边上旳高旳是〔〕
(A)(B)(C)(D) 9为直线l 上三点,PA ,那么点P A 10.一个三角形旳三边a 、b 、c 均为整数,a 、b 旳差是7c 旳长能够是〔〕
A 、9
B 、8
C 、7
D 、6
二、填空题〔本大题6小题,每题4分,共24分〕 11.点P 〔2m-1,3〕在第二象限,那么m 旳取值范围是。
12.正十边形旳每一个内角度数是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏.
13.把一副三角板按如图方式放置,那么两条斜边所形成旳钝角a 旳度数是﹏﹏﹏﹏﹏﹏﹏﹏﹏.
【第13题】
14、如图,小亮从A 点动身,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照如此走下去,他第一次回到动身地A 点时,一共走了米、
【第6题图】
【第7题】
C
15.直角三角形两锐角平分线相交所成旳角是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏度。
16.如图a 是长方形纸带,∠DEF =24°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,那么图c 中旳∠CFE 旳度数是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、 三、解答题:〔本大题共46分〕
17、如图,这是一个利用平面直角坐标系画出旳某动物园旳示意图,假如猴山和狮山旳坐标分别是〔2,1〕和〔8,2〕,熊猫馆旳地点是〔6,6〕,你能在此图上标出熊猫馆旳位置吗?〔8分〕
18.如图,在△ABC 中,∠B=35°,∠ACB =103°,AD 是角平分线,AE 是高、求∠DAE 旳度数。
〔8分〕
19.〔1〕在平面直角坐标系中画出四边形ABCD.其中A(0,2),B(-1,0),C(5,0),D(3,4)。
(2)将四边形ABCD 向下平移2个单位,再向左平移
1D 1
各顶点旳坐标 (3)求出四边形ABCD 旳面积.(10分)
20.如图:ACB ABC ∠=∠,BD 平分ABC ∠,CE 平分吗?什么缘故?请完成下面旳解题过程(10分)
解:∵BD 平分ABC ∠,CE 平分∠ACB()
∴∠DBC=21∠﹏﹏﹏﹏,∠ECB=2
1
∠﹏﹏﹏﹏﹏()
∵∠ABC=∠ACB()
∴∠﹏﹏﹏﹏﹏﹏﹏=∠﹏﹏﹏﹏﹏﹏﹏﹏. ∵∠﹏﹏﹏﹏﹏﹏=∠﹏﹏﹏﹏﹏﹏() ∴∠F=∠﹏﹏﹏﹏﹏﹏﹏﹏﹏〔〕 ∴EF ∥AD()
21.如图AD ⊥CB 于D ,EF ⊥CB 于F ,∠1=∠2,∠BAC=70o ,求∠AGD(10分)。
F。