《“杨辉三角”与二项式系数的性质》教学设计方案

合集下载

高中数学_杨辉三角“与二项式系数的性质教学设计学情分析教材分析课后反思

高中数学_杨辉三角“与二项式系数的性质教学设计学情分析教材分析课后反思

1.3.2 “杨辉三角”与二项式系数的性质授课人:1.3.2 “杨辉三角”与二项式系数的性质【教学任务分析】(1) “杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.(2) 本节内容以二项式定理为基础,研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.【教学目标】(1)知识和技能:掌握二项式系数的性质; 会应用二项式系数的性质解决一些简单问题.(2) 过程和方法:通过对问题的尝试、探究, 加强对学生观察、归纳、发现能力的再培养.(3) 情感态度和价值观:通过“了解杨辉三角、探究与发现杨辉三角包含的规律”的学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.【教学重点、难点】重点:体会用函数知识研究问题的方法,理解二项式系数的性质;了解杨辉三角形及其历史背景.难点:结合函数图象,理解增减性与最大值时,根据n的奇偶性确定相应的分界点;利用赋值法证明二项式系数的性质.【教法、学法】教法:问题引导、合作探究.学法:螺旋上升地学习核心数学知识和渗透重要数学思想,①从课上交流展示中感知规律;②结合“杨辉三角”和函数图象性质领悟二项式系数的性质;③在探究证明性质中理解知识.【教学流程】例题及练习【教学过程】环节1:复习“二项式定理、二项式系数、二项展开式的通项”【师生活动】教师提出问题,学生复习回答.【设计意图】通过复习二项式定理的有关知识,为发现二项式系数的有关性质形成知识储备 环节2: 创设情境 引入新课“计算()(123456)n a b ,n ,,,,,+=的展开式的二项式系数并填表” 并引入“杨辉三角”.介绍杨辉三角以及与其相关的历史【师生活动】学生计算填表、教师介绍杨辉三角.【设计意图】引进“杨辉三角”,并使学生建立“杨辉三角”与二项式系数的性质 之间关系的直觉,让学生感受我国古代数学成就及其数学美,激发学生的民族自 豪感和探索新知识的欲望.环节3:合作探究 发现规律【师生活动】学生根据杨辉三角观察讨论,发现规律,教师适时点拨、完善规律。

132《“杨辉三角”与二项式系数的性质》教学设计

132《“杨辉三角”与二项式系数的性质》教学设计

章节名称 1.3.2《“杨辉三角”与二项式系数的性质》学时 1 知识与技能(1)掌握二项式系数的性质.(2)会应用二项式系数的性质解决一些简单问题.过程和方法通过对问题的尝试、探究加强对学生观察、归纳、发现能力的在培养。

情感态度和价值观通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.教学重点体会用函数知识研究问题的方法,理解二项式系数的性质.教学难点结合函数图象,理解增减性与最大值时,根据n的奇偶性确定相应的分界点;利用赋值法证明二项式系数的性质.教法问题引导、合作探究学法从课前探究和课上展示中感知规律,结合“杨辉三角”和函数图象性质领悟性质,在探究证明性质中理解知识教学过程的设计教学环节教师活动学生活动设计意图(一)、复习引入:(二)预习导学:1.“杨辉三角”的来历及规律提问学生填写的相关知识(杨辉三角的来历及规律)动手算一算:计算nba)(+(n=1,2,3,4,5,6)展开式的二项式系数,并写成如下形式:问题1二项式定理展开式的二项式系数有什么特点?问题2 二项式系数最大的是哪一项?问题3 二项式系数的和是多少?三、课上探究(二项式系数的重要性质):1、对称性:二项展开式中,与,即:。

计算nba)(+展开式的二项式系数并填入表格。

引导学生从中发现规律。

教师引导学生将表格数据整理成“杨辉三角”表进一步研究规律,通过投影“杨辉三角”、杨辉图像,适时对学生进行爱国主义教育,学生的民族自豪感和为国富民给出探索研究,回顾相关知识。

引导学生开展课外学习,了解“杨辉三角”,探究与发现“杨辉三角”包含的规律,弘扬我国古代数学文化;展示探究与发现的杨辉三角的规律,为学习2.二项式系数的性质例题分析【课堂练习】【问题2探究】:怎样证明()na b+展开式的二项式系数具有增减性与最大值呢?从函数角度分析二项式系数:探究:(1)()na b+展开式的二项式系数012C,C,,,C nn n n nC,C rn可以看成是以r为自变量的函数()C rnf r=吗?它的定义域是什么?{0,1,2,…,n}。

教学设计5:1.3.2 “杨辉三角”与二项式系数的性质

教学设计5:1.3.2 “杨辉三角”与二项式系数的性质

1.3.2 “杨辉三角”与二项式系数的性质知识目标: 进一步探索杨辉三角的基本性质及二项式系数的性质,形成知识网络;能力目标: 培养学生发现问题、提出问题、解决问题的能力,重点培养创新能力;情感目标:了解我国古今数学的伟大成就,增强爱国情感.教学重点:杨辉三角的基本性质及数字排列规律的探求.教学难点: 杨辉三角的基本性质及数字排列规律的探求.教学方法: 引导探究教学过程一、课题引入1.引言: 为什么要研究杨辉三角?▲教学意图研究杨辉三角的意义(1)在学习了排列组合概率和数学归纳法等知识后,继续研究杨辉三角的性质,进一步探索杨辉三角的基本性质及其中蕴含的数量关系,培养发现问题、分析问题、解决问题的能力.同时复习巩固所学知识,发现知识间的联系.(2)通过探究杨辉三角,不断培养创新能力.(创新是发展的不竭动力)(3)了解古今数学家的伟大成就,进行爱国主义教育;2.什么是杨辉三角?教学意图复习杨辉三角二项式(a+b)n展开式的二项式系数,当n依次取1,2,3...时,列出的一张表,叫做二项式系数表,因它形如三角形,南宋的杨辉对其有过深入研究,所以我们又称它为杨辉三角.(如图)3.介绍杨辉——古代数学家的杰出代表Array▲教学意图了解数学家杨辉及其成就, 增强民族自豪感杨辉,杭州钱塘人.中国南宋末年数学家,数学教育家.著作甚多,他编著的数学书共五种二十一卷,著有《详解九章算法》十二卷(1261年)、《日用算法》二卷、《乘除通变本末》三卷、《田亩比类乘除算法》二卷、《续古摘奇算法》二卷.其中后三种合称《杨辉算法》,朝鲜、日本等国均有译本出版,流传世界.“杨辉三角”出现在杨辉编著的《详解九章算法》一书中,此书还说明表内除“一”以外的每一个数都等于它肩上两个数的和.杨辉指出这个方法出于《释锁》算书,且我国北宋数学家贾宪(约公元11世纪)已经用过它,这表明我国发现这个表不晚于11世纪.在欧洲,这个表被认为是法国数学家物理学家帕斯卡首先发现的(Blaise Pascal, 1623年~1662年),他们把这个表叫做帕斯卡三角.这就是说,杨辉三角的发现要比欧洲早500年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.二、问题研究观察杨辉三角所蕴含的数量关系11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 11 7 21 35 35 21 7 11 8 28 56 70 56 28 8 11 9 36 84 126 126 84 36 9 11 10 45 120 210 252 210 120 45 10 11 11 55 165 330 462 462 330 165 55 11 11 12 66 220 495 792 924 792 495 220 66 12 11 13 78 286 715 1284 1716 1716 1284 715 286 78 13 1三、讲解新课:1.二项式系数的性质:()n a b +展开式的二项式系数是0C n ,1C n ,2C n ,…,C n n .C rn 可以看成以r 为自变量的函数()f r 定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵C C m n m n n -=).直线2nr =是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1C C !k k n n n n n n k n k k k----+-+==⋅, ∴C k n 相对于1C k n -的增减情况由1n k k -+决定,1112n k n k k -++>⇔<, 当12n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当n 是偶数时,中间一项2C n n 取得最大值;当n 是奇数时,中间两项12C n n -,12Cn n+取得最大值.(3)各二项式系数和:∵1(1)1C C n r rn n n x x x x +=+++++,令1x =,则0122C C C C C n r nn n n n n =++++++四、讲解范例: 问题导学一、与杨辉三角有关的问题 活动与探究1如图所示,在杨辉三角中,斜线AB 上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n 项和为S (n ),则S (16)等于( )A .144B .146C .164D .461 迁移与应用下列是杨辉三角的一部分.(1)你能发现组成它的相邻两行数有什么关系吗? (2)从图中的虚线上的数字你能发现什么规律?解决与杨辉三角有关的问题的一般思路是:通过观察找出每一行数据间的相互联系以及行与行间数据的相互联系.然后将数据间的这种联系用数学式子表达出来,使问题得解.注意观察方向:横看、竖看、斜看、连续看、隔行看,从多角度观察. 二、二项式系数的性质 活动与探究2(1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项. 迁移与应用1.⎝⎛⎭⎫x -1x 10的展开式中,系数最大的项为( ) A .第六项 B .第三项 C .第三项和第六项 D .第五项和第七项2.若⎝⎛⎭⎫x 3+1x 2n (n ∈N *)的展开式中只有第6项系数最大,则该展开式中的常数项为( ) A .462 B .252 C .210 D .10(1)求二项式系数最大的项,根据二项式系数的性质,当n 为奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大.(2)求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组、解不等式的方法求得. 三、二项式系数、展开式系数的求和 活动与探究31.设1132(3)nx x +的二项展开式中各项系数之和为t ,二项式系数和为h ,若h +t =272,则二项展开式含x 2项的系数为__________.2.设函数f (x ,y )=⎝⎛⎭⎫1+m y x (m >0,y >0).若f (4,y )=a 0+a 1y +a 2y 2+a 3y 3+a 4y 4,且a 0+a 1+a 2+a 3+a 4=81,则a 0+a 2+a 4=__________. 迁移与应用1.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ) A .1 B .-1 C .0 D .22.已知(2x -1)n =a 0+a 1x +a 2x 2+…+a n x n 展开式中偶数项的二项式系数和为32,若偶数次项的系数和为h ,奇数次项的系数和为t ,则h 2-t 2=__________.赋值法是求二项展开式系数及有关问题的常用方法,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项.一般地,对于多项式f (x )=a 0+a 1x +a 2x 2+…+a n x n ,各项系数和为f (1),奇次项系数和为12[f (1)-f (-1)],偶次项系数和为12[f (1)+f (-1)],a 0=f (0).课前·预习导学活动与探究1 思路分析:该数列从第3项开始每隔一项等于前两项的和.解答本题可观察数列的各项在杨辉三角中的位置,把各项还原为各二项展开式的二项式系数,然后利用组合数的性质求和.【解析】由题图知,数列中的首项是C 22,第2项是C 12,第3项是C 23,第4项是C 13,…,第15项是C 29,第16项是C 19.∴S (16)=C 12+C 22+C 13+C 23+…+C 19+C 29 =(C 12+C 13+…+C 19)+(C 22+C 23+…+C 29) =(C 22+C 12+C 13+…+C 19-C 22)+(C 33+C 23+…+C 29) =C 210+C 310-1=164. 【答案】C迁移与应用 解:(1)杨辉三角的两条腰都是由数字1组成的,其余的数都等于它肩上的两个数之和.(2)设a 1=1,a 2=3,a 3=6,a 4=10,…,若令b n =a n +1-a n ,则b 1=2,b 2=3,b 3=4,所以可得{b n }是等差数列,从而得出其每一斜行数字的差组成一个等差数列.活动与探究2 思路分析:求(a +bx )n 的展开式中系数最大的项,通常用待定系数法,即先设展开式中的系数分别为A 1,A 2,…,A n +1,再设第k +1项系数最大,则由不等式组⎩⎪⎨⎪⎧A k +1≥A k ,A k +1≥A k +2确定k 的值. 解:T 6=C 5n (2x )5,T 7=C 6n (2x )6,依题意有C 5n 25=C 6n 26⇒n =8.∴(1+2x )8的展开式中,二项式系数最大的项为T 5=C 48·(2x )4=1 120x 4.设第k +1项系数最大,则有⎩⎪⎨⎪⎧ C k 8·2k ≥C k -18·2k -1C k 8·2k ≥C k +18·2k +1⇒5≤k ≤6.∴k =5或k =6(∵k ∈{0,1,2,…,8}). ∴系数最大的项为T 6=1 792x 5,T 7=1 792x 6. 迁移与应用1.【解析】由二项式定理可知,展开式中,二项式系数与对应的项的系数的绝对值相等.由于二项式系数的最大项为T 6,且T 6=C 510x 5·⎝⎛⎭⎫-1x 5=-C 510中的二项式系数等于项的系数的相反数,此时T 6的系数最小.而T 5=C 410·x 6·⎝⎛⎭⎫-1x 4=C 410x 2,T 7=C 610x 4·⎝⎛⎭⎫-1x 6=C 610·x -2,且C 410=C 610, ∴系数最大的项为第五项和第七项. 【答案】D2.【解析】由于展开式中只有第6项的系数最大,且其系数等于其二项式系数,所以展开式项数为11,从而n =10,于是得其常数项为C 610=210. 【答案】C活动与探究3 思路分析:本题主要考查二项式系数与各项系数的区别,用赋值法求各项系数和,利用公式求二项式系数和.1.【解析】由已知令x =1,则展开式各项系数和t =(3+1)n =4n ,二项式系数和h =C 0n +C 1n +…+C n n =2n,∴h +t =4n +2n =272,解得n =4. ∴(3x 13+x 12)n =(3 x 13+x 12)4.则展开式的通项公式为T r +1=C r 4·(3x 13)4-r ·(x 12)r =34-r C r 4x 43+r6, 令43+r6=2,则r =4. ∴含x 2项的系数为1. 【答案】12.思路分析:由a 0+a 1+a 2+a 3+a 4=81表示的为各项系数和,可令y =1求得m 值.a 0+a 2+a 4为奇数项系数和,可令y =-1,结合已知求出. 【解析】f (4,y )=a 0+a 1y +a 2y 2+a 3y 3+a 4y 4=⎝⎛⎭⎫1+m y 4, 令y =1,得a 0+a 1+a 2+a 3+a 4=(1+m )4=81, 又m >0,∴m =2.令y =-1,得a 0-a 1+a 2-a 3+a 4=(1-m )4=1. 两式相加得2(a 0+a 2+a 4)=82, ∴a 0+a 2+a 4=41. 【答案】41迁移与应用 1.【解析】令x =1,得a 0+a 1+a 2+a 3+a 4=(2+3)4,令x =-1,得a 0-a 1+a 2-a 3+a 4=(3-2)4.∴(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)·(a 0-a 1+a 2-a 3+a 4) =(2+3)4·(-2+3)4=[(3+2)(3-2)]4=1. 【答案】12.【解析】由已知2n -1=32,∴n =6.∴(2x -1)6=a 0+a 1x +a 2x 2+…+a 6x 6. 令x =1,得a 0+a 1+a 2+…+a 6=1,令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5+a 6=(-3)6. 而h =a 0+a 2+a 4+a 6,t =a 1+a 3+a 5, ∴h 2-t 2=(h +t )(h -t )=36=729. 【答案】729当堂检测1.111x x ⎛⎫- ⎪⎝⎭的展开式中二项式系数最大的项是( )A .第6项B .第8项C .第5,6项D .第6,7项 【解析】由n =11为奇数,则展开式中第1112+项和第11112++项,即第6项和第7项的二项式系数相等,且最大. 【答案】D2.已知(a -x )5=a 0+a 1x +a 2x 2+…+a 5x 5,若a 2=80,则a 0+a 1+a 2+…+a 5=( )A .32B .1C .-243D .1或-243【解析】展开式的通项为T r +1=(-1)r 5C r ·a 5-r ·x r ,令r =2,则a 2=(-1)225C ·a 3=80,∴a =2.∴(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,得a 0+a 1+…+a 5=1. 【答案】B3.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( )A .5B .6C .7D .8【解析】由题意可知,2C mm a =,21C mm b +=,又∵13a =7b ,∴(2)!(21)137!!!(1)!m m m m m m +⋅=⋅+, 即132171m m +=+.解得m =6. 【答案】B4.已知21nx x ⎛⎫+ ⎪⎝⎭的二项展开式中奇数项的二项式系数和为16,则二项展开式中x 的系数为__________.【解析】由已知2n -1=16,n =5,∴521x x ⎛⎫+ ⎪⎝⎭展开式的通项为T r +1=5C r ·(x 2)5-r ·1rx ⎛⎫ ⎪⎝⎭=5C r·x 10-3r ,令10-3r =1,则r =3,∴含x 项的系数为35C 10=.【答案】105.在822x x ⎛⎫- ⎪⎝⎭的展开式中,(1)系数的绝对值最大的项是第几项? 解:T r +1=8822C ()rr rx x -⎛⎫⋅- ⎪⎝⎭=(-1)r ·8C r ·2r ·542rx -. (1)设第r +1项系数的绝对值最大,则11881188C 2C 2C 2C 2.r r r r r r r r ++--⎧⋅≥⋅⎪⎨⋅≥⋅⎪⎩,∴12,8121.9r r r r⎧≥⎪⎪-+⎨⎪≥⎪-⎩故系数绝对值最大的项是第6项和第7项. (2)求二项式系数最大的项.解:二项式系数最大的项为中间项,即为第5项.∴T 5=48C·24·2042x-=1 120x -6.(3)求系数最大的项.解:由(1)知,展开式中的第6项和第7项系数的绝对值最大,而第6项的系数为负,第7项的系数为正.则系数最大的项为T 7=68C ·26·x -11=1 792x-11.(4)求系数最小的项. 解:系数最小的项为T 6=(-1)558C·25172x-=-1 792172x-.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.课堂练习1.()()4511x x +-展开式中4x的系数为 ,各项系数之和为2.多项式12233()C (1)C (1)C (1)C (1)nn n n n n f x x x x x =-+-+-++-(6n >)的展开式中,6x 的系数为 3.若二项式231(3)2n x x-(N n *∈)的展开式中含有常数项,则n 的最小值为( ) A.4 B.5 C.6 D.84.某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应 ( )A.低于5%B.在5%~6%之间C.在6%~8%之间D.在8%以上5.在(1)nx +的展开式中,奇数项之和为p ,偶数项之和为q ,则2(1)nx -等于( ) A.0 B.pq C.22p q + D.22p q -6.求和:()2341012311111C C C C 1C 11111n nnn n n n n a a a a a a a a aa+------+-++------7.求()102x +的展开式中系数最大的项【答案】1. 45, 0 2. 0.提示:()()16nf x x n =->3. B4. C5. D6. ()11n a a ---7. 33115360T x +=小结:二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个节破,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用. 板书设计(略) 教学反思:二项展开式中的二项式系数都是一些特殊的组合数,它有三条性质,要理解和掌握好,同时要注意“系数”与“二项式系数”的区别,不能混淆,只有二项式系数最大的才是中间项,而系数最大的不一定是中间项,尤其要理解和掌握“取特值”法,它是解决有关二项展开式系数的问题的重要手段.二项式定理概念的引入,我们已经学过(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,那么对一般情况;(a +b )n 展开后应有什么规律,这里n ∈N ,这就是我们这节课“二项式定理”要研究的内容.选择实验归纳的研究方式,对(a +b )n 一般形式的研究与求数列{a n }的通项公式有些类似,大家想想,求a n 时我们用了什么方法,学生:先写出前n 项,再观察规律,猜测其表达式,最后用数学归纳法证明,老师:大家说得很正确,现在我们用同样的方式来研究(a +b )4的展开,因(a +b )4=(a +b )3(a +b ),我们可以用(a +b )3展开的结论计算(a +b )4(由学生板演完成,体会计算规律)然后老师把计算过程总结为如下形式:(a +b )4=(a +b )3(a +b )=(a 3+3a 2b +3ab 2+b 3)(a +b )=a 4+3a 3b 2+ab 3+3a 2b 2+3ab 3+b 4=a 4+4a 3b +6a 2b 2 +4ab 3+b 4.对计算的化算:对(a +b )n 展开式中的项,字母指数的变化规律是十分明显的,大家能说出它们的规律吗?学生:a 的指数从n 逐次降到0,b 的指数从0逐次升到n ,老师:大家说的很对,这样一来展开式的项数就是从0到n 的(n +1)项了,但唯独系数规律还是“犹抱琵琶半遮面”使我们难以发现,但我们仍可用nn n n a a a 10,来表示,它这样一来(a +b )n 的展开形式就可写成(a +b )n =n n n r r n r n n n n n b a b a a b a a a a +++-- 110现在的问题就是要找r n a 的表达形式,为此 我们要采用抽象分析法来化简计算.。

杨辉三角与二项式系数的性质教学设计

杨辉三角与二项式系数的性质教学设计

“杨辉三角”与二项式系数的性质教学设计(刘小兵 嘉峪关市一中 )一、教学目标1.掌握二项式系数的三个性质;2.让学生经历“杨辉三角”性质的探索过程,培养其特殊到一般的推理习惯;3.在函数观点下研究二项式系数性质的过程中渗透数形结合的思想方法; 4.介绍杨辉和“杨辉三角”并和西方对应成就作比较,增强学生的民族自豪感。

二、学情分析知识结构:学生已学习组合数运算和二项式定理,并且已经初步了解了二项式系数的简单性质,例如心理特征:高二的学生已经具备了一定的分析、探究问题的能力,恰时恰点的问题引导就能建立知识之间的相互联系,解决相关问题. 三.教学重点与难点重点:体会用函数知识研究问题的方法,理解二项式系数的性质. 难点:结合函数图象,理解增减性与最大值时,根据n 的奇偶性确定相应的分界点;利用赋值法证明二项式系数的性质.关键:通过观察函数图像探索二项式系数的性质. 四、教法选择和学法指导教法:问题引导、合作探究.学法:从课前探究和课上展示中感知规律,结合“杨辉三角”和函数图象性质领悟性质,在探究证明性质中理解知识,螺旋上升地学习核心数学知识和渗透重要数学思想. 五、 具体教学设计1、引入[师] 今天我们学习“杨辉三角”与二项式系数的性质,首先我们来欣赏一幅图片。

这个图片大家熟悉吧?对,这是我们班的的创意“心愿贴”下面请心愿贴设计者分享她的创意。

[生]介绍创意2466C C[师]学习本节内容之后我们可以将“心愿贴”设计得更具有数学特色,加进去一些数学元素设计意图:从学生的生活中选材引入,提高学生的探索兴趣2、知识回顾(1)(2)通项(第r+1项是(3)二项式系数是设计意图:为探索本节课新知识做必要准备3、新课探索3.1 活动设计一:观察二项式系数的性质(1)根据()na b+(n=1,2,3,4,5,6)展开式的二项式系数表(第7行暂时不填)[师] 为了方便同学们观察规律我们把这些二项式系数写为三角形形状(2)角形数并思考以下问题:①同行系数有什么规律?②上下两行系数有什么关系?③你能预测出(a+b)7展开式的二项式系数吗?活动实施步骤:第一步学生自主填写表格,第二步小组讨论三角形数的规律,第三步小组发言人分享讨论结果26?C=46?C=m n mn nC C-=()na b+=设计意图:让学生能更加熟悉组合数运算,在规律的探究过程中培养从一般到特殊的推理习惯 3.2 介绍杨辉和杨辉三角让学生阅读课本中给出的材料了解杨辉和杨辉三角,教师再通过百度百科做一些补充。

高中数学 第一章 计数原理 1.3.2“杨辉三角”与二项式系数的性质教案 新人教A版选修2-3-新人

高中数学 第一章 计数原理 1.3.2“杨辉三角”与二项式系数的性质教案 新人教A版选修2-3-新人

1.3.2 “杨辉三角〞与二项式系数的性质●三维目标1.知识与技能(1)能认识杨辉三角,并能利用它解决实际问题.(2)记住二项式系数的性质,并能解决相关问题.2.过程与方法通过观察、分析杨辉三角数表的特点,掌握二项式系数的性质.3.情感、态度与价值观通过“杨辉三角〞的学习,了解中华民族的历史,增强爱国主义意识.●重点、难点重点:二项式系数的性质.难点:杨辉三角的结构.第一课时[问题导思](1)观察“杨辉三角〞发现规律①第一行中各数之和为多少?第二、三、四、五行呢?由此你能得出怎样的结论?②观察第3行中2与第2行各数之间什么关系?第4行中3与第2行各数之间什么关系?第5行中的4、6与第4行各数之间有什么关系?由此你能得出怎样的结论?[提示] (1)①20,21,22,23,24,第n行各数之和为2n-1.②2=1+1,3=2+1,4=1+3,6=3+3,相邻两行中,除1外的每一个数都等于它“肩上〞两个数的和,设C r n+1表示任一不为1的数,那么它“肩上〞两数分别为C r-1,C r n,所以C r n+1=nC r -1n +C r n .1.杨辉三角的特点(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.(2)在相邻的两行中,除1以外的每一个数都等于它“肩上〞两个数的和,即C r n +1=C r -1n +C rn .2.二项式系数的性质(1)对称性:在(a +b )n 的展开式中,与首末两端“等距离〞的两个二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,…,C r n =C n -rn .(2)增减性与最大值:当k <n +12时,二项式系数是逐渐增大的.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值.当n 是偶数时,中间一项的二项式系数C n2n 取得最大值;当n 是奇数时,中间两项的二项式系数C n -12n,C n +12n相等,且同时取得最大值.3.二项式系数的和(1)C 0n +C 1n +C 2n +…+C n n =2n .(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.图1-3-1例1 如图1-3-1所示,在“杨辉三角〞中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,记其前n 项和为S n ,求S 16的值.[思路探究] 观察数列的特点、它在杨辉三角中的位置,或者联系二项式系数的性质,直接对数列求和即可.[自主解答] 由题意及杨辉三角的特点可得:S 16=(1+2)+(3+3)+(6+4)+(10+5)+…+(36+9)=(C 22+C 12)+(C 23+C 13)+(C 24+C 14)+…+(C 29+C 19)=(C 22+C 23+C 24+...+C 29)+(2+3+ (9)=C 310+8×2+92=164.解决与杨辉三角有关的问题的一般思路:(1)观察:对题目进行多角度观察,找出每一行的数与数之间,行与行之间的数的规律. (2)表达:将发现的规律用数学式子表达. (3)结论:由数学表达式得出结论.本例条件不变,假设改为求S 21,那么结果如何? [解] S 21=(1+2)+(3+3)+(6+4)+…+(55+11)+66=(C 22+C 12)+(C 23+C 13)+(C 24+C 14)+…+(C 211+C 111)+C 212=(C 22+C 23+C 24+……C 212)+(2+3+…+11) =C 313+2+11×102=286+65 =351.第二课时例1:设(1-2x )2 012=a 0+a 1x +a 2x 2+…+a 2 012·x 2 012(x ∈R ). (1)求a 0+a 1+a 2+…+a 2 012的值. (2)求a 1+a 3+a 5+…+a 2 011的值. (3)求|a 0|+|a 1|+|a 2|+…+|a 2 012|的值.[思路探究] 先观察所要求的式子与展开式各项的特点,用赋值法求解. [自主解答] (1)令x =1,得a 0+a 1+a 2+…+a 2 012=(-1)2 012=1.①(2)令x =-1,得a 0-a 1+a 2-…+a 2 012=32 012.② ①-②得2(a 1+a 3+…+a 2 011)=1-32 012, ∴a 1+a 3+a 5+…+a 2 011=1-32 0122.(3)∵T r +1=C r 2012(-2x )r =(-1)r ·C r 2 012·(2x )r,∴a 2k -1<0(k ∈N *),a 2k >0(k ∈N ). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2 012| =a 0-a 1+a 2-a 3+…+a 2 012=32 012.1.此题根据问题恒等式的特点采用“特殊值〞法即“赋值法〞,这是一种重要的方法,适用于恒等式.2.“赋值法〞是解决二项展开式中项的系数常用的方法,根据题目要求,灵活赋给字母不同值.一般地,要使展开式中项的关系变为系数的关系,令x=0可得常数项,令x=1可得所有项系数之和,令x=-1可得偶次项系数之和与奇次项系数之和的差.例2:(1-2x)7=a0+a1x+a2x2+…+a7x7,求(1)a1+a2+…+a7;(2)a1+a3+a5+a7,a0+a2+a4+a6.[解] (1)∵(1-2x)7=a0+a1x+a2x2+…+a7x7,令x=1,得a0+a1+a2+…+a7=-1,①令x=0,得a0=1,∴a1+a2+…+a7=-2.(2)令x=-1,得a0-a1+a2-a3+…+a6-a7=37=2187,②由①、②得a1+a3+a5+a7=-1 094,a0+a2+a4+a6=1 093.例3f(x)=(3x2+3x2)n展开式中各项的系数和比各项的二项式系数和大992.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.[思路探究] 求二项式系数最大的项,利用性质知展开式中中间项(或中间两项)是二项式系数最大的项;求展开式中系数最大的项,必须将x,y的系数均考虑进去,包括“+〞、“-〞号.[自主解答] 令x=1,那么二项式各项系数的和为f(1)=(1+3)n=4n,又展开式中各项的二项式系数之和为2n.由题意知,4n-2n=992.∴(2n)2-2n-992=0,∴(2n+31)(2n-32)=0,∴2n=-31(舍去),或2n=32,∴n=5.(1)由于n=5为奇数,所以展开式中二项式系数最大的项为中间两项,它们分别是假设T r +1项系数最大,那么有⎩⎪⎨⎪⎧C r 53r≥C r -15·3r -1,C r 53r ≥C r +15·3r +1,∴⎩⎪⎨⎪⎧5!5-r !r !×3≥5!6-r !r -1!,5!5-r !r !≥5!4-r !r +1!×3,∴⎩⎪⎨⎪⎧3r ≥16-r ,15-r ≥3r +1.∴72≤r ≤92,∵r ∈N ,∴r =4.小结:1.求二项式系数最大的项,根据二项式系数的性质,当n 为奇数时,中间两项的二项式系数最大;当n 为偶数时,中间一项的二项式系数最大.2.求展开式中系数最大项与求二项式系数最大项是不同的,需根据各项系数的正、负变化情况,一般采用列不等式组,解不等式的方法求得.练习:求(1+2x )7的展开式中的二项式系数最大项与系数最大项.[解] 在二项式系数C 07,C 17,C 27,…,C 77中,最大的是C 37与C 47,故二项式系数最大项是第4项与第5项,即T 4=C 37(2x )3=280x 3与T 5=C 47(2x )4=560x 4.设第r +1项的系数最大,那么由⎩⎪⎨⎪⎧T r +1≥T r ,T r +1≥T r +2⇒⎩⎪⎨⎪⎧C r 72r ≥C r -172r -1,C r 72r≥C r +172r +1⇒⎩⎪⎨⎪⎧3r ≤16,3r ≥13,由于r 是整数,故r =5,所以系数最大的是第6项,即T 6=C 57(2x )5=672x 5.第三课时例4 (2x -1)n 二项展开式中,奇次项系数的和比偶次项系数的和小38,那么C 1n +C 2n +C 3n+…+C n n的值为( )A.28B.28-1 C.27D.27-1[错解] 设(2x-1)n=a0+a1x+a2x2+…+a n x n,令A=a1+a3+a5+…,B=a0+a2+a4+…,由题意知B-A=38.令x=-1得a0-a1+a2-a3+…+a n(-1)n=(-3)n,∴(a0+a2+…)-(a1+a3+…)=(-3)n∴B-A=(-3)n=38,∴n=8.由二项式系数性质可得,a1n+a2n+…+C n n=2n=28[答案] A[错因分析] 误将C1n+C2n+…+C n n看作是二项展开式各项二项式系数和,忽略了C0n.[防X措施] (1)解答此题应认真审题,搞清条件以及所要求的结论,避免失误.(2)解决此类问题时,要对二项式系数的性质熟练把握,尤其是赋值法,要根据题目的要求,灵活赋给字母所取的不同值.[正解] 设(2x-1)n=a0+a1x+a2x2+…+a n x n,且奇次项的系数和为A,偶次项的系数和为B.那么A=a1+a3+a5+…,B=a0+a2+a4+a6+….由可知:B-A=38.令x=-1,得:a0-a1+a2-a3+…+a n(-1)n=(-3)n,即:(a0+a2+a4+a6+…)- (a1+a3+a5+a7+…)=(-3)n,即:B-A=(-3)n.∴(-3)n=38=(-3)8,∴n=8.由二项式系数性质可得:C1n+C2n+C3n+…+C n n=2n-C0n=28-1.[答案] B二项式系数的有关性质的形成过程表达了观察——归纳——猜想——证明的数学方法,并且在归纳证明的过程中应用了函数、方程等数学思想,大致对应如下:对称性应用了组合数的性质增减性与最大值应用了组合数公式、分类讨论思想等系数和应用了赋值法、方程思想1.(a+b)7的各二项式系数的最大值为( )A.21 B.35 C.34 D.70[答案] B2.在(a-b)20的二项展开式中,二项式系数与第6项二项式系数相同的项是( ) A.第15项B.第16项C.第17项D.第18项[解析] 由二项式系数的性质知与第6项系数相等的项应为倒数第6项,即第16项.[答案] B3.(1+2x)2n的展开式中,二项式系数最大的项所在的项数是第________项.[解析] (1+2x)2n的展开式中共有2n+1项,中间一项的系数最大,即第n+1项.[答案] n+14.(1-2x+3x2)7=a0+a1x+a2x2+…+a13x13+a14x14,试求:(1)a0+a1+a2+…+a14;(2)a1+a3+a5+…+a13.[解] (1)在等式中令x=1,那么得:a0+a1+a2+…+a13+a14=27=128.①(2)在等式中令x=-1,那么得:a0-a1+a2-a3+…-a13+a14=67.②①-②得:2(a1+a3+a5+…+a13)=27-67=-279 808.因此,a1+a3+a5+…+a13=-139 904.。

杨辉三角”与二项式系数的性质 教案

杨辉三角”与二项式系数的性质 教案
第1页
学习必备
欢迎下载
7、教学设计前后呼应,使整个教学过程更加完整 8、不仅有作业本上的作业,更为学生准备了课下阅读材料,提高学生对数学的喜爱和认识

学 环
教学内容
活动设 活动目


信息技术运用及意图

通过教
师 对 图 信息技术应用:使用【屏幕广
(一 杨辉,南宋数学家,1261 年著 教 师 边 让 片 的 解
讨论结果,一边在平板上书写
关键思路,这种表达形式更加
清晰,易理解
第3页
学习必备
欢迎下载
信息技术应用:使用【教师提
(3)对于(a+b)n 展开式的二项 此 处 设 计 从 函 数 问】
小 组 讨 角度研
式系数 Cn0,Cn1,⋯Cnn, (四
论 , 将 难 究 二 项 【学生示范】

)
, 如 点 进 行 层 式 系 数 设计意图:为了突破难点,设
规律
信息技术应用:使用【屏幕广 播】设计意图:通过设计这个 探究活动,学生可以从二项式 系数表中获得二项式系数相 关性质的直观感受 ,在 n 不 大的情况下,可以通过这个表 获得其他二项式展开的系数
从 函 数 信息技术应用:使用【教师提
(四 探究 2:(1)当 n=6 时,(a+b)6 此 处 设 计 角 度 研 问】
教学设计亮点
1、以杨辉的人物简介和杨辉三角引入新课,这有以下三个方面的优势: (1)以杨辉三角中蕴含的小秘密为引入点,激发学生兴趣 (2)发现数学美 (3)体会中国古代数学的博大精深,对学生进行爱国主义教育,激发民族自豪感. 2、采用问题导学,将本节课的教学难点层层分解,从而达到学生自主解决重、难点的目的 3、生本思想贯穿其中,这主要体现在,学生能够自己解决的就让学生自己解决,自己解决 有困难的可以尝试小组解决.通过设计各种探究活动,让学生在课堂上活动起来 4、充分考虑了信息技术应用,并尽可能为每个环节设计更加匹配的信息技术应用 5、加入数学史教育,让学生了解古代数学的伟大成就,将德育渗透其中 6、加入杨辉三角与弹球游戏的内容,让学生了解到古代数学知识与现代游戏项目的完美结 合

“杨辉三角”与二项式系数的性质教案

“杨辉三角”与二项式系数的性质教案

教学过程一、复习预习1.在二项式展开式中,与首末两端“等距离”的两个二项式系数,2.如果二项式的幂指数是偶数,的二项式系数最大;如果二项式的幂指数是奇数,的二项式系数相等并且最大.3.二项式系数的和为,即二、知识讲解考点1由“杨辉三角”可直观地看出二项式系数的性质,同时当二项式乘方次数不大时,可借助于它直接写出各项的二项式系数,借助“杨辉三角”也很容易记忆组合数性质C r n+1=C r-1n+C r n.考点2C0n+C1n+C2n+…+C n n=2n的证明方法.由(1+x)n=C0n+C1n x+C2n x2+…+C n n x n.令x=1得出.此证法所用赋值法在解决有关组合数性质,二项式展开式中系数问题中很有用,应重点体会掌握,(1+x)n展开式的组合数解释为:展开式左边是n个(1+x)的乘积,按照取x的个数可以将乘积中的项按x的取法分为n+1类:三、例题精析【例题1】【题干】1+(1+x)+(1+x)2+…+(1+x)n的展开式的各项系数之和为()A.2n-1B.2n-1C.2n+1-1D.2n[答案] C[解析]解法一:令x=1得,1+2+22+ (2)=1×(2n+1-1)2-1=2n+1-1.【例题2】【题干】若(1-2x)2011=a0+a1x+a2x2+…+a2010x2010+a2011x2011(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2010)+(a0+a2011)=________.(用数字作答)[答案]2009[解析]令x=0,则a0=1.令x=1,则a0+a1+a2+…+a2010+a2011=(1-2)2011=-1.∴(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2010)+(a0+a2011)=2010a0+(a0+a1+a2+a3+…+a2011)=2010-1=2009.【例题3】【题干】设(3x -1)8=a 8x 8+a 7x 7+…+a 1x +a 0.求: (1)a 8+a 7+…+a 1; (2)a 8+a 6+a 4+a 2+a 0. [解析] 令x =0,得a 0=1. (1)令x =1得(3-1)8=a 8+a 7+…+a 1+a 0,①∴a 8+a 7+…+a 2+a 1=28-a 0=256-1=255. (2)令x =-1得(-3-1)8=a 8-a 7+a 6-…-a 1+a 0.② ①+②得28+48=2(a 8+a 6+a 4+a 2+a 0), ∴a 8+a 6+a 4+a 2+a 0=12(28+48)=32 896.四、课堂运用【基础】1. (x -y )7的展开式中,系数绝对值最大的是( )A .第4项B .第4、5两项C .第5项D .第3、4两项[答案] B[解析] (x -y )n 的展开式,当n 为偶数时,展开式共有n +1项,中间一项的二项式系数最大;当n 为奇数时,展开式有n +1项,中间两项的二项式系数最大,而(x -y )7的展开式中,系数绝对值最大的是中间两项,即第4、5两项.2.若⎝⎛⎭⎫x 3+1x 2n 展开式中的第6项的系数最大,则不含x 的项等于( ) A .210 B .120 C .461D .416 [答案] A[解析] 由已知得,第6项应为中间项,则n =10.T r +1=C r 10·(x 3)10-r ·⎝⎛⎭⎫1x 2r =C r 10·x 30-5r .令30-5r =0,得r =6.∴T 7=C 610=210.【巩固】1. 设n 为自然数,则C 0n 2n -C 1n 2n -1+…+(-1)k C k n 2n -k +…+(-1)n C n n=( ) A .2n B .0 C .-1D .1[答案] D[解析] 原式=(2-1)n =1,故选D.2. (2008·北京·11)若⎝⎛⎭⎫x 2+1x 3n 展开式的各项系数之和为32,则n =________,其展开式中的常数项为________(用数字作答).[答案] 5 10[解析] 令x =1,得2n =32,得n =5,则T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫1x 3r =C r 5·x 10-5r ,令10-5r =0,r =2.故常数项为T 3=10.3. 设(1-2x )2010=a 0+a 1x +a 2x 2+…+a 2010x 2010(x ∈R ).(1)求a 0+a 1+a 2+…+a 2010的值. (2)求a 1+a 3+a 5+…+a 2009的值. (3)求|a 0|+|a 1|+|a 2|+…+|a 2010|的值. [分析] 分析题意→令x =1求(1)式的值→ 令x =-1求(2)式的值→令x =-1求(3)式的值 [解析] (1)令x =1,得:a 0+a 1+a 2+…+a 2010=(-1)2010=1①(2)令x =-1,得:a 0-a 1+a 2-…+a 2010=32010② 与①式联立,①-②得: 2(a 1+a 3+…+a 2009)=1-32010, ∴a 1+a 3+a 5+…+a 2009=1-320102.(3)∵T r +1=C r 2010·12010-r ·(-2x )r=(-1)r ·C r 2010·(2x )r , ∴a 2k -1<0(k ∈N *),a 2k >0(k ∈N *). ∴|a 0|+|a 1|+|a 2|+|a 3|+…+|a 2010| =a 0-a 1+a 2-a 3+…+a 2010,所以令x =-1得:a 0-a 1+a 2-a 3+…+a 2010=32010.【拔高】1.求(1+x -2x 2)5展开式中含x 4的项.[分析] 由题目可获取以下主要信息: ①n =5;②三项的和与差.解答本题可把三项看成两项,利用通项公式求解,也可先分解因式,根据多项式相乘的法则,由组合数的定义求解.[解析] 方法一:(1+x -2x 2)5=[1+(x -2x 2)]5,则T r +1=C r 5·(x -2x 2)r ·(x -2x 2)r 展开式中第k +1项为T k +1=C k r x r -k ·(-2x 2)k =(-2)k ·C k r ·x x +k .令r +k =4,则k =4-r .∵0≤k ≤r,0≤r ≤5,且k 、r ∈N ,∴⎩⎪⎨⎪⎧ r =2k =2或⎩⎪⎨⎪⎧ r =3k =1或⎩⎪⎨⎪⎧r =4k =0. ∴展开式中含x 4的项为[C 25·(-2)2·C 22+C 35·(-2)·C 13+C 45·(-2)0·C 04]·x 4=-15x 4. 方法二:(1+x -2x 2)5=(1-x )5·(1+2x )5, 则展开式中含x 4的项为C 05·C 45·(2x )4+C 15·(-x )·C 35·(2x )3+C 25·(-x )2·C 25(2x )2+C 35·(-x )3·C 15·(2x )+C 45·(-x )4·C 05·(2x )0=-15x 4.2. (2010·全国Ⅱ理,14)若⎝⎛⎭⎫x -ax 9的展开式中x 3的系数是-84,则a =________. [答案] 1[解析] 由T r +1=C r 9x 9-r ⎝⎛⎭⎫-a x r=(-a )r C r 9x 9-2r 得 9-2r =3,得r =3,x 3的系数为(-a )3C 39=-84, 解得a =1.课程小结内容小结利用杨辉三角得出二项式系数的性质,并能够求出各种系数的和,并会求系数的最大项.课后作业【基础】1. (2008·安徽·6)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1,…,a 8中奇数的个数为( )A .2B .3C .4D .5[答案] A[解析] ∵a 0=a 8=C 08=1,a 1=a 7=C 18=8,a 2=a 6=C 28=28,a 3=a 5=C 38=56,a 4=C 48=70,∴奇数的个数是2,故选A..2.(2010·广东惠州)已知等差数列{a n }的通项公式为a n =3n -5,则(1+x )5+(1+x )6+(1+x )7的展开式中含x 4项的系数是该数列的( )A .第9项B .第10项C .第19项D .第20项[答案] D[解析] ∵(1+x )5+(1+x )6+(1+x )7展开式中含x 4项的系数是C 45·11+C 46·12+C 47·13=5+15+35=55,∴由3n -5=55得n =20,故选D.【巩固】1.若n 为正奇数,则7n +C 1n ·7n -1+C 2n ·7n -2+…+C n -1n ·7被9除所得的余数是( ) A .0 B .2 C .7D .8[答案] C[解析]原式=(7+1)n-C n n=8n-1=(9-1)n-1=9n-C1n·9n-1+C2n·9n-2-…+·9(-1)n-1+(-1)n-1,n为正奇数,(-1)n-1=-2=-9+7,则余数为7.C n-1n2.(2010·江西理,6)(2-x)8展开式中不含..x4项的系数的和为() A.-1 B.0C.1 D.2[答案] B[解析](2-x)8的通项式为T r+1=C r828-r(-x)r=(-1)r·28-r C r8x r2,则x4项的系数为1,展开式中所有项的系数之和为(2-1)8=1,故不含x4项的系数之和为0,故选B.【拔高】1.证明:(C0n)2+(C1n)2+(C2n)2+…+(C n n)2=C n2n.[证明]∵(1+x)n(1+x)n=(1+x)2n,∴(C0n+C1n x+C2n x2+…+C n n x n)·(C0n+C1n x+C2n x2+…+C n n x n)=(1+x)2n,而C n2n是(1+x)2n的展开式中x n的系数,由多项式的恒等定理得+…+C n n C0n=C n2n.C0n C n n+C1n C n-1n(0≤m≤n),∵C m n=C n-mn∴(C0n)2+(C1n)2+(C2n)2+…+(C n n)2=C n2n.2.求(1+x-2x2)5展开式中含x4的项.[分析]由题目可获取以下主要信息:①n=5;②三项的和与差.解答本题可把三项看成两项,利用通项公式求解,也可先分解因式,根据多项式相乘的法则,由组合数的定义求解.[解析]方法一:(1+x-2x2)5=[1+(x-2x2)]5,则T r+1=C r5·(x-2x2)r·(x-2x2)r展开式中第k+1项为T k+1=C k r x r-k·(-2x2)k=(-2)k·C k r·x x +k.令r +k =4,则k =4-r .∵0≤k ≤r,0≤r ≤5,且k 、r ∈N ,∴⎩⎪⎨⎪⎧ r =2k =2或⎩⎪⎨⎪⎧ r =3k =1或⎩⎪⎨⎪⎧r =4k =0. ∴展开式中含x 4的项为[C 25·(-2)2·C 22+C 35·(-2)·C 13+C 45·(-2)0·C 04]·x 4=-15x 4. 方法二:(1+x -2x 2)5=(1-x )5·(1+2x )5, 则展开式中含x 4的项为C 05·C 45·(2x )4+C 15·(-x )·C 35·(2x )3+C 25·(-x )2·C 25(2x )2+C 35·(-x )3·C 15·(2x )+C 45·(-x )4·C 05·(2x )0=-15x 4.。

高中数学_“杨辉三角”与二项式系数的性质教学设计学情分析教材分析课后反思

高中数学_“杨辉三角”与二项式系数的性质教学设计学情分析教材分析课后反思

“杨辉三角”与二项式系数的性质教学设计一.教学目标1.知识与技能目标(1)掌握二项展开式中的二项式系数的基本性质及其推导方法。

(2)通过从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识解决问题的方法,逐步提高观察能力和归纳推理能力。

2.过程与方法目标(1)通过对杨辉三角中蕴含的数字规律的初步探究,经历分析猜想—证明—应用的过程,激励学生自主创新。

(2)通过不同角度观察杨辉三角,培养训练学生从多角度看待问题的意识。

(3)体会数形结合、特殊到一般进行归纳,以及赋值法等重要数学思想方法解决问题的再创造过程。

3.情感态度价值观目标在学习中初步学会交流合作,形成团结意识的精神,同时通过了解我国古代数学的伟大成就,熏陶爱国精神。

二.教学重难点教学重点:掌握二项展开式中二项式系数的性质,探讨杨辉三角中蕴含的数字规律,培养学生发现问题并运用所学知识解决问题的能力。

教学难点:证明二项式系数的增减性以及利用赋值法证明二项式系数和的性质;结合函数图象理解增减性时,根据n的奇偶性确定相应的分界点。

三.教学方法:教法:问题引导、合作探究学法:从探究展示中感知规律,结合杨辉三角和函数图像领悟性质,在探究证明性质中理解知识,螺旋上升地学习核心数学知识和渗透重要数学思想。

四.教具多媒体、实物投影仪五.教学过程设计(一)温故知新师:首先我们回顾下上节课的内容,请同学们完成学案上的“温故知新”所对应的内容。

问题一:1.二项式定理:()=ba___________.+n2.二项式系数:____________________.3.通项:=T_______________________.+1k师:请订正答案,并追问二项式定理的展开式中共有多少项?通项表示第几项?问题二:计算()n ba+展开式的二项式系数,填写表格师:找学生回答3=n的二项式系数。

n到6=二.感知规律师:通过填表,你能发现什么规律呢?为了更好地发现二项式系数的性质。

高中数学_1.3.2“杨辉三角”与二项式系数的性质教学设计学情分析教材分析课后反思

高中数学_1.3.2“杨辉三角”与二项式系数的性质教学设计学情分析教材分析课后反思

《1.3.2“杨辉三角”与二项式系数的性质》教学设计一、教学内容分析《“杨辉三角”与二项式系数的性质》是全日制普通高级中学教科书人教A版选修2-3第1章第3节第2课时. 教科书将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的智慧,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.本节内容以前面学习的二项式定理为基础,由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处. 这一过程不仅有利于培养学生的思维能力、实践能力,也有利于学生理解本节课的核心数学知识,培养数学应用意识,提高学生的核心素养。

研究二项式系数的性质,既能使学生认识二项展开式的性质,又能建立知识间的联系。

例如。

当而它正是概率研究中的随机变量的分布之一___二项分布的一个特例;又如,研究二项式系数这组特定的组合数,对进一步认识组合数、进行组合数的计算和变形都有重要的作用。

二、学生情况分析认知分析:学生已学习两个计数原理和二项式定理,再让学生课前探究“杨辉三角”包含的规律,结合“杨辉三角”,并从函数的角度研究二项式系数的性质.这三者形成了学生思维的“最近发展区”.能力分析:学生已经具备了一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养.情感分析:多数学生对数学学习有一定的兴趣,能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强.三、教学指导思想与理论依据:本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生目前所掌握的知识背景,挖掘生活中与之相关的小问题,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。

10.“杨辉三角”与二项式系数的性质公开课课件教案教学设计

10.“杨辉三角”与二项式系数的性质公开课课件教案教学设计
1.3.2“杨辉三角”与二 项式系数的性质
一、新课引入
二项定理: 一般地,对于n N*有
(a b)n Cn0a n Cn1a n1b Cn2a n2b2
C
r n
a
nr
b
r
Cnnbn
二项展开式中的二项式系数指的是那些?共 有多少个?
下面我们来研究二项式系数有些什么性 质?我们先通过杨辉三角观察n为特殊值时, 二项式系数有什么特点?
图象的对称轴:r n 2
知识对接测查1
1、在(a+b)6展开式中,与倒数第三项二项式系 数相等是( B )
A.第2项 B.第3项 C.第4项 D.第5项
2、若(a+b)n的展开式中,第三项的二项式系数与 第五项的二项式系数相等,则n=__6__.
二项式系数的性质
(2)增减性与最大值
由于: C kn
1.“杨辉三角”的来历及规律
(a+b)1 (a+b)2
C10 C11
C
0 2
C12
C
2 2
11 121
(a+b)3
C
0 3
C
1 3
C
2 3
C
3 3
1 33 1
(a+b)4 (a+b)5
C
0 4
C14
C
2 4
C
3 4
C
4 4
C
0 5
C15
C
2 5
C
3 5
C
4 5
C
5 5
1 4641 1 5 10 10 5 1
这就是说,(a b)n的展开式的各二项式系
数的和等于:2n
在二项式定理中,令 a 1, b 1 ,则:

杨辉三角与二项式系数的性质 说课稿 教案 教学设计

杨辉三角与二项式系数的性质    说课稿  教案  教学设计

“杨辉三角”与二项式系数的性质教学目标知识与技能1.利用二项式定理得出二项式系数的一些性质;2.能运用二项式系数的性质解决一些简单问题.过程与方法1.熟知二项式系数的对称性、单调性、最大项及所有二项式系数之和等结论;2.熟练运用赋值法求一些代数式的值.情感、态度与价值观1.培养学生观察、归纳、发现的能力以及分析问题与解决问题的能力.2.通过学习“杨辉三角”的有关知识,了解我们国家悠久的文化传统,陶冶学生的爱国主义情操,进一步提升学生学好数学用好数学的决心和勇气,提升学生学习数学的兴趣.重点难点教学重点:了解“杨辉三角”的结构与规律,掌握二项式系数的一些性质,掌握赋值法.教学难点:二项式系数性质的得到和证明,利用二项式系数的性质解决有关问题.教学过程引入新课前面我们学习了二项式定理,请回顾:(1)(a+b)n=__________________(n∈N*),这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的__________________,其中C r n(r=0,1,2,…,n)叫做____________,通项是指展开式的第________________项,展开式共有______________项.(2)什么是二项式系数?什么是系数?活动设计:学生先独立回忆,然后独立发言,其他同学进行补充,必要时可以看书.活动结果:(答案展示)(1)(a+b)n=C0n a n+C1n a n-1b+C2n a n-2b2+…+C r n a n-r b r+…+C n n b n(n∈N)、展开式、二项式系数、r+1、n+1.(2)二项式系数是C r n,系数是变量前的常数.设计意图:通过复习二项式定理的有关知识,为发现杨辉三角的有关性质打下基础,形成知识储备,引出本节课要研究的内容.提出问题:计算(a+b)n展开式的二项式系数并填入下表n 展开式的二项式系数1234567活动设计:通过学案或者投影展示表格,学生填空,学生之间可以交流,教师指导.活动成果:设计意图:当二项式的次数不大时,可借助它直接写出各项的二项式系数.通过计算填表,让学生发现其中的规律.探究新知提出问题:当表示形式为“三角形”时,该表格有什么规律?活动设计:学生自主解决,自由发言,自主探究.活动成果:(这个表在我国南宋数学家杨辉在1261年所著的《详解九章算法》一书中就出现了,称为杨辉三角.但是在欧洲,这个表被认为是法国数学家帕斯卡首先发现的,他们把这个表称为帕斯卡三角.这就是说,杨辉三角的发现要比欧洲早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的)设计意图:为了使学生建立“杨辉三角”与二项式系数的性质之间关系的直觉,要求学生填表,观察表格,探索规律,体会“表示形式的变化有时能帮助我们发现规律”这句话的深刻哲理与方法,由学生自己说说其中的规律.理解新知提出问题1:观察杨辉三角的每一行,正数第1个数与倒数第1个数,正数第2个数与倒数第2个数,正数第3个数与倒数第3个数,…它们有什么样的等量关系?你能把你的想法概括成一句话吗?活动设计:通过展示表格与杨辉三角,让学生自己观察,发现结论,踊跃发言,勇于探索.活动成果:正数第1个数与倒数第1个数相等,正数第2个数与倒数第2个数相等,正数第3个数与倒数第3个数相等,…(板书)二项式系数的性质.(1)对称性:在二项展开式中,与首末两端“等距”的两项的二项式系数相等,即C m n=C n-mn 设计意图:引导学生猜想,猜想是发现的开始.通过杨辉三角得到“对称性”,进一步加深学生对二项式系数性质的掌握,这条性质实际上是组合数的一个性质.提出问题2:观察杨辉三角的相邻两行,看看下一行中除了“1”之外的数与上一行中的数有什么关系?活动设计:学生独立思考,自由发言,可以小组讨论.活动成果:表中任一不为1的数都等于它肩上的两个数的和,即(板书)(2)C r n +1=C r -1n +C rn .设计意图:通过新发现(杨辉三角),重新验证旧知识,能够提升学生对此公式的理解与掌握,加深学生对二项式系数性质的理解,能够在最大程度上提升学生的认知水平,这条性质实际上是组合数的另外一个性质.提出问题3:观察每一行中的二项式系数的大小变化情况,有单调性吗?有最值吗? 活动设计:学生未必一下能说清楚,尽量鼓励学生说,让他们积极参与.教师始终是引导者,学生始终是课堂的主体.引导学生从多个方面分析二项式系数的大小关系,如利用特殊值法观察归纳、利用函数图象画图观察等等.先由学生独立完成,然后组织全班讨论,学生之间可以相互求助.活动成果:因为C k n=n(n -1)(n -2)…(n -k +1)(k -1)!k=C k -1nn -k +1k, 所以C k n 相对于C k -1n 的增减情况由n -k +1k 决定.由 n -k +1k >1 k<n +12可知,当k<n +12时,二项式系数是逐渐增大的.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值.当n 是偶数时,中间的一项取得最大值,即C n2n 最大;当n 是奇数时,中间的两项相等,且同时取得最大值,即C n -12n =C n +12n ,即C n -12n ,C n +12n最大.(板书)(3)增减性与最大值:二项式系数由两边向中间增大,并且在中间取得最大值.当n 是偶数时,中间的一项取得最大值,即C n2n 最大;当n 是奇数时,中间的两项相等,且同时取得最大值,即C n -12n =C n +12n 最大.设计意图:由于二项式系数组成的数列是一个离散函数,所以我们应该引导学生从函数的角度或从特殊值的角度研究二项式系数的性质.这样处理便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,体会由特殊到一般的化归思想.难点是需要根据n 的奇偶性确定相应的分界点,教学时应该引导学生分析其对称轴实际上是k =n2,从而学生可以比较容易地理解并记住最值在哪一项被取到.提出问题4:计算“杨辉三角”中每一行的和,观察其规律,并写出其公式.活动设计:学生自主探究,归纳整理,踊跃发言,教师应该多加鼓励,但是不能代替学生,自始至终都要保护学生的积极性,保持学生的主体性,教师仅仅是一名导演而已.活动成果:已知(1+x)n =C 0n +C 1n x +C 2n x 2+…+C r n x r +…+C n n x n, 令x =1,则即二项式系数之和等于2n.我们把这样的方法称为赋值法,赋值法是一类解决二项式系数的性质的优越办法.(板书)(4)各二项式系数的和:C0n+C1n+C2n+…+C r n+…+C n n=2n.设计意图:本环节的设置与本节的大环境一致,都是通过特殊的例子发现最一般的结论,提高学生的认知能力、观察能力及化归能力,加深对二项式系数性质的掌握与应用.实际上这条性质,我们在组合数或者集合的子集中遇到过,教师也可以从这方面入手进行引导,能够进一步加深学生对这一部分知识的理解与掌握,让学生体会到数学知识的前后联系,能够最大限度地达到教学目标.运用新知例1下面的二项展开式中,哪些项的二项式系数最大?是多少?填在相应的横线上.(1)(a+b)20第________________项的二项式系数最大,是______________________;(2)(a+b)19第________________项的二项式系数最大,是______________________.思路分析:根据二项式系数的性质(3)即可解决,但要分清n的奇偶性.解:(1)若n=20,则当r=10时,二项式系数最大,所以第11项的二项式系数最大,是C1020.(2)若n=19,则当r=9或10时,二项式系数最大,所以第10或11项的二项式系数最大,是C919=C1019.点评:通过n的奇偶性的不同,考查了二项式系数的性质(3),但是要注意这是二项式系数的最大值,不一定就是系数的最大值.【巩固练习】(1+2x)n的展开式中第5项与第8项的二项式系数相等,求展开式中二项式系数最大的项.解:由题意C4n=C7n,所以n=4+7=11,从而展开式中二项式系数最大的项是中间两项,即第6项与第7项.例2证明:在(a+b)n的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.思路分析:奇数项的二项式系数的和为C0n+C2n+C4n+…,偶数项的二项式系数的和为C1n+C3n+C5n+…,由于(a+b)n=C0n a n+C1n a n-1b+C2n a n-2b2+…+C r n a n-r b r+…+C n n b n(n∈N)中的a,b可以取任意实数,因此我们可以通过对a,b适当赋值来得到上述两个系数和.这一点可以从性质(4)的推导来获得.证明:在展开式(a+b)n=C0n a n+C1n a n-1b+C2n a n-2b2+…+C r n a n-r b r+…+C n n b n(n∈N)中,令a=1,b=-1,则得(1-1)n=C0n-C1n+C2n-C3n+…+(-1)n C n n,即0=(C0n+C2n+…)-(C1n+C3n+…),所以C0n+C2n+…=C1n+C3n+…,即在(a+b)n的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.点评:赋值法是解决二项式定理与二项式系数的一种很重要的方法,凡是与二项式系数和或者系数和有关的问题,都有可能通过赋值法获得解决.实际上我们还可以利用函数思想解决这个问题,即令f(x)=C0n+C1n x+C2n x2+…+C r n x r+…+C n n x n,由f(-1)=0,即可很容易地得到要证明的结果.【巩固练习】C17+C27+C37+…+C77=__________解:因为C07+C17+C27+C37+…+C77=27=128,所以【变练演编】1.当C 0n +C 1n +C 2n +…+C r n +…+C nn =2 048时,n =________.2.当C 0n +C 2n +C 4n +…=2 048时,n =________.3.当C x n =C y n 时,其中n≥x ,n≥y ,x ,y ,n ∈N *,则x ,y 所满足的关系式是__________. 4.当(1+2x)n 的展开式中只有第7项的二项式系数最大时,n =________________. 请将你所能想到的所有答案都一一列举出来. 1.解:由2n =2 048=211,得n =11.2.解:由2n -1=2 048=211,得n =12. 3.解:由题意x =y 或x +y =n.4.解:由性质(3)知,n2+1=7,所以n =12.设计意图:本环节的设计源于一种非常好的教学方法:变练演编.这种开放性的设计,不仅有助于训练同学们的常规思维,还能培养同学们的逆向思维.一堂好的数学课必须让学生创新,使得学生有所收获.通过这种方式的训练,让学生去创造题目,解决问题,增加了中学生学习数学的兴趣,进一步掌握了“杨辉三角”的有关性质,能力得到了提高.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计表
学科名称:高二数学授课班级:高(1)班工作单位:澄海汇璟中学教师姓名:强强
学习内容分析在二项式定理之后学习“杨辉三角”与二项式系数的性质,是由于二项式系数是一些特殊的组合数,由二项式定理可导出一些组合数的恒等式,这对深化组合数的认识有好处。

同时,又对后面学习随机变量及其分布作准备。

本节课将在学习二项式定理的基础上进一步探讨二项式系数的有关性质及其应用。

学习者特征
分析
我校为普通面向学校,非重点中学。

我们班为理科班,学生数学基础知识较薄弱。

自信心较差,自主探究能力较差,较不积极。

教学重点
及解决措施
二项式系数的性质,导学式,启发式教学。

教学难点
及解决措施
二项式系数的性质的理解和应用,讲授式。

教学设计
思路
填表说明:
1、教学过程的设计是本教学设计表的关键,要详细说明教学环节及所需的资源支持、教师和学生具体的活动、设计意图以及需要特别说明的教师引导语等)。

2、表格高度如果不够,可以在“页面设置”中将纸张高度调大。

相关文档
最新文档