Mathematic简单教程

合集下载

mathematica简明使用教程

mathematica简明使用教程

mathematica简明使用教程Mathematica是一种强大的数学软件,广泛应用于科学研究、工程计算和数据分析等领域。

本文将简要介绍Mathematica的使用方法,帮助读者快速上手。

一、安装和启动Mathematica我们需要下载并安装Mathematica软件。

在安装完成后,可以通过桌面图标或开始菜单中的快捷方式来启动Mathematica。

二、界面介绍Mathematica的界面分为菜单栏、工具栏、输入区域和输出区域四部分。

菜单栏提供了各种功能选项,工具栏包含了常用的工具按钮,输入区域用于输入代码或表达式,而输出区域则显示执行结果。

三、基本操作1. 输入和输出在输入区域输入代码或表达式后,按下Shift+Enter键即可执行,并在输出区域显示结果。

Mathematica会自动对输入进行求解或计算,并返回相应的输出结果。

2. 变量定义可以使用等号“=”来定义变量。

例如,输入“a = 3”,然后执行,就会将3赋值给变量a。

定义的变量可以在后续的计算中使用。

3. 函数调用Mathematica内置了许多常用的数学函数,可以直接调用使用。

例如,输入“Sin[π/2]”,然后执行,就会返回正弦函数在π/2处的值。

4. 注释和注解在代码中添加注释可以提高代码的可读性。

在Mathematica中,可以使用“(*注释内容*)”的格式来添加注释。

四、数学运算Mathematica支持各种数学运算,包括基本的加减乘除,以及更复杂的求导、积分、矩阵运算等。

下面简要介绍几个常用的数学运算:1. 求导可以使用D函数来求导。

例如,输入“D[Sin[x], x]”,然后执行,就会返回正弦函数的导数。

2. 积分可以使用Integrate函数来进行积分运算。

例如,输入“Integrate[x^2, x]”,然后执行,就会返回x的平方的不定积分。

3. 矩阵运算Mathematica提供了丰富的矩阵运算函数,可以进行矩阵的加减乘除、转置、求逆等操作。

mathematica教程第一章Mathematica基础知识

mathematica教程第一章Mathematica基础知识

为精确数参与计算和公式推导。
1.2.2Mathematica数的运算符
数的运算有:加、减、乘、除和乘方,它们在Mathematica 中的符号为:加(+)、减(-)、乘(*)、除(/)和 乘方(^) 。 不同类型的数参与运算,其结果的类型为:
如果运算数有复数,则计算结果为复数类型; 如果运算数没有复数,但有实数,则计算结果为实数类型
结果为精确数
如果需要精确数的数值结果(除了整数之外),可以用 Mathematica提供的N函数将其转化,N函数可以得到该精确 数的任意精度的近似结果,其形式有两个:
In[1]:= x= 2 + 3 Out[1]=5
In[2]:= x = 2 + 3 ; 不显示结果5
1.2 Mathematica 中的数据 1.2.1 Mathematica 中的数据类型和数学常数
Mathematica提供的简单数据类型有整数、有理数、实数和 复数4种类型,这些数据在Mathematica中有如下的要求: (1)整数描述为Integer,是可以具有任意长度的精确数。书写方 法同于我们通常的表示,输入时,构成整数的各数字之间不 能有空格、逗号和其它符号,整数的正负号写在该数的首位, 正号可以不输入。如:2367189、-932是正确的整数。 (2)有理数描述为Rational,用化简过的分数表示,但其中分子 和分母都应该是整数,有理数是精确数,输入时分号用“ / ” 代替,即使用“分子 分母”的形式。如:23/45、- 41/345 是正确的有理数。 (3)实数描述为Real,是除了整数和有理数之外的所有实数。与 一般高级语言不同的是这里数学中的无理数是可以有任意精 确度的近似数, 如圆周率, 在Mathematica中它可以根据需要 取任意位有效数字。 (4)复数描述为Complex,用是否含有虚数单位I来区分,它的实 部和虚部可以是整数、有理数和实数。如:3+4.3I、18.5I 都是正确的复数。

Mathematica使用教程

Mathematica使用教程

Mathematica 使用教程一、要点● Mathematica 是一个敏感的软件. 所有的Mathematica 函数都以大写字母开头;● 圆括号( ),花括号{ },方括号[ ]都有特殊用途, 应特别注意;● 句号“.”,分号“;”,逗号“,”感叹号“!”等都有特殊用途, 应特别注意;● 用主键盘区的组合键Shfit+Enter 或数字键盘中的Enter 键执行命令.二、介绍案例1. 输入与输出例1 计算 1+1:在打开的命令窗口中输入1+2+3并按组合键Shfit+Enter 执行上述命令,则屏幕上将显示:In[1] : =1+2+3Out[1] =6这里In[1] : = 表示第一个输入,Out[1]= 表示第一个输出,即计算结果.2. 数学常数Pi 表示圆周率π; E 表示无理数e; I 表示虚数单位i ;Degree 表示π/180; Infinity 表示无穷大.注:Pi,Degree,Infinity 的第一个字母必须大写,其后面的字母必须小写.3. 算术运算Mathematica 中用“+”、“-”、“*”、“/” 和“^”分别表示算术运算中的加、减、乘、除和乘方.例2 计算 π⋅⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫ ⎝⎛⋅--213121494891100.输入 100^(1/4)*(1/9)^(-1/2)+8^(-1/3)*(4/9)^(1/2)*Pi则输出 3103π+这是准确值. 如果要求近似值,再输入N[%]则输出 10.543这里%表示上一次输出的结果,命令N[%]表示对上一次的结果取近似值. 还用 %% 表示上上次输出的结果,用 %6表示Out[6]的输出结果.注:关于乘号*,Mathematica 常用空格来代替. 例如,x y z 则表示x*y*z,而xyz 表示字符串,Mathematica 将它理解为一个变量名. 常数与字符之间的乘号或空格可以省略.4. 代数运算例3 分解因式 232++x x输入 Factor[x^2+3x+2]输出 )x 2)(x 1(++例4 展开因式 )2)(1(x x ++输入 Expand[(1+x)(2+x)]输出 2x x 32++例5 通分 3122+++x x输入 Together[1/(x+3)+2/(x+2)]输出 )x 3)(x 2(x 38+++ 例6 将表达式)3)(2(38x x x +++ 展开成部分分式 输入 Apart[(8+3x)/((2+x)(3+x))]输出 3x 12x 2+++ 例7 化简表达式 )3)(1()2)(1(x x x x +++++输入 Simplify[(1+x)(2+x)+(1+x)(3+x)] 输出 2x 2x 75++三、部分函数1. 内部函数Mathematica 系统内部定义了许多函数,并且常用英文全名作为函数名,所有函数名的第一个字母都必须大写,后面的字母必须小写. 当函数名是由两个单词组成时,每个单词的第一个字母都 必须大写,其余的字母必须小写. Mathematica 函数(命令)的基本格式为函数名[表达式,选项]下面列举了一些常用函数: 算术平方根x Sqrt[x]指数函数x eExp[x] 对数函数x a logLog[a,x] 对数函数x lnLog[x] 三角函数Sin[x], Cos[x], Tan[x], Cot[x], Sec[x], Csc[x] 反三角函数 ArcSin[x], ArcCos[x], ArcTan[x],ArcCot[x], AsrcSec[x], ArcCsc[x]双曲函数 Sinh[x], Cosh[x], Tanh[x],反双曲函数 ArcSinh[x], ArcCosh[x], ArcTanh[x]四舍五入函数 Round[x] (*取最接近x 的整数*)取整函数 Floor[x] (*取不超过x 的最大整数*)取模 Mod[m,n] (*求m/n 的模*)取绝对值函数 Abs[x]n 的阶乘 n!符号函数 Sign[x]取近似值 N[x,n] (*取x 的有n 位有效数字的近似值,当n 缺省时,n 的默认值为6*)例8 求π的有6位和20位有效数字的近似值.输入 N[Pi] 输出 3.14159输入 N[Pi, 20] 输出 3.1415926535897932285注:第一个输入语句也常用另一种形式:输入 Pi//N 输出 3.14159例9 计算函数值(1) 输入 Sin[Pi/3] 输出23(2) 输入 ArcSin[.45] 输出 0.466765(3) 输入 Round[-1.52] 输出 -2例10 计算表达式 )6.0arctan(226sin 2ln 1132+-+-e π 的值输入 1/(1+Log[2])*Sin[Pi/6]-Exp[-2]/(2+2^(2/3))*ArcTan[.6]输出 0.2749212. 自定义函数在Mathematica 系统内,由字母开头的字母数字串都可用作变量名,但要注意其中不能包含空格或标点符号.变量的赋值有两种方式. 立即赋值运算符是“=”,延迟赋值运算符是“: =”. 定义函数使用的符号是延迟赋值运算符“: =”.例11 定义函数 12)(23++=x x x f ,并计算)2(f ,)4(f ,)6(f .输入Clear[f,x]; (*清除对变量f 原先的赋值*)f[x_]:=x^3+2*x^2+1; (*定义函数的表达式*)f[2] (*求)2(f 的值*)f[x]/.{x->4} (*求)4(f 的值,另一种方法*)x=6; (*给变量x 立即赋值6*)f[x] (*求)6(f 的值,又一种方法*)输出1797289注:本例1、2、5行的结尾有“;”,它表示这些语句的输出结果不在屏幕上显示.四、解方程在Mathematica 系统内,方程中的等号用符号“==”表示. 最基本的求解方程的命令为Solve[eqns, vars]它表示对系数按常规约定求出方程(组)的全部解,其中eqns 表示方程(组),vars 表示所求未知变量.例12 解方程0232=++x x输入 Solve[x^2+3x+2==0, x]输出 }}1x {},2x {{-→-→例13 解方程组 ⎩⎨⎧=+=+10dy cx by ax 输入 Solve[{a x + b y == 0,c x + d y ==1}, {x,y}]输出 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→-→ad bc a y ,ad bc b x 例14 解无理方程a x x =++-11输入 Solve[Sqrt[x-1]+ Sqrt[x+1] == a, x]输出 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+→24a 4a 4x很多方程是根本不能求出准确解的,此时应转而求其近似解. 求方程的近似解的方法有两种,一种是在方程组的系数中使用小数,这样所求的解即为方程的近似解;另一种是利用下列专门用于求方程(组)数值解的命令:NSolve[eqns, vars] (*求代数方程(组)的全部数值解*)FindRoot[eqns, {x, x0}, {y, y0}Λ,]后一个命令表示从点),,(00Λy x 出发找方程(组)的一个近似解,这时常常需要利用图像法先大致确定所求根的范围,是大致在什么点的附近.例15 求方程013=-x 的近似解输入 NSolve[x^3-1== 0, x]输出 {{→x -0.5-0.866025ii},{→x -0.5+0.866025ii},{→x 1.}}输入 FindRoot[x^3-1==0,{x, .5}]输出 {→x 1.}下面再介绍一个很有用的命令:Eliminate[eqns, elims] (*从一组等式中消去变量(组)elims*)例16从方程组 ⎪⎩⎪⎨⎧=+=-+-+=++11)1()1(1222222y x z y x z y x 消去未知数y 、z .输入Eliminate[{x^2+y^2+z^2 ==1,x^2+(y-1)^2 + (z-1)^2 ==1, x + y== 1},{y, z}]输出 0x 3x 22==+-注:上面这个输入语句为多行语句,它可以像上面例子中那样在行尾处有逗号的地方将行与行隔开, 来迫使Mathematica 从前一行继续到下一行在执行该语句. 有时候多行语句的意义不太明 确,通常发生在其中有一行本身就是可执行的语句的情形,此时可在该行尾放一个继续的记号“\”, 来迫使Mathematica 继续到下一行再执行该语句.五、保存与退出Mathematica 很容易保存Notebook 中显示的内容,打开位于窗口第一行的File 菜单,点击Save后得到保存文件时的对话框,按要求操作后即可把所要的内容存为 *.nb 文件. 如果只想保存全部 输入的命令,而不想保存全部输出结果,则可以打开下拉式菜单Kernel,选中Delete All Output,然后 再执行保存命令. 而退出Mathematica 与退出Word 的操作是一样的.六、查询与帮助查询某个函数(命令)的基本功能,键入“?函数名”,想要了解更多一些,键入“??函数名”,例如,输入?Plot则输出Plot[f,{x,xmin,xmax}] generates a plot of f as a functionof x from xmin to xmax. Plot[{f1,f2,…},{x,xmin,xmax}] plots several functions fi它告诉了我们关于绘图命令“Plot ”的基本使用方法.例17 在区间]1,1[-上作出抛物线2x y =的图形.输入 Plot[x^2,{x,-1,1}]则输出-1-0.50.510.20.40.60.81例18 π.输入 Plot[{Sin[x],Cos[x]},{x,0,2Pi}]则输出123456-1-0.50.51??Plot则Mathematica 会输出关于这个命令的选项的详细说明,请读者试之.此外,Mathematica 的Help 菜单中提供了大量的帮助信息,其中Help 菜单中的第一项HelpBrowser(帮助游览器)是常用的查询工具,读者若想了解更多的使用信息,则应自己通过Help 菜单去学习.编辑本段Mathematica 基本运算a+mathematica 数学实验(第2版)b+c 加a-b 减a b c 或a*b*c 乘a/b 除-a 负号a^b 次方Mathematica 数字的形式256 整数2.56 实数11/35 分数2+6I 复数常用的数学常数Pi 圆周率,π=3.141592654…E 尤拉常数,e=2.71828182…Degree 角度转换弧度的常数,Pi/180I 虚数,其值为√-1Infinity 无限大指定之前计算结果的方法% 前一个运算结果%% 前二个运算结果%%…%(n个%) 前n个运算结果%n 或Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的大小或模数(Modulus)Arg[z] 复数z的幅角(Argument)Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最後一个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果编辑本段常用数学函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三角函数,其引数的单位为弪度Sinh[x],Cosh[x],Tanh[x],… 双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三角函数ArcCot[x],ArcSec[x],ArcCsc[x]Arc Sinh[x],ArcCosh[x],ArcTanh[x],… 反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] 自然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] 小於或等於x的最大整数Ceiling[x] 大於或等於x的最小整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0至1之间的随机数(最新版本已经不用这个函数,改为使用RandomReal[])Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极大/极小值编辑本段数之设定x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或Clear[x] 除去变数x所存的值变数使用的一些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为x^2 y次方运算子比乘法的运算子有较高的处理顺序编辑本段四个常用处理代数的指令Expand[expr] 将expr展开Factor[expr] 将expr因式分解Simplify[expr] 将expr化简成精简的式子FullSimplify[expr] Mathematica 会尝试更多的化简公式,将expr化成更精简的式子编辑本段多项式/分式转换的函数ExpandAll[expr] 把算是全部展开Together[expr] 将expr各项通分在并成一项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将expr拆成数项的和Cancel[expr] 把分子和分母共同的因子消去编辑本段分母/分子的运算Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分子ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分子编辑本段多项式的另二种转换函数Collect[expr,x] 将expr表示成x的多项式,如Collect[expr,{x,y,…}] 将expr分别表示成x,y,…的多项式FactorTerms[expr] 将expr的数值因子提出,如4x+2=2(2x+1)FactorTerms[expr,x] 将expr中把所有不包含x项的因子提出FactorTerms[expr,{x,y,…}] 将expr中把所有不包含{x,y,...}项的因子提出编辑本段三角函数、双曲函数和指数的运算TrigExpand[expr] 将三角函数展开TrigFactor[expr] 将三角函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次方的三角函数化成一次方的基本三角函数之组合ExpToTrig[expr] 将指数函数化成三角函数或双曲函数TrigToExp[expr] 将三角函数或双曲函数化成指数函数复数、次方乘积之展开ComplexExpand[expr] 假设所有的变数都是实数来对expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对expr展开PowerExpand[expr] 将多项式项次、系数与最高次方之取得Coefficient[expr,form] 於expr中form的系数Exponent[expr,form] 於expr中form的最高次方Part[expr,n] 或expr[[n]] 在expr项中第n个项代换运算子expr/.x->value 将expr里所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执行数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将expr代入不同的x值expr//.{x->value1,y->value2,…} 重复代换到expr不再改变为止求解方程式的根Solve[lhs==rhs,x] 解方程式lhs==rhs,求xNsolve[lhs==rhs,x] 解方程式lhs==rhs的数值解Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式,求x,y,…NSolve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式的数值解FindRoot[lhs==rhs,{x,x0}] 由初始点x0求lhs==rhs的根Mathematica 的四种括号(term) 圆括号,括号内的term先计算f[x] 方括号,内放函数的引数{x,y,z} 大括号或串列括号,内放串列的元素p[[i ]] 或Part[p,i] 双方括号,p的第i项元素p[[i,j]] 或Part[p,i,j] p的第i项第j个元素缩短Mathematica输出的指令expr//Short 显示一行的计算结果Short[expr,n] 显示n行的计算结果Command; 执行command,但不列出结果查询Mathematica的物件?Command 查询Command的语法及说明??Command 查询Command的语法和属性及选择项?Aaaa* 查询所有开头为Aaaa的物件函数的定义、查询与清除f[x_]= expr 立即定义函数f[x]f[x_]:= expr 延迟定义函数f[x]f[x_,y_,…] 函数f有两个以上的引数?f 查询函数f的定义Clear[f] 或f=. 清除f的定义Remove[f] 将f自系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的自订函数lhs:=rhs/;condition 当condition成立时,lhs才会定义成rhsIf指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test无法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]函数之泰勒展开式Series[expr,{x,x0,n}] 对expr於x0点作泰勒级数展开至(x-x0)n项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算子a==b 等於a>b 大於a>=b 大於等於a<b 小於a<=b 小於等於a!=b 不等於逻辑运算子!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表示式展开基本二维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot[]几种常用选项的指令选项预设值说明AspectRatio 1/GoldenRatio 图形高和宽之比例,高/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{?ylabel?},则为y轴之标记。

mathematical教程 第一讲

mathematical教程 第一讲

Table[Sin[x],{x,0,2Pi,Pi/10}]

格式2:


格式3:

Table [表达式,{循环范围},{循环范围}] 功能:生成一多层表 Range[初值,终值,步长] 功能:生成值为{初值,初值+步长,…,终值}的数值 表 Array[函数,{n1,n2,…}] 功能:以函数为迭代公式生成n1×n2×…的表 NestList[f, x0,n] 功能:按函数f迭代求解给出n步迭代的结果形成表

格式4:


格式5:

(2) 表的操作
Length[t]、Count[t,fmt] MemberQ[t,fmt]、Position[t,fmt]
表结构 其它 增加 表元素
设t为表, fmt为表达式, n为自然数。
Apply[Plus, t] Apply[Times, t] Permutations[t] OrderedQ[t]

变量替换(代入) 格式:


功能:

表达式/.x->a 表达式/.{x1->a1, x2->a2, … } 表示把表达式中的x全部换为a的结果 表示分别用a1替换x1, a2替换x2,….
x、x1,…为变量 a1,a2,…为表达式
(3)函数

常用的数值函数


初等函数


三、 Mathematica基础

开发公司:

美国Wolfram研究公司开发的符号计算系统
创始人:

Stephen Wolfram
从事理论研究的数学工作者 其它科学工作者 从事实际工作的工程技术人员 解决各种领域的涉及复杂的符号计算和数值计算的问题 Mathematica系统是用C语言开发的。

(整理)Mathematica入门教程.

(整理)Mathematica入门教程.

(整理)Mathematica入门教程.Mathematica入门教程Mathematica的基本语法特征如果你是第一次使用Mathematica,那么以下几点请你一定牢牢记住:Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。

系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。

乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,T an[x]^y。

自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。

当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。

一定要注意四种括号的用法:()圆括号表示项的结合顺序,如(x+(y^x+1/(2x)));[]方括号表示函数,如Log[x],BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如{2x,Sin[12Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1。

Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔)。

当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果。

一.数的表示及计算1.在Mathematica中你不必考虑数的精确度,因为除非你指定输出精度,Mathematica总会以绝对精确的形式输出结果。

例如:你输入In[1]:=378/123,系统会输出Out[1]:=126/41,如果想得到近似解,则应输入In[2]:=N[378/123,5],即求其5位有效数字的数值解,系统会输出Out[2]:=3.0732,另外Mathematica还可以根据你前面使用的数字的精度自动地设定精度。

Mathematica软件使用入门

Mathematica软件使用入门

Mathematica软件使用入门目录第一章基本知识与基本操作 (3)1.1 Mathematica的基本语法特征 (3)1.2 Mathematica的启动、基本操作 (5)1.3 操作小技巧 (7)1.4 数值计算 (8)1.5 赋值与替换 (9)1.6 自定义函数 (10)1.7 方程与方程组解 (11)1.8 解不等式与不等式组 (12)1.9 由递推式求数列的通项公式 (14)1.10 作函数图像 (15)页脚内容1第二章运用Mathematica实现高等数学中的基本运算 (17)2.1 求极限运算 (17)2.2 求导数与微分 (20)2.3 求不定积分 (28)2.4 求定积分 (29)第三章实验练习题 (32)Mathematica是当今世界上最为流行的计算机代数系统之一.Mathematica系统是美国物理学家Stephen.Wolfram领导的一个小组开发的,后来他们成立了Wolfram研究公司.1987年推出了系统的1.0版;现在的最新版本是8.0版.页脚内容2Mathematica可以做:符号计算和数值计算问题,如:能做多项式的计算、因式分解和展开等;做各种有理式计算,求多项式、有理式方程和超越方程的精确解和近似解;做向量、矩阵的各种计算;求极限、导数、积分,做幂级数展开,求解某些微分方程等;做任意位数的整数或分子分母为任意大整数的有理数的精确计算,做具有任意位精度的数值(实、复数值)的计算.可以很方便地画出用各种方式表示的一元和二元函数的图形,通过图形,可以立即形象地掌握函数的某些特性,而这些特性一般是很难从函数的符号表达式中看清楚.第一章基本知识与基本操作1.1 Mathematica的基本语法特征使用Mathematica,一定要牢牢记住:Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名;系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Cos[z]等;页脚内容3页脚内容4乘法即可以用*,又可以用空格表示,如 2 3=2*3=6 , 2 Sin[x]=2* Sin[x]乘幂可以用“^”表示,如x^0.5 表示: Tan[x]^y 表示:自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头.当你赋予变量任何一个值,除非你: 明显地改变该值或 使用Clear[变量名] 或 使用“变量名=.”取消该值,否则它将始终保持原值不变.一定要注意四种括号的用法:( ): 表示项的结合顺序,如: (x+(y^x+1/(2x))); [ ]: 表示函数,如:Log[x], Sin[x];{ }: 表示一个“表”(即是一组数字、或任意表达式、或函数等的一个有序集合),如:{2x,Sin[12 Pi],A ,1}, {1+A,y*x ,1,2};[[ ]]: 双方括号表示“表”或“表达式”的下标,如: a[[2,3]]表示:23a ; {3,5,7}[[2]]=5.Mathematica 的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔).当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果.0.5xyTan[x]Mathematica命令中的标点符号必须是英文的.1.2 Mathematica的启动、基本操作1.2.1 启动“Mathematica”:在windows操作系统中安装了Mathematica后,与其他的常用软件一样,可从“开始”→“程序”→“Mathematica5”Mathematica的主窗口并出现第一个notebook窗口(Untitled-1):1.2.2 简单使用:例1.1 计算+33的值①在“Untitled-1”窗口中输入:329/412+3^3②按下“Shift+Enter”(或数字键盘上的Enter键),就得到计算结果:页脚内容5其中“In[1]:=”是Mathematica自动加上的,表示第一个输入;“Out[1]:=”表示第一个输出.一般地:In[n]:= 表示第n个输入Out[n]:=表示第n个输出.注意:“In[n]:=”自动加上的,不能人工输入!1.2.3 保存结果:保存方法同一般的Windows软件:“文件”→“保存”“另存为”窗口→在“查找范围”内找到目标文件夹→输入文件名(比如输入“1”)→“”.Mathematica 4或Mathematica 5的文件的后缀是“nb”,当输入“1”时,即产生文件“1.nb”.1.2.4打开文件1.nb启动Mathematica →“文件”→“打开”打开”窗口:→在“查找范围”内找到文件“1.nb”→“”即可.页脚内容61.2.5 退出Mathematica:与一般应用软件一样,单击右上方的“”按钮(或用菜单:“文件”→“退出”).1.3 操作小技巧1.3.1Ctrl+K的用途如果只知道命令的首写字母,可在输入该首写字母(要大写),再按下“Ctrl+K”组合键,则所有以该字母为首的命令都列出来,只要用鼠标双击命令名就输入了该命令.1.3.2使用前面已有的结果举例如下:例1.2 做如下操作:①输入:Integrate[x^2*(11-Sin[x]),{x,-1,1}]按:“Shift+Enter”;②输入:%+1,按:“Shift+Enter”;③输入:%+1,按:“Shift+Enter”;④输入:%1+1,按:“Shift+Enter”;Integrate[f,x]是求:()f x dxIntegrate[f,{x,xmin,xmax}]是求:页脚内容7⑤输入:%3+1,按:“Shift+Enter”,计算结果如下:可见,“%”表示前一个计算结果;“%n”表示第n个计算结果.1.3.3 删除行:见下图示1.4 数值计算请看下例:只要选定且删1.5 赋值与替换X=. 或Clear[x] 清除赋给x的值expr/.{x->xval,y->yval} 用xval、yval分别替换expr中的x、y.例1.3输入:x=3;y=4;w=x+y 计算清除变量的定义和值输入:Clear[x,y];计算输入:z=(x+y)^2 计算将(x+y)^2赋给z页脚内容9页脚内容10输入:z/.x->5 计算输入:Clear[x,y]; 计算 输入:u=x+y 计算 输入:u/.{x->5,y->6} 计算 计算结果如下:1.6 自定义函数用户可以自行定义函数,一个函数一旦被定义好之后就可以象系的内部函数一样使用. 例1.4 如要定义函数 f(x)=x 2+3x-2变量替换:变量替换:分别用5、6代替表达式u 中的“:=”是定义符.左边f 是函数名,方括号内x 是自变量,其页脚内容11只要键入: f[x_]:=x^2+3x-2即可.又如要定义分段函数2+1 < 0()= 2sin 0x x g x x x ⎧⎨≥⎩可键入:g[x_]:= Which[x<0,x^2+1,x>=0,2Sin[x]] 或g[x_]:=If[x<0,x^2+1,2Sin[x]] 请见以下计算结果:1.7 方程与方程组解 例1.5 ① 解方程:0652=+-x x输入:Solve[x^2-5x+6==0,x]Solve 是解方程或方程组的函数.其格式为:Solve[eqns,vars] 其中方程用exp==0的形式(其中页脚内容12即可.② 解方程组输入:Solve[{x+y==1,3x^2-y^2==0},{x,y}] 即可(结果见下图).1.8 解不等式与不等式组 例1.6 ① 解不等式组2213x y x y +=⎧⎨-=⎩加载解不等式的程序包,这是必须的,可谓是固定的格式, “< ”为键盘上的小于号, “`”为数字键1的左侧的 Algebra —— 代数类页脚内容13⎪⎩⎪⎨⎧>-<--0101222x x x输入: <<Algebra`InequalitySolve` InequalitySolve[{x^2-5x-6<0,x^2-1>0}, x] 即可. ② 解不等式3)3(12>--x x输入: <<Algebra`InequalitySolve` InequalitySolve[Abs[x-1](x^2-3) > 3, x] 即可(结果见下图)注: Mathematica 系统有内部函数.还有一些系统扩展的功能但不是作为内部函数的、以文件的形式存页脚内容14储在磁盘上的文件,要使用它们,必须用一定的方式来调用这些文件,这些文件我们称之为程序包. 调用方式之一如上所述: <<Algebra`InequalitySolve` 或用:Needs["Algebra`InequalitySolve`"] 1.9 由递推式求数列的通项公式例1.7 设 求数列的通项公式 只要输入:<<DiscreteMath`RSolve`RSolve[{a[n]==n *a[n-1], a[1]==1}, a[n], n] 即可(结果见下图)11,1,nn a na a -==1.10 作函数图像例1.8在同一坐标系中作出2-1y x 和y=sinx在[-2,2]内的图像.输入:Plot[{x^2-1,Sin[x]},{x,-2,2}]结果见下图例1.9作出sinxcosy的三维图形输入:Plot3D[Sin[x]*Cos[y],{x,-2Pi,2Pi},{y,-2Pi,2Pi},PlotPoints->100]即可(结果见下图)增加取样点提高光滑度页脚内容15页脚内容16页脚内容17第二章 运用Mathematica 实现高等数学中的基本运算极限、导数和积分是高等数学中的主要概念和基本运算,如果你在科研中遇到较复杂的求极限、求导数或求积分问题,Mathematica 可以帮你快速解决这些问题。

Mathematica简易教程

Mathematica简易教程

Mathematica简易教程周六1-4节8:00-11:10第1章MATHEMATICA概述 (4)1.1 M ATHEMATICA的启动及运行 (4)1.2 表达式的输入 (6)1.3 M ATHEMATICA的联机帮助系统 (9)第2章MATHEMATICA的基本量 (12)2.1 数据类型和常数 (12)2.2 变量 (15)2.3 函数 (17)2.4 表 (24)2.5 表达式 (27)2.6 常用的符号 (31)2.7 练习题 (31)周六5-8节14:00-17:10第3章微积分的基本操作 (32)3.1 极限 (32)3.2 微分 (32)3.3 计算积分 (35)3.4 无穷级数 (37)3.5 练习题 (38)周六9-10节19:00-20:30第4章微分方程的求解 (39)4.1 微分方程解 (39)4.2 微分方程的数值解 (40)4.3 练习题 (41)周日1-4节8:00-11:10第5章MATHEMATICA的基本运算 (42)5.1 多项式的表示形式 (42)5.2 方程及其根的表示 (44)5.3 求和及求积 (48)5.4 练习题 (50)第6章函数作图 (51)6.1 基本的二维图形 (51)6.2 二维图形元素 (58)6.3 基本三维图形 (60)6.4 练习题 (66)周日5-8节14:00-17:10第7章MATHEMATICA函数大全 (67)7.1 运算符和一些特殊符号,系统常数 (67)7.2 代数计算 (69)7.3 解方程 (70)7.4 微积分 (71)7.5 多项式函数 (73)7.6 随机函数 (75)7.7 数值函数 (75)7.8 表相关函数 (77)7.9 绘图函数 (81)7.10 流程控制 (86)第8章MATHEMATICA程序设计 (90)8.1 模块和块中的变量 (90)8.2 条件结构 (93)8.3 循环结构 (96)8.4 流程控制 (100)8.5 练习题 (102)周日9-10节19:00-20:30小测验第1章Mathematica概述1.1 Mathematica的启动及运行Mathematica是美国Wolfram研究公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。

Mathematic简明教程

Mathematic简明教程
Mathematica 教程
第 1 章 Mathematica 概述
1.1 1.2 1.3 运行和启动:介绍如何启动 Mathematica 软件,如何输入并运行命令 表达式的输入:介绍如何使用表达式 帮助的使用:如何在 mathematica 中寻求帮助
第 2 章 Mathematica 的基本量
3.1 3.2 3.3 多项式运算:多项的四则运算,多项式的化简等 方程求解:求解一般方程,条件方程,方程数值解以及方程组的求解 求积求和:求积与求和
第 4 章 函数作图
4.1 4.2 4.3 4.4 4.5 二维函数作图:一般函数的作图,参数方程的绘图 二维图形元素:点,线等图形元素的使用 图形样式:图形的样式,对图形进行设置 图形的重绘和组合:重新显示所绘图形,将多个图形组合在一起 三维图形的绘制:三维图形的绘制,三维参数方程的图形,三维图形的 设置
x 2
x
n
x
Ctrl +2 x Ctrl+_
( x 1)4 ,可以按如Ctrl+ ^,+,4,→,Ctrl+/,Ctrl+2,2,x,+,y 另外也可从“文件”菜单中激活“控制面板” “Basic Input”工具栏,也可输入,并且 使用工具栏可输入更复杂的数学表达式,如下图 4。
1.3
Mathematica 的联机帮助系统
用 Mathematica 的过程中, 常常需要了解一个命令的详细用法, 或者想知系统中是否有 完成某一计算的命令,联机帮助系统永远是最详细、最方便的资料库。
1.获取函数和命令的帮助
在 Notebook 界面下,用 ?或 ?? 可向系统查询运算符、函数和命令的定义和用法,获 取简单而直接的帮助信息。 例如, 向系统查询作图函数 Plot 命令的用法 ?Plot 系统将给 出调用 Plot 的格式以及 Plot 命令的功能(如果用两个问号 “??” , 则信息会更详细一 些)。? Plot* 给出所有以 Plot 这四个字母开头的命令。

Mathematica软件使用入门讲解

Mathematica软件使用入门讲解

Mathematica软件使用入门目录第一章基本知识与基本操作 (3)1.1 Mathematica的基本语法特征 (3)1.2 Mathematica的启动、基本操作 (4)1.3 操作小技巧 (7)1.4 数值计算 (8)1.5 赋值与替换 (9)1.6 自定义函数 (10)1.7 方程与方程组解 (11)1.8 解不等式与不等式组 (12)1.9 由递推式求数列的通项公式 (13)1.10 作函数图像 (14)第二章运用Mathematica实现高等数学中的基本运算 (16)2.1 求极限运算 (16)2.2 求导数与微分 (18)2.3 求不定积分 (25)2.4 求定积分 (25)第三章实验练习题 (28)Mathematica是当今世界上最为流行的计算机代数系统之一.Mathematica系统是美国物理学家Stephen.Wolfram领导的一个小组开发的,后来他们成立了Wolfram研究公司.1987年推出了系统的1.0版;现在的最新版本是8.0版.Mathematica可以做:●符号计算和数值计算问题,如:能做多项式的计算、因式分解和展开等;●做各种有理式计算,求多项式、有理式方程和超越方程的精确解和近似解;●做向量、矩阵的各种计算;●求极限、导数、积分,做幂级数展开,求解某些微分方程等;●做任意位数的整数或分子分母为任意大整数的有理数的精确计算,做具有任意位精度的数值(实、复数值)的计算.●可以很方便地画出用各种方式表示的一元和二元函数的图形,通过图形,可以立即形象地掌握函数的某些特性,而这些特性一般是很难从函数的符号表达式中看清楚.第一章 基本知识与基本操作1.1 Mathematica 的基本语法特征使用Mathematica ,一定要牢牢记住:● Mathematica 中大写小写是有区别的,如Name 、name 、NAME 等是不同的变量名或函数名;● 系统所提供的功能大部分以系统函数的形式给出, 内部函数一般写全称, 而且一定是以大写英文字母开头, 如Sin[x], Cos[z]等;● 乘法即可以用*,又可以用空格表示,如2 3=2*3=6 , 2 Sin[x]=2* Sin[x] ● 乘幂可以用“^”表示,如x^0.5 表示: Tan[x]^y 表示: ● 自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头. ● 当你赋予变量任何一个值,除非你:明显地改变该值或 使用Clear[变量名] 或 使用“变量名=.”取消该值,否则它将始终保持原值不变.● 一定要注意四种括号的用法:0.5x yTan[x]( ):表示项的结合顺序,如: (x+(y^x+1/(2x)));[ ]:表示函数,如:Log[x], Sin[x];{ }:表示一个“表”(即是一组数字、或任意表达式、或函数等的一个有序集合),如:{2x,Sin[12 Pi],A,1}, {1+A,y*x,1,2};[[ ]]:双方括号表示“表”或“表达式”的下标,如:a; {3,5,7}[[2]]=5.a[[2,3]]表示:23●Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔).●当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果.●Mathematica命令中的标点符号必须是英文的.1.2 Mathematica的启动、基本操作1.2.1 启动“Mathematica”:在windows操作系统中安装了Mathematica后,与其他的常用软件一样,可从“开始”→“程序”→“Mathematica5” Mathematica的主窗口并出现第一个notebook窗口(Untitled-1):1.2.2 简单使用:例1.1 计算+33的值①在“Untitled-1”窗口中输入:329/412+3^3②按下“Shift+Enter”(或数字键盘上的Enter键),就得到计算结果:其中“In[1]:=”是Mathematica自动加上的,表示第一个输入;“Out[1]:=”表示第一个输出.一般地:In[n]:= 表示第n个输入Out[n]:=表示第n个输出.注意:“In[n]:=”自动加上的,不能人工输入!1.2.3 保存结果:保存方法同一般的Windows软件:“文件”→“保存”⇒“另存为”窗口→在“查找范围”内找到目标文件夹→输入文件名(比如输入“1”)→“”.Mathematica 4或Mathematica 5的文件的后缀是“nb”,当输入“1”时,即产生文件“1.nb”.1.2.4打开文件1.nb启动Mathematica →“文件”→“打开”⇒打开”窗口:→在“查找范围”内找到文件“1.nb”→“”即可.1.2.5 退出Mathematica :与一般应用软件一样,单击右上方的“ ”按钮(或用菜单:“文件”→“退出”).1.3 操作小技巧1.3.1 Ctrl+K 的用途如果只知道命令的首写字母, 可在输入该首写字母(要大写),再按下“Ctrl+K ”组合键, 则所有以该字母为首的命令都列出来,只要用鼠标双击命令名就输入了该命令. 1.3.2 使用前面已有的结果 举例如下:例1.2 做如下操作:① 输入:Integrate[x^2*(11-Sin[x]),{x,-1,1}]按:“Shift +Enter ”; ② 输入:%+1,按:“Shift +Enter ”; ③ 输入:%+1,按:“Shift +Enter ”; ④ 输入:%1+1,按:“Shift +Enter ”; ⑤ 输入:%3+1,按:“Shift +Enter ”, 计算结果如下:Integrate[f,x]是求:()f x dx ⎰ Integrate[f,{x,xmin,xmax}]是求:maxmin()x x f x dx ⎰可见,“%”表示前一个计算结果;“%n”表示第n个计算结果.1.3.3删除行:见下图示1.4 数值计算请看下例:只要选定且删除此即可系统默认的计算结果,是精确的.N[],取近似值函数,默认输出6位有效数字.N[],取近似值函数,指定输出3位有效数字.1.5 赋值与替换X=. 或Clear[x] 清除赋给x的值expr/.{x->xval,y->yval} 用xval、yval分别替换expr中的x、y.例1.3输入:x=3;y=4;w=x+y 计算输入:Clear[x,y];计算输入:z=(x+y)^2 计算输入:z/.x->5 计算输入:Clear[x,y];计算输入:u=x+y 计算将(x+y)^2赋给z清除变量的定义和值变量替换:用5代替表达式z中的变量变量替换:输入:u/.{x->5,y->6} 计算 计算结果如下:1.6 自定义函数用户可以自行定义函数,一个函数一旦被定义好之后就可以象系的内部函数一样使用.例1.4 如要定义函数f(x)=x 2+3x-2只要键入:f[x_]:=x^2+3x-2即可.又如要定义分段函数2+1 < 0()= 2sin 0x x g x x x ⎧⎨≥⎩“:=”是定义符.左边f 是函数名,方括号内x 是自变量,其后的下划线“_”不能少.右边是函数的表达式.可键入:g[x_]:= Which[x<0,x^2+1,x>=0,2Sin[x]]或g[x_]:=If[x<0,x^2+1,2Sin[x]]请见以下计算结果:1.7 方程与方程组解例1.5 ① 解方程:0652=+-x x输入:Solve[x^2-5x+6==0,x]即可.② 解方程组 输入:Solve[{x+y==1,3x^2-y^2==0},{x,y}] 即可(结果见下图).Solve 是解方程或方程组的函数.其格式为:Solve[eqns,vars]其中方程用exp==0的形式(其中exp 为未知元的表达式,“= =”必须是2个等号);方程列表 2213x y x y +=⎧⎨-=⎩未知数列表1.8 解不等式与不等式组例1.6 ① 解不等式组⎪⎩⎪⎨⎧>-<--0101222x x x输入: <<Algebra`InequalitySolve`InequalitySolve[{x^2-5x-6<0,x^2-1>0}, x]即可.② 解不等式3)3(12>--x x输入: <<Algebra`InequalitySolve`即可(结果见下图)不等式列表 变量列表加载解不等式的程序包,这是必须的,可谓是固定的格式, “< ”为键盘上的小于号, “`”为数字键1的左侧的Algebra —— 代数类InequalitySolve —— 解不等式程序包绝对值函数注: Mathematica 系统有内部函数.还有一些系统扩展的功能但不是作为内部函数的、以文件的形式存储在磁盘上的文件,要使用它们,必须用一定的方式来调用这些文件,这些文件我们称之为程序包. 调用方式之一如上所述:<<Algebra`InequalitySolve`或用:Needs["Algebra`InequalitySolve`"]1.9 由递推式求数列的通项公式例1.7 设 求数列的通项公式只要输入:<<DiscreteMath`RSolve` RSolve[{a[n]==n *a[n-1], a[1]==1}, a[n], n]即可(结果见下图)11,1,n n a na a -==函数名 递推关系 初始条件调用程序包 类名,此处是函数类 函数类中的这个函数离散类 离散类中的这个函数1.10 作函数图像例1.8在同一坐标系中作出2-1y x 和y=sinx在[-2,2]内的图像.输入: Plot[{x^2-1,Sin[x]},{x,-2,2}] 结果见下图例1.9作出sinxcosy的三维图形输入:Plot3D[Sin[x]*Cos[y],{x,-2Pi,2Pi},{y,-即可(结果见下图)增加取样点提高光滑度第二章 运用Mathematica 实现高等数学中的基本运算极限、导数和积分是高等数学中的主要概念和基本运算,如果你在科研中遇到较复杂的求极限、求导数或求积分问题,Mathematica 可以帮你快速解决这些问题。

Mathematica简易教程

Mathematica简易教程
4. 使用条件运算符定义和IF命名定义函数 如定义:
Page 21
使用条件运算符,基本格式为:f[x_]:=expr/;condition,当condition条件满足 时才把expr赋给f(x)。
Page 22
当然,使用If命令也可以定义上面的函数,If语句的格式为If[条件,值1,值 2],如果条件成立取“值1”,否则取“值2”,用If语句定义如下:
mathematicapage目录第一章mathematica简介第二章mathematica的基本量第三章mathematica的基本运算第四章函数作图第五章微积分的基本操作page第一章mathematica简介mathematica由美国物理学家stephenwolfram领导开发的他们组建wolfram研究公司mathematica是一个计算机代数系统把符号运算数值计算与图形显示集一体可以完成上述三项功能更重要的是它把这些功能融合在一个系统里使它们成为一个整体
3.2.4 解条件方程
在作方程计算时,可以把一个方程看做你要处理的主要方程,而把其 他方程作为必须满足的辅助条件,你就会发现这样处理很方便。 在Mathematica中,我们通常是首先命名辅助条件组,然后用名字把辅 助条件包含在你要用函数Solve[]求解的方程组中。
Page 40
3.3 求和与求积
Mathematica简介与入门
目录
第一章 Mathematica简介 第二章 Mathematica的基本量
第三章 Mathematica的基本运算
第四章 函数作图 第五章 微积分的基本操作
Page 2
第一章 Mathematica简介
Mathematica由美国物理学家Stephen Wolfram领导开发的,他们组建Wolfram 研究公司 Mathematica是一个计算机代数系统,把 符号运算、数值计算与图形显示集一体, 可以完成上述三项功能,更重要的是它把 这些功能融合在一个系统里,使它们成为 一个整体.此外,Mathematica还是一个 易于扩充的系统,即实际上提供了功能强 大的程序设计语言,可以定义用户需要的 各种函数,完成用户需要的各种工作,系 统本身还提供了一大批用这个语言写出的 专门程序或软件包 Mathematica的发布标志着现代科技计算 的开始。Mathematica是世界上通用计算 系统中最强大的系统。自从1988发布以来, 它已经对如何在科技和其它领域运用计算 机产生了深刻的影响

mathematic教程

mathematic教程

Mathematica教程第1章Mathematica概述1.1 运行和启动:介绍如何启动Mathematica软件,如何输入并运行命令1.2 表达式的输入:介绍如何使用表达式1.3 帮助的使用:如何在mathematica中寻求帮助第2章Mathematica的基本量2.1 数据类型和常量:mathematica中的数据类型和基本常量2.2 变量:变量的定义,变量的替换,变量的清除等2.3 函数:函数的概念,系统函数,自定义函数的方法2.4 表:表的创建,表元素的操作,表的应用2.5 表达式:表达式的操作2.6 常用符号:经常使用的一些符号的意义第3章Mathematica的基本运算3.1 多项式运算:多项的四则运算,多项式的化简等3.2 方程求解:求解一般方程,条件方程,方程数值解以及方程组的求解3.3 求积求和:求积与求和第4章函数作图4.1 二维函数作图:一般函数的作图,参数方程的绘图4.2 二维图形元素:点,线等图形元素的使用4.3 图形样式:图形的样式,对图形进行设置4.4 图形的重绘和组合:重新显示所绘图形,将多个图形组合在一起4.5 三维图形的绘制:三维图形的绘制,三维参数方程的图形,三维图形的设置第5章微积分的基本操作5.1 函数的极限:如何求函数的极限5.2 导数与微分:如何求函数的导数,微分5.3 定积分与不定积分:如何求函数的不定积分和定积分,以及数值积分5.4 多变量函数的微分:如何求多元函数的偏导数,微分5.5 多变量函数的积分:如何计算重积分5.6 无穷级数:无穷级数的计算,敛散性的判断第6章微分方程的求解6.1 微分方程的解:微分方程的求解6.2 微分方程的数值解:如何求微分方程的数值解第7章Mathematica程序设计7.1 模块:模块的概念和定义方法7.2 条件结构:条件结构的使用和定义方法7.3 循环结构:循环结构的使用7.4 流程控制第8章Mathematica中的常用函数8.1 运算符和一些特殊符号:常用的和不常用一些运算符号8.2 系统常数:系统定义的一些常量及其意义8.3 代数运算:表达式相关的一些运算函数8.4 解方程:和方程求解有关的一些操作8.5 微积分相关函数:关于求导,积分,泰勒展开等相关的函数8.6 多项式函数:多项式的相关函数8.7 随机函数:能产生随机数的函数函数8.8 数值函数:和数值处理相关的函数,包括一些常用的数值算法8.9 表相关函数:创建表,表元素的操作,表的操作函数8.10 绘图函数:二维绘图,三维绘图,绘图设置,密度图,图元,着色,图形显示等函数8.11 流程控制函数第1章Mathematica概述1.1 Mathematica的启动和运行Mathematica是美国Wolfram研究公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。

mathematic使用说明第二讲

mathematic使用说明第二讲

第2讲在Mathematica中作图一个较强的符号计算系统均有很好的绘图功能,Mathematica也不例外,Mathematica拥有非常强大的绘图功能。

并且提供了一大批基本数学函数的图形,利用这些提供的函数,用户可以方便地组合成所需要的、复杂的函数图形,所有这些都使得Mathematica系统在处理和解决数学问题和一般的计算问题中表现得非常突出。

2.1 基本图形与图形处理的原理首先画出一个周期正弦函数sin(x)的图象:In[1]:=Plot[Sin[x], {x, 0, 2Pi}]Out[1]=-Graphics-其次画一个含有奇异点的函数曲线,Mathematica会选取适当的比例:In[2]:=Plot[Tan[x], {x, -3, 3}]Out[2]=-Graphics-Mathematica可以将一组函数的曲线画在一张图上:In[3]:=Plot[{Sin[x], Sin[2x], Sin[3x]}, {x, 0, 2Pi}]Out[3]=-Graphics-当Mathematica去画函数f的图象时,为了得到光滑的曲线,系统需要计算许多点的函数值。

Mathematica中存在两种可能的方法解决这个问题。

第一种方法是先设法求出函数f关于x的大致的表达式,然后按顺序计算出相应的x处的函数表达式的值。

另一方法就是,先写出各点的x值,然后顺序算出相应点x的函数值f。

如果输入Plot[Sin[x], {x, 0, 2Pi}],Mathematica使用了上面所述的第二种方法。

使用这种方法的好处在于,Mathematica只需要去计算对应的x的函数值,这样它就不需要去关注当x为符号的时候所对应的函数表达式。

在有些情况下,在画出该函数的曲线之前,计算出函数f的表达式还是非常有用的,一个典型的实例是,当f是生成一个函数表的命令,此时系统先要生成一个表,然后计算函数值。

可用绘图格式Plot[Evaluate[f],{x,xmin,xmax}]来实现。

Mathematic入门教程(整理版)

Mathematic入门教程(整理版)

(1)简介数学系给本科生开设一门课: "符号计算系统", 主要简单讲授mathematica(以下简称math)软件的使用及其编程,赶兴趣的同学可以找本math书以求更深入的了解.我们平日用到编程语言时, 大家都知道编程中用到的整型, 实型, 甚至双精度数, 都只是一个近似的数, 其精度有限, 有效数字有限, 在很多时候达不到实际需要的要求. 符号计算与数值计算的区别就在于符号计算以准确值记录计算的每一步的结果, 如果需要时, 可以将精确表示按需要计算成任意位数的小数表示出来(只要机器内存足够大).最常见的符号计算系统有maple, mathematica, redues等, 这些软件各有侧重, 比如,maple内存管理及速度比math好, 但是图形方面不如math; redues没找到, 没用过, 未明; 而用得较多的matlab编程环境特好, 和C语言接口极其简单, 遗憾的是它不是符号计算, 只是数值计算. 所以, 就实用而全面来说, math是一个很好用的软件.math软件不仅能够进行一般的+-*/及科学函数如Sin, Log 等计算, 而且能进行因式分解, 求导, 积分, 幂级数展开, 求特征值等符号计算, 并且, math有较强的图元作图, 函数作图, 三维作图及动画功能.(2)mathematica入门mathematica自发布以来, 目前比较常见的有math 1.2 for DOS, math 2.2 for Windows, math 3.0 for win95, math 3.0 for UNIX.DOS下的math的好处就是系统小, 对机器要求低, 在386机器4M内存下就能运行得很好(机器再低点也是可以用的, 比如说286/2M). 在DOS下直接键入math<回车>即可进入math系统, 出现的提示符In[1]:=, 这时就可以进行计算了, 键入math函数, 回车即可进行运算. 如果输入的Quit, 则退出math. 这里要注意的是, math区分大小写的, 一般math 的函数均以大写字母开始的.windows下的math对机器要求就要高一些了, math3.0更是庞大, 安装完毕有100M之多(2.2大约十多兆). 同windows下的其他软件一样, math可以双击图标运行, 在File菜单下有退出这一项. windows下的math有其优越性, 就是可以在windows下随心所欲地拷贝粘贴图形. math3.0更是能输入和显示诸如希腊字母, 积分符号, 指数等数学符号. DOS的math与windows下的一个区别是DOS的以回车结束一句输入, 而windows的以+<回车>结束一句输入. DOS下的提示符显示为In[数字]:=, 而windows下在结束输入后才显示出In[数字]:=及Out[数字]:=字样. (Out为输出提示符) 下面试试几个例子:(In[数字]:=为提示符, 不用键入)In[1]:= 2^100 计算2的100次方In[2]:= s={{3,7,9},{7,4,3},{1,3,8}} 定义矩阵sIn[3]:= Eigenvalues[s] 计算s的特征值In[4]:= Plot[Sin[x],{x,0,Pi}] 在0,Pi间画SinIn[5]:= Plot[Cos[x],{x,0,Pi}] CosIn[6]:= Plot3D[Sin[x]Sin[y],{x,0,1},{y,0,2}] 三维作图以In[6]为例说明: math的函数都以大写字母开头的单词为函数名, Plot3D, Plot, Eigenvalues, Sin等, 常数也是如此, 如Pi. 函数名后的参数用[]括起, 逗号隔开.math的输出可以作为函数的输入对象, 你可以再试一个: In[7]:=Show[%%,%%%] 这里一个%代表上一个输出, 两个代表上两个... 也可以直接用Out[n]代表第n个输出.这里需要补充的是!command 执行DOS命令?name 关于name(函数等)的信息(可以使用通配符)??name 关于name的额外信息(3)基本计算1. 算术运算符+加-减*乘/除^指数(乘也可用空格)N[expr]或expr //N 计算expr的数值(6位有效数字)N[expr, n] n表示小数的位数2. 数学函数Sqrt[x] x开方Exp[x] e的x方Log[x] x的自然对数Log[b,x] 以b为底, x的对数Sin[x], Cos[x], Tan[x], ArcSin[x], ArcCos[x] 三角函数Abs[x] |x|Round[x] 离x最近的整数Floor[x] 不超过x的最大整数Quotient[n,m] n/m的整数部分Mod[n,m] n/m的余数Random[] 0,1间随机数Max[x,y,...] Min[x,y,...] 最大数和最小数3. 常数Pi Pi=3.141592653589793...E e=2.71828...Degree Pi/180I i=Sqrt[-1]Infinity 无穷大Catalan Catalan常数.=0.915966ComplexInfinity 复无穷DirectedInfinity 有向的无穷EulerGamma 欧拉常数gamma=0.5772216GoldenRatio 黄金分割(Sqrt[5]-1)/2Indeterminate 不定值4. 逻辑运算符==, !=, >, >=, <, <=, !, &&, ||Xor 异或Implies 隐含If[条件,式1,式2] 如果条件成立, 值式1; 否则得式25. 变量a) 变量名以字母(一般小写)开头; 字母数字组成.(如x2为变量名; 而2x, 2*x, 2 x, x*2, x 2均是x乘以2).b) 赋值x=value; x=y=value; x=.(清除x值)c) 代换expr /. x->value 将式中x代换为valueexpr /. {x->xval, y->yval}下面就让我们以几个例子来结束本节:(大家还是注意, DOS下的Math, 只要输入In[num]:=后的指令后按回车, 而windows下则是按+回车.) 大家看看都有什么输出.In[1]:= 2.7+5.23In[2]:= 1/3+2/7In[3]:= 1/3+2/7 //NIn[4]:= N[Pi,100]曾经有人问我, 你是怎么算出Pi的1000位而没有错误的, 其实很简单, 大家只要把上式的100改为1000即可.In[5]:= Sin[Pi/2]+Exp[2]+Round[1.2]In[6]:= 10<7In[7]:= x=5;如果在输入之后加上一个";", 则只运算不输出.IN[8]:= y=0(所以In[7]和8完全可以合成一条x=5;y=0, 假如我不需要x=5的输出) In[9]:= x>yIn[10]:= t=1+m^2In[11]:= t /. m->2In[12]:= t /. m->5aIn[13]:= t /. m->Pi //N(4)代数变换上一节我们已经学习了Math里的基本运算及逻辑运算, 常用数学函数, 几个常见的常数, 以及变量的使用. 这一节, 我们来学学基本代数变换: Apart, Cancel, Coefficient, Collect, Denominator, Expand, ExpandAll, Exponent, Factor, Numerator, Short, Simplify, Together.Expand[expr] 多项式expr按项展开Factor[expr] 因子形式Simplify[expr] 最简形式In[1]:= Expand[(1+x)^2]In[2]:= Factor[%]我们以前说过的哦, %是上一个输出, %%是上上个, %%%是上上上个, ..., %n是第n个输出(即Out[n])In[3]:= Simplify[%%]In[4]:= Integrate[x^2/(x^4-1),x] 这是积分运算, 详情后叙In[5]:= D[%,x] 求导In[6]:= Simplify[%]ExpandAll[expr] 所有项均展开Together[expr] 通分Apart[expr] 分离成具有最简分母的各项Cancel[expr] 约去分子,分母的公因子Collect[expr] 合并In[1]:= e=(x-1)^2 (2+x)/((1+x)(x-3)^2)In[2]:= Expand[e]In[3]:= ExpandAll[e]In[4]:= Together[e]In[5]:= Apart[%]In[6]:= Factor[%]Coefficient[expr, form] 表达式中form项的系数Exponent[expr, form] form的最高幂次Numerator[expr] 取分子Denominator[expr] 取分母expr //Short 以简短形式输出In[1]:= e=Expand[(1+3x+4y^2)^2]In[2]:= Coefficient[e, x]In[3]:= Exponent[e, y]In[4]:= q=(1+x)/(2(2-y))In[5]:= Denominator[%]In[6]:= Expand[(x+5y+10)^4]In[7]:= %//Short 把上式输出, 中间项省去, 以<<数字>>表示省去的项数.最后, 我们以例子来看看用符号名做客体的标志的好处In[1]:= 12metersIn[2]:= %+5.3metersIn[3]:= %/(25seconds)In[4]:= %/.meters->3.78084feet 一下子就把米制变为英尺了.(5)微积分运算(2-1)学到上一节, 大家会发现怎么还停留在中学的计算中呢, 这一节, 大家就会看到微分D, Dt; 积分Integrate, NIntegrage; 和与积Sum, Product, NSum, NProduct. 下一节我们介绍解方程Solve, Eliminate, Reduce, NRoot, FindRoot, FindMinimum; 幂级数Series, Normal; 极限Limit; 特殊函数Fourier, InverseFourier, ...微分D[f, x] f对x求导D[f, x_1, x_2, ...] f对x_1, x_2, ...求导D[f, {x, n}] f对x求n次导Dt[f] 全微分dfDt[f, x] 全微商df/dxIn[1]:= D[x^n,x]In[2]:= D[f[x],x]In[3]:= D[2x f[x^2],x]In[4]:= D[x^n, {x, 3}]In[5]:= D[x^2 y^3, x, y]In[6]:= Dt[x^n]In[7]:= Dt[x y, x]积分Integrate[f,x] f对x积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}, ...] 定积分NIntegrate[f, {x, xmin, xmax}, {y, ymin, ymax}, ...]计算积分的数值解In[1]:= Integrate[Sin[Sin[x]],x] 嘻嘻, 无法计算, 原样输出In[2]:= Integrate[Log[x], {x,0,6}] 啊, 广义积分也一样算In[3]:= Integrate[x^2+y^2, {x,0,1}, {y,0,1}]In[4]:= In[3]//N 如果你的上一条输入不是In[3], 注意调整这一条的输入哦In[5]:= Integrate[Sin[Sin[x]], {x,0,1}] 怎么还没法计算啊In[6]:= N[%] 或NIntegrate[Sin[Sin[x]], {x,0,1}] 呵,终于可以计算了.和与积Sum[f, {i, imin, imax}, {j, jmin, jmax}, ...]f对i, j, ...分别从imin到imax,jmin到jmax,...求和Sum[f, {i, imin, imax, di}] 求和的步长为diProduct[f, {i, imin, imax}, {j, jmin, jmax}, ...] 求积NSum 数值解NProduct 数值解In[1]:= Sum[x^i/i, {i,1,4}]In[2]:= Sum[x^i/i, {i,1,5,2}]In[3]:= Sum[a/i^3, {i,1,10}]In[4]:= N[%] 或NSum[a/i^3, {i,1,10}]In[5]:= Sum[1/i^3, {i,1,Infinity}] 可能原样输出, 也可能输出Zeta[3](依math的版本不同而异)In[6]:= N[%]In[7]:= Sum[x^i*y^j, {i,1,3}, {j,1,i}]注: 如果想要求带符号上下限的Sum, 在math3.0中, 直接使用Sum函数即可: In[8]:= Sum[1/Sin[i], {i,1,n}]而如果在旧版本的math, 则可能需要调入包(package) "gospersu.m", 调入格式一般为In[8]:= <<"盘符:\\math路径\\packages\\algebra\\gospersu.m"(不同安装目录可能出现不一样)然后使用函数GosperSum[](6)微积分运算(2-2)上一节, 我们一起学习了微分D, Dt; 积分Integrate, NIntegrage;和与积Sum, Product, NSum, NProduct. 这一节我们将介绍解方程Solve, Eliminate, Reduce, NRoot, FindRoot, FindMinimum; 幂级数Series, Normal; 极限Limit; 特殊函数Fourier, InverseFourier, ...最后, 我们说明一下math的函数的定义, 别名的使用, 以及不同输出格式解方程Solve[{lhs1==rhs1, lhs2==rhs2,...}, {x,y,...}]解关于x,y,...的方程组{lhs1==rhs1, lhs2==rhs2,...}Eliminate[{lhs1==rhs1, lhs2==rhs2,...}, {x,y,...}]在联立方程中消去x,y,...Reduce[{lhs1==rhs1, lhs2==rhs2,...}, {x,y,...}]给出一组化简后的方程, 包括可能的解NRoot[poly==0, x] 给出多项式的根的数值逼近FindRoot[lhs==rhs, {x, x0}] 从x0出发, 求方程的数值解FindMinimum[f, {x,x0}] 在x0附近找f的极小值In[1]:= Solve[x^2+2x-7==0, x]In[2]:= Solve[2-4x+x^5==0, x] 呵呵~~~ 输出结果你会发现和没解一样In[3]:= N[%] 啊, 要数值解啊, 不早说. 这不是么. In[4]:= Solve[{a*x+y==0, 2x+(1-a)y==1},{x,a}]In[5]:= Eliminate[{3x+2y+z==3, 2x-2y-2z==5,x+y-7z==9}, {x,z}]In[6]:= Reduce[a*x+b==0, x] 哇, 好COOL. a==0, 怎么怎么; a!=0, ... In[7]:= FindRoot[Cos[x]==x,{x,1}]In[8]:= FindMinimum[x Sin[x], {x,2Pi}]幂级数Series[expr, {x, x0, n}] 求expr在x0的n阶幂级数Normal[series] 按标准形式In[1]:= Series[(1+x)^n, {x,0,3}] 最后还有近似量级呢(大喔O[x]^4)In[2]:= Normal[%]In[3]:= %^2 (1+%) 把大喔量级不要了, 多项式当然可以这么运算极限Limit[expr, x->x0] expr中x趋于x0In[1]:= t=Sin[x]/xIn[2]:= t/.x->0 错了吧. 0不能当分母的In[3]:= Limit[t,x->0] 求极限总可以了吧特殊函数Fourier[] 傅利叶变换InverseFourier[] 反傅利叶变换In[1]:= {1,1,1,1,-1,-1,-1,-1}In[2]:= Fourier[%]In[3]:= InverseFourier[%]RungeKutta[], ... 等函数定义函数如下In[1]:= f[x_]:=x^2+1 math中定义函数:变量后跟_, 然后用:=In[2]:= f[x_, y_]:=x+y 以上两个定义同时存在并不矛盾, 当f仅使用一个参数, 自动用一式; 为两个参数, 则用二式In[3]:= f[3]In[4]:= f[3,2]定义别名In[1]:= para:=ParametricPlot 用:=来定义别名In[2]:= para[{Cos[t],t}, {t,0,Pi}]In[3]:= Alas[para] 查看para是什么的别名(7)矩阵/表的运算矩阵的定义Table, Array, IdentityMatrix, DiagonalMatrix; 输出输入TalbeForm, ColumnForm, MatrixForm, list(其他输出TeXForm, FortranForm, CForm); 及运算: 数乘, 矩阵乘法, Inverse, Transpose, Det, MatrixPower, Eigenvalues, Eigenvectors, 矩阵定义使用的一点说明.矩阵的定义Table[f, {imax}] 包含imax个f的元素(f是规则)Table[f, {i, imin, imax, istep}, {j, ...}, ...]istep=1可省, imin=1也等于1可再省Array[a, n] 建立向量a[1], a[2], ..., a[n]Array[a, {m, n}] 建mxn矩阵aArray[a, {m1, m2, ..., mn}] n维张量IdentityMatrix[n] 生成n维单位矩阵DiagonalMatrix[list] list元素为对角元In[1]:= Table[x, {4}]In[2]:= Table[i^2, {i, 1, 4}]In[3]:= x^%-1 看看表在运算符作用后的结果In[4]:= D[%, x] 求导也可以In[5]:= % /. x->3 代入值看看In[6]:= Array[a, {3, 2}] 看个2维的(3x2)矩阵In[7]:= DiagonalMatrix[{1,2,3}] 生成对角元是1,2,3的方阵矩阵的输出/输入TableForm[list] 以表列格式显示一个表ColumnForm[list] 写成一列MatrixForm[list] 按矩阵形式list[[i]] 第i个元素(一维); 第i行元素(二维)list[[i,j]] list的第i行, 第j列元素.In[1]:= a=Table[i+2*j, {i, 1, 3}, {j, 1, 2}]In[2]:= TableForm[%] 看看表格式In[3]:= ColumnForm[%%] 写成一列In[4]:= MatrixForm[%%%} 再看看矩阵形式In[5]:= %[[2]] 把上面的矩阵的第二行(是一维的表了哦)去来In[6]:= %%[[2,1]] 取第二行第一列元素(是一个数)注: In[5],In[6]也可用a[[2]]和a[[2,1]]的典型写法.其他输出格式TeXForm, FortranForm, CFormTeX(数学排版)格式, Fortran语言, C语言格式输出In[1]:= (Sqrt[x^3-1]+Exp[y])/Log[x]In[2]:= TeXForm[%] 注意TeX中T和X是大写, e是小写In[3]:= CForm[%]矩阵的数学运算cm 数乘(c标量, m是Table或Array定义的矩阵)a.b 矩阵相乘(注意矩阵乘法的规则)Inverse[m] 逆矩阵(当然要对方阵来说了)Transpose[m] 转置Det[m] m(方阵)的行列式MatrixPower[m,n] m(方阵)的n次幂Eigenvalues[m] m(方阵)的特征值Eigenvectors[m] m(方阵)的特征向量Eigenvalues[N[m]], Eigenvectors[N[m]] 数值解In[1]:= a=Table[i+2*j, {i, 1, 3}, {j, 1, 2}]In[2]:= 5a 看看乘积In[3]:= b=Table[3*i-2^j, {i, 1, 3}, {j, 1, 3}]In[4]:= b.a 矩阵乘法(注意,此例a.b没有意义)In[4]:= Transpose[%] 转置In[5]:= Inverse[b] 求一下矩阵的逆(天哪, 是方阵还不行, 还要行列式不为0) In[6]:= Det[b] 果然行列式为0In[7]:= c=b+{{1,0,0},{0,0,0},{0,0,0}}In[8]:= Inverse[c] 终于可以求逆了In[9]:= MatrixPower[b,3] b的3次方In[10]:= Eigenvalues[b] 特征值In[11]:= Eigenvectors[b] 特征向量一点说明: 矩阵可以先使用, 再定义; 局部定义和整体定义的顺序也自由. 如:In[1]:= d[1,1]=w; d[1,2]=e; d[2,1]=21; d[2,2]=22;In[2]:= Array[d,{3,3}] 你就会发现, 定义过的有值了, 没定义的还没有值.(8)表的运算.2表的结构VertorQ, MatrixQ, MemberQ, FreeQ, Length, TensorRank, Dimensions, Count, Position; 取表元First, Last, list[[]], Take, Rest, Drop, Select; 插入元素Prepend, Append, Insert, Join; 表的集合Union, Intersection, Complement; 表的重排Sort, Union, Reverse, RotateLeft, RotateRight, Transpose, Flatten, Partition, Permutations, Apply计算表的有关结构VectorQ[list] 检验list是否为向量结构MatrixQ[list] 检验list是否为矩阵结构MemberQ[list, form] 检验form是否为list的元素FreeQ[list, form] 检验form是否不是list的元素Length[list] list中元素的数目TensorRank[list] list的深度(看成张量的秩)Dimensions[list] list作为向量或矩阵的维数Count[list, form] form在list中出现的次数Position[list, form] form在list中的位置In[1]:= t={{1,2},3} t是一个表In[2]:= VectorQ[t] 不是向量In[3]:= MemberQ[t,3] 3是它的元素In[4]:= MemberQ[t,2] 2不是它的元素In[5]:= Length[t] t的长度是2In[6]:= TensorRank[t] t的深度是1In[7]:= Dimensions[t] 作为向量,是2维: {1,2}和3In[8]:= Position[t,3] 3在表t中的位置是{{2}}在表中取部分元素First[list] list的首元素Last[list] list的最后一个元素list[[n]] list的第n个元素list[[-n]] list的倒数第n个元素(以后二者合写为n/-n)list[[n1,n2,...,nm]] 相当list[[n1]][[n2]]...[[nm]]list[[{n1,n2,...,nm}]] list第n1,n2,...,nm元组成新表list[[{i1,i2,...},{j1,j2,...}]]list的i1,i2...行,j1,j2,...列Take[list, n/-n] 取list的前/后n个元素Rest[list] 去掉首元的listDrop[list, n/-n] 去掉前/后n个元素的listSelect[list, crit] 从list中选出满足crit的元素In[1]:= t={{2,1},{1}};In[2]:= VectorQ[t] 函数名最后字母为Q,其值为True/FalseIn[3]:= aa={{a,b,c,d},{e,f,g,h},{i,j,k,l}};In[4]:= aa[[1]] 看看以下几个, 体会一下取元素/子表In[5]:= aa[[1]][[2]]In[6]:= aa[[1,2]]In[7]:= aa[[{1,2}]]In[8]:= aa[[{1},{2}]]In[9]:= Select[{a,23,12,0,3.5},EvenQ] 看看Select怎么用这里EvenQ[expr]判断expr是否偶数; OddQ[.]奇数?; NumberQ[.]数?;IntegerQ[.]整数?; PrimeQ[.]素数? AtomQ[.]简单表达式?...表中插入元素Prepend[list, elem] 表头加elem(PrependTo函数修改list) Append[list, elem] 在表尾加elem(AppendTo修改list)Insert[list, elem, n/-n] 在正/倒数第n个位置插入elemJoin[list1, list2, ...] 连接list1, list2, ...In[1]:= Prepend[{a,b,c},x] 在{a,b,c}前加x元素In[2]:= Insert[{a,b,c},x,2] 在{a,b,c}的第2个位置插入xIn[3]:= Join[{1,2,3},{xy},{m,{2,3},3}] 看看Join集合函数Union[list1, list2, ...] 去掉重复元并排序后的JoinIntersection[list1, list2, ...] 取各list的公共元Complement[t, list1, list2, ...] 在t中, 不在各list中的元素In[4]:= Union[{1,2,3},{xy},{m,{2,3},3}] 看看UnionIn[5]:= Complement[{a,b,c,d,e},{a,d},{e,f}] 看看Complement 表的重排Sort[list] 将list排序Union[list] 去掉重复元Reverse[list] 倒序RotateLeft[list, n/-n] 将list向左/右转n个元素(n=1可省) RotateRight[list, n/-n] 将list向右/左转n个元素(n=1可省) Transpose[list] 交换表的最上面两层Transpose[list, n] 交换表的顶层与第n层Flatten[list] 将list所有层变为一层Flatten[list, n] 将list的最上面n层变为一层Partition[list, n] 将list分成由n元组成的块(多余舍去) Partition[list, n, d] 各块中有偏移dPermutations[list] 给出list一切可能的排列Apply[Plus, list] 求和list[[i]]Apply[Times, list] 求积list[[i]]In[1]:= RotateLeft[{a,b,c,d,e},2] 得到{c,d,e,a,b}In[2]:= Flatten[{{a,b},c,{c,d}}] 得到{a,b,c,c,d}In[3]:= Table[i^2+j^2+k^2,{i,2},{j,2},{k,2}]In[4]:= Flatten[%,1] 展开一层In[5]:= Apply[Plus,%] 求和得到{24,36}In[6]:= Partition[{a,b,c,d,e,f,g},3,1] 看看Partition(9)二维图形二维函数作图Plot, 选项; 图的重现Show, Options, SetOptions, InputForm, Head; 参数绘图ParametricPlot; 线宽Thickness, 线型Dashing. 二维图形函数作图Plot[f[x],{x,xmin,xmax}] 在{xmin,xmax}间画出f[x]的图形Plot[{f1[x],f2[x],...},{x,xmin,xmax}] 画出fi[x]Plot[Release[f],{x,xmin,xmax}] 有时f的表达式很复杂,直接用Plot计算量大,可能得不出结果,可以先求f的值,再画Plot选项设置(格式: 选项->值)PlotRange Automatic {ymin,ymax}或{{xmin,xmax},{ymin,ymax}}AxesLabel轴标None {"x轴标","y轴标"}Frame框False TrueAxesOrigin原点Automatic {x,y}Axes轴Automatic None不画Ticks刻度Automatic None或{{xticks(,...)},{yticks(,...)}}GridLines网格None All或{{xlines...},{ylines}}AspectRatio 1/GodenRatio 正实数(高/宽)PlotPoints 15 Plot的作图精度In[1]:= Plot[Sin[x^2], {x,0,3}]In[2]:= Plot[Sin[x^2], {x,0,3}, PlotRange->{0,1.2}]In[3]:= Plot[Sin[x^2], {x,0,3}, AxesLabel->{"x","Sin[x^2]"}]In[4]:= Plot[Sin[x^2], {x,0,3}, Axes->None]In[5]:= Plot[Sin[x^2], {x,0,3}, PlotPoints->40]图形的重现Show[p] 重画图pShow[p1,p2,...] 把p1,p2,...重画在一起Show[p,option->value] 改变选项重画p(选项大多同上)(没有PlotPoits选项)Options[p] 显示图p的选项InputForm[p] 显示图p的有关存储信息SetOptions[函数名,option->value] 改变函数选项默认值Head[p] p的类型,如果p是图,则值为Graphics In[1]:= t1=Plot[BesselJ[1,x],{x,1,20}]In[2]:= t2=Plot[Sin[x],{x,0,15}]In[3]:= Show[t1,%]In[4]:= Show[%,Axes->None]In[5]:= Show[%,Frame->True]In[6]:= Options[%]In[7]:= InputForm[t2]参数绘图ParametricPlot[{fx,fy},{t,tmin,tmax}]ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]{fx,fy}的几种特殊情形{r[t]Cos[t],r[t]Sin[t]} 极坐标{Re[f],Im[f]} 复函数的相角图{Log[f],Log[g]} log-log图注意: 有时需要把AspectRatio->1才能更好地显示y/x比例, 如画圆. In[1]:= ParametricPlot[{Sin[t],Sin[2t]},{t,0,2Pi}]In[2]:= ParametricPlot[{Sin[t],Cos[t]},{t,0,2Pi}]In[3]:= Show[%,AspectRatio->Automatic]AspectRatio是1或Automatic是y/x的比例才是1选项,改变线宽和线型(虚线):在Plot的选项里使用PlotStyle->Thickness[0到1的值] 在math3.0下,使用0.005足矣PlotStyle->Dashing[{画,空}]在Show中,在Graphics[Thickness[.]]或Graphics[Dashing[.]]之后的线宽或线型依此改变.In[1]:= Plot[Sin[x^2],{x,0,3},PlotStyle->Thickness[0.01]]In[2]:= Plot[Sin[x^2],{x,0,3},PlotStyle->Dashing[{0.01,0.01}]]In[3]:= t1=Plot[Sin[(3x)^2],{x,-1,1}]In[4]:= t2=ParametricPlot[{Sin[t],Sin[2t]},{t,0,2Pi}]In[5]:= Show[t1,Graphics[Dashing[{0.01,0.01}]],t2]In[6]:= Show[t1,Graphics[Thickness[0.01]],t2](10)三维图形三维函数作图Plot3D, 选项; 参数作图ParametricPlot3D; 等值线图ContourPlot; 密度图DensityPlot; 数据绘图ListPlot,ListPlot3D.三维作图函数作图Plot3D[f[x,y],{x,xmin,xmax},{y,ymin,ymax}]在{xmin,xmax}间画出f[x]的Surface图形Show[p] 重画图p,用法同二维Show[Gaphics3D[p]] 将图p(可能是SurfaceGraphics)转为Graphics3D,并重画三维作图选项PlotRange Automatic {zmin,zmax}或{{xmin,xmax},{y...},{z...}} Axes轴Automatic NoneAxesLabel None {"x轴标","y轴标","z轴标"}Ticks Automatic 刻度PlotLabel图标None 图的标记Boxed盒子True FalseBoxRatios {1,1,0.4} {x,y,z}HiddenSurface True False是否隐去曲面被挡部分Shading True False是否涂阴影(颜色)Mesh True False是否在曲面上画网格LightSources 三个光源设光源{{x,y,z},RGBColor[r,g,b]} FaceGrids None All或坐标网格ViewPoint视点{1.3,-2.4,2.} {x,y,z}{0,-2,0}正前方; {0,-2,2}前上方; {0,-2,-2}前下方;{2,-2,0}正右角; {0,0,2}正上方; ...PlotPoints 15 作图精度(PlotPoints为Plot3D,ParametricPlot3D,ContourPlot等plot函数选项)In[1]:= Plot3D[Sin[x]y^2,{x,-3,4},{y,-2,2}]In[2]:= Plot3D[Sin[x]y^2,{x,-3,4},{y,-2,2},PlotPoints->30]In[2]:= Show[%, Mesh->False,Boxed->False,Axes->None]参数绘图ParametricPlot3D[{fx,fy,fz},{u,umin,umax},{v,vmin,vmax}] 等值线图ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]选项Contours 10 从zmin到zmax等值线条数密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]In[1]:= ParametricPlot3D[{Cos[5t],Sin[3t],Sin[t]},{t,0,2Pi}]In[2]:= ParametricPlot3D[{u,u+v,v^2},{u,0,2},{v,-1,1}]In[3]:= ContourPlot[Sin[x]Cos[y],{x,-2,2},{y,-2,2}]In[4]:= Show[%,Contours->30]In[5]:= DensityPlot[Sin[x]Cos[y],{x,-2,2},{y,-2,2}]数据绘图ListPlot[{y1,y2,...}] 画(1,y1),(2,y2),...ListPlot[{{x1,y1},{x2,y2},...}]ListPlot[...,PlotJoined->True] 连线ListPlot3D[array]In[1]:= t=Table[i^2,{i,10}]In[2]:= ListPlot[t]In[3]:= ListPlot[t,PlotJoined->True]In[4]:= tt=Table[Mod[y,x],{x,20},{y,20}]In[5]:= ListPlot3D[%,ViewPoint->{1.5,-0.5,1}](11)基本图元作图二维基本图元Point, Line, Rectangle, Polygon, Circle, Disk, Text, Graphics[]; 三维基本图元Point, Line, Polygon, Cuboid, Text, Graphics3D[]; 一些PlotStyle: Thickness, Dashing, PointSize, GrayLevel, RGBColor.基本图元绘图二维基本图元Point[{x,y}] 点(x,y)Line[{{x1,y1},{x2,y2},...}] 连线Rectangle[{xmin,ymin},{xmax,ymax}] 矩形Polygon[{{x1,y1},{x2,y2},...}] 多边形Circle[{x,y},r] 圆:圆心(x,y),半径rDisk[{x,y},r] 圆盘:圆心(x,y),半径rCircle[{x,y},{rx,ry},{a1,a2}] 椭圆:圆心(x,y),长短轴rx,ry,起始角a1,终止角a2Disk[{x,y},{rx,ry},{a1,a2}] 椭圆盘Text[expr,{x,y}] 文本输出在(x,y)Text[expr,{x,y},{x1,y1}] 文本输出{x1,y1}为{-1,0},{1,0},{0,1},{0,-1}, 则文本输出以(x,y)为左端点, 右端点, 上端点, 下端点; 其他-1到1的数为相对位移In[1]:= s1=Line[Table[{n,(-1)^n},{n,6}]]In[2]:= Show[Graphics[s1]]In[3]:= g1=Show[%, Axes->Automatic]In[4]:= Show[g1,Graphics[Text["f(x)",{4.5,0.8}]]]In[5]:= s2={Rectangle[{1,-1},{2,-0.6}],Polygon[ {{1,0},{3,1},{4,0.5},{5,1}}]}In[6]:= Show[g1,Graphics[s2]]In[7]:= Show[Graphics[Table[Circle[{3n,0},n/4],{n,4}]], AspectRatio->Automatic]In[8]:=Show[Graphics[Disk[{1,1},{1,2},{10Degree,325Degree}]], AspectRatio->Automatic] 三维图元Point[{x,y,z}] 点(x,y,z)Line[{{x1,y1,z1},{x2,y2,z2},...}] 连线Polygon[{{x1,y1,z1},{x2,y2,z2},...}] 多边形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}] 立方体Text[expr,{x,y,z}] 文本输出一些PlotStyleThickness[r] 线宽Dashing[{r1,r2,...}] 虚线{实虚实虚...}PointSize[r] 点的大小GrayLevel[r] 灰度0<=r<=1RGBColor[r,g,b] RGB颜色([0,1]间)[1,0,0]红; [0,1,0]绿; [0,0,1]蓝; [1,1,0]黄In[1]:= Plot[Sin[x^2],{x,0,3},PlotStyle->RGBColor[1,0,0]]In[2]:= Show[%,Graphics[PointSize[0.05]],Graphics[Point[{2,1}]]]In[3]:= Show[Graphics3D[RGBColor[1,0,0]],Graphics3D[ Line[{{0,0,0},{1,2,3},{3,2,1}}]]](12)表达式与纯函数表达式形式FullForm, TreeForm, Head; 表达式的书写形式@, //, ~f~; 表达式的项expr[[n]]; 表达式操作Apply(@@), Nest, Map(/@), MapAll(//@), MapAt; 纯函数&, #, ##.表达式形式FullForm[expr] 给出表达式的完全形式TreeForm[expr] 给出表达式的完全形式Head[expr] 给出表达式的头部In[1]:= FullForm[x+y+z] x+y+z的FullForm是Plus[x,y,z]In[2]:= FullForm[1+(x y)^2+(y+z)^3]In[3]:= TreeForm[%]In[4]:= Head[%]In[5]:= Head[215]In[6]:= Head[21.5]In[7]:= Head[Plot[Sin[x],{x,0,1}]]表达式的四种书写形式f[x,y] 标准形式f@x f[x]的前缀形式x//f f[x]的后缀形式x~f~y f[x,y]的中间形式In[1]:= Pi^2//N 相当于N[Pi^2](//级别低)In[2]:= N@Pi^2In[3]:= {a,b,c}~Join~{c,d}表达式的项expr[[n]] expr的第n项expr[[-n]] expr倒数第n项expr[[n1,n2,...]] 树结构索引的expr的项expr[[n]]=expr2 项赋值Position[expr,form] 寻找expr中form的位置In[1]:= t=1+(3+x)^2+z;In[2]:= t[[2]] 得(3+x)^2(类似于取List的元素)In[3]:= t[[2,1]] 再取子表得到Power函数的(3+x)In[4]:= t[[4]] 出错,不存在In[5]:= t[[3]]=y*z 试试直接赋值In[6]:= t 看看t变成什么了表达式的操作Apply[f,list] 对list施加函数f (@@)Nest[f,x,n] 将f对x作用n次Map[f,expr] 将f作用于expr的第一层(/@) Map[f,expr,n] 将f作用于expr直到第n层MapAll[f,expr] 将f作用于expr的所有项(//@)MapAt[f,expr,{polist}] 将f作用于expr的polist位置上In[1]:= Apply[f,{a,b,c}] 得到f[a,b,c](同f@@{a,b,c})In[2]:= Nest[f,x,3] 得f[f[f[x]]]In[3]:= u=x+(x+2)^2/xIn[4]:= Map[f,u] 同f/@uIn[5]:= Map[f,u,2]In[6]:= MapAll[f,u] 同f//@uIn[7]:= MapAt[f,u,Position[u,x]] 所有x都换成f[x]纯函数& Function纯函数# 纯函数的第一个变量#n 纯函数的第n个变量##n 从第n个起的变量序列## ##1Function[x,expr] 有一个变量的纯函数Function[{x1,x2,...},expr] 列表参数的纯函数In[1]:= Map[#^2&, {a,b,c}] 甚至#^2& /@ {a,b,c} 即将函数#^2作用于{a,b,c}得到{a^2,b^2,c^2}In[2]:= (#1^2+#2^#3)&[x,y,3] 即x^2+y^3In[3]:= g[##,##]&[x,y] 得g[x,y,x,y](13)转化规则与参数转换规则f[x]=, f[x_]=, Clear; 模式与匹配; 赋值=和:=; /; , -> , :> , /. , //. , Replace, /: ; 参数的含义_, __, ___, _head, _:xdef.转换规则f[x]=expr 定义f在x的值f[x_]:=expr 定义f[x](区别=与:=)Clear[f]或f[x_]=. 清除f的定义Remove[f] 彻底清除变量或函数fIn[1]:= f[x]=x^2 定义f在x为x^2In[2]:= f[2]+f[x] f[2]未定义,所以得到f[2]+x^2In[3]:= g[x_]=x^2 定义g[x](这里x没有值,:=与=一样) In[4]:= g[2]+g[x] 得到4+x^2 (注意看f和g的区别)In[5]:= f[3]=10 再定义一个f[3]In[6]:= ?f 看看f模式与匹配f[n_], f[m_,n_], f[n_,n_]In[1]:= f[m_,n_]:=m+nIn[2]:= f[n_,n_]:=3*nIn[3]:= f[n_]:=2*nIn[4]:= f[2,2]+f[6,8] f[2,2]用的是f[n,n]而不是f[m,n]In[5]:= f[2]+f[6,8] f[2]用单参数规则,f[6,8]用双参数规则赋值= 立即赋值:= 到使用时再赋值In[1]:= y=2In[2]:= h[y_]=y^3 即时赋值In[3]:= h[1] =8In[4]:= h2[y_]:=y^3 使用时再赋值,这里只定义规则In[5]:= h2[1] =1 (注意h2与h的区别)In[6]:= ?hIn[7]:= ?h2 分别看看就知道了In[8]:= 3! 下面再熟练一下=和:=的区别In[9]:= f[x_]:=%+2xIn[10]:= 1+y^2In[11]:= g[x_]:=%+2xIn[12]:= 2+zIn[13]:= f[a]+g[a]In[14]:= f[a]*g[a]/; (表达式/;条件) 满足条件使用表达式-> (lhs -> rhs) 在定义时,lhs用rhs代替:> (lhs :> rhs) 在使用时,lhs用rhs代替/. (expr /. rule) 对expr所有项使用规则一次//. (expr //. rule) 对expr所有项使用规则直到结果不变化Replace[expr,rule] 对整体expr使用规则一次/: (g/:lhs:=rhs) 定义一个转换规则,与g相关联In[1]:= f[x_]:=1 /; -1<=x<=1 当-1<=x<=1时, f[x]=1In[2]:= f[x_]:=-1 其他时候f[x]=-1In[3]:= f[2]In[4]:= f[0.5] 分段函数耶In[5]:= Plot[f[x],{x,-2,2}] 画图看看, 不错不错In[6]:= x+y /. x->2 得到2+y(:>和->的区别类似于:=与=) In[7]:= Clear[f]In[8]:= f[5] /. {f[1]->1,f[x_]->x*f[x-1]}In[9]:= f[5] //. {f[1]->1,f[x_]->x*f[x-1]}In[10]:= ss /: math[ss]=96In[11]:= ss /: phys[ss]=95In[12]:= ?ss参数x_ 单个表达式xx__ 一个或多个表达式序列xx___ 0个或多个表达式序列xx_h (或x__h) Head是h的表达式(序列)x_:xdef 可省参数的缺省值In[1]:= nt[t_,lt__]:=t*ltIn[2]:= c={1,2,3,4}In[3]:= nt[3,c] 这里就使用c是列表参数In[4]:= li[x_,xi_,xj__]:=(x-xj)/(xi-xj)In[5]:= li[x,xi,{1,2}] 再看个例子In[6]:= h[x_Real]:=x^2 定义h,当x是Real时In[7]:= h[4.5] h[4.5]的值为20.25In[8]:= h[a] a的Head不是Real,未定义,得h[a]In[9]:= fac[0]=1 以下看看函数facIn[10]:= fac[n_Integer?Positive]:=n*fac[n-1]In[11]:= fac[5] 120(注意上面条件用?间隔)In[12]:= h2[x_?NumberQ]:=x^3 看看这个条件的使用In[13]:= f[x_,y_:1,z_:2]:=g[x,y,z]In[14]:= f[a1,b1,c1] 都有参数则按参数代入In[15]:= f[a1,b1] 少一个参数,使用缺省值In[16]:= f[a1] 只有一个参数,两个参数使用缺省(14)mathematica过程编程一般过程, Block; 循环Do, While, For, Nest, FixedPoint; 条件If, Which, Switch; 转向Return, Break, Continue, Goto, Label.一般过程Command; Command; ... 一串命令Block[{x,y,...},procedure] x,y,...为局部参数Block[{x=x0,y=y0,...},proc] 局部参数赋初值In[1]:= g[x_]:= Block[{u},u=(1+x)^2;u=Expand[u]]In[2]:= g[a+b] 看看g[a+b]=?In[3]:= u 而这时u不发生改变循环结构Do[expr,{i,imin,imax,istep}]计算expr,i从imin到imax,步长istepDo[expr,{i,imin,imax}] istep=1Do[expr,{i,imax}] imin=1,istep=1Do[expr,{n}] 计算expr n次Do[expr, {i...}, {j...}...] 多重循环(前面的外重循环)While[test,expr] 当test成立, 计算exprFor[start,test,increment,body]相当于C语言for(start;test;increment) body Nest[f,expr,n] f对expr作用n次FixedPoint[f,expr] 重复使用f,直到expr不再变化用于循环的表达式i++, i--, ++i, --i, i+=di, i-=di, i*=di, i/=di,{x,y}={y,x} x,y值交换In[1]:= Do[Print[i^2],{i,4}] 循环Print[i^2]In[2]:= t=x;Do[t=1/(1+k*t),{k,2,4}];tIn[3]:= Do[Print[{i,j}],{i,4},{j,i-1}]In[4]:= Nest[Function[t,1/(1+t)],x,3] 注意虚函数的使用In[5]:= FixedPoint[Function[t,Print[t];Floor[t/2]],67]In[6]:= n=17;While[(n=Floor[n/2])!=0,Print[n]]In[7]:= For[i=1,i<4,i++,Print[i]]In[8]:= For[i=1;t=x,i^2<10,i++,t=t^2+i;Print[t]]大家注意练习上面例子, 考虑并看看运行结果, 熟练Math的循环语句的使用.条件语句If[test,expr] if (test) exprIf[test,expr1,expr2] if (test) expr1 else expr2If[test,expr1,expr2,expr3] 无法判断时得值expr3Which[test1,value1,test2,value2,...True,value]test1为真,得value1;否则判断test2...;若全不满足,得Null Switch[expr,form1,value1,form2,value2,...]expr的值为form1,得value1; 为form2,得value2,...In[1]:= f[x_]:=If[x>0,1,-1]In[2]:= Plot[f[x],{x,-2,2}] 还是画图形象In[3]:= g[x_]:=Which[x>1,x+2,x<-5,x-2]In[4]:= g[0] 没有输出In[5]:= Print[g[0]] 看到了,是NullIn[6]:= g[-6]In[7]:= g[2] 这两个g值都有意义In[8]:= h[x_]:=Switch[Mod[x,3],0,a,1,b,2,c]In[9]:= h[4] 也可以看看h[5],h[6]等值转向控制Return[] 返回,当前函数值NullReturn[expr] 返回expr的值Break[] 和Continue[] 这两函数只用于For,While.(Do不使用)Goto[标志]和Label[标志](15)程序包程序包的结构, 上下文, 程序注释, 输出, 输入程序包的结构BeginPackage["self`"] 激活或建立self上下文f::ussage="...." f的用法说明Begin["`Private`"] 开始包的私有上下文....f[args]=.......End[] 结束自身的上下文EndPackage[] 结束包,将self`放在全局上下文路径的最前面如果第一句为BeginPackage["self`","f1`","f2`"], 则在定义包self时, 同时打开f1.m, f2.m, 调入f1`, f2`.名字和上下文上下文表示为字符串`name 在当前上下文或搜索路径中最先找到的符号context`name 在指定上下文中的符号`name 在当前上下文中的符号Unique[ss] 生成以ss开头的没用过的符号Clear[s] 清除s的值Remove[s] 清除符号sRemove["context`*"] 清除context上下文中的所有符号这里要提一下两个系统变量: $Context和$ContextPath, 前者为当前上下文, 后者为当前上下文路径. 关于上下文, 大家看看以下例子, 体会一下.In[1]:= $Context 当前上下文是Global`In[2]:= z=6 定义z=6In[3]:= Begin["new1`"] 开始new1上下文IN[4]:= new1`z=9 new1上下文中的z=9In[5]:= $Context 当前上下文是new1`In[6]:= z 看看z=9In[7]:= ?*`z 看看有几个z,其中有z和Global`zIn[8]:= EndAdd[] 结束new1`,并将new1`放在路径最前面In[9]:= $ContextPath 看看路径In[10]:= ?*`z 看看有几个z,其中有z和new1`zIn[11]:= z 看看现在z的值是Global的z值了In[12]:= $Context 当前上下文In[13]:= Remove[z] 清除变量zIn[14]:= z Global的z清除了,这时显示的z=9In[15]:= Remove[z] 再Remove就清除new1中的z了程序注释f::ussage="text..." 关于一个函数的说明(* 注释内容*) 出现在程序包的任何地方如If[x>y,(* then *)x,(* else *) y]和If[x>y,x,y]是一样的.输出Print[expr1,expr2,...] 在屏幕上输出expr1,expr2,...StringForm[string,expr1,expr2,...] 将string中成对的``依次用expr1,expr2,...代替. 若string中是`n`, n为整数, 则用第n个expr代替.如StringForm["`` is not ``.",x+1,y]输出x+1 is not y.Message[s::tag] 输出tagOff[s::tag] / On[s::tag] 屏蔽/打开tag信息In[1]:= f::"overflow"="Factorial argument `1` too large."In[2]:= f[x_]:=If[x>10,Message[f::"overflow",x];Infinity,x!]In[3]:= f[20] 输出错误信息In[4]:= Off[f::"overflow"] 屏蔽overflow信息In[5]:= f[20]表达式输出到文件expr >> file 把表达式的值写入新文件fileexpr >>> file 把表达式的值追加到file中!!file 显示文件输入Input[] 键盘输入完整表达式作为Input的返回值Input[提示] 显示提示,接受输入InputString[] 输入字符串Read[文件名,类型描述] 按类型描述读入文件,参看帮助。

Mathematica数学入门教程【2】-分数和小数

Mathematica数学入门教程【2】-分数和小数

Mathematica数学入门教程【2】-分数和小数
译自: FAST INTRODUCTION FOR MATH STUDENTS 英文教程在本教程中可以学会在 Mathematica 下怎样用 Wolfram 语言来解决典型的数学问题, 从基本的算术计算到微积分, 涵盖了从 K12 到大学及其以后科学研究各个阶段内容.
通过学习本教程, 学生在数学的各个层次都可以掌握相关如何用Wolfram 语言进行计算, 绘制图形和制作演示文档, 以此来锻炼在未来职场中所需的计算思维和能力.
好了, 现在让我们在下一篇的Mathematica快速数学入门课堂再见. 这里感谢各位每一位看到这里的老师和朋友!
Thank You, Everyone!
本入门教程全部内容:
指令的输入
分数与小数
变量和函数
代数
2D绘图
几何
三角学
极坐标
指数函数和对数
极限
微分
积分
序列, 求和, 级数
更多2D绘图
3D绘图
多元微积分
矢量分析和可视化
微分方程
复分析
矩阵和线性代数
离散数学
概率
统计
数据图和最佳拟合曲线群论
数学智力题
互动模式
数学排版
笔记本文档
云部署。

Mathematic简单教程

Mathematic简单教程

Mathematic简单教程§1 初等代数1.有理式的运算1.多项式的展开(常用命令见表1.1)In[1]:= f=Expand[(x+y+3)^2]Out[1]:= 9+6x+x^2+6y+2xy+y^2In[2]:= Factor[f]Out[2]:= (3+x+y)^2In[3]:= Exponent[f,x]Out[3]:= 2In[4]:= Coefficient[f,x]Out[4]:= 6+2y2.有理式的运算(常用命令见表1.2)In[5]:= Factor[(x^3+2x+1)/(x^3+x^2+x+1)]Out[5]:= (1+2x+x^3)/(1+x)(1+x^2)In[6]:= Apart[%]In[6]:= 1-1/(1+x)+1/(1+x^2)3.多项式的代数运算(常用命令见表1.3)In[7]:=PolynomialQuotient[1+x^2,x+1,x]Out[7]:=-1+xIn[8]: =PolynomialGCD[x^2+2X+1,x^3+1,x^5+1]Out[8]:=1+x1.2 方程求解In[1]:=Solve[a*x+b==0,x]Out[1]={{x->-b/a}}In[2]:=Reduce[a*x+b==0,x]Out[2]= b==0&&a==0\\a≠0&&x==-b/aIn[3]: = FindRoot[Sin[x]==0,{x,3}]Out[3]= {x->3.14159}In[4]:= FindRoot[Sin[x]==0,{x,{6,6.5}}]Out[4]= {x->6.28319}In[5]:= FindRoot[{2^x+y^2==4,x^2+Sin[y]==1},{x,0},{y,0}]2微积分In[1]: = Limit[Sin[x]/x,x->0]Out[1]=1In[2]:=DI[Sin[n*x],x]Out[2]=nCos[nx]微积分的常用命令如表1.5所示,下面是一些例子。

Mathematic教程

Mathematic教程

(2)求微分:dy=f(x)dx
命令形式:Dt[f]
功能: 对函数f(x)求微分df
例 求y=sinx2的微分dy.
In[20]:=Dt[Sin[x^2]]
Out[20]=2xCos[x2]Dt[x]
3、求不定积分与定积分
(1)求不定积分 命令形式:Integrate[f, x] 1 dx 例 计算 2 2 sin xcos x In[21]:=Integrate[1/(Sin[x]^2 Cos[x]^2),x] Out[21]=-Cot[x]+Tan[x] (2)计算定积分 命令形式1: Integrate[f[x],{x,xmin,xmax}] 功能:计算定积分 xmin,xmax表示积分下限和上限。 命令形式2: NIntegrate[f[x],{x,xmin,xmax}] 功能: 计算定积分的数值积分,xmin,xmax必须 是数字,不能是字母。
7、初等代数运算
(1)多项式运算与因式分解 Expand[多项式] 将多项式按升幂展开 Factor[多项式] 将多项式进行因式分解 Simplify[多项式] 将多项式化为最简形式 Collect[多项式,x] 将多项式按x的同次幂合并形式展开
例1 设q=(1+2x-y)2,将q展开. In[6]:=q=Expand[(1+2*x-y)^2] Out[6]=1+4x+4x2-2y-4xy+y2 例2 将多项式120-46x-19x2+4x3+x4分解因式. In[7]:=Factor[120-46*x-19*x^2+4*x^3+x^4] Out[7]=(-3+x)(-2+x)(4+x)(5+x)
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mathematic简单教程§1 初等代数1.有理式的运算1.多项式的展开(常用命令见表1.1)In[1]:= f=Expand[(x+y+3)^2]Out[1]:= 9+6x+x^2+6y+2xy+y^2In[2]:= Factor[f]Out[2]:= (3+x+y)^2In[3]:= Exponent[f,x]Out[3]:= 2In[4]:= Coefficient[f,x]Out[4]:= 6+2y2.有理式的运算(常用命令见表1.2)In[5]:= Factor[(x^3+2x+1)/(x^3+x^2+x+1)]Out[5]:= (1+2x+x^3)/(1+x)(1+x^2)In[6]:= Apart[%]In[6]:= 1-1/(1+x)+1/(1+x^2)3.多项式的代数运算(常用命令见表1.3)In[7]:=PolynomialQuotient[1+x^2,x+1,x]Out[7]:=-1+xIn[8]: =PolynomialGCD[x^2+2X+1,x^3+1,x^5+1]Out[8]:=1+x1.2 方程求解In[1]:=Solve[a*x+b==0,x]Out[1]={{x->-b/a}}In[2]:=Reduce[a*x+b==0,x]Out[2]= b==0&&a==0\\a≠0&&x==-b/aIn[3]: = FindRoot[Sin[x]==0,{x,3}]Out[3]= {x->3.14159}In[4]:= FindRoot[Sin[x]==0,{x,{6,6.5}}]Out[4]= {x->6.28319}In[5]:= FindRoot[{2^x+y^2==4,x^2+Sin[y]==1},{x,0},{y,0}]2微积分In[1]: = Limit[Sin[x]/x,x->0]Out[1]=1In[2]:=DI[Sin[n*x],x]Out[2]=nCos[nx]微积分的常用命令如表1.5所示,下面是一些例子。

Out[3]=-n^3Cos[n x]In[4]:=Dt[Sin[n*x],x]Out[4]=Cos[n x](n +xDt[n,x])In[5]:=Dt[Sin[n*x],x,Constants->n]Out[5]= nCos[n x]In[6]:= Integrate[Log[x],x]Out[6]= -x +xLog[x]In[7]:=Integrate[Tan[x]*Tan[y],{x,0,1},{y,0,1}]Out[7] = Log[Cos[1]]^2In[8]:= Nintegrate[Exp[-x^2/2],{x,0,Infinity}]Out[8]= 1.25331In[9]:= Dsolve[y’[x]-y[x]= =1,y[x],x]Out[9]= {{y[x]->-1 +E^xC[1]}}In[10]:= Series[ArcTan[x],{x,o,5}]Out[10]= x-x^3/3 +x^5/5 +0[x]^63线性代数3.1向量与矩阵的定义(常用命令见表1。

6)表1。

6 向量与矩阵的定义的常用命令In[1]:= A=Array[a,{2,2}];A[1,1]=2;a[1,2]=3;a[2,1]=4;a[2,2]=5;AOut[2]= {{2,3},{4.5}}In[3]:= B=Table[1.0,{2},{2}]Out[3]= {{1.,1.}.{1.,1.}}3.2 向量与矩阵的运算向量与矩阵都可以看作为集合,因此有关集合的运算都能适用于向量与矩阵。

另外,向量与矩阵还有表1。

7中的一些运算:In[4]:= R=A-2*BOut[4]= {{0.,1.},{2.,3.}}In[5]:= Inverse[R]Out[5]= {{-1.5.,0.5},{1,0}}In[6]:= Eigenvectors[R]Out[6]= {{-0.270323,-0.96277},{-0.871928,0.489634}}In[5]:= Exp[R]Out[6]= {{1.,2.71828{,{7.38906,20.0855}}§4 计算方法4.1插值Mathematica软件中的插值有两种形式:InterpoiatingPoiynomial[data,var] 多项式插值Interpoiation[data] 一般插值其中data为被插值的数据,形式为{{x1,y1},{x2,y2},……,{xn,yn}}var为插值变量,一般可取为xIn[1]:= d=Table[{x,Log[x]},{x,1.0,3.0}];InterpolatingPolynomial[d,x]Out[2]= (0.693147-0.143841(-2.+x))(-1.+x)In[3]:= dat=Table[{x,Sin[x]},{x,0.2,0.1}];F=Interpolation[dat]Ont[4]= InterpolatingFuntion[{{0.,2.}},〈〉]在上面的第二个例子中,输出结果表示一个[0,2]上的插值函数,此插值函数无法给出表达式.我们可以比较函数Sin[x]与所得到的插值函数的误差.In[5]:= Ploy[Sin[x]-f[x],{x,0,2}]-图1.1拟合误差图有图1.1可以看出,两个函数的误差相当小(数量级为10-6).4.2拟合下面的命令用来对数据data进行最小二乘拟合.Fit[data,funs,vars]其中data为要拟合的数据,funs为拟合函数的基,vars为拟合的变量.In[6]:= Clear[d];D=Table[{x,Log[x]},{x,1,10,1}];Fit[d,{1,x,x2},x]Out[8]= -0.355396+0.529707x-0.0272091x24.3最优化下面的命令用来求函数f[x]在x0附近的极小值.FindMinimum[f[x],[x,x0]]In[9]:= t=FindMinimum[Sin[x],{x,5}]Out[9]= {-1.,{x->4.71239}}若要在程序中引用上面的结果中的函数的极小值或x的值,可以用下面的命令:In[10]:= t[[1]]Out[10]= -1.In[11]:= x/.t[[2,1]](*在此处等价与x/.x->4.71239*)Out[11]= 4.17239§6编程6.1分支结构在复杂的计算中常需要根据表达式的情况(它是否满足一些条件)确定是否做某些处理,或在满足不同条件是做不同的处理。

Mathematica软件提供了一些描述条件分支的结构,它们常用在程序里,用于控制程序的执行情况。

If语句Mathematica软件中If语句有三种形式。

形式一:if[test,expr]当test的值为True时,对expr求值,将它的值作为整个语句的值;当test的值为False时,则给出空值Null .形式二:If[test,expr1,expr2]当tesrt的值为True时,求xpr1的值作为整个语句的值;当test的值为False时,求expr2的值作为整个语句的值。

形式三:If[test,expr1,expr2,expr3]当tesrt的值为True时,求xpr1的值作为整个语句的值;当test的值为False时,求expr2的值作为整个语句的值;当test求不出值为Tre与Fallse时, 求expr3值作为整个语句的值。

In[1]:= abs[x_]=If[x>=0,x,-x]In[1]中定义出的函数abs[x]即为绝对值函数Abs[x].In[2]:= f[x_]:=If[x.5,3,2,1]In[3]:= f[6]Out[3]= 3In[4]:= f[5]Out[4]= 2In[5]:= f[a]Out[5]= 12 .Which语句Which[test1,expr1,test2,expr2,┈]该语句依次出每个条件的值,当出第一个值为True的条件时,求出应表达式的值作为整个语句的值.例In[6]:= g[x_]:=Which[x>=8,8,x>=6,6,x>=4,4,True,0]用”True”作为which语句的最后一个条件,可以处理”其它”情况.在此处即为,当x<4时,g[x_]取值为06.2循环结构高级程序语言都提供了重复执行的循环语句。

在Mathematica软件这也提供了一些类似的循环控制结构。

1. While [test,expr]在计算时,条件test 先被求值。

若求出值为True,则对表达式求值,然后再重复上述过程;一旦test 的值不是True ,整个循环结构计算结束。

例如下面的程序可用来计算∑=1001k k 与100!K=1;s=0;p=1;While[k<=100,s=s+k;p=p*k;k++]; Print[“s=”,s,”p=”,p]2.For[start,test,incr,body] 在计算时,其初始表达式start 首先求值,然后进入循环,依次计算条件test ,步进表达式incr 与循环体body 。

一旦test 的值不是True, 整个循环结构计算结束。

我们可以将上面的呈现用For 循环的形式改写如下: s=0;p=1;For[k=1,k<=100,k++,s=s+k;p=p*k]; Print[“s=”,s,”p=”,p]3.Do[expr,{I,imin,imax,di}]在循环变量I 依步长di 从imin 取道imax 时,重复计算表达式expr. 上述程序可用Do 循环的形式写为: s=0;p=1;for[k=1,k<=100,k++,s=s+k;p=p*k]; Print[“s=”,s,”p=”,p]6.3过程在高级程序设计语言中提供了子程序功能,用来将某些语句串在一起以实现某种目的。

Mathematca 软件中的过程也有类似的功能。

在Mathematca 软件中主要有两种过程。

1,[expr1;expr2;…expn]这一过程的输出值为最后一个表达式exprn 的值。

下面的程序用来检验一个正整数是否可以写成两个素数的和。

如果正整数x 不能写成两个素数的和,则p[x]是一个空集;如正整数x 能写成两个素数的和,则p[x]给出两个素数构成的集合,这两个素数的和为x.p[x_]:= {m=2;n=Floor[x/2];s={}; While[s=={}&&m<=n,If[PrimeQ[m]&7PrimeQ[x-m],s={m,x-m}]; m++]; s }2.Module[{x=x0,y,…},exprl;expr2;…;exprn]在Module 过程中,大括号中的语句用来说明局部变量,并可以赋初值。

相关文档
最新文档