最新-北师大版九年级数学上册期末试卷及答案
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.下列函数中不是反比例函数的是()A .3y x=B .13y x -=C .1xy =D .3x y =-2.下列立体图形中,主视图是圆的是()A .B .C .D .3.如图,在菱形ABCD 中,60B ∠=︒,4AB =,则正方形ACEF 的面积为()A .8B .12C .16D .204.用如图所示的两个转盘(分别进行四等分和三等分)设计一个“配紫色”的游戏,其中一个转出红色,另一个转出蓝色即可配成紫色,分别转动两个转盘(指针指向区域分界线时,忽略不计),那么可配成紫色的概率为()A .712B .12C .512D .135.如图,在平面直角坐标系中,OAB 与OCD 位似,点O 是它们的位似中心,已知()4,2A -,()2,1C -,则OAB 与OCD 的面积之比为()A .1:1B .2:1C .3:1D .4:16.若双曲线ay x=在第二、四象限,那么关于x 的方程2210ax x ++=的根的情况为()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .无实根7.如图,四边形OABC 是平行四边形,对角线OB 在y 轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线1k y x=和2ky x =的一支上,过点A ,点C 分别作x 轴的垂线,垂足分别为M 和N ,有以下结论:①ON OM =;②12k AM CN k =;③阴影部分面积是()121k k 2+;④若四边形OABC 是菱形,则图中曲线关于y 轴对称.其中正确的结论是()A .①④B .②③C .①②④D .①③④8.如图,矩形ABCD 中,点E ,点F 分别是BC ,CD 的中点,AE 交对角线BD 于点G ,BF 交AE 于点H .则GHHE的值是()A .12B .23C.2D9.如图,已知△A′B′C′与△ABC 是位似图形,点O 是位似中心,若A′是OA 的中点,则△A′B'C′与△ABC 的面积比是()A .1:4B .1:2C .2:1D .4:110.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,且AC =6,BD =8,过A 点作AE 垂直BC ,交BC 于点E ,则BECE的值为()A .512B .725C .718D .524二、填空题11.如果四条线段a ,b ,c ,d 是成比例线段,且4a =,12b =,8c =,那么d 为______.12.已知1x =是一元二次方程220x ax +-=的一个根,则此方程的另一个根为______.13.如图,在ABC 中,∥DE BC ,若:3:2AD DB =,6cm AE =,则EC 的长为______cm .14.已知近视眼镜的度数D (度)与镜片焦距f (米)成反比例关系,且400度近视眼镜镜片的焦距为0.25米.小慧原来戴400度的近视眼镜,经过一段时间的矫正治疗后,现在只需戴镜片焦距为0.4米的眼镜了,则小慧所戴眼镜的度数降低了___度.15.如图,函数()0y kx k =-≠的图象与2y x=-的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为C ,连接BC ,则BOC 的面积为______.16.如图,这是一个几何体的三视图,根据图中所标的数据,这个几何体的体积为______.17.如图,在正方形ABCD 中,顶点A ,B ,C ,D 在坐标轴上,且()2,0B ,以AB 为边构造菱形ABEF (点E 在x 轴正半轴上),将菱形ABEF 与正方形ABCD 组成的图形绕点O 逆时针旋转,每次旋转45°,则第2022次旋转结束时,点2022F 的坐标为______.18.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题19.关于x 的一元二次方程2240x x k --=有两个不相等的实数根.(1)求k 的取值范围;(2)若1k =,请用配方法求该方程的根.20.如图,矩形ABCD 的对角线AC ,BD 交于点O ,且//DE AC ,//AE BD ,连接OE .求证:OE AD ⊥.21.如图,正比例函数与反比例函数的图象交于A、B两点,点A的坐标为(1,2).(1)求反比例函数的解析式;(2)根据图像直接写出使正比例函数的值大于反比例函数的值的x取值范围.22.如图:一次函数的图象与反比例函数kyx=的图象交于()2,6A-和点()4,B n.(1)求点B的坐标;(2)根据图象回答,当x在什么范围时,一次函数的值大于反比例函数的值.23.如图,BD、CE是ABC的两条高,M、N分别是BC、DE的中点.(1)求证:ADE ABC △△∽.(2)试说明MN 与DE 的关系.24.如图,在ABC 中,2BC AB =,AD 是BC 边上的中线,O 是AD 的中点,过点A 作AE BC ∥,交BO 的延长线于点E ,BE 交AC 于点F ,连接DE 交AC 于点G .(1)判断四边形ABDE 的形状,并说明理由;(2)若34AB =:3:5OA OB =,求四边形ABDE 的面积;(3)连接DF ,求证:2DF FG FC =⋅.25.如图,点E 是矩形ABCD 的边BA 延长线上一点,连接ED ,EC ,EC 交AD 于点G ,作CF ∥ED 交AB 于点F ,DC =DE .(1)求证:四边形CDEF 是菱形;(2)若BC =3,CD =5,求AG 的长.26.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.27.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)求ABBC的值.参考答案1.D2.D3.C4.A5.D6.A 7.C 8.B 9.A 10.C 11.2412.2x =-13.414.15015.116.18π17.(2,-18.60.19.(1)2k >-(2)1x =2x =20.证明://,//A C D E E D A B ,∴四边形AODE 是平行四边形,四边形ABCD 是矩形,1122OA OD AC BD ∴===,∴平行四边形AODE 是菱形,OE AD ∴⊥.21.(1)2y x=;(2)10x -<<或1x >.【详解】解:(1)设反比例函数表达式为k y x=,∵正比例函数与反比例函数的图象交于A 、B 两点,∴将A 的坐标(1,2)代入k y x =得:21k=,解得:k=2,∴2y x=;(2)设正比例函数表达式为y=ax ,将A 的坐标(1,2)代入y=ax 得:2=a ,∴y=2x ,联立正比例函数表达式和反比例函数表达式,得:22y x y x⎧=⎪⎨⎪=⎩,整理得:222x =,解得:1211x x ==-,,∴B 点横坐标为-1,将x=-1代入y=2x 得:y=-2.∴B(-1,-2),由图像可得,正比例函数的值大于反比例函数的值的x 取值范围是10x -<<或1x >.22.(1)()4,3B -;(2)2x <-或04x <<.【详解】解:(1)将点()2,6A -代入ky x=得:2612k =-⨯=-,则反比例函数的解析式为12y x=-,将点()4,B n 代入12y x=-得:1234n =-=-,则点B 的坐标为()4,3B -;(2) 一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方,2x ∴<-或04x <<.23.(1)见解析(2)MN 垂直平分DE ,理由见解析【分析】(1)根据三角形高、相似三角形的性质,通过证明ABD ACE ∽△△,得AB ACAD AE=,再根据相似三角形的性质分析,即可完成证明;(2)根据直角三角形斜边中线的性质,得12EM BC =,12DM BC =,再根据等腰三角形三线合一的性质分析,即可得到答案.(1)∵BD 、CE 是ABC 的两条高,∴90ADB AEC ∠=∠=︒,∵A A ∠=∠,∴ABD ACE ∽△△,∴AB ADAC AE=,∴AB ACAD AE=,∵A A ∠=∠,∴ADE ABC △△∽;(2)如图,连接DM ,EM∵BD 、CE 是ABC 的两条高,∴90CDB BEC ==︒∠∠∵M 是BC 的中点,,∴12EM BC =,12DM BC =,∴EM DM =,∵N 是DE 的中点,∴MN 垂直平分DE .24.(1)四边形ABDE 是菱形,理由见解析(2)30(3)见解析【分析】(1)先判定△AOE ≌△DOB (ASA ),得出AE =BD ,根据AE ∥BD ,即可得出四边形ABDE 是平行四边形,再根据BD =BA ,即可得到平行四边形ABDE 是菱形;(2)根据四边形ABDE是菱形,AB =OA:OB =3:5,运用勾股定理求得AD =6,BE =10,即可得出菱形ABDE 的面积;(3)根据菱形的性质得出∠GDF =∠DCF ,再根据∠GFD =∠DFC ,即可判定△DFG ∽△CFD ,进而得到GFDFDF CF =,得证.(1)解:(1)四边形ABDE 是菱形.理由:∵AE BC ∥,∴EAO BDO ∠=∠,∵O 是AD 的中点,∴AO DO =,在AOE △和DOB 中,EAO BDOAO DO AOE DOB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AOE DOB △△≌,∴AE BD =,又∵AE BD ∥,∴四边形ABDE 是平行四边形,∵AD 是BC 边上的中线,∴2BC BD =,又∵2BC AB =,∴BD BA =,∴平行四边形ABDE 是菱形.(2)解:∵四边形ABDE 是菱形,∴AD BE ⊥,12AO AD =,12BO BE =,设3OA k =,5OB k =,在Rt AOB △中,由勾股定理得222AO OB AB +=,∴()()22235k k +=,整理得2292534k k +=,解得1k =,∴3OA =,5OB =,∴6AD =,10BE =,∴菱形ABDE 的面积1106302=⨯⨯=.(3)证明:∵四边形ABDE 是菱形,∴BE 垂直平分AD ,EA ED =,FA FD =,∴EAO EDO ∠=∠,FAO FDO ∠=∠,∴EAF EDF ∠=∠,∵AE BC ∥,∴EAF DCF ∠=∠,∴GDF DCF ∠=∠,又∵GFD DFC ∠=∠,∴DFG CFD △△∽,∴GFDFDF CF =,∴2DF FG FC =⋅.25.(1)解:证明:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,∵CF ∥ED ,∴四边形CDEF 是平行四边形,∵DC=DE .∴四边形CDEF 是菱形;(2)如图,连接GF ,∵四边形CDEF 是菱形,∴CF=CD=5,∵BC=3,∴BF=4==,∴AF=AB-BF=5-4=1,在△CDG 和△CFG 中,CD CF DCG FCG CG CG =⎧⎪∠=∠⎨⎪=⎩,∴△CDG ≌△CFG (SAS ),∴FG=GD ,∴FG=GD=AD-AG=3-AG ,在Rt △FGA 中,根据勾股定理,得FG 2=AF 2+AG 2,∴(3-AG )2=12+AG 2,解得AG=43.26.(1)见解析(2)【分析】(1)证△ABE ≌△CBE (SAS ),即可得出结论;(2)连接AC 交BD 于H ,先由菱形的性质可得AH ⊥BD ,BH =DH ,AH =CH ,求出BH 、EH 的长,由勾股定理求出AH 的长,再由勾股定理求出AB 的长,即可得出结果.【详解】(1)∵四边形ABCD 是菱形,∴∠ABE =∠CBE ,AB =CB ,在△ABE 和△CBE 中,AB CB ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE ,∴AE =CE ,∵AE =DE ,∴CE =DE ;(2)如图,连接AC 交BD 于H ,∵四边形ABCD 是菱形,∴AH ⊥BD ,BH =DH ,AH =CH ,∵CE =DE =AE =1,∴BD =BE+DE =2+1=3,∴BH =12BD =32,EH =BE ﹣BH =2﹣32=12,在Rt △AHE 中,由勾股定理得:AH在Rt △AHB 中,由勾股定理得:AB=27.(1)y =2x;(2)1【分析】(1)将点A 坐标代入两个解析式可求a 的值,k 的值,即可求解;(2)连接OA ,OB ,先求得B 、C 的坐标,然后求得S △AOC =1322⨯⨯=3,S △BOC =1312⨯⨯=32,则可求得S △AOB =32,根据同高三角形面积的比等于底边的比即可求得结论.【详解】解:(1)把点A (1,a )代入y =﹣x+3,得a =2,∴A (1,2),把A (1,2)代入反比例函数k y x =,∴k =1×2=2,∴反比例函数的表达式为y =2x;(2)如图,连接OA ,OB ,由一次函数y =﹣x+3可知C 的坐标为(3,0),解23y x y x ⎧=⎪⎨⎪=-+⎩得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,∴B (2,1),∴S △AOC =1322⨯⨯=3,S △BOC =1312⨯⨯=32,∴33322AOB AOC BOC S S S =-=-= ,∴AOB BOC S S ∆∆=1,∴AB BC =1.。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.下列方程,是一元二次方程的是()A .2 310x x +-=B .2 51y x -=C . 210x +=D .21 1x x +=2.下面几何体的主视图是()A .B .C .D .3.若△ABC ∽△DEF ,且△ABC 与△DEF 的面积比是94,则△ABC 与△DEF 的对应高的比为()A .23B .8116C .94D .324.若正方形的对角线长为2,则这个正方形的面积为()A .2B .4CD .5.如图,点A 为反比例函数k y x=的图象上一点,过A 作AB ⊥x 轴于点B ,连接OA ,已知△ABO 的面积为3,则k 值为()A .-3B .3C .-6D .66.如图,线段AB 两个端点的坐标分别为(2,2)(2.5,0.8)A B 、,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标为()A .(3,1.6)B .(4,3.2)C .(4,4)D .(6,1.6)7.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是()A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60508.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是()A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,正方形ABCD 中,E 为BC 中点,连接AE ,DF AE ⊥于点F ,连接CF ,FG CF ⊥交AD 于点G ,下列结论:①CF CD =;②G 为AD 中点;③~DCF AGF ∆∆;④23AF EF =,其中结论正确的个数有()A .1个B .2个C .3个D .4个10.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当100BAD∠=︒时,则CDF∠=()A.15︒B.30°C.40︒D.50︒二、填空题11.方程x2=x的解为___.12.若关于x的一元二次方程ax2+4x﹣2=0有实数根,则a的取值范围为___.13.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有__颗.14.已知矩形ABCD,当满足条件______时,它成为正方形(填一个你认为正确的条件即可).15.反比例函数kyx=的图象经过点(1,﹣2),则k的值为_____.16.如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.17.如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD 的高DH=_____.三、解答题18.解方程:2x2﹣4x﹣1=0.19.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.20.如图,小明站在路灯B下的A处,向前走5米到D处,发现自己在地面上的影子DC 是2米.若小明的身高DE是1.8米,则路灯B离地面的高度AB是多少米?21.如图,已知矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2.(1)求AC的长及∠AOB的度数;(2)以OB,OC为邻边作菱形OBEC,求菱形OBEC的面积.22.有一块长60m,宽50m的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中黑色部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为am)区域将铺设塑胶地面作为运动场地.(1)设通道的宽度为xm,则a=(用含x的代数式表示);(2)若塑胶运动场地总的占地面积为2430m2,则通道的宽度为多少?23.已知,如图,正比例函数y=ax的图象与反比例函数图象交于A点(3,2),(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答:在第一象限内,当反比例函数值大于正比例函数值时x的取值范围?(3)M(m,n)是反比例函数上一动点,其中0大于m小于3,过点M作直线MN平行x 轴,交y轴于点B.过点A作直线AC平行y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.24.如图1,在平面直角坐标系中,已知直线l:y=kx+b与x轴交于点A,与y轴交于点B,与直线CD相交于点D,其中AC=14,C(﹣6,0),D(2,8).(1)求直线l的函数解析式;(2)如图2,点P为线段CD延长线上的一点,连接PB,当△PBD的面积为7时,将线段BP 沿着y轴方向平移,使得点P落在直线AB上的P'处,求点P′到直线CD的距离;(3)若点E 为直线CD 上的一点,则在平面直角坐标系中是否存在点F ,使以点A ,D ,E ,F 为顶点的四边形为菱形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.25.如图,一次函数y=x+b 和反比例函数y=xk (k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.26.如图,在矩形ABCD 的边AB 上取一点E ,连接CE 并延长和DA 的延长线交于点G ,过点E 作CG 的垂线与CD 的延长线交于点H ,与DG 交于点F ,连接GH .(1)当tan 2BEC ∠=且4BC =时,求CH 的长;(2)求证:DF FG HF EF ⋅=⋅;(3)连接DE ,求证:CDE CGH ∠=∠.参考答案1.A 【分析】根据一元二次方程的概念(只含有一个未知数,并且未知数项的最高次数是二次的整式方程叫做一元二次方程),逐一判断.【详解】A.2310x x +-=,符合一元二次方程的定义,故本选项正确;B.251y x -=,方程含有两个未知数,故本选项错误;C.210x +=,未知数项的最高次数是一次,故本选项错误;D.211x x+=,不是整式方程,故本选项错误.故答案选A.【点睛】本题重点考查了满足一元二次方程的条件:(1)该方程为整式方程.(2)该方程有且只含有一个未知数.(3)该方程中未知数的最高次数是2.2.B 【分析】主视图是从物体正面看所得到的的图形.【详解】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选:B .【点睛】本题考查了三视图,主视图是从物体的正面看得到的视图,解答时学生易将三种试图混淆而错误地选其它选项.3.D 【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应高的比等于相似比解答即可.【详解】解:∵△ABC ∽△DEF ,△ABC 与△DEF 的面积比是94,∴△ABC 与△DEF 的相似比为32,∴△ABC 与△DEF 对应高的比为32,故选:D .【点睛】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.A 【分析】根据正方形的性质,对角线平分、相等、垂直且平分每一组对角求解.【详解】如图所示:∵四边形ABCD 是正方形,∴AO=BO=12AC=1cm ,∠AOB=90°,由勾股定理得,2,S 正=2)2=2cm2.故选A .【点睛】考查正方形的性质,解题关键是根据对角线平分、相等、垂直且平分每一组对角进行分析.5.C 【分析】先设出A 点的坐标,由△AOB 的面积可求出xy 的值,即xy =﹣6,即可写出反比例函数的解析式.【详解】解:设A 点坐标为A (x ,y ),由图可知A 点在第二象限,∴x <0,y >0.又∵AB ⊥x 轴,∴|AB|=y ,|OB|=|x|,∴S △AOB 12=⨯|AB|×|OB|12=⨯y×|x|=3,∴﹣xy =6,∴k =﹣6.故选:C .【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是掌握过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.6.C 【分析】根据位似中心的定义可得:2:1OC OA =,由此即可得出答案.【详解】解:由题意得::2:1OC OA =,则端点C 的坐标为(22,22)C ⨯⨯,即为(4,4)C ,故选:C .【点睛】本题考查了位似图形的性质,理解定义是解题关键.7.D 【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.D 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为2,∴点B 的横坐标为-2,∵由函数图象可知,当-2<x <0或x >2时函数y 1=k 1x 的图象在22k y x=的上方,∴当y 1>y 2时,x 的取值范围是-2<x <0或x >2.故选:D .9.D 【分析】如图(见解析),过点C 作CM DF ⊥于点M ,先根据三角形全等的判定定理证出ADF DCM ≅ ,根据全等三角形的性质可得AF DM =,再利用正切三角函数可得1tan 1tan 42BE AB ∠=∠==,从而可得AF FM DM ==,然后根据线段垂直平分线的判定与性质即可判断①;先根据等腰三角形的性质可得25∠=∠,从而可得17∠=∠,再根据等腰三角形的判定可得DG FG =,然后根据角的和差可得36∠=∠,最后根据等腰三角形的判定可得AG FG =,由此即可判断②;先根据上面过程可知3256=∠∠∠=∠=,再根据相似三角形的判定即可判断③;设(0)AF x x =>,从而可得2DF x =,先利用勾股定理可得5,2AD AB BC AE x ====,再根据线段的和差可得32EF x =,由此即可判断④.【详解】解:如图,过点C 作CM DF ⊥于点M ,四边形ABCD 是正方形,,90AB BC CD AD B BAD ADC ∴===∠=∠=∠=︒,2190∴∠+∠=︒,DF AE ⊥ ,90,1390AFD DMC ∴∠=∠=︒∠+∠=︒,32∴∠=∠,在ADF 和DCM △中,9032AFD DMC AD DC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ADF DCM AAS ∴≅ ,AF DM ∴=,点E 是BC 的中点,1122BE BC AB ∴==,349031∠+∠=︒=∠+∠ ,41∴∠=∠,1tan 1tan 42BE AB ∴∠=∠==,12AFDF ∴=,即2DF AF =,DF DM FM AF FM =+=+ ,2AF AF FM ∴=+,即AF FM =,DM FM ∴=,又CM DF ⊥ ,CF CD ∴=,结论①正确;25∴∠=∠,FG CF ⊥ ,90CFG ADC ∴∠=︒=∠,17∴∠=∠,DG FG ∴=,又139076∠+∠=︒=∠+∠ ,36∴∠=∠,AG FG ∴=,AG DG ∴=,即G 为AD 中点,结论②正确;由上已得:32536,2,∠=∠∠∠∠=∠=,56∴∠=∠,在DCF 和AGF 中,2356∠=∠⎧⎨∠=∠⎩,DCF AGF ∴ ,结论③正确;设(0)AF x x =>,则2DF x =,BC AB AD ∴====,122BE BC ∴==,52AE x ∴==,32EF AE AF x ∴=-=,3223AF x EF x ∴==,结论④正确;综上,结论正确的个数有4个,故选:D .10.B 【分析】连接BF ,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF ,根据等边对等角可得∠FBA=∠FAB ,再根据菱形的邻角互补求出∠ABC ,然后求出∠CBF ,最后根据菱形的对称性可得∠CDF=∠CBF .【详解】解:如图,连接BF ,在菱形ABCD 中,∠BAC=12∠BAD=12×100°=50°,∵EF 是AB 的垂直平分线,∴AF=BF ,∴∠FBA=∠FAB=50°,∵菱形ABCD 的对边AD ∥BC ,∴∠ABC=180°-∠BAD=180°-100°=80°,∴∠CBF=∠ABC-∠ABF=80°-50°=30°,由菱形的对称性,∠CDF=∠CBF=30°.故选:B .11.0x =或1x =【分析】利用因式分解法解方程即可;【详解】2x x =,20x x -=,()10x x -=,0x =或1x =;故答案是:0x =或1x =.12.2a ≥-且0a ≠##a≠0且a≥-2【分析】根据题意可知0∆≥,代入求解即可.【详解】解:一元二次方程ax 2+4x ﹣2=0,,4,2a a b c ===-,∵关于x 的一元二次方程ax 2+4x ﹣2=0有实数根,∴0∆≥且0a ≠,即244(2)0a -⨯-≥,0a ≠解得:2a ≥-且0a ≠故答案为:2a ≥-且0a ≠.13.14【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,60.36n=+,解得n=14.经检验n=14是原方程的解故估计盒子中黑珠子大约有14个.故答案为:14.14.AB=BC【详解】解:∵四边形ABCD是矩形,∴(1)当AB=BC时,矩形ABCD是正方形;(2)当AC⊥BD时,矩形ABCD是正方形.故答案为:AB=CD(或AC⊥BD).15.﹣2.【分析】将点(1,﹣2)代入kyx=,即可求解.【详解】∵反比例函数kyx=的图象经过点(1,﹣2),∴k21-=,解得k=﹣2.故答案为-2.16.16924【分析】过点F作FG⊥AD,垂足为G,连接AA′,在△GEF中,由勾股定理可求得EG=5,轴对称的性质可知AA′⊥EF,由同角的余角相等可证明∠EAH=∠GFE,从而可证明△ADA′≌△FGE,故此可知GE=DA′=5,最后在△EDA′利用勾股定理列方程求解即可.【详解】解:过点F作FG⊥AD,垂足为G,连接AA′.在Rt△EFG中,5=,∵轴对称的性质可知AA′⊥EF,∴∠EAH+∠AEH=90∘,∵FG⊥AD,∴∠GEF+∠EFG=90∘,∴∠DAA′=∠GFE,在△GEF 和△DA′A 中,90EGF D FG AD DAA GFE ∠=∠=︒⎧⎪=⎨⎪∠'=∠⎩,∴△GEF ≌△DA′A ,∴DA′=EG=5,设AE=x,由翻折的性质可知EA′=x ,则DE=12−x ,在Rt △EDA′中,由勾股定理得:A′E 2=DE 2+A′D 2,即x 2=(12−x)2+52,解得:x=16924,故答案为16924,【点睛】本题主要考查正方形、轴对称、全等三角形的性质及勾股定理等相关知识.利用辅助线构全等形、利用勾股定理建立方程是解题的关键.17.4.8【分析】根据菱形的性质得到AC ⊥BD ,求出OA ,OB ,由勾股定理求出AB ,再利用菱形的面积公式得到12AC•BD=AB•DH ,由此求出答案.【详解】解:在菱形ABCD 中,AC ⊥BD ,∵AC=8,BD=6,∴OA=12AC=12×8=4,OB=12BD=12×6=3,在Rt △AOB 中,==5,∵DH ⊥AB ,∴菱形ABCD 的面积=12AC•BD=AB•DH ,即12×6×8=5DH ,解得DH=4.8.故答案为:4.8.【点睛】此题考查了菱形的性质,勾股定理,熟记菱形的性质并熟练应用解决问题是解题的关键.18.【分析】用配方法解一元二次方程即可.【详解】解:∵2x2﹣4x ﹣1=0,∴2x2﹣4x=1,则x2﹣2x=12,∴x2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣,∴.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数.19.证明见解析.【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.【详解】∵在△ABC 中,AB=AC ,BD=CD ,∴AD ⊥BC .又∵CE ⊥AB ,∴∠ADB=∠CEB=90°,又∵∠B=∠B ,∴△ABD ∽△CBE .【点睛】本题考查了相似三角形的判定,正确找到相似的条件是解题的关键.20.路灯B 离地面的高度 6.3AB =米【分析】根据ED ∥AB ,得出△ECD ∽△BCA ,进而得出比例式求出即可.【详解】解:由题图知,2DC =米, 1.8=ED 米,5AD =米,∴527=+=+=AC AD DC (米).∵ED AB ∥,∴ECD BCA ∽△△.∴ED DC AB AC =,即1.827AB =.∴路灯B 离地面的高度 1.87 6.32AB ⨯==(米).【点睛】此题主要考查了相似三角形的应用,得出△ECD ∽△EBA 是解决问题的关键.21.(1)4AC =,60AOB ∠=︒;(2)菱形OBEC 的面积是【分析】(1)根据AB 的长结合“在直角三角形中,30°所对的直角边等于斜边的一半”可得出AC 的长度,根据矩形的对角线互相平分可得出OBC 为等腰三角形,从而利用外角的知识可得出∠AOB 的度数;(2)先求出△OBC 和的面积,从而可求出菱形OBEC 的面积.(1)解:在矩形ABCD 中,90ABC ∠=︒,在Rt ABC 中,30ACB ∠=︒.∴24AC AB ==.∴2AO OB ==.又∵2AB =,∴AOB 是等边三角形.∴60AOB ∠=︒.(2)解:在Rt ABC 中,由勾股定理,得BC ==.∴122ABC S =⨯⨯= .∴12BOC ABC S S ==△△.∴菱形OBEC 的面积是【点睛】本题考查矩形的性质、菱形的性质及勾股定理的知识,熟练掌握矩形的性质、菱形的性质及勾股定理是解题的关键.22.(1)6032x-(2)通道的宽度为2m .【分析】(1)结合图形可得:荒地的长为60m ,内部两个矩形的宽为am ,通道宽为xm ,可得方程等式,化简即可得;(2)结合图形,利用大面积减去黑色部分的面积可得方向,求解即可得.(1)解:结合图形可得:荒地的长为60m ,内部两个矩形的宽为am ,通道宽为xm ,∴2360a x +=,6032x a -=,故答案为:6032x -;(2)解:根据题意得:(502)(603)2430---⋅=x x x a ,∵6032x a -=,∴603(502)(603)24302x x x x ----⋅=,解得122,38x x ==(不合题意,舍去).∴通道的宽度为2m .【点睛】题目主要考查列代数式及一元二次方程的应用,理解题意,找准面积之间的关系是解题关键.23.(1)6y x =,23y x =;(2)03x <<;(3)理由见解析【分析】(1)把A 点坐标分别代入两函数解析式可求得a 和k 的值,可求得两函数的解析式;(2)由反比例函数的图象在正比例函数图象的下方可求得对应的x 的取值范围;(3)用M 点的坐标可表示矩形OCDB 的面积和△OBM 的面积,从而可表示出四边形OADM 的面积,可得到方程,可求得M 点的坐标,从而可证明结论.【详解】解:(1)∵将()3,2A 分别代入k y x =,y ax =中,得23k =,32a =,∴6k =,23a =,∴反比例函数的表达式为:6y x =,正比例函数的表达式为23y x =.(2)∵()3,2A 观察图象,得在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值;(3)BM DM=理由:∵//MN x 轴,//AC y 轴,∴四边形OCDB 是平行四边形,∵x 轴y ⊥轴,∴OCDB 是矩形.∵M 和A 都在双曲线6y x=上,∴6BM OB ⨯=,6OC AC ⨯=,∴132OMB OAC S S k ==⨯= ,又∵6OADM S =四边形,∴33612OMB OAC OBDC OADM S S S S =++=++= 矩形四边形,即12OC OB ⋅=,∵3OC =,∴4OB =,即4n =∴632m n ==,∴32MB =,33322MD =-=,∴MB MD =.【点睛】本题为反比例函数的综合应用,涉及知识点有待定系数法、函数与不等式、矩形及三角形的面积和数形结合思想等.在(2)中注意数形结合的应用,在(3)中用M 的坐标表示出四边形OADM 的面积是解题的关键.24.(1)直线l 的函数解析式为43233y x =-+(2)点P '到直线CD 的距离为2(3)存在点1(8F +或2(8F --或3(6,14)F -或4(33,25)F ,使以点A ,D ,E ,F 为顶点的四边形为菱形.【分析】(1)用待定系数法即可求解;(2)由△PBD 的面积求出点P 的坐标,进而求出点P'(5,4),构建△P'DN 用解直角三角形的方法即可求解;(3)分AD 是菱形的边、AD 是菱形的对角线两种情况,利用图像平移和中点公式,分别求解即可.(1)解:∵14,(6,0)=-AC C ,点A 在点C 右侧,∴(8,0)A .∵直线l 与直线CD 相交于点(2,8)D ,∴80,28,k b k b +=⎧⎨+=⎩解得4,332.3k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线l 的函数解析式为43233y x =-+.(2)解:如图1,过点P 作PN y ⊥轴于点N ,作'∥PP y 轴,交AB 于点P ',过点P '作'⊥P M CD 于点M ,过点D 作DE y ⊥轴于点E ,设CD 与y 轴交于点F,0设直线CD 的解析式为y mx n =+,∵(6,0),(2,8)-C D ,∴60,28,m n m n -+=⎧⎨+=⎩解得 1.6.m n =⎧⎨=⎩∴直线CD 的解析式为6y x =+.(0,6)F ∴∴6OC OF ==.∴OCF OFC∠=∠∵OC OF ⊥,∴45OCF OFC ∠=∠=︒∵直线l 的解析式为43233y x =-+,∴320,3B ⎛⎫⎪⎝⎭.∴323OB =.∴3214633=-=-=BF OB OF .设(,6)+P a a ,∵7=-= PBD PBF DBF S S S ,∴11722⋅-⋅=BF PN BF DE ,即114(2)723⨯-=a ,解得5a =.∴(5,11)P .∵将线段BP 沿着y 轴方向平移,使得点P 落在直线AB 上的P '处,∴4325433-⨯+=.∴(5,4)'P .∴1147='-=PP .∵45PCA OCF ∠=∠=︒,PP AC '⊥∴45'︒∠=MPP .∵'⊥P M CD ,∴45PP M P PM ''∠=∠=︒∴PMP ' 是等腰直角三角形.∴==''P M ,即点P '到直线CD 的距离为2.(3)解:①如图2,当AD 、AF 为边时,∵(8,0),(2,8)A D ,∴10==AD .∵四边形ADEF 是菱形,∴,10==∥DE AF AD AF .∵直线CD 的解析式为6y x =+,∴可设直线AF 的解析式为y x b =+.∵(8,0)A ,∴80b +=,解得8b =-.∴直线AF 的解析式为8y x =-.设(,8)-F c c ,∴10===AF AD ,解得8=±c∴12(8(8+--F F .当AD 、AE 为边时,∵(8,0),(2,8)A D ,∴10==AD .∵四边形ADFE 是菱形,∴,10∥DF AE AD AE ==.∵直线CD 的解析式为6y x =+,∴可设直线AF 的解析式为y x b =-+.∵(8,0)A ,∴-80b +=,解得8b =.∴直线AF 的解析式为8y x =-+.设(,8)F d d -+,∴10DF AD ===,解得6d =-或8d =(舍去),∴3(6,14),F -.②如图3,当AD 为对角线时,则,=∥DF AF AF DE .由①得直线AF 的解析式为8y x =-.设(,8)-F t t ,∵(2,8),(8,0)D A ,2222(2)(88)(8)(8)t t t t -+--=-+-解得33t =.∴4(33,25)F .综上所述,存在点1(852,52)F +或2(852,52)F --或3(6,14)F -或4(33,25)F 使以点A ,D ,E ,F 为顶点的四边形为菱形.【点睛】本题考查的是二次函数综合运用,涉及到二次函数的性质、平行四边形的性质、图形的平移、面积的计算等,分类求解解题的关键.25.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x ,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b ,解得b=﹣3,∴一次函数的解析式为:y=x ﹣3;(2)∵令x=0,则y=﹣3,∴D (0,﹣3),即DO=3.解方程4x=x ﹣3,得x=﹣1,∴B (﹣1,﹣4),∴S △AOB =S △AOD +S △BOD =12×3×4+12×3×1=152;(3)∵A (4,1),B (﹣1,﹣4),∴一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.26.(1)10CH =;(2)见解析;(3)见解析【分析】(1)根据已知条件先求出CE 的长,再证明∠=∠BEC ECH ,在Rt △CHE 中解三角形可求得EH 的长,最后利用勾股定理求CH 的长;(2)证明∽∆∆GFE HFD ,进而得出结果;(3)由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,进而sin sin ∠=∠EGF FHD ,即=CD CE CG CH ,再结合∠=∠ECD DCE ,可得出∽∆∆CDE CGH ,进一步得出结果.【详解】(1)解:∵矩形ABCD ,EH CG ⊥,∴90∠=︒=∠=∠BCD CEH B .而90BEC BCE ∠+∠=︒,90∠+∠=︒BCE ECH ,∴∠=∠BEC ECH ,又∵4BC =,tan 2BEC ∠=,∴2BE =,易得CE ==∴tan 2∠==EH ECH CE ,∴EH =∴10CH ==.(2)证明:∵矩形ABCD ,EH CG ⊥,∴∠=∠CEH HDG ,而∠=∠GFE DFH ,∴∽∆∆GFE HFD ,∴=DF FH EF FG,∴⋅=⋅DF FG EF FH ;(3)证明:由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,∴sin sin ∠=∠EGF FHD ,即=CD CE CG CH,而∠=∠ECD DCE ,∴∽∆∆CDE CGH ,∴CDE CGH ∠=∠.【点睛】本题主要考查相似三角形的判定与性质以及解直角三角形,关键是掌握基本的概念与性质.。
北师大版九年级上册数学期末考试试卷含答案解析
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.在一个四边形ABCD 中,依次连结各边中点的四边形是菱形,则对角线AC 与BD 需要满足条件()A .垂直B .相等C .垂直且相等D .不再需要条件2.如图,在矩形ABCD 中,AB=3,BC=4,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为()A .32B .2C .52D .33.下列方程中,是关于x 的一元二次方程的是A .()()12132+=+x x B .02112=-+x x C .02=++c bx ax D .1222-=+x x x 4.已知点()12,A y -、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是A .9%B ..5%C .9.5%D .10%6.二次三项式243x x -+配方的结果是()A .2(2)7x -+B .2(2)1x --C .2(2)7x ++D .2(2)1x +-7.函数x ky =的图象经过(1,-1),则函数2-=kx y 的图象是2222-2-2-2-2O OOOy y y y xxxxA .B .C .D.8.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动A .变短B .变长C .不变D.无法确定9.如图,点A 在双曲线=6上,且OA =4,过A 作AC ⊥轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()A .47B .5C .27D .2210.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为.二、填空题11.反比例函数2k y x+=的图象在一、三象限,则k 应满足_________.12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的12倍,边长应缩小到原来的____倍.13.已知一元二次方程22(1)7340a x ax a a -+++-=有一个根为0,则a 的值为_______.14.已知534a b c ==,则232a b c a b c++=++_______15.如图,已知点A 在反比例函数(0)ky x x=<的图象上,AC y ⊥轴于点C ,点B 在x 轴的负半轴上,若2ABC S = ,则k 的值为_________.16.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD=_____.17.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.三、解答题18.解方程(1);(2).19.(8分)已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m .B(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.20.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.21.已知甲同学手中藏有三张分别标有数字11,,124的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为,a b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.23.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?24.如图,已知A (−4,n ),B (2,−4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求不等式kx +b −mx<0的解集(请直接写出答案).25.在平面直角坐标系中,直线l 1:y =x +5与反比例函数y =kx(k ≠0,x >0)图象交于点A(1,n );另一条直线l 2:y =﹣2x +b 与x 轴交于点E ,与y 轴交于点B ,与反比例函数y =k x(k ≠0,x >0)图象交于点C 和点D (12,m ),连接OC 、OD .(1)求反比例函数解析式和点C 的坐标;(2)求△OCD 的面积.26.(12分)如图,在ABC △中,5AB =,3BC =,4AC =,动点E (与点A C ,不重合)在AC 边上,EF AB ∥交BC 于F 点.CE FA B(1)当ECF△的面积与四边形EABF的面积相等时,求CE的长;(2)当ECF△的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得EFP△为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.参考答案1.B【解析】试题分析:如图:∵四边形EFGH是菱形,∴EH=FG=EF=HG=12BD=12AC,故AC=BD.故选B.考点:中点四边形.2.A【解析】试题分析:由于AE是折痕,可得到AB=AF,BE=EF,设出未知数,在Rt△EFC中利用勾股定理列出方程,通过解方程即可得到答案.设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,,∴Rt△EFC中,FC=5-3=2,EC=4-X,∴,解得,故选A.考点:本题考查的是图形折叠的性质及勾股定理点评:熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.3.A【解析】试题分析:A、由原方程得到3x2+4x+1=0,符合一元二次方程的定义,故本选项正确;B、该方程中分母中含有未知数.不属于整式方程,故本选项错误;C、当a=0时.该方程不是一元二次方程.故本选项错误;D、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;故选A.考点:一元二次方程定义4.D【分析】分别把各点坐标代入反比例函数y=4x,求出y1,y2,y3的值,再比较大小即可.【详解】∵点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=4x的图象上,∴y1=-2,y2=-4,y3=4 3,∵-4<-2<4 3,∴y2<y1<y3.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.D【解析】试题分析:设平均每次降价的百分数是x,依题意得100(1-x)2=81,解方程得x1=0.1,x2=1.9(舍去)所以平均每次降价的百分数是10%.故选D.考点:一元二次方程的应用6.B【解析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故选B.考点:配方法的应用.7.A【解析】试题分析:∵函数xky=的图象经过(1,-1),∴k=-1,∴函数2-=kxy的解析式为:y=-x-2,函数y=-x-2的图像过二、四象限过(0,-2),(-2,0)点,故选A考点:1.反比例函数图像2.一次函数8.C【解析】试题分析:∵E,F分别是AM,MR的中点,∴EF=12AR.∵R是定点,∴AR的定长.∴无论M运动到哪个位置EF的长不变.故选C.考点:1.动点问题;2.三角形中位线定理.9.C【解析】试题分析:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:ab=6,a2+b2=16,解得a+b=27,即△ABC的周长=OC+AC=27.故选C考点:反比例函数图象上点的坐标特征10.2 3【解析】试题分析::∵DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC,∵AD=4,DB=2,∴AD:AB=DE:BC=2:3.则的值为2 3.考点:相似三角形的判定与性质.11.k>-2【解析】试题分析:反比例函数:当时,图象在第一、三象限;当时,图象在第二、四象限.由题意得,考点:本题主要考查了反比例函数的性质点评:本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.12.2【解析】试题分析::∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的2倍.考点:相似三角形的性质13.-4【解析】【分析】将x=0代入原方程可得关于a的方程,解之可求得a的值,结合一元二次方程的定义即可确定出a的值.【详解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-4=0,可得a2+3a-4=0,解得a=-4或a=1,∵二次项系数a-1≠0,∴a≠1,∴a=-4,故答案为-4.【点睛】本题考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次项系数不为0是解本题的关键.14.15 26【解析】试题分析:设=k ,则a=5k ,b=3k ,c=4k ,25641532153826a b c k k k a b c k k k ++++==++++考点:比例的性质15.-4【分析】连结OA ,由AC ⊥y 轴,可得AC ∥x 轴,可知S △ACB =S △ACO =2,可得=4k ,由反比例函数图像在第二象限(x<0),可知k<0,可求k=-4.【详解】解:连结OA ,∵AC ⊥y 轴,∴AC ∥x 轴,∴S △ACB =S △ACO =2,∴1=22k ,∴=4k ,∵反比例函数图像在第二象限(x<0),∴k<0,∴k=-4.故答案为:-4.【点睛】本题考查反比例函数解析式,掌握反比例函数的性质,关键是反比例函数中k 的几何意义.16.2.【分析】首先证△ACD ∽△CBD ,然后根据相似三角形的对应边成比例求出CD 的长.【详解】解:Rt △ACB 中,∠ACB=90°,CD ⊥AB ;∴∠ACD=∠B=90°﹣∠A ;又∵∠ADC=∠CDB=90°,∴△ACD ∽△CBD ;∴CD 2=AD•BD=4,即CD=2.故答案为:2【点睛】本题考查相似三角形的判定与性质.17.0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩,∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.18.(1)1x =2x =.(2)【详解】试题分析:(1)用公式法(2)用分解因式法试题解析:(1)因为(()245248∆=--⨯-⨯=,所以x =即1x =2x =.(2)移项得,分解因式得,解得考点:解一元二次方程19.(1)见解析;(2)DE=10m【解析】试题分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系AB BC DE EF =.计算可得DE试题解析:(1)如图:连接AC ,过点D 作DE//AC ,交直线BC 于点F ,线段EF 即为DE 的投影(2)∵AC//DF ,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC ∽△DEF.53,.6AB BC DE EF DE ∴=∴= ∴DE=10(m )考点:平行投影20.(1)BD=CD .(2)当△ABC 满足:AB=AC 时,四边形AFBD 是矩形.【解析】试题分析:(1)根据两直线平行,内错角相等求出∠AFE=∠DCE ,然后利用“角角边”证明△AEF 和△DEC 全等,根据全等三角形对应边相等可得AF=CD ,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD 是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.试题解析:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴▱AFBD是矩形.考点:1.矩形的判定2.全等三角形的判定与性质.21.(1)列表见解析;(2)不公平,理由见解析.【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【详解】(1)列表如下:a b12312(12,1)(12,2)(12,3)14(14,1)(14,2)(14,3)1(1,1)(1,2)(1,3)(2)要使方程210ax bx ++=有两个不相等的实根,即△=240b a ->,满足条件的有5种可能:1111,2,,2,,3,,3,(1,3)2424⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴甲获胜的概率为()59P =甲,乙获胜的概率为()49P =乙,5499> 即此游戏不公平.22.证明见解析.【分析】(1)一方面Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,另一方面△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,从而可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF .(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.【详解】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF .∴AF=BC .∵在Rt △AFE 和Rt △BCA 中,AF=BC ,AE=BA ,∴△AFE ≌△BCA (HL ).∴AC=EF .(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD .∴∠DAB=∠DAC+∠BAC=90°.∴EF ∥AD .∵AC=EF ,AC=AD ,∴EF=AD .∴四边形ADFE 是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.23.每张贺年卡应降价0.1元.【分析】设每张贺年卡应降价x 元,等量关系为:(原来每张贺年卡盈利-降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【详解】设每张贺年卡应降价x 元,根据题意得:(0.3-x )(500+1000.1x )=120,整理,得:21002030x x +-=,解得:120.1,0.3x x ==-(不合题意,舍去),∴0.1x =,答:每张贺年卡应降价0.1元.24.(1)8y x=-,2y x =--;(2)C 点坐标为(2,0)-,6;(3)40x -<<或2x >.【分析】(1)先把B 点坐标代入代入m y x =求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和AOB 的面积AOC BOC S S ∆∆=+进行计算;(3)观察函数图象得到当4x <-或02x <<时,一次函数图象都在反比例函数图象下方.【详解】解:(1)把(2,4)-B 代入m y x=得2(4)8m =⨯-=-,所以反比例函数解析式为8y x =-,把(4,)A n -代入8y x=-得48n -=-,解得2n =,则A 点坐标为(4,2)-,把(4,2)A -,(2,4)-B 分别代入y kx b =+得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--;(2)当0y =时,20x --=,解得2x =-,则C 点坐标为(2,0)-,∴AOC BOCAOB S S S ∆∆∆=+11222422=⨯⨯+⨯⨯6=;(3)由kx +b −m x <0可得kx +b <m x故该不等式的解为40x -<<或2x >.【点睛】本题考查了反比例函数与一次函数综合.(1)中理解函数图象上的点都满足函数关系式是解题关键;(2)中掌握“割补法”求图形面积是解题关键;(3)中掌握数形结合思想是解题关键.25.(1)y =6x ,点C (6,1);(2)1434.【分析】(1)点A (1,n )在直线l 1:y =x +5的图象上,可求点A 的坐标,进而求出反比例函数关系式,点D 在反比例函数的图象上,求出点D 的坐标,从而确定直线l 2:y =﹣2x +b 的关系式,联立求出直线l 2与反比例函数的图象的交点坐标,确定点C 的坐标,(2)求出直线l 2与x 轴、y 轴的交点B 、E 的坐标,利用面积差可求出△OCD 的面积.【详解】解:(1)∵点A (1,n )在直线l 1:y =x +5的图象上,∴n =6,∴点A (1,6)代入y =k x 得,k =6,∴反比例函数y =6x ,当x =12时,y =12,∴点D (12,12)代入直线l 2:y =﹣2x +b 得,b =13,∴直线l 2:y =﹣2x +13,由题意得:6213y x y x ⎧=⎪⎨⎪=-+⎩解得:111212x y ⎧=⎪⎨⎪=⎩,2261x y =⎧⎨=⎩,∴点C (6,1)答:反比例函数解析式y =6x,点C 的坐标为(6,1).(2)直线l 2:y =﹣2x +13,与x 轴的交点E (132,0)与y 轴的交点B (0,13)∴S △OCD =S △BOE ﹣S △BOD ﹣S △OCE11311113143131312222224=⨯⨯-⨯⨯⨯=答:△OCD 的面积为1434.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.26.(1)CE =22;(2)CE 的长为724;(3)在AB 上存在点P ,使△EFP 为等腰直角三角形,此时EF =3760或EF =49120【解析】试题分析:(1)因为EF ∥AB ,所以容易想到用相似三角形的面积比等于相似比的平方解题;(2)根据周长相等,建立等量关系,列方程解答;(3)先画出图形,根据图形猜想P 点可能的位置,再找到相似三角形,依据相似三角形的性质解答.试题解析:(1)∵△ECF 的面积与四边形EABF 的面积相等∴S △ECF :S △ACB =1:2又∵EF ∥AB ∴△ECF ∽△ACB.,21)(2==∆∆CA CE S S ACB ECF 且AC =4∴CE =22;(2)设CE 的长为x∵△ECF ∽△ACB ∴CB CF CA CE =∴CF=x 43.由△ECF 的周长与四边形EABF 的周长相等,得EFx x x EF x +-++-=++)433(5)4(43解得724=x ∴CE 的长为724;(3)△EFP 为等腰直角三角形,有两种情况:①如图1,假设∠PEF =90°,EP =EF图1A B由AB =5,BC =3,AC =4,得∠C =90°∴Rt △ACB 斜边AB 上高CD =512设EP =EF =x ,由△ECF ∽△ACB ,得CD EP CD AB EF -=,即5125125xx -=,解得3760=x ,即EF =3760,当∠EFP´=90°,EF =FP´时,同理可得EF =3760.②如图2,假设∠EPF =90°,PE =PF 时,点P 到EF 的距离为EF 21。
北师大版九年级(上)期末数学试卷及答案
北师大版九年级(上)期末数学试卷及答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)如图,该几何体的主视图是()A.B.C.D.2.(3分)下列函数不是反比例函数的是()A.y=B.y=C.y=5x﹣1D.xy=103.(3分)一元二次方程2x2+3x=1化为一般式后的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,14.(3分)某商品经过连续两次降价,销售单价由原来的125元降到80元.设平均每次降价的百分率为x,根据题意列出的方程是()A.125(1﹣x)2=80B.80(1﹣x)2=125C.125(1+x)2=80D.125(1﹣x2)=805.(3分)已知点C是线段AB的黄金分割点,且AB=2,AC<BC,则AC长是()A.B.﹣1C.3﹣D.6.(3分)如图,△ABC的中线BE、CF交于点O,连接EF,则的值为()A.B.C.D.7.(3分)如图,反比例函数的图象经过A(﹣1,﹣2),则以下说法错误的是()A.k=2B.x>0,y随x的增大而减小C.图象也经过点B(2,1)D.当x<﹣1时,y<﹣28.(3分)如图,在矩形ABCD中,点E为AD上一点,且AB=8,AE=3,BC=4,点P为AB边上一动点,连接PC、PE,若△P AE与△PBC是相似三角形,则满足条件的点P的个数为()A.1B.2C.3D.4二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在菱形ABCD中,AC与BD交于点O,若AC=8,BD=6,则菱形ABCD的面积为.10.(3分)已知=,且a+b=22,则a的值为.11.(3分)把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为.12.(3分)若sin A=,则锐角∠A的度数为.13.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8.若E、F是BC边上的两个动点,以EF为边的等边△EFP的顶点P在△ABC内部或边上,则等边△EFP的周长的最大值为.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)计算:4cos230°+|2﹣4|+6×.15.(5分)解方程:x(x+1)﹣x=1.16.(5分)已知:△ABC.求作:菱形DBEC,使菱形的顶点D落在AC边上.结论:.17.(6分)现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5.这六个小球除标记的数字外,其余完全相同.(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为;(2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率.18.(6分)点P在反比例函数(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,求反比例函数的表达式.19.(5分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.求证:四边形ABCD是菱形.20.(5分)如图,有一轮船在A处测得南偏东30°方向上有一小岛F,轮船沿正南方向航行至B处,测得小岛F 在南偏东45°方向上,接原方向再航行10海里至C处,测得小岛F在正东方向上,求A,B之间的距离.(结果保留根号)21.(8分)如图,路灯OP在BC左侧,路灯P距地面8米,当身高1.6米的小明在点A时影长为AM,距离灯的底部O点20米,小明沿AB所在的直线从点A行走14米到点B处时,影长为BN,(1)请你画出灯杆OP位置;(保留作图痕迹)(2)求此时人影的长度BN.22.(5分)关于x的一元二次方程x2﹣(k﹣3)x﹣2k+2=0.请说明方程实数根的情况并加以证明.23.(7分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.24.(7分)已知A(﹣3,4),B(n,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与x轴交于点C.(1)求反比例函数和一次函数的关系式;(2)连接OB,求△AOB的面积.25.(5分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣2,1)、B (1,2),C(﹣4,4).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的下方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并写出A2,B2,C2的坐标.26.(12分)问题提出:如图,在锐角△ABC中,如何作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB边上?勤奋小组同学给出了如下作法:①画一个有三个顶点落在△ABC两边上的正方形HIJK;②连接BJ,并延长交AC于点F;③过点F作EF⊥BC于点E;④过F作FG∥BC,交AB于点G;⑤过点G作GD⊥BC于点D,则四边形DEFG即为所求作的正方形.受勤奋小组同学的启发,创新小组同学认为可以在锐角△ABC中,作出长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(1)你认为勤奋小组同学的作法正确吗?请说明理由;(2)请你帮助创新小组同学在在锐角△ABC中,作出所有满足长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(在备用图中完成,不写作法,保留作图痕迹)解决问题:(3)在(2)的条件下,已知△ABC的面积为36,BC=12,求出矩形DEFG的面积.参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)如图,该几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,可得如下图形:故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.(3分)下列函数不是反比例函数的是()A.y=B.y=C.y=5x﹣1D.xy=10【分析】根据反比例函数的定义,知道反比例函数的形式有:y=(k为常数,k≠0)或y=kx﹣1(k为常数,k ≠0)或xy=k(k为常数,k≠0).【解答】解:A,C,D选项都是反比例函数的形式,故A,C,D选项都不符合题意;B选项不是反比例函数的形式,它是正比例函数,故该选项符合题意;故选:B.【点评】本题考查了反比例函数的定义,掌握反比例函数的三种形式是解题的关键.3.(3分)一元二次方程2x2+3x=1化为一般式后的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1【分析】先把方程化为一元二次方程的一般形式,再确定a、b、c.【解答】解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式为ax2+bx+c=0(a≠0).其中a、b分别是二次项和一次项系数,c为常数项.4.(3分)某商品经过连续两次降价,销售单价由原来的125元降到80元.设平均每次降价的百分率为x,根据题意列出的方程是()A.125(1﹣x)2=80B.80(1﹣x)2=125C.125(1+x)2=80D.125(1﹣x2)=80【分析】设平均每次降价的百分率为x,则原价×(1﹣x)2=现价,据此列方程.【解答】解:设平均每次降价的百分率为x,由题意得,125(1﹣x)2=80.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5.(3分)已知点C是线段AB的黄金分割点,且AB=2,AC<BC,则AC长是()A.B.﹣1C.3﹣D.【分析】根据黄金分割的定义:点C把线段AB分成两条线段AC和BC(AC<BC),且使BC是AB和AC的比例中项(即AB•BC=BC•AC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中BC=AB ≈0.618AB.【解答】解:∵点C是线段AB的黄金分割点,且AB=2,AC<BC,BC2=AC•AB(2﹣AC)2=2ACAC2﹣6AC+4=0解得AC=3+(舍去)或3﹣则AC长是3﹣.故选:C.【点评】本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.6.(3分)如图,△ABC的中线BE、CF交于点O,连接EF,则的值为()A.B.C.D.【分析】先根据三角形中位线的性质得到EF∥BC,EF=BC,则可判断△OEF∽△OBC,利用相似比得到=,然后根据比例的性质得到的值.【解答】解:∵中线BE、CF交于点O,∴EF为△ABC的中位线,∴EF∥BC,EF=BC,∴△OEF∽△OBC,∴==,∴=.故选:B.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.7.(3分)如图,反比例函数的图象经过A(﹣1,﹣2),则以下说法错误的是()A.k=2B.x>0,y随x的增大而减小C.图象也经过点B(2,1)D.当x<﹣1时,y<﹣2【分析】把A(﹣1,﹣2)代入反比例函数的解析式能求出k,把A的坐标代入一次函数的解析式得出关于k的方程,求出方程的解即可.【解答】解:把A(﹣1,﹣2)代入反比例函数的解析式得:k=xy=2,故A正确;∵k=2>0,∴y随x的增大而减小,∴x>0,y随x的增大而减小,故B正确;∵反比例函数的解析式为y=,把x=2代入求得y=1,∴图象也经过点B(2,1),故C正确;由图象可知x<﹣1时,则y>﹣2,故D错误;故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,主要考查反比例函数的性质,题目较好,难度适中.8.(3分)如图,在矩形ABCD中,点E为AD上一点,且AB=8,AE=3,BC=4,点P为AB边上一动点,连接PC、PE,若△P AE与△PBC是相似三角形,则满足条件的点P的个数为()A.1B.2C.3D.4【分析】设AP=x,则BP=8﹣x,分△P AE∽△PBC和△P AE∽△CBP两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:设AP=x,则BP=8﹣x,当△P AE∽△PBC时,=,即=,解得,x=,当△P AE∽△CBP时,=,即=,解得,x=2或6,可得:满足条件的点P的个数有3个.故选:C.【点评】本题考查了相似三角形的性质,解答时,注意分情况讨论思想的灵活运用.二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在菱形ABCD中,AC与BD交于点O,若AC=8,BD=6,则菱形ABCD的面积为24.【分析】由菱形面积公式即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∵AC=8,BD=6,∴菱形ABCD的面积为AC×BD=×8×6=24;故答案为:24.【点评】本题考查了菱形的性质;熟记菱形面积公式是解题的关键.10.(3分)已知=,且a+b=22,则a的值为12.【分析】根据题意设==k(k≠0),得出a=6k,b=5k,求出k的值,然后求出a的值即可.【解答】解:设==k(k≠0),则a=6k,b=5k,∵a+b=22,∴6k+5k=22,∴k=2,∴a=6k=6×2=12.故答案为:12.【点评】此题考查了比例的性质,根据题意设出a=6k,b=5k是解题的关键.11.(3分)把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为(x+3)2=10.【分析】根据配方法即可求出答案.【解答】解:∵x2+6x﹣1=0,∴x2+6x=1,∴(x+3)2=10,故答案为:(x+3)2=10【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.12.(3分)若sin A=,则锐角∠A的度数为30°.【分析】根据锐角三角函数值即可确定锐角的度数.【解答】解:∵sin A=,∴锐角∠A的度数为30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.13.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8.若E、F是BC边上的两个动点,以EF为边的等边△EFP的顶点P在△ABC内部或边上,则等边△EFP的周长的最大值为6.【分析】当点F与C重合时,△EFP的边长最长,周长也最长,根据30°角所对的直角边是斜边的一半可得AC =4,AP=2,再由勾股定理可得答案.【解答】解:如图,当点F与C重合时,△EFP的边长最长,周长也最长,∵∠ACB=90°,∠PFE=60°,∴∠PCA=30°,∵∠A=60°,∴∠APC=90°,△ABC中,AC=AB=4,△ACP中,AP=AC=2,∴PC===2,∴周长为2×3=6.故答案为:6.【点评】本题考查含30°角的直角三角形的性质,运用勾股定理是解题关键.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)计算:4cos230°+|2﹣4|+6×.【分析】首先代入特殊角的三角函数值,再利用绝对值的性质和二次根式的乘法法则进行计算,最后计算加减即可.【解答】解:原式=4×+4﹣2+2=4+3=7.【点评】此题主要考查了二次根式的混合运算,关键是掌握特殊角的三角函数值和绝对值的性质,注意计算顺序.15.(5分)解方程:x(x+1)﹣x=1.【分析】先移项,再将左边利用提公因式法因式分解,继而可得两个关于x的一元一次方程,分别求解即可得出答案.【解答】解:∵x(x+1)﹣x=1,∴x(x+1)﹣(x+1)=0,则(x+1)(x﹣1)=0,∴x+1=0或x﹣1=0,解得x1=1,x2=﹣1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16.(5分)已知:△ABC.求作:菱形DBEC,使菱形的顶点D落在AC边上.结论:菱形DBEC即为所求.【分析】作BC的垂直平分线交AC于点D,连接DB,再分别以点B,C为圆心,BD长为半径画弧交于点E,进而可得菱形DBEC.【解答】解:如图,菱形DBEC即为所求.故答案为:菱形DBEC即为所求.【点评】本题考查作图﹣复杂作图,菱形的判定和性质等知识,解题的关键是掌握菱形的判定和性质,属于中考常考题型.17.(6分)现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5.这六个小球除标记的数字外,其余完全相同.(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为;(2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,再由概率公式求解即可.【解答】解:(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为,故答案为:;(2)画树状图如下:共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,∴摸出的这两个小球标记的数字之和为7的概率为=.【点评】本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.18.(6分)点P在反比例函数(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,求反比例函数的表达式.【分析】先求出P点坐标,再把P点坐标代入反比例函数的解析式即可求出k的值,进而得出结论.【解答】解:∵点Q(2,4)和点P关于y轴对称,∴P点坐标为(﹣2,4),将(﹣2,4)代入解析式得,k=xy=﹣2×4=﹣8,∴反比例函数解析式为.【点评】本题考查的是待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.19.(5分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.求证:四边形ABCD是菱形.【分析】根据菱形的判定方法可得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,∵△ACE是等边三角形,∴EA=EC,∴BE⊥AC,∴平行四边形ABCD是菱形.【点评】本题考查了菱形的判定,等边三角形的性质,平行四边形的性质,熟练掌握菱形的判定方法是解题的关键.20.(5分)如图,有一轮船在A处测得南偏东30°方向上有一小岛F,轮船沿正南方向航行至B处,测得小岛F 在南偏东45°方向上,接原方向再航行10海里至C处,测得小岛F在正东方向上,求A,B之间的距离.(结果保留根号)【分析】根据等腰直角三角形的性质求出CF,根据正切的定义求出AC,结合图形计算,得到答案.【解答】解:在Rt△BCF中,∠BFC=45°,∴CF=BC=10,在Rt△ACF中,tan∠CAF=,即=,解得,AC=10,∴AB=AC﹣BC=10(﹣1),答:A,B之间的距离为10(﹣1)海里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.21.(8分)如图,路灯OP在BC左侧,路灯P距地面8米,当身高1.6米的小明在点A时影长为AM,距离灯的底部O点20米,小明沿AB所在的直线从点A行走14米到点B处时,影长为BN,(1)请你画出灯杆OP位置;(保留作图痕迹)(2)求此时人影的长度BN.【分析】(1)小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化;(2)证明△BCN∽△OPN,推出,由此可得结论.【解答】解:(1)如图即为所求.(2)解:∵OA=20米,AB=14米,∴OB=20﹣14=6(米).∵BC∥OP,∴△BCN∽△OPN,∴,即,解得BN=1.5(米)答:人影的长度为1.5米.【点评】本题考查的是相似三角形的应用,测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.22.(5分)关于x的一元二次方程x2﹣(k﹣3)x﹣2k+2=0.请说明方程实数根的情况并加以证明.【分析】方程总有两个实数根.计算方程根的判别式,利用根的判别式的符号进行证明即可.【解答】解:方程总有两个实数根.理由如下:∵Δ=b2﹣4ac=(k﹣3)2﹣4(﹣2k+2)=k2﹣6k+9+8k﹣8=k2+2k+1=(k+1)2≥0.所以方程总有两个实数根.【点评】此题考查了根的判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.23.(7分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.(7分)已知A(﹣3,4),B(n,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与x轴交于点C.(1)求反比例函数和一次函数的关系式;(2)连接OB,求△AOB的面积.【分析】(1)把A点坐标代入反比例函数解析式可求得反比例函数解析式,则可求得B点坐标,再由A、B两点坐标可求得一次函数解析式;(2)根据一次函数解析式可求得C点的坐标,则可求得OC的长度,且根据S△AOB=S△AOC+S△BOC可求得△AOB 的面积.【解答】解:(1)∵A(﹣3,4)在反比例函数y=的图象上,∴m=﹣3×4=﹣12,∴反比例函数的关系式为y=﹣,又∵B(n,﹣2)在反比例函数y=的图象上,∴n=6,又∵B(6,﹣2),A(﹣3,4)是一次函数y=kx+b的上的点,∴,解得,∴一次函数的关系式为y=﹣x+2;(2)在y=﹣x+2中,令y=0,则x=3,∴C(3,0),∴CO=3,∴S△AOB=S△AOC+S△BOC=×3×4+=9.【点评】本题主要考查待定系数法求函数解析式,三角形的面积,掌握待定系数法求函数解析式的关键是求得点的坐标.25.(5分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣2,1)、B (1,2),C(﹣4,4).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的下方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并写出A2,B2,C2的坐标.【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)根据位似变换的定义分别作出三个顶点的对应点,再首尾顺次连接即可.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求,A2(4,﹣2),B2(﹣2,﹣4),C2(8,﹣8).【点评】本题主要考查作图—位似变换、轴对称变换,解题的关键是掌握位似变换与旋转变换的定义及性质.26.(12分)问题提出:如图,在锐角△ABC中,如何作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB边上?勤奋小组同学给出了如下作法:①画一个有三个顶点落在△ABC两边上的正方形HIJK;②连接BJ,并延长交AC于点F;③过点F作EF⊥BC于点E;④过F作FG∥BC,交AB于点G;⑤过点G作GD⊥BC于点D,则四边形DEFG即为所求作的正方形.受勤奋小组同学的启发,创新小组同学认为可以在锐角△ABC中,作出长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(1)你认为勤奋小组同学的作法正确吗?请说明理由;(2)请你帮助创新小组同学在在锐角△ABC中,作出所有满足长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(在备用图中完成,不写作法,保留作图痕迹)解决问题:(3)在(2)的条件下,已知△ABC的面积为36,BC=12,求出矩形DEFG的面积.【分析】(1)由正方形的性质得出IJ=KJ,KJ∥BC,由平行线分线段成比例定理得出,则GF=EF,可得出结论;(2)按题意画出图形即可;(3)若DE=2DG,设AN=x,则MN=6﹣x,证明△AGF∽△ABC,由相似三角形的性质得出,则,求出x=3,若DG=2DE,可求出x=,则可得出答案.【解答】解:(1)正确.理由:∵EF⊥BC,BC⊥GD,∴∠FED=∠EDG=90°,∵FG∥BC,∴∠EFG=180°﹣∠FED=90°,∴四边形DEFG是矩形,∵四边形HIJK是正方形,∴IJ=KJ,KJ∥BC,∴,∴GF=EF,∴四边形DEFG为正方形;(2)如图1和图2,矩形DEFG为所作.(3)如图3,作△ABC的高AM,交GF于点N,∵△ABC的面积=BC•AM=×12×AM=36,∴AM=6,∵DE=2DG,设AN=x,则MN=6﹣x,DG=MN=6﹣x,DE=GF=2(6﹣x)=12﹣2x,∵GF∥BC,∴△AGF∽△ABC,∴,∴,解得x=3,∴DG=6﹣x=3,∴DE=2DG=6,∴矩形DEFG的面积=6×3=18,同理,在矩形DEFG中,若DG=2DE,可求出x=,∴DG=6﹣x=,DE=,∴矩形DEFG的面积==,故矩形DEFG的面积为18或.【点评】此题是四边形综合题,考查了相似三角形的判定与性质、正方形的判定与性质、矩形的性质等知识.解题时注意数形结合思想与方程思想的应用,注意准确作出辅助线是解此题的关键.。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.如图所示的几何体的俯视图是()A .B .C .D .2.已知反比例函数ky x的图象经过点(﹣3,6),则k 的值是()A .﹣18B .﹣2C .2D .183.方程x 2=3x 的解为()A .x =3B .x =0C .x 1=0,x 2=﹣3D .x 1=0,x 2=34.如图,△ABO ∽△CDO ,若BO =8,DO =4,CD =3,则AB 的长是()A .2B .3C .4D .65.如图,l 1∥l 2∥l 3,直线a ,b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F ,若AB :AC=2:5,DE =6,则EF 的长是()A .15B .10C .9D .26.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数ky x=(x >0)的图象经过顶点B ,则k 的值为()A .12B .16C .20D .327.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A .3.2米B .4.8米C .5.2米D .5.6米8.关于x 的方程230x x n -+=有两个不相等的实数根,则n 的取值范围是()A .n <94B .n ≤94C .n >94-D .n >949.在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A′的坐标是()A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1)10.已知反比例函数y =abx的图象如图所示,则二次函数y =ax 2-2x 和一次函数y =bx+a 在同一平面直角坐标系中的图象可能是()A .B .C .D .二、填空题11.若32b a =,则a b b +的值等于__.12.若两个相似三角形的相似比是1:2,则它们的周长比是________.13.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外都相同.搅匀后从中任意摸出一个球,记下颜色再把它放回盒子中.不断重复实验多次后,摸到黑球的频率逐渐稳定在0.2左右.则据此估计盒子中大约有白球___________个.14.已知关于x 的一元二次方程20x x k -+=的一个根是2,则k 的值是______.15.如图,已知 ABC ∽ AMN ,点M 是AC 的中点,AB =6,AC =8,则AN =_____.16.端午节期间,某食品专卖店准备了一批粽子,每盒利润为50元,平均每天可卖300盒,经过调查发现每降价1元,可多销售10盒,为了尽快减少库存,决定采取降价措施,专卖店要想平均每天盈利16000元,设每盒粽子降价x 元,可列方程________.17.已知,一次函数1y x =-+与反比例函数2y x=-的图象交于点A 、B ,在x 轴上存在点P (n ,0),使△ABP 为直角三角形,则P 点的坐标是______.18.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题19.解方程:2450x x --=.20.如图,在平行四边形ABCD 中,点P 是AB 边上一点(不与A ,B 重合),过点P 作PQ ⊥CP ,交AD 边于点Q ,且∠QPA =∠PCB .求证:四边形ABCD 是矩形.21.如图,D 、E 、F 分别是ABC 各边的中点,连接DE 、EF 、AE .(1)求证:四边形ADEF 为平行四边形;(2)加上条件后,能使得四边形ADEF 为菱形,请从①90BAC ∠=︒;②AE 平分BAC ∠;③AB AC =,这三个条件中选择一个条件填空(写序号),并加以证明.22.2016年,某楼盘以每平方米8000元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米6480元()1求平均每年下调的百分率;()2假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款40万元,张强的愿望能否实现?为什么?(房价每平方米按照均价计算)23.如图,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的1 3?(2)经过几秒,△PCQ与△ACB相似?24.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.25.如图是一矩形广告牌ACGE,2AE 米,为测量其高度,某同学在B处测得A点仰角为45︒,该同学沿GB 方向后退6米到F 处,此时测得广告牌上部灯杆顶端P 点仰角为37︒.若该同学眼睛离地面的垂直距离为1.7米,灯杆PE 的高为2.25米,求广告牌的高度(AC 或EG 的长).(精确到1米,参考数据:sin 370.6︒≈,tan370.75︒≈)26.如图,在▱ABCD 中过点A 作AE ⊥DC ,垂足为E ,连接BE ,F 为BE 上一点,且∠AFE=∠D .(1)求证:△ABF ∽△BEC ;(2)若AD=5,AB=8,sinD=45,求AF 的长.27.已知C 、D 是双曲线()0ky k x=>上的两点,过点C 作CA ⊥x 轴点A ,过点D 作DE ⊥x 轴点E ,交OC 于点F .(1)如图1,若点D 坐标为(1,1),OE :OA=1:3,则DOF S =(2)如图2,延长OD ,AC 相交于点B ,若点D 为OB 的中点.①当6OBCS = ,求k 的值;②若点C 的坐标是(6,1),试求四边形DFCB 的面积.参考答案1.A2.A3.D4.D5.C6.D7.B8.A9.D 10.C11.53或者5:312.1:2 13.16 14.-215.16316.()()503001016000x x -+=17.(3,0)或(-3,0)或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.60.19.125,1x x ==-【详解】解:2450x x --=(5)(1)0x x -+=50x ∴-=或10x +=解得:125,1x x ==-.20.见解析【分析】根据垂直的性质可得90QPC ∠=︒,利用各角之间的等量关系可得90B ∠=︒,再由矩形的判定定理即可证明.【详解】证明:∵PQ CP ⊥,∴90QPC ∠=︒,∴1809090QPA BPC ∠+∠=︒-︒=︒,∵QPA PCB ∠=∠,∴90BPC PCB ∠+∠=︒,∴()18090B BPC PCB ∠=︒-∠+∠=︒,∵四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.21.(1)见解析;(2)②或③,见解析【分析】(1)先证明//EF AB ,根据平行的传递性证明EF //AD ,即可证明四边形ADEF 为平行四边形.(2)选②AE 平分BAC ∠,先证明DAE FAE ∠=∠,由四边形ADEF 是平行四边形ADEF ,得出AF EF =,即可证明平行四边形ADEF 是菱形.选③AB AC =,由//DE AC 且12DE AC =,AB AC =得出EF DE =,即可证明平行四边形ADEF 是菱形.【详解】(1)证明:已知D 、E 是AB 、BC 中点∴//DE AC又∵E 、F 是BC 、AC 的中点∴//EF AB ∵//DE AF ∴EF //AD∴四边形ADEF 为平行四边形(2)证明:选②AE 平分BAC ∠∵AE 平分BAC ∠∴DAE FAE ∠=∠又∵平行四边形ADEF ∴//EF DA ∴=∠∠FAE AEF ∴AF EF=∴平行四边形ADEF 是菱形选③AB AC =∵//EF AB 且12EF AB =//DE AC 且12DE AC =又∵AB AC =∴EF DE=∴平行四边形ADEF 为菱形故答案为:②或③【点睛】本题考查菱形的判定、平行四边形的性质及判定,熟练进行角的转换是关键,熟悉菱形的判定是重点.22.(1)平均每年下调的百分率为10%;(2)能,理由见解析【分析】(1)根据增长率问题的列式方法列出一元二次方程,解方程;(2)根据第一问求出的增长率算出2019年的房价,看张强的钱是否足够.【详解】解:()1设平均每年下调的百分率为x ,()2800016480x -=,解得:120.110%, 1.9x x ===(不合题意舍去),答:平均每年下调的百分率为10%;()()26480110%10058320058.32-⨯==,由于20406058.32+=>,所以张强的愿望能实现.【点睛】本题考查一元二次方程的应用题,解题的关键是掌握增长率问题的列式方法.23.(1)2秒或4秒;(2)125秒或1811秒【分析】(1)分别表示出线段PC 和线段CQ 的长后利用S △PCQ =13S △ABC 列出方程求解;(2)设运动时间为ts ,△PCQ 与△ACB 相似,当△PCQ 与△ACB 相似时,则有CP CQ=CA CB或CP CQ=CB CA,分别代入可得到关于t 的方程,可求得t 的值.【详解】解:(1)设经过x 秒△PCQ 的面积为△ACB 的面积的13,由题意得:PC=2xm ,CQ=(6﹣x )m ,则12×2x (6﹣x )=13×12×8×6,解得:x=2或x=4.故经过2秒或4秒,△PCQ 的面积为△ACB 的面积的13;(2)设运动时间为ts ,△PCQ 与△ACB 相似.当△PCQ 与△ACB 相似时,则有CP CQ =CA CB 或CP CQ=CB CA,所以2686t t -=,或2668t t -=,解得t=125,或t=1811.因此,经过125秒或1811秒,△OCQ 与△ACB 相似;24.(1)见解析(2)四边形CEFG 的面积为203.【分析】(1)根据题意和翻折的性质,可以得到△BCE ≌△BFE ,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF 的长,进而求得EF 和DF 的值,从而可以得到四边形CEFG 的面积.(1)证明:由题意可得,△BCE ≌△BFE ,∴∠BEC=∠BEF ,FE=CE ,∵FG ∥CE ,∴∠FGE=∠CEB ,∴∠FGE=∠FEG ,∴FG=FE ,∴FG=EC ,∴四边形CEFG 是平行四边形,又∵CE=FE ,∴四边形CEFG 是菱形;(2)解:∵矩形ABCD 中,AB=6,AD=10,BC=BF ,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x ,则CE=x ,DE=6-x ,∵∠FDE=90°,∴22+(6-x )2=x 2,解得,x=103,∴CE=103,∴四边形CEFG 的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.广告牌的高度为17米【分析】首先延长DH 交EG 于M ,交AC 于N ,构造直角三角形,可得到EM AN =,设AN x =,表示出PM,在Rt AND ∆中得到AN ND x ==,628MH x x =++=+,在Rt PHM ∆中运用勾股定理求解即可.【详解】依题意:6DH BF ==米, 1.7DB HF ==米, 2.25PE =米,如图设直线DH 交EG 于M ,交AC 于N ,则EM AN =.设AN x =m 则 2.25PM x =+,在Rt AND ∆中,∵45ADN ∠=︒,∴AN ND x ==,∵2AE MN ==,则628MH x x =++=+,在Rt PHM ∆中,∵tan 37PM MH ︒=,∴ 2.250.758x x +≈+,解得15x ≈,∴15 1.717AC AN NC =+=+≈(米),∴广告牌的高度为17米.【点睛】本题考查了解直角三角形的应用仰角俯角的问题,准确构造直角三角形和找准角度是解题的关键.26.(1)证明见解析;(2)【分析】(1)由平行四边形的性质得出AB ∥CD ,AD ∥BC ,AD=BC ,得出∠D+∠C=180°,∠ABF=∠BEC ,证出∠C=∠AFB ,即可得出结论;(2)由勾股定理求出BE ,由三角函数求出AE ,再由相似三角形的性质求出AF 的长.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AD=BC ,∴∠D+∠C=180°,∠ABF=∠BEC ,∵∠AFB+∠AFE=180°,∴∠C=∠AFB ,∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:==在Rt △ADE 中,AE=AD•sinD=5×45=4,∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴AF AB BC BE=,即5AF =解得:.27.(1)49;(2)①4;②274【分析】(1)将D 代入双曲线解析式中求出k ,根据反比例函数k 的几何意义和相似三角形的性质求解即可;(2)①设D (m ,k m),则可求得点B 、C 的坐标,根据反比例函数k 的几何意义和OBC ABC OAC S S S =- 列出k 的方程求解即可;②根据点C 坐标可得出OA ,进而可求得OE 和点B 、D 的坐标,根据相似三角形的性质可求得EF 和DF ,利用梯形的面积公式求解即可.【详解】解(1)将D (1,1)代入k y x =,得k=1,∴11||22ODE OAC S S k === ,∵CA ⊥x 轴,DE ⊥x 轴,∴DE ∥AC ,∵OE :OA=1:3,∴△OEF ∽△OAC ,∴19OEF OAC S S = ,∴1112918OEF S =⨯= ,∴1142189DOF S =-= ;(2)①设D (m ,km ),∵点D 为OB 的中点,∴B (2m ,2k m ),C (2m ,2km ),∵6OBC ABC OAC S S S -== ,∴2112622k m k m ⨯⨯-=,∴4k =;②∵点C (6,1),∴OA =6,AC=1,∵点D 是OB 的中点,DE ∥AC ,D 在反比例函数6y x =上,∴OE =12OA =3,点D (3,2),∴点B (6,4),DE=2,又∵△OEF ∽△OAC ,∴12EFAC =,∴EF=12,∴DF =2-12=32,BC =3,EA =3∴四边形DFCB 的面积=312733224+⨯⨯=().。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列长度的各组线段中,能构成比例的是()A .2,5,6,8B .3,6,9,18C .1,2,3,4D .3,6,7,92.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象都经过点A (2,﹣1),若y 1>y 2,则x 的取值范围是()A .﹣1<x <0B .x >2C .﹣2<x <0或x >2D .x <﹣2或0<x <23.关于反比例函数y =﹣3x,下列说法错误的是()A .图象经过点(1,﹣3)B .图象分布在第一、三象限C .图象关于原点对称D .图象与坐标轴没有交点4.如图,在Rt ABC 中,90ABC ∠=︒,点F 为AC 中点,DE 是ABC 的中位线,若6DE =,则BF =()A .6B .4C .3D .55.已知1x =是关于x 的方程22(1)10k x k x -+-=的根,则常数k 的值为()A .0B .1C .0或1D .0或-18.6.关于x 的一元二次方程210kx x -+=有两个不相等的实数根,则k 的取值范围是A .14k <B .14k >C .14k <且0k ≠D .14k >且0k ≠7.某企业今年1月份产值为x 万元,2月份的产值比1月份减少了10%,则2月份的产值是()A .(1﹣10%)x 万元B .(1﹣10%x )万元C .(x ﹣10%)万元D .(1+10%)x 万元8.下列说法正确的是()A .对角线互相垂直的四边形是菱形B .矩形的对角线互相垂直C .一组对边平行的四边形是平行四边形D .四边相等的四边形是菱形9.如图,在正方形OABC 中,OA =6,点E 、F 分别在边BC ,BA 上,OE =,若∠EOF=45°,则点F 的纵坐标为()A .2B .53C D 1-10.如图,在△ABC 中,DE ∥BC ,AD =9,DB =3,CE =2,则AC 的长为()A .6B .7C .8D .9二、填空题11.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段,当图中存在30 角时,AE 的长为__________厘米.12.已知y 与2x+1成反比例,且当x=1时,y=2,那么当x=﹣2时,y=______.13.在一只不透明的口袋中放入红球6个,黑球2个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n=__.14.如图,在平面直角坐标系中,边长为4的等边△OAB 的OA 边在x 轴的正半轴上,反比例函数y=k x(x >0)的图象经过AB 边的中点C ,且与OB 边交于点D ,则点D 的坐标为_____.15.如图,已知在ABC 中,90ACB ∠=︒,2AC =,4BC =.D 为ABC 所在平面内的一个动点,且满足90BDC ∠=︒,E 为线段AD 的中点,连结CE ,则线段CE 长的最大值为______.16.如图,矩形ABOC 的面积为3,反比例函数y =k x的图象过点A ,则k =_____.17.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____.三、解答题18.解方程(1)3x 2+8x +4=0(配方法)(2)2310x x --=(公式法)(3)4x (2x +1)=3(2x +1)(4)3x 2-x -2=019.设一元二次方程260x x k -+=的两根分别为1x 、2x .(1)若12x =,求2x 的值;(2)若5k =,且1x 、2x 分别是Rt ABC ∆的两条直角边的长,试求Rt ABC ∆的面积.20.如图,在平行四边形ABCD 中,ABD ∠的平分线BE 交AD 于点E ,CDB ∠的平分线DF 交BC 于点F .求证:四边形DEBF 是平行四边形.21.如图,E 是矩形ABCD 的边BC 延长线上的一点,连接AE ,交CD 于F ,把ABE ∆沿CB 向左平移,使点E 与点C 重合,ADF CBG ∆≅∆吗?请说明理由.22.如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF =BE .(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若∠AED =90°,AB =4,BE =2,求四边形AEFD 的面积.23.如图,A 是反比例函数k y x=()0k <图象上的一点,过点A 作AB x ⊥轴于点B ,连0A ,AOB 的面积为2,点A 的坐标为()1,m -.(1)求反比例函数的解析式.(2)若一次函数3y ax =+的图象经过点A ,交双曲线的另一支于点()4,C n ,交y 轴于点D ,若y 轴上存在点P ,使PAC △的面积为5,求点P 的坐标.24.在抗击“新冠病毒”期间,某路口利用探测仪对过往的物体进行检查,探测仪A 测得某物体的仰角∠BAD =35°,俯角∠DAC =45°,探测仪到货物表面的距离AD =3米,求货物高BC 的长.(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,结果精确到0.1)25.如图,点P 是正方形ABCD 对角线AC 上一动点,点E 在射线BC 上,且PE =PB ,连接PD ,O 为AC 中点.(1)如图1,当点P 在线段AO 上时,试猜想PE 与PD 的数量关系和位置关系.(2)①如图2,当点P 在线段OC 上时,(1)中的猜想还成立吗?请说明理由.②图2,试用等式来表示PB 、BC 、CE 之间的数量关系,并证明.参考答案1.B【解析】分析:分别计算各组数中最大与最小数的积和另外两数的积,然后根据比例线段的定义进行判断.详解:∵3×18=6×9,∴3,6,9,18成比例.故选B .点睛:本题考查了比例线段:判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.2.D【解析】如图,∵点A 坐标(2,﹣1),又∵正比例函数y 1=k 1x 和反比例函数y 2=2k x都是关于原点对称,∴它们的交点A 、B 关于原点对称,∴点B坐标(﹣2,1),∴由图象可知,y1>y2时,x<﹣2,或0<x<2,故选D.3.B【解析】【分析】反比例函数y=kx(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.根据反比例函数的性质并结合其对称性对各选项进行判断.【详解】A、把点(1,﹣3)代入函数解析式,﹣3=﹣3,故本选项正确,不符合题意,B、∵k=﹣2<0,∴图象位于二、四象限,且在每个象限内,y随x的增大而增大,故本选项错误,符合题意,C、反比例函数的图象可知,图象关于原点对称,故本选项正确,不符合题意D、∵x、y均不能为0,故图象与坐标轴没有交点,故本选项正确,不符合题意.故选:B.【点睛】本题主要考查的是反比例函数的性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.A【分析】由DE是ABC的中位线,可得AC=12,在Rt ABC中,点F为AC中点,可得BF=6即可.【详解】解:∵DE是ABC的中位线,∴AC=2DE=2×6=12,∵在Rt ABC 中,90ABC ∠=︒,点F 为AC 中点,∴BF =1112622AC =⨯=,故选择A .【点睛】本题考查三角形中位线与三角形中线性质,掌握三角形中位线与三角形中线性质是解题关键.5.C【详解】试题分析:①当1k =时,方程22(1)10k x k x -+-=为一元一次方程,解为1x =;②1k ≠时,方程22(1)10k x k x -+-=为一元二次方程,把1x =代入方程22(1)10k x k x -+-=可得:2110k k -+-=,即20k k -=0,可得(1)0k k -=,即k=0或1(舍去);故选C .考点:一元二次方程的解.6.C【分析】根据一元二次方程kx 2-x+1=0有两个不相等的实数根,知△=b 2-4ac >0,然后据此列出关于k 的方程,解方程即可.【详解】解:∵kx 2-x+1=0有两个不相等的实数根,∴△=1-4k >0,且k≠0,解得,k <14且k≠0;故答案是:k <14且k≠0.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.解题时,注意一元二次方程的“二次项系数不为0”这一条件.7.A【分析】1、本题属于列代数式的题目,解答此类题目首先要弄清楚语句中各个量之间的关系;2、细查题意,由2月份比1月份减少了10%先表示出2月份的产值为(1-10%)x 万元.【详解】由2月份比1月份减少了10%得2月份的产值是(1-10%)x 万元.故答案选A.【点睛】本题考查了列代数式,解题的关键是弄清楚题目中各个量之间的关系.8.D【详解】选项A ,菱形的对角线互相垂直,当对角线互相垂直的四边形不一定是菱形;选项B ,矩形的对角线相等但不一定垂直;选项C ,一组对边平行且相等的四边形是平行四边形;选项D ,四边相等的四边形是菱形.故选D.9.A【分析】延长BA 到点M ,使AM =CE ,连接OM ,由题意易得△OCE ≌△OAM ,则有OE =OM ,∠COE =∠AOM ,然后可得∠EOF =∠MOF ,进而可得△EOF ≌△MOF ,则有FM =EF ,根据勾股定理可得CE =3,设AF =x ,则EF =3+x ,BE =3,BF =6-x ,最后根据勾股定理建立方程求解即可.【详解】解:延长BA 到点M ,使AM =CE ,连接OM ,如图所示:∵四边形OABC 是正方形,OA =6,∴6,90OA OC AB BC OCE OAM OAF B COA ====∠=∠=∠=∠=∠=︒,∴△OCE ≌△OAM ,∴OE =OM ,∠COE =∠AOM ,∵∠EOF =45°,∴45COE AOF ∠+∠=︒,∴45AOM AOF ∠+∠=︒,∴∠EOF =∠MOF ,∵OF =OF ,OE =OM ,∴△EOF ≌△MOF (SAS ),∴EF FM AF AM AF CE ==+=+,∵OE =∴在Rt △OEC 中,3CE ==,设AF =x ,则EF =3+x ,BE =3,BF =6-x ,∴在Rt △EBF 中,222BE BF EF +=,∴()()222363x x +-=+,解得:2x =,∴点F 的纵坐标为2;故选A .【点睛】本题主要考查正方形的性质、勾股定理及图形与坐标,熟练掌握正方形的性质、勾股定理及图形与坐标是解题的关键.10.C【分析】利用平行线分线段成比例定理得到=AD AE DB EC ,利用比例性质求出AE ,然后计算AE +EC 即可.【详解】解:∵DE ∥BC ,∴=AD AE DB EC ,即9=32AE ,∴AE =6,∴AC =AE +EC =6+2=8.故选:C .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.11.3或8-【分析】分∠ABE=30°或∠AEB=30°或∠ABA′=30°时三种情况,利用锐角三角函数进行求解即可.【详解】解:当∠ABE=30°时,∵AB=4cm ,∠A=90°,∴AE=AB·tan30°=3cm ;当∠AEB=30°时,则∠ABE=60°,∵AB=4cm ,∠A=90°,∴AE=AB·tan60°=;当∠ABE=15°时,∠ABA′=30°,延长BA′交AD 于F ,如下图所示,设AE=x ,则EA′=x ,sin 603x EF ==︒,∵AF=AE+EF=ABtan30°=3,∴x +,∴8x =-∴8AE =-cm .故答案为:3或8-【点睛】本题考查了矩形与折叠,以及分类讨论的数学思想,分类讨论是解答本题的关键.12.-2【解析】试题分析:设反比例函数的解析式为:y=2r1,根据题意可得y=62r1,当x=-2时,y=-2.考点:待定系数法求反比例函数解析式.【详解】试题分析:随机从口袋中摸出一个恰好是黄球的概率为13,说明黄球的数目是口袋中所有球的数目的13,则可列方程:1623n n =++,解得:n=4.考点:概率的定义.14.3)【分析】由等边三角形的性质可求出B (2,,然后由中点坐标公式求出C (3,从而可求出反比例函数解析式,再求出直线OB 的解析式,然后与反比例函数解析式联立可求出点D 的坐标.【详解】∵△AOB 是等边三角形,边长为4,∴B (2,,∵BC =CA ,∴C (3),把点C 坐标代入k y x=上,得到k∵直线OB 的解析式为y,由y y x ⎧=⎪⎨=⎪⎩,解得3x y ⎧=⎪⎨=⎪⎩或3x y ⎧=⎪⎨=-⎪⎩∴D3),3).【点睛】本题考查了等边三角形的性质,待定系数法求函数关系式,反比例函数与一次函数的交点,求出反比例函数与直线OB 的解析式是解答本题的关键.15.1+取BC 的中点O ,连接OA 、OD ,取AO 中点M ,连接CM 、EM ,根据三角形斜边上的中线性质得出122OD BC ==,再根据三角形中位线性质得出112EM OD ==,然后根据勾股定理及角形斜边上的中线性质得出12CM OA ==最后根据两点之间线段最短即可得出答案.【详解】解:取BC 的中点O ,连接OA 、OD ,取AO 中点M ,连接CM 、EM在Rt △CDB 中,O 为斜边BC 的中点122OD BC ∴==在△AOD 中,AE =DE ,AM =OM 112EM OD ∴==在Rt △ACO 中,AC =OC =2AO ∴==∴12CM OA ==在△CME 中,1CE CM EM ≤+即CE 1.1.【点睛】本题考查了直角三角形斜边上的中线性质、三角形中位线性质、勾股定理、两点之间线段最短等知识点,熟练掌握性质定理和添加合适的辅助线是解题的关键.16.-3【分析】根据比例系数k 的几何含义:在反比例函数y=k x的图象中任取一点,过这一个点向x 轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|即可解题.【详解】解:∵矩形ABOC 的面积为3,∴|k|=3.∴k=±3.又∵点A 在第二象限,∴k<0,∴k=−3.故答案为−3.【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,属于简单题,熟悉反比例函数的图像和性质是解题关键.17.2m ≠【分析】根据一元二次方程的定义ax 2+bx+c=0(a≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.18.(1)x 1=23-,x 2=2-;(2)x 1=32+,x 2=32;(3)x 1=34,x 2=12-;(4)x 1=1,x 2=23-【分析】(1)将方程常数项移到右边,未知项移到方程左边,方程两边同时除以3将二次项系数化为1,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解;(2)化成一般形式后用公式法解比较方便;(3)把右边的项移到左边,用提公因式的方法因式分解解方程;(4)化成一般形式后用公式法解比较方便;【详解】解:(1)23840x x ++=,∴2384x x +=-,∴28433x x +=-,∴28164163939x x ++=-+,∴24439x ⎛⎫+= ⎪⎝⎭,∴4233x +=±,解得:x 1=23-,x 2=2-;(2)2310x x --=,则a =1,b =-3,c =-1,∵b 2-4ac =9+4=13>0,∴x解得:x 1,x 2(3)()()421321x x x +=+,∴()()4213210x x x +-+=,∴()()04321x x -+=,∴4x -3=0或2x +1=0,解得:x 1=34,x 2=12-;(4)2320x x --=,则a =3,b =-1,c =-2,∵b 2-4ac =1+24=25>0,∴x ,解得:x 1=1,x 2=23-.【点睛】此题考查了解一元二次方程-配方法、公式法及因式分解法,利用因式分解法解方程时,首先将方程右边化为0,左边的多项式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.19.解:(1)24x =(2)2.5.【分析】(1)利用根与系数的关系12b x x a +=-求解;(2)解一元二次方程,然后利用三角形面积公式进行计算求解.【详解】解:∵一元二次方程260x x k -+=的两根分别为1x 、2x ∴12b x x a +=-,即226x +=∴24x =;(2)当5k =时,2650x x -+=解得:121,5x x ==∵1x 、2x 分别是Rt ABC ∆的两条直角边的长∴115 2.52Rt ABC S ∆=⨯⨯=【点睛】本题考查一元二次方程根与系数的关系及解一元二次方程,掌握公式和解方程的一般步骤正确计算是本题的解题关键.20.详见解析【分析】根据平行四边形性质得出AB=CD ,∠A=∠C .求出∠ABD=∠CDB .推出∠ABE=∠CDF ,根据ASA 推出△ABE ≌△CDF 即可证得DE=BF ;再又DE ∥BF 可得.【详解】证明:在□ABCD 中,AB=CD ,∠A=∠C,AD=BC .∵AB ∥CD ,∴∠ABD=∠CDB .∵BE 平分∠ABD ,DF 平分∠CDB ,∴∠ABE=12∠ABD ,∠CDF=12∠CDB .∴∠ABE=∠CDF .∵在△ABE 和△CDF 中,A C AB DC ABE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△CDF (ASA ).∴AE=CF∴AD-AE=BC-CF,即DE=BF又AD ∥BC∴四边形DEBF 是平行四边形【点睛】本题考查了平行线的性质,平行四边形的性质和判定,全等三角形的性质和判定,角平分线定义等知识点的应用,熟练运用平行四边形的判定和性质是关键.21.见解析【解析】【分析】根据平移的性质得到∠GCB=∠DAF ,然后利用ASA 证得两三角形全等即可.【详解】解:△ADF ≌△CBG ;理由:∵把△ABE 沿CB 向左平移,使点E 与点C 重合,∴∠GCB=∠E ,∵四边形ABCD 是矩形,∴∠E=∠DAF ,∴∠GCB=∠DAF ,在△ADF 与△CBG 中,90D GBC GCB DAF BC AD ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ADF ≌△CBG (ASA ).【点睛】本题考查了矩形的性质及全等三角形的判定等知识,解题的关键是了解矩形的性质与平移的性质,难度不大.22.(1)见解析;(2)40【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD 是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+CF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD =2=10,∵AB =4,∴四边形AEFD 的面积=AB ×AD =4×10=40.【点睛】本题考查了矩形的性质,平行四边形的性质与判定,相似三角形的性质与判定,掌握以上知识点是解题的关键.23.(1)4y x=-;(2)点P 的坐标为()0,1或()0,5.【分析】(1)根据反比例函数系数的几何意义,利用△AOB 的面积即可求出m 值,然后把点A 的坐标代入反比例函数解析式,计算即可得到k 的值.(2)先一次函数的解析式,再求出点C 坐标为(4,−1),设P 点坐标为(0,c ),根据题意有:113134522c c ⨯-⨯+⨯-⨯=,解方程即可求得.【详解】解:(1)依题意得1122m ⨯⨯=,∴4m =,∴()1,4A -,把点()1,4A -代入k y x=得41k =-,∴4k =-,∴反比例函数解析式为4y x =-;(2)∵()1,4A -,代入一次函数3y ax =+,得4=-a +3,解得a =-1∴3y x =-+令x =0,y =3,∴D (0,3)将点()4,C n 代入4y x=-,得:1n =-,则点C 坐标为()41-,,设点P 坐标为()0,c ,∴PD =3c -PAC △的面积为5,∴113134522c c ⨯-⨯+⨯-⨯=,解得:1c =或5c =,则点P 的坐标为()0,1或()0,5.【点睛】本题考查了反比例函数和一次函数图象的交点问题,反比例函数系数的几何意义,反比例函数图象上点的坐标特征,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,三角形的面积是12|k |.24.这件货物高约5.1米.【分析】根据解直角三角形的解法得出BD ,CD 的长即可.【详解】解:∵tan ∠BAD =BD AD ,tan ∠CAD =CD AD ,∴BD =AD tan ∠BAD =3×tan35°≈2.1,CD =AD tan ∠CAD =3×1=3,∴BC =BD +CD =2.1+3=5.1(米)答:这件货物高约5.1米.【点睛】本题主要考查了解直角三角形的应用,关键是根据题意作出辅助线,构造直角三角形.25.(1)PD =PE 且PD ⊥PE ,理由见详解;(2)①(1)中猜想成立,理由见详解;②2222BC CE PB +=,证明见详解.【分析】(1)根据点P 在线段AO 上,利用三角形的全等判定可以得出问题;(2)①利用三角形全等得出BP =PD ,由PB =PE 可得PE =PD ,要证PE ⊥PD 可从三方面分析,当点E 在线段BC 上(E 与B 、C 不重合)时,当点E 与点C 重合时,点P 恰好在AC 中点处,当点E 在BC 的延长线上时,分别分析即可求解;②连接DE ,由①知PE =PD ,PE ⊥PD ,由勾股定理可得22222DE PD PE PE =+=,由四边形ABCD 是正方形可得BC =DC ,∠BCD =∠DCE =90°,根据222DC CE DE +=知22222BC CE DE PE +==,然后结合PE =PB 可求解.【详解】解:(1)PD=PE且PD⊥PE,理由如下:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°,∵PC=PC,∴△BCP≌△DCP(SAS),∴PB=PD,∠PBC=∠PDC,∵PE=PB,∴PD=PE,∠PBC=∠PEB,∴∠PDC=∠PEB,∴∠PDC+∠PEC=180°,由四边形PECD内角和为360°,∴∠DPE+∠DCE=180°,∵∠DCE=90°,∴∠DPE=90°,∴PD=PE且PD⊥PE;(2)①(1)中结论仍成立,理由如下:∵四边形ABCD是正方形,∴BA=DA,∠BAP=∠DAP=45°,∵PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,∵PE=PB,∴PD=PE,a、当点E与点C重合时,点P恰好在AC中点处,此时PE⊥PD;b、当点E在BC的延长线上时,如图所示:∵△BAP ≌△DAP ,∴∠ABP =∠ADP ,∴∠CDP =∠CBP ,∵BP =PE ,∴∠CBP =∠PEC ,∴∠PDC =∠PEC ,∵∠1=∠2,∴∠DPE =∠DCE =90°,∴PE ⊥PD ,综上所述:PD =PE 且PD ⊥PE 仍成立;②数量关系:2222BC CE PB +=,证明如下:如图2,连接DE ,由①可得PD =PE 且PD ⊥PE ,∴22222DE PD PE PE =+=,∵四边形ABCD 是正方形,∴BC =DC ,∠BCD =∠DCE =90°,∴在Rt △DCE 中,222DC CE DE +=,∴22222BC CE DE PE +==,∵PE =PB ,∴2222BC CE PB +=.【点睛】本题主要考查正方形的性质、勾股定理及全等三角形的性质与判定,熟练掌握正方形的性质、勾股定理及全等三角形的性质与判定是解题的关键.。
北师大版数学九年级上册期末考试试卷含答案
北师大版数学九年级上册期末考试试题一、选择题(本大题共14个小题,每题2分,共28分)1.□ABCD中,AC、BD是两条对角线,如果添加一个条件,可推出□ABCD是菱形,那么这个条件可以是()A.AB=CD B.AC=BD C.AC⊥BD D.AB⊥BD2.下列四组线段中,不能成比例的是()A.a=3,b=6,c=2,d=4B.a=1,b=3,c=2,d=6C.a=4,b=6,c=5,d=10D.a=2,b=5,c=4,d=103.下列相似图形不是位似图形的是()A.B.C.D.4.用配方法解一元二次方程22310x x--=,配方正确的是()A.231324x⎛⎫-=⎪⎝⎭B.23142x⎛⎫-=⎪⎝⎭C.2317416x⎛⎫-=⎪⎝⎭D.2131124x⎛⎫-=⎪⎝⎭5.如图,在平行四边形纸片ABCD中,点O为对角线AC与BD的交点,若随机向平行四边形纸片ABCD内投一粒米,则米粒落在图中阴影部分的概率为()A.12B.13C.14D.166.如图,要使ABC ACD ∆∆ ,需补充的条件不能是()A .ADC ACB∠=∠B .ABC ACD ∠=∠C .AD AC AC AB =D .AD BC AC DC⋅=⋅7.若反比例函数21k y x +=的图象位于第一、三象限,则k 的取值可以是()A .﹣3B .﹣2C .﹣1D .08.如图,直线12//l l ,:2:3AF FB =,:2:1BC CD =,则:AE EC 是()A .1:2B .1:4C .2:1D .3:29.在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同.小刚每次换出一个球后放回,通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是()A .8个B .15个C .12个D .16个10.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根()A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长11.如图,在四边形ABCD 中,//AD BC ,DE BC ⊥,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,2ACD ACB ∠=∠.若3DG =,1EC =,则DE 的长为()A12B10C8D612.如图1,有一张长32cm,宽16cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2所示的有盖纸盒.若纸盒的底面积是2130cm,则纸盒的高为()A.2cm B.2.5cm C.3cm D.4cm13.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=bx在同一坐标系中的图象的形状大致是()A.B.C.D.14.如图,四边形ABCD为菱形,BF∥AC,DF交AC的延长线于点E,交BF于点F,且CE:AC=1:2.则下列结论:①△ABE≌△ADE;②∠CBE=∠CDF;③DE=FE;④S△BCE:S四边形ABFD=1:10.其中正确结论的个数是()A .1个B .2个C .3个D .4个二、填空题(本题共3个小题;每个小题4分,共12分)15.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有__________个16.方程()()130x x --=的解是__________.17.已知在Rt ABC ∆中,90,3,4C BC cm AC cm ︒∠===,点,M N 分别在边AC AB 、上,将ABC ∆沿直线MN 对折后,点A 正好落在对边BC 上,且折痕MN 截ABC ∆所成的小三角形(即对折后的重叠部分)与ABC ∆相似,则折折痕MN =__________cm三、解答题(本题共8道题,18-20每题6分,21-245每题8分,25题10分,满分60分)18.我们定义一种关于“★”的新运算:a ★b ab a b =+-,试根据条件回答问题.(1)计算:2★()=3-_____;(2)若x ★()11x +=,求x 的值.19.己知:如图,点A 在反比例函数()0k y x x =>的图像上,且点A 的横坐标为2,作AH 垂直于x 轴,垂足为点H ,3AOHS = .(1)求AH 的长;(2)求k 的值;(3)若()11,M x y 、()22,N x y 在该函数图像上,当120x x <<时,比较1y 与2y 的大小关系.20.2019年,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______;扇形统计图中的圆心角 等于______;补全统计直方图.(2)被抽取的学生还要进行一次50米跑测试,每4人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.21.一批发市场某服装批发价为240元/件.为拉动消费,该批发市场规定:当批发数量超过10件时,给予降价优惠,但批发价不得低于150元/件.经市场调查发现,优惠时批发价y(元/件)与x(件)之间成一次函数关系,当批发数量为15件时,批发价为210元/件;当批发数量为22件时,批发价为168元/件.(1)求批发价y(元/件)与x(件)之间的一次函数表达式;(2)在该市场降价优惠期间,某顾客一次性支付了3600元,求该顾客批发了多少件服装?22.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG=6时,求△FCG的面积;(3)求△FCG的面积的最小值.23.如图是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)在小亮由B沿OB所在的方向行走的过程中,他在地面上的影子的变化情况为______;(2)请你在图中画出小亮站在AB处的影子;(3)当小亮离开灯杆的距离 4.2OB m =时,身高(AB )为1.6m 的小亮的影长为1.6m ,问当小亮离开灯杆的距离6OD m =时,小亮的影长是多少m ?24.饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温y (℃)与开机时间x (分)满足一次函数关系,当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y (℃)与开机时间x (分)成反比例关系,当水温降至20℃时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当0≤x <8时,求水温y (℃)与开机时间x (分)的函数关系式.(2)求图中t 的值;(3)若在通电开机后即外出散步,请你预测散步42分钟回到家时,饮水机内的温度约为多少℃?25.如图所示,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,设运动时间为x秒.(1)当x 为何值时,PQ //BC ;(2)当13BCQABC S S ∆∆=时,求S △BPQ :S △ABC 的值;(3)△APQ 能否与△CQB 相似?若能,求出时间x 的值;若不能,说明理由.答案一、选择题1.C.2.C .3.D .4.C.5.C.6.D.7.D .8.C .9.B .10.B.11.C .12.C .13.C .14.D .二、填空题15.516.11x =,23x =17.32或158.三、解答题18.解:(1)根据题中的新定义得:2★()()36231-=-+--=-;故答案为: 1-;(2)根据题中的新定义得:x ★()()()111x x x x x +=++-+=21x x +-∴21x x +-=1∴220x x +-=∴(2)(1)0x x +-=∴122,1x x =-=故答案是:-2或1.19.解:(1)∵点A 的横坐标为2,∴OH=2∵3AOH S = ∴12OH·AH=3解得:AH=3(2)∵OH=2,AH=3∴点A 的坐标为(2,3)将点A 的坐标代入ky x =中,得32k=解得:k=6(3)∵k=6>0∴反比例函数在第一象限内,y 随x 的增大而减小∵()11,M x y 、()22,N x y 在该函数图像上,且120x x <<∴1y >2y .20.(1)34-小时的人数有6人,占总人数20%,∴总人数有:620÷%30=(人),23-小时的人数有:30376212----=(人),占总人数为:1210030⨯%40=%,36040α=︒⨯%144=︒.补全直方图如下:;(2)列表法:小红,小花12341()2,1()3,1()4,12()1,2()3,2()4,23()1,3()2,3()4,34()1,4()3,4()3,461122P ==.21.解:(1)根据题意,则设一次函数的解析式为:y kx b =+,∴1521022168k b k b +=⎧⎨+=⎩,解得:6300k b =-⎧⎨=⎩,∴6300y x =-+;(2)根据题意,则可列方程:(6300)3600x x -+=,解得:1220,30x x ==当20x =时,6300180x -+=>150当30x =时,6300120x -+=<150,不合题意,舍去答:该顾客批发了20件服装.22.解:(1)∵四边形EFGH 为正方形,∴HG=HE ,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE ,∴△AHE ≌△DGH(AAS),∴DG=AH=2;(2)过F 作FM ⊥DC ,交DC 延长线于M ,连接GE ,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG(AAS),∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此S△FCG =12×FM×GC=12×2×(7-6)=1;(3)设DG=x,则由(2)得,S△FCG=7-x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴37,∴S△FCG的最小值为37,此时37,∴当37时,△FCG的面积最小为(7-37).23.(1)因为光是沿直线传播的,所以当小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE 即为所求(3)先设OP=x,则当OB=4.2米时,BE=1.6米,∴ 1.6 1.6, 4.2 1.6AB BE OP OE x ==+即∴x=5.8米当OD=6米时,设小亮的影长是y 米,∴DF CDDF OD OP=+∴ 1.66 5.8yy =+y=167(米)即小亮的影长是167米。
北师大版九年级上册数学期末试卷及答案【完整版】
北师大版九年级上册数学期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<8.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A.44°B.40°C.39°D.38°9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.1910.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+=⎪⎝⎭____________.2.分解因式:3x-x=__________.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加__________m.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=__________cm .三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、C6、C7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、x (x+1)(x -1)3、30°或150°.4、-45、x=26、9三、解答题(本大题共6小题,共72分)1、x=12、(1)k ≤58;(2)k=﹣1.3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 112-),P 2(352,2),P 3,2),P 412-). 4、河宽为17米 5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.下列关系式中y 是x 的反比例函数的是()A .5y x=B .k y x=C .25y x =D .3xy =2.如图,三视图正确的是()A .主视图B .左视图C .左视图D .俯视图3.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=4.反比例函数ky x=的图象如图所示,则k 值可能是()A .-2B .2C .4D .85.已知四边形ABCD 是平行四边形,下列结论:①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形,其中错误的有()A .1个B .2个C .3个D .4个6.如图,在△ABC 中,点D 、E 在边AB 上,点F 、G 在边AC 上,且DF ∥EG ∥BC ,AD=DE =EB ,若Δ1ADF S =,则EBCG S =四边形()A .3B .4C .5D .67.若关于x 的方程()()22222280x x x x +++-=有实数根,则22x x +的值为()A .-4B .2C .-4或2D .4或-28.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是()A .3B .4C .5D .69.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为()A .1B .2C .3D .410.如图,将矩形ABCD 沿对角线BD 折叠,点A 落在点E 处,DE 交BC 于点F ,若∠CFD =40°,则∠ABD 的度数为()A .50°B .60°C .70°D .80°二、填空题11.反比例函数ky x=图象上有两点A (-3,4)、B (m ,2),则m =_____.12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.13.已知一元二次方程(m -2)m x +3x -4=0,那么m 的值是_____.14.在平面直角坐标系中,△ABC 中点A 的坐标是(2,3),以原点O 为位似中心把△ABC 放大,使放大后的三角形与△ABC 的相似比为3:1,则点A 的对应点A′的坐标为_____.15.若一元二次方程220x -=的两根分别为m 与n ,则m nn m+=_____.16.在矩形ABCD 中,AB =6,BC =8,BD ⊥DE 交AC 的延长线于点E ,则DE =_____.17.如图,在平行四边形ABCD 中,CE ⊥AB 且E 为垂足,如果∠A =125°,则∠BCE =____.三、解答题18.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求菱形BMDN 的面积.19.等腰三角形的三边长分别为a 、b 、c ,若6a =,b 与c 是方程22(31)220x m x m m -+++=的两根,求此三角形的周长.20.如图,一次函数2y kx =+与y 轴交于点A ,与反比例函数my x=的图象相交于B 、C 两点,BD ⊥y 轴交y 轴于点D ,OA =OD ,8ABDS ∆=.(1)求一次函数与反比例函数的表达式;(2)求点C 的坐标,并直接写出不等式2mkx x+>的解集;(3)在所在平面内,存在点E 使以点B 、C 、D 、E 为顶点的四边形为平行四边形,请直接写出所有满足条件的点E 的坐标.21.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.22.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A :乘坐电动车,B :乘坐普通公交车或地铁,C :乘坐学校的定制公交车,D :乘坐家庭汽车,E :步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.23.如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=45,求AF的长.24.已知:如图,△ABO与△BCD都是等边三角形,点O为坐标原点,点B、D在x轴上,AO=2,点A、C在一反比例函数图象上.(1)求此反比例函数解析式;(2)求点C的坐标;(3)问:以点A为顶点,且经过点C的抛物线是否经过点(0?请说明理由.25.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求△AOB的面积.参考答案1.D 【分析】根据反比例函数的定义:(0)ky k x=≠且k 为比例系数,即可作出判断.【详解】A 、此函数为一次函数,故不符合题意;B 、不一定反比例函数,当k=0时,则y=0,故不符合题意;C 、不是反比例函数,未知数x 的指数不满足反比例函数的定义,故不符合题意;D 、由3xy =得:3y x=,符合反比例函数的定义,故符合题意;故选:D【点睛】本题主要考查了反比例函数的定义,掌握其解析形式是关键,特别注意k 是不为零的常数.2.A 【分析】根据几何体的形状,从三个角度得到其三视图即可.【详解】解:主视图是一个矩形,内部有两条纵向的实线,故选项A 符合题意;左视图是一个矩形,内部有一条纵向的实线,故选项B 、C 不符合题意;俯视图是一个“T ”字,故选项D 不符合题意;故选:A .【点睛】此题主要考查了画三视图的知识,解题的关键是掌握主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.B 【分析】根据配方法解一元二次方程的步骤首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式.【详解】解:2250x x --=移项得:225x x -=方程两边同时加上一次项系数一半的平方得:22151x x -+=+配方得:()216x -=.故选:B .【点睛】此题考查了配方法解一元二次方程的步骤,解题的关键是熟练掌握配方法解一元二次方程的步骤.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4.B 【分析】根据函数所在象限和反比例函数上的点的横纵坐标的积小于4判断.【详解】解:∵反比例函数图象在第一、三象限,∴k >0,∵当图象上的点的横坐标为2时,纵坐标小于2,∴k <4,故选:B .【点睛】本题考查了反比例函数图象上点的坐标特点,反比例函数的图象与性质,比例系数等于在它上面的点的横纵坐标的积,熟练掌握反比例函数的图象与性质是解答本题的关键.5.A 【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解: 四边形ABCD 是平行四边形,A 、当AB BC =时,它是菱形,选项不符合题意,B 、当AC BD ⊥时,它是菱形,选项不符合题意,C 、当90ABC ∠=︒时,它是矩形,选项不符合题意,D 、当AC BD =时,它是矩形,不一定是正方形,选项符合题意,故选:A .【点睛】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.6.C 【分析】利用////DF EG BC ,得到ADF ABC ∆∆∽,ADF AEG ∆∆∽,利用AD DE EB ==,得到13AD AB =,12AD AE =,利用相似三角形的性质,相似三角形的面积比等于相似比的平方,分别求得AEG ∆和ABC ∆的面积,利用ABC AEG EBCG S S S ∆∆=-四边形即可求得结论.【详解】解:AD DE EB == ,∴13AD AB =,12AD AE =.////DF EG BC ,ADF ABC ∴∆∆∽,ADF AEG ∆∆∽.∴2(ADF ABC S AD S AB∆∆=,2(ADF AEG S AD S AE ∆∆=.99ABC ADF S S ∆∆∴==,44AEG ADF S S ∆∆==.945ABC AEG EBCG S S S ∆∆∴=-=-=四边形.故选:C .【点睛】本题主要考查了相似三角形的判定与性质,解题的关键是利用相似三角形的面积比等于相似比的平方,用ABC AEG EBCGS S S ∆∆=-四边形解答.7.B 【分析】设22x x y +=,则原方程可化为2280y y +-=,解得y 的值,即可得到22x x +的值.【详解】解:设22x x y +=,则原方程可化为2280y y +-=,解得:14y =-,22y =,当4y =-时,224x x +=-,即2240x x ++=,△224140=-⨯⨯<,方程无解,当2y =时,222x x +=,即2220x x +-=,△()22412=120=-⨯⨯->,方程有实数根,22x x ∴+的值为2,故选:B .【点睛】本题考查了换元法解一元二次方程,的关键是把22x x +看成一个整体来计算,即换元法思想.8.A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得.【详解】解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解,即放入口袋中的黄球总数n =3,故选:A .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.9.C 【分析】由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后运用勾股定理求得AB 、CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,即可解答.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =2OB =10,∴CD =AB 6,∵M 是AD 的中点,∴OM =12CD =3.故答案为:C .【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.C 【分析】根据矩形的性质和平行线的性质得到∠FDA =40°,根据翻折变换的性质得到∠ADB =∠EDB =20°,根据直角三角形的性质可求出∠ABD 的度数,即可求出答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°,∴∠FDA =∠CFD =40°,由翻折变换的性质得到∠ADB =∠EDB =20°∴∠ABD =70°故选C .【点睛】本题考查平行线的性质、图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.6-【分析】由点A 的坐标得到反比例函数的解析式,再把点B 的坐标代入可得m 的值.【详解】解:把(3,4)A -代入ky x =可得3412k =-⨯=-,所以反比例函数的解析式是12y x=-,当2y =时,6m =-.故答案为:6-.【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是掌握待定系数法求得解析式.12.20000【详解】试题分析:1000÷10200=20000(条).考点:用样本估计总体.13.2-【分析】根据一元二次方程的定义进行计算即可.【详解】解:由题意可得:||2m =且20m -≠,2m ∴=±且2m ≠,2m ∴=-,故答案为:2-.【点睛】本题考查了绝对值,一元二次方程的定义,解题的关键是熟练掌握一元二次方程的定义,即()200ax bx c a ++=≠.14.(6,9)或(6,9)--【分析】根据如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -进行解答.【详解】解:以原点O 为位似中心,把ABC ∆放大,使放大后的三角形与ABC ∆的相似比为3:1,则点(2,3)A 的对应点A '的坐标为(6,9)或(6,9)--.故答案为:(6,9)或(6,9)--.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.15.72-【分析】先根据根与系数的关系得m n +=mn=-2,再把原式变形为2()2m n mn mn+-,然后利用整体代入的方法计算.【详解】解:∵一元二次方程220x -=的两根分别为m 与n ,根据根与系数的关系得m n +=,mn=-2,所以原式=()(()2222222722m n mn m n mn mn -⨯-+-+===--.故答案为:72-.16.1207【分析】由勾股定理可求AC 的长,由矩形的性质可得5OD OB ==,由面积法可求DH 的长,通过证明OD DE OH DH =,即可求解.【详解】解:如图:过点D 作DH AC ⊥于H ,6AB = ,8BC =,10AC ∴==,四边形ABCD 是矩形,152AO CO BO DO AC ∴=====, 11··22ADC S AD CD AC DH == ,6810DH ∴⨯=,245DH ∴=,75OH ∴===,∵=90DOH ODH ∠+︒∠,=90DOH E ∠+︒∠,∴ODH E∠=∠90DHO EHD ∠=∠=︒Q ,ODH DEH ∴∆∆∽,∴OD DE OH DH=,∴572455DE =,1207DE ∴=,故答案为:1207.17.35【详解】分析:根据平行四边形的性质和已知,可求出∠B ,再进一步利用直角三角形的性质求解即可.详解:∵AD ∥BC ,∴∠A+∠B=180°,∴∠B=180°-125°=55°,∵CE ⊥AB ,∴在Rt △BCE 中,∠BCE=90°-∠B=90°-55°=35°.故答案为35.点睛:本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.18.(1)见解析;(2)菱形BMDN 的面积是20【分析】(1)证△DMO ≌△BNO ,得出OM =ON ,根据对角线互相平分证四边形BMDN 是平行四边形,再根据对角线互相垂直证菱形即可;(2)设BM=x ,根据勾股定理列出方程,求出菱形边长,再用面积公式求解即可.【详解】解:(1)证明:∵四边形ABCD 是矩形,MN 垂直平分BD ,∴AD ∥BC ,∠A =90°,OB =OD ,∴∠MDO =∠NBO ,∠DMO =∠BNO ,∵在△DMO 和△BNO 中,DMO BNO MDO NBO OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DMO ≌△BNO (AAS )∴OM =ON又∵OB =OD∴四边形BMDN 是平行四边形∵MN 垂直平分BD ,即MN ⊥BD∴平行四边形BMDN 是菱形.(2)解:∵四边形BMDN 是菱形∴MB =MD在Rt △AMB 中,设BM=x ,BM 2=AM 2+AB 2即x 2=(8﹣x )2+42解得:x =5,MD=5∴BN=MD=5∴5420BMDN S BN AB =⨯=⨯=菱形答:菱形BMDN 的面积是20.19.此三角形的周长为16或22.【分析】分两种情况进行讨论分析:①若6a =是三角形的腰,则b 与c 中至少有一边长为6;若6a =是三角形的底边,则b 、c 为腰,即b c =;根据题意,代入方程确定m 的值,然后代入方程求解,确定三边长度,考虑三边关系判定能否构成三角形,然后求周长即可得.【详解】解:①若6a =是三角形的腰,则b 与c 中至少有一边长为6,代入方程得:()226316220m m m -+⨯++=,解得3m =或5m =,∴当3m =时,方程可化为210240x x -+=,解得14x =,26x =,∴三角形三边长分别为4、6、6,周长为:46616++=;当5m =时,方程可化为216600x x -+=,解得16x =,210x =;三角形三边长分别为6、6、10,周长为:106622++=;∴三角形的周长为16或22;②若6a =是三角形的底边,则b 、c 为腰,即b c =,则方程有两个相等的实数根,∴()()22314220m m m ⎡⎤-+-+=⎣⎦,解得1m =,∴原方程可化为2440x x -+=,解得122x x ==,此时,6a =,2b c ==,不能构成三角形,舍去;综上所述,三角形的周长为16或22.【点睛】题目主要考查等腰三角形的定义及一元二次方程的解法,三角形的三边关系等,理解题意,进行分类讨论是解题关键.20.(1)一次函数的解析式为:2y x =+;反比例函数的解析式为:8y x=(2)40x -<<或2x >(3)(6,4)、(-6,-8)、(-2,4)【分析】(1)首先求出点D 的坐标,从而得出AD 的长,由8ABD S ∆=,得出BD 的长,从而得出点B 的坐标,从而解决问题;(2)由(1)可联立方程组28y x y x =+⎧⎪⎨=⎪⎩,解方程组得出点C 的坐标,根据图象可得答案;(3)分当BC 、CD 、BD 为对角线三种情形,分别通过对角互相平分进行求解.(1)解: 点A 是一次函数2y kx =+与y 轴的交点,∴令0x =,则022y k =⨯+=,即(0,2)A 2OA ∴=,又OD OA =Q ,2OD ∴=,(0,2)D ∴-,24AD OD ∴==.BD y ⊥ 轴,∴点B 的纵坐标为2-,8ABD S ∆= ,∴182AD BD ⋅=,∴1482BD ⨯⨯=,4BD ∴=,∴点B 的坐标为(4,2)--,把点(4,2)B --分别代入一次函数2y kx =+与反比例函数my x =,可得:422k -=-+,24m-=-,1k ∴=,8m =,∴一次函数的解析式为:2y x =+,反比例函数的解析式为:8y x =;(2)解:由(1)可联立方程组28y x y x=+⎧⎪⎨=⎪⎩,解这个方程组得:42x y =-⎧⎨=-⎩或24xy =⎧⎨=⎩,点C 在第一象限,故点C 坐标为(2,4),由图象可得当40x -<<或2x >时,2mkx x +>;(3)解:如图,当BC 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为1,BC DE 的中点,(4,2),(2,4),(0.2)B C D --- ,42241,122x y -+-+==-==,设111(,)E x y ,11021,122x y+-+-==,解得:112,4x y =-=,1(2,4)E ∴-;如图,当CD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为2,CD BE 的中点,(4,2),(2,4),(0.2)B C D --- ,20421,122x y +-====,设222(,)E x y ,22421,122x y --==,解得:116,4x y ==,2(6,4)E ∴;如图,当BD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为3,BD CE 的中点,(4,2),(2,4),(0.2)B C D --- ,40222,222x y -+--==-==-,设333(,)E x y ,33242,222x y ++-=-=,解得:336,8x y =-=-,3(6,8)E ∴--;∴符合条件的点E 的坐标为:(6,4)、(6,8)--、(2,4)-.【点睛】本题是反比例函数综合题,主要考查了反比例函数图象与一次函数图象交点问题,平行四边形的性质,函数与不等式的关系等知识,解题的关键是运用分类思想来解答.21.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC = ,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒ ,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD = ,1CD ∴=,∴AC ==.22.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B项对应的扇形圆心角是40 36072200︒⨯=︒,故答案为:200;72;(2)C选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个,∴甲、乙两名学生恰好选择同一种交通工具上班的概率为31 93=.【点睛】此题考查了列表法与树状图法、条形统计图、扇形统计图和概率公式,解题的关键是仔细观察统计图并从中整理出解题的有关信息,正确画出树状图.23.(1)证明见解析;(2)【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB ,∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:=在Rt △ADE 中,AE=AD•sinD=5×45=4,∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴AF AB BC BE=,即5AF =解得:.24.(1)y =(2)(1C -;(3)是,理由见解析.【分析】(1)首先过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,根据AO =2,△ABO 与△BCD 是等边三角形,得出A 点坐标,进而求出反比例函数解析式;(2)首先表示出C 点坐标,进而代入函数解析式求出即可;(3)首先设y =a (x +1)2C 坐标代入得出a 的值,进而将点(0答案.【详解】解:(1)过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,∵AO =2,△ABO 与△BCD 是等边三角形,∴OF =1,FAA 的坐标是(-1,把(-1k y x=,得k∴反比例函数的解析式是y =(2)设BE =a ,则CE∴点C 的坐标是(-2-a),把点C 的坐标代入y=2-a a 1,∴点C的坐标是(-1-);(3)过点C的抛物线是经过点(0.理由:设y=a(x+1)2把点C坐标代入得a,∴y(x+1)2当x=0时,代入上式得y=2,∴点C的抛物线是经过点(0,2).【点睛】此题主要考查了反比例函数的综合应用以及图象上点的坐标特点等知识,根据已知表示出C点坐标是解题关键.25.(1)见解析(2)四边形CEFG的面积为20 3.【分析】(1)根据题意和翻折的性质,可以得到△BCE≌△BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG 是平行四边形,又∵CE=FE ,∴四边形CEFG 是菱形;(2)解:∵矩形ABCD 中,AB=6,AD=10,BC=BF ,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x ,则CE=x ,DE=6-x ,∵∠FDE=90°,∴22+(6-x )2=x 2,解得,x=103,∴CE=103,∴四边形CEFG 的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式k y x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆= ,24AOC k S ∆∴==;4y x ∴=;(2)解:0k > ,∴函数y 的值在各自象限内随x 的增大而减小;0a > ,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==,4(,)A a a ∴,2(2,)B a a ;()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。
新北师大版九年级数学上册期末试卷及答案【完美版】
新北师大版九年级数学上册期末试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( ) A .2± B .2 C .2± D .22.若二次根式51x -有意义,则x 的取值范围是( )A .x >15B .x ≥15C .x ≤15D .x ≤53.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒ 4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =--7.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2<D .x 3<8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180 B.182 C.184 D.1869.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠10.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:25二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是__________.2.因式分解:_____________.3.正五边形的内角和等于__________度.4.(2017启正单元考)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=4,ED=8,求EB+DC=________.5.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是__________.6.如图,点A 是反比例函数y=4x (x >0)图象上一点,直线y=kx+b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.计算:()011342604sin π-----+().3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB 上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=23,BF=2,求阴影部分的面积(结果保留π).5.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有多少名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.6.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、D6、C7、C8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、3、5404、125、12 76、32.三、解答题(本大题共6小题,共72分)1、2x=2、33、(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+515-P2352,1+5),P35+51+5),P455-15-.4、(1)直线BC与⊙O相切,略;(2)2 23-3π5、(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.6、(1)超市B型画笔单价为5元;(2)4.5,120410,20x xyx x⎧=⎨+>⎩,其中x是正整数;(3)小刚能购买65支B型画笔.。
北师大版九年级上册数学期末考试试卷含答案解析
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列四个几何体中,主视图是三角形的是()A.B.C.D.2.在Rt ABC中,90C∠=,5AB=,3BC=,则sin A的值是()A.35B.53C.45D.343.一元二次方程2640x x--=配方为()A.()2313x-=B.()239x-=C.()2313x+=D.()239x+=4.若ABC DEF∆∆∽,面积之比为9:4,则相似比为()A.94B.49C.32D.81165.点1()3A y-,、()21,y-都在反比例函数1yx=-的图象上,则1y、2y的大小关系是()A.12y y<B.12y y=C.12y y>D.不能确定6.设32ab=,下列变形正确的是()A.32ba=B.23a b=C.32a b=D.23a b=7.一个不透明的袋子装有除颜色外其余均相同的2个白球和n个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在0.2附近,则n的值为()A.2B.4C.8D.108.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价为x元,则可列方程为()A.()()40306001010000x x+--=B.()()40306001010000x x+-+=C.()()30600104010000x x---=⎡⎤⎣⎦D.()()30600104010000x x⎡⎤=⎦+⎣--9.如图,一人站在两等高的路灯之间走动,GB为人AB在路灯EF照射下的影子,BH为人AB在路灯CD照射下的影子.当人从点C走向点E时两段影子之和GH的变化趋势是A .先变长后变短B .先变短后变长C .不变D .先变短后变长再变短10.点A (﹣3,y 1)、B (﹣1,y 2)、C (2,y 3)都在反比例函数y =6x-的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3二、填空题11.若锐角A 满足1cos 2A =,则A ∠=__________︒.12.若2x =是方程230x x q -+=的一个根.则q 的值是________.13.菱形的两条对角线长分别是6和8,则菱形的边长为_____.14.如图,点P 在反比例函数2y x=的图象上,过点P 作坐标轴的垂线交坐标轴于点A 、B ,则矩形AOBP 的面积为_________.15.关于x 的一元二次方程2960x x k -+=有两个不相等的实数根,则k 的取值范围是_________.16.如图,为了测量塔CD 的高度,小明在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进60m 至B 处,测得仰角为60︒,那么塔的高度是____________m .(小明的身高忽略不计,结果保留根号)三、解答题17.计算:2sin 452tan 30sin 60︒-︒⋅︒18.解方程:2x 2﹣4x+1=0.19.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.20.甲、乙两个人在纸上随机写一个-2到2之间的整数(包括-2和2).若将两个人所写的整数相加,那么和是1的概率是多少?21.如图,Rt ABC ∆中,90C ∠=︒,15AC =,面积为150.(1)尺规作图:作C ∠的平分线交AB 于点D ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点D 到两条直角边的距离.22.已知反比例函数6y x=-和一次函数()0y kx b k =+≠.(1)当两个函数图象的交点的横坐标是-2和3时,求一次函数的表达式;(2)当23k =时,两个函数的图象只有一个交点,求b 的值.23.如图,BD 是△ABC 的角平分线,过点作DE //BC 交AB 于点E ,DF //AB 交BC 于点F .(1)求证:四边形BEDF 是菱形;(2)若∠ABC =60°,∠ACB =45°,CD =6,求菱形BEDF 的边长.24.如图,已知AB //CD ,AD ,BC 交于点E ,F 为BC 上一点,且∠EAF =∠C ,若AF =6,FB =8,求EF .25.如图,在矩形ABCD 的边AB 上取一点E ,连接CE 并延长和DA 的延长线交于点G ,过点E 作CG 的垂线与CD 的延长线交于点H ,与DG 交于点F ,连接GH .(1)当tan 2BEC ∠=且4BC =时,求CH 的长;(2)求证:DF FG HF EF ⋅=⋅;(3)连接DE ,求证:CDE CGH ∠=∠.参考答案1.B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.2.A【分析】根据正弦函数是对边比斜边,可得答案.【详解】解:sinA=BCAB=35.故选A.【点睛】本题考查了锐角正弦函数的定义.3.A【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】解:x2-6x-4=0,x2-6x=4,x2-6x+32=4+32,(x-3)2=13,故选:A.【点睛】此题考查了解一元二次方程-配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.C 【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【详解】解:∵两个相似三角形的面积比为9:4,∴它们的相似比为3:2.故选:C .【点睛】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.5.A 【分析】根据反比例函数的性质,图象在二、四象限,在双曲线的同一支上,y 随x 的增大而增大,则-3<-1<0,可得12y y <.【详解】解:∵k=-1<0,∴图象在二、四象限,且在双曲线的同一支上,y 随x 增大而增大∵-3<-1<0∴y 1<y 2,故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.6.D 【分析】根据比例的性质逐个判断即可.【详解】解:由32a b =得,2a=3b,A 、∵32b a =,∴2b=3a ,故本选项不符合题意;B 、∵23a b=,∴3a=2b ,故本选项不符合题意;C 、32a b =,故本选项不符合题意;D 、23a b =,故本选项符合题意;故选:D .【点睛】本题考查了比例的性质,能熟记比例的性质是解此题的关键,如果a cb d=,那么ad=bc .7.C 【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:依题意有:22n+=0.2,解得:n=8.故选:C .【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn是解题关键.8.A 【分析】设这种台灯上涨了x 元,台灯将少售出10x ,根据“利润=(售价-成本)×销量”列方程即可.【详解】解:设这种台灯上涨了x 元,则根据题意得,(40+x-30)(600-10x )=10000.故选:A.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.9.C 【分析】连接DF ,由题意易得四边形CDFE 为矩形.由DF ∥GH ,可得DF ADGH AH=.又AB ∥CD ,得出AB AH CD DH =,设AB AH CD DH ==a,DF=b (a,b 为常数),可得出11DH AD AH ADAH a AH AH+===+,从而可以得出ADAH ,结合DF AD GH AH=可将DH 用含a,b 的式子表示出来,最后得出结果.【详解】解:连接DF ,已知CD=EF ,CD ⊥EG,EF ⊥EG,∴四边形CDFE 为矩形.∴DF ∥GH,∴.DF AD GH AH=又AB ∥CD ,∴AB AHCD DH=.设AB AHCD DH==a ,DF=b,∴11DH AD AH ADAH a AH AH +===+,∴11,AD AH a=-∴11,DF AD GH AH a==-∴GH=11a DF aba a =-- ,∵a,b 的长是定值不变,∴当人从点C 走向点E 时两段影子之和GH 不变.故选:C.【点睛】本题考查了相似三角形的应用:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.10.C 【分析】分别把A 、B 、C 各点坐标代入反比例函数y =6x-求出y 1、y 2、y 3的值,再比较大小即可.【详解】解:∵点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=6x-的图象上,∴y1=63--=2,y2=61--=6,y3=62-=﹣3,∵﹣3<2<6,∴y3<y1<y2,故选:C.【点睛】本题考查了反比例函数图像上点的特征,熟练掌握反比例函数的性质是解题的关键11.60︒【分析】根据特殊角三角函数值,可得答案.【详解】解:由∠A为锐角,且1 cos2A=,∠A=60°,故答案为:60°.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.12.2【分析】根据一元二次方程的解的定义,将x=2代入已知方程,列出关于q的新方程,通过解该方程即可求得q的值.【详解】∵x=2是方程x²-3x+q=0的一个根,∴x=2满足该方程,∴2²-3×2+q=0,解得,q=2.故答案为2.【点睛】本题考查了方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.13.5【分析】根据菱形对角线垂直平分,再利用勾股定理即可求解.【详解】解:因为菱形的对角线互相垂直平分,5.故答案为5.【点睛】此题主要考查菱形的边长求解,解题的关键是熟知菱形的性质及勾股定理的运用. 14.2【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【详解】解:∵PA⊥x轴于点A,PB⊥y轴于B点,∴矩形AOBP的面积=|2|=2.故答案为:2.【点睛】本题考查了反比例函数kyx=(k≠0)系数k的几何意义:从反比例函数kyx=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.15.1k<【分析】方程有两个不相等的实数根,则∆>0,由此建立关于k的不等式,然后可以求出k的取值范围.【详解】解:由题意知,∆=36-36k>0,解得k<1.故答案为:k<1.【点睛】本题考查了一元二次方程根的情况与判别式∆的关系:(1)∆>0⇔方程有两个不相等的实数根;(2)∆=0⇔方程有两个相等的实数根;(3)∆<0⇔方程没有实数根.同时注意一元二次方程的二次项系数不为0.16.【分析】由题意易得:∠A=30°,∠DBC=60°,DC ⊥AC ,即可证得△ABD 是等腰三角形,然后利用三角函数,求得答案.【详解】解:根据题意得:∠A=30°,∠DBC=60°,DC ⊥AC ,∴∠ADB=∠DBC-∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m ,∴m ).故答案为:【点睛】此题考查了解直角三角形的应用-仰角俯角问题.注意证得△ABD 是等腰三角形,利用特殊角的三角函数值求解是关键.17.12-【分析】根据特殊角三角函数值计算即可.【详解】解:原式2112123222=-⨯=-⎝⎭.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.x 1=1+2,x 2=1﹣2【分析】先把方程两边除以2,变形得到x 2-2x+1=12,然后利用配方法求解.【详解】x 2-2x+1=12,(x-1)2=12,x-1=±2,所以x 1=1+2,x 22.【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.19.(1)12,32-;(2)证明见解析.【详解】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=.∴a 的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2.一元二次方程根根的判别式;3.配方法的应用.20.425【分析】先画树状图展示所有25种等可能的结果数,再找出两数和是1的结果数,然后根据概率公式求解.【详解】解:画树状为:共25种可能,其中和为1有4种.∴和为1的概率为425.【点睛】本题考查了列表法或树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.21.(1)见解析;(2)607【分析】(1)利用尺规作图的步骤作出∠ACB 的平分线交AB 于点D 即可;(2)作DE AC ⊥于E ,DF BC ⊥于F,根据面积求出BC 的长.法一:根据角平分线的性质得出DE=DF ,从而得出四边形CEDF 为正方形.再由BDF BAC ∆∆∽,得出DF BF AC BC =,列方程可以求出结果;法二:根据150∆∆+=BCD ACD S S ,利用面积法可求得DE,DF 的值.【详解】解:(1)∠ACB 的平分线CD 如图所示:(2)已知15AC =,面积为150,∴20BC =.法一:作DE AC ⊥,DF BC ⊥,∵CD 是ACB ∠角平分线,∴DF DE =,90DFC DEC ∠=∠=︒,而90ACB ∠=︒,∴四边形CEDF 为正方形.设DF 为x ,则由DF AC ,∴BDF BAC ∆∆∽,∴DF BF AC BC=.即201520x x -=,得607x =.∴点D 到两条直角边的距离为607.法二:150∆∆+=BCD ACD S S ,即15022⋅⋅+=BC DF DE AC ,又由(1)知AC=15,BC=20,∴201515022DF DF +=,∴607=DF .故点D 到两条直角边的距离为607.【点睛】本题考查了尺规作图,角平分线的性质,直角三角形的面积等知识,解题的关键是熟练掌握基本性质,属于中考常考题型.22.(1)1y x =-+;(2)4b =±【分析】(1)根据两个函数图象的交点的横坐标是-2和3先求出两个交点坐标,然后把两点代入一次函数解析式求出k ,b 值,即可得到一次函数解析式;(2)两个函数解析式联立组成方程组消去y 得到关于x 的一元二次方程,根据判别式=0求出b 的值.【详解】解:(1)把-2和3分别代入6y x=-中,得:()2,3-和()3,2-.把()2,3-,()3,2-代入y kx b =+中,231,321k b k k b b -+==-⎧⎧∴⎨⎨+=-=⎩⎩.∴一次函数表达式为:1y x =-+;(2)当23k =,则23y x b =+,联立得:236y x b y x ⎧=+⎪⎪⎨⎪=-⎪⎩,整理得:223180++=x bx ,只有一个交点,即0∆=,则291440∆=-=b ,得4b =±.故b 的值为4或-4.【点睛】本题主要考查待定系数法求函数解析式和函数交点坐标的求法,先利用反比例函数解析式求出两交点坐标是解本题的关键.23.(1)见解析;(2)【分析】(1)由题意可证BE =DE ,四边形BEDF 是平行四边形,即可证四边形BEDF 为菱形;(2)过点D 作DH ⊥BC 于H ,由直角三角形的性质可求解.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形DEBF 是平行四边形,∵DE ∥BC ,∴∠EDB =∠DBF ,∵BD 平分∠ABC ,∴∠ABD =∠DBF =12∠ABC ,∴∠ABD =∠EDB ,∴DE =BE ,又∵四边形BEDF 为平行四边形,∴四边形BEDF 是菱形;(2)如图,过点D 作DH ⊥BC 于H ,∵DF ∥AB ,∴∠ABC =∠DFC =60°,∵DH ⊥BC ,∴∠FDH =30°,∴FH =12DF ,DH FH =2DF ,∵∠C =45°,DH ⊥BC ,∴∠C =∠HDC =45°,∴DC DH =2DF =6,∴DF =,∴菱形BEDF 的边长为【点睛】本题考查了菱形的判定和性质,直角三角形的性质,掌握菱形的判定定理是本题的关键.24.EF =92.【分析】由已知的平行得到一对内错角相等,再由已知的两角相等,等量代换得到∠B =∠EAF ,加上公共角相等,利用两对对应角相等可以得到△AFE ∽△BFA ,从而可以得到AF EF BF AF =,然后代入数据计算即可.【详解】解:∵AB //CD ,∴∠B =∠C ,∵∠EAF =∠C ,∴∠B =∠EAF ,∵∠AFE =∠BFA ,∴△AFE ∽△BFA ,∴AF EF BF AF=,∵AF =6,FB =8,∴686EF =,∴EF =92.【点睛】此题考查了相似三角形的判定与性质,以及平行线的性质,相似三角形的判定方法一般有:1、两对对应角相等的两三角形相似;2、两边对应成比例且夹角相等的两三角形相似;3、三边对应成比例的两三角形相似;在证明线段的乘积形式时,常常把乘积形式化为比例形式来分析,借助三角形相似即可得证.25.(1)10CH =;(2)见解析;(3)见解析【分析】(1)根据已知条件先求出CE 的长,再证明∠=∠BEC ECH ,在Rt △CHE 中解三角形可求得EH 的长,最后利用勾股定理求CH 的长;(2)证明∽∆∆GFE HFD ,进而得出结果;(3)由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,进而sin sin ∠=∠EGF FHD ,即=CD CE CG CH ,再结合∠=∠ECD DCE ,可得出∽∆∆CDE CGH ,进一步得出结果.【详解】(1)解:∵矩形ABCD ,EH CG ⊥,∴90∠=︒=∠=∠BCD CEH B .而90BEC BCE ∠+∠=︒,90∠+∠=︒BCE ECH ,∴∠=∠BEC ECH ,又∵4BC =,tan 2BEC ∠=,∴2BE =,易得CE ==∴tan 2∠==EH ECH CE ,∴EH =∴10CH ==.(2)证明:∵矩形ABCD ,EH CG ⊥,∴∠=∠CEH HDG ,而∠=∠GFE DFH ,∴∽∆∆GFE HFD ,∴=DF FH EF FG,∴⋅=⋅DF FG EF FH ;(3)证明:由(2)∽∆∆GFE HFD 得∠=∠EGF FHD ,∴sin sin ∠=∠EGF FHD ,即=CD CE CG CH,而∠=∠ECD DCE ,∴∽∆∆CDE CGH ,∠=∠.∴CDE CGH【点睛】本题主要考查相似三角形的判定与性质以及解直角三角形,关键是掌握基本的概念与性质.。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.如图所示的几何体为圆台,其俯视图正确的是()A .B .C .D .2.下列函数关系式中,y 是x 的反比例函数的是()A .3y x=B .31y x =+C .3y x=D .23y x =3.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率4.已知两个相似三角形的相似比为4:9,则这两个三角形的对应高的比为()A .2:3B .4:9C .16:81D .9:45.将抛物线y =x 2平移得到抛物线y =(x+2)2,则这个平移过程正确的是()A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位6.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=513,则小车上升的高度是:A .5米B .6米C .6.5米D .7米7.已知菱形的周长为40cm ,两条对角线的长度比为3:4,那么两条对角线的长分别为()A .6cm ,8cmB .3cm ,4cmC .12cm ,16cmD .24cm ,32cm8.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是()A .m≥1B .m≤1C .m >1D .m <19.如图,菱形ABCD 中,AC 交BD 于O ,AE DC ⊥于点E ,连接OE ,若40ABC ︒∠=,则OEA ∠的度数是()A .20°B .30°C .50°D .70°10.如图所示,正方形EFGH 是由正方形ABCD 经过位似变换得到的,点O 是位似中心,E ,F ,G ,H 分别是OA ,OB ,OC ,OD 的中点,则正方形EFGH 与正方形ABCD 的面积比是()A .1:6B .1:5C .1:4D .1:2二、填空题11.若点(2)m -,在反比例函数6y x=的图像上,则m =______.12.若23a b =,则a b b +=_____.13.已知a 是方程2x 2﹣x ﹣4=0的一个根,则代数式4a 2﹣2a +1的值为_____.14.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为___米.15.如图,河的两岸a 、b 互相平行,点A 、B 、C 是河岸b 上的三点,点P 是河岸a 上一个建筑物,在A 处测得30PAB ∠=︒,在B 处测得75PBC ∠=︒,若80AB =米,则河两岸之间的距离约为______米 1.73≈,结果精确到0.1米)(必要可用参考数据:tan 752︒=16.如图,正方形ABCD 中,点E 为射线BD 上一点,15EAD ∠=︒,EF AE ⊥交BC 的延长线于点F ,若6BF =,则AB =______三、解答题17.(1)解方程2430x x --=(2)计算:2sin 4560︒︒18.在如图的小正方形网格中,每个小正方形的边长均为1,格点ABC (顶点是网格线的交点)的三个顶点坐标分别是(22)(31)A B ﹣,,﹣,(10)C ,﹣,,以O 为位似中心在网格内画出ABC 的位似图△A 1B 1C 1,使ABC 与111A B C △的相似比为12:,并计算出111A B C △的面积.19.如图,在等腰三角形ABC 中,,AB AC AH BC =⊥于点H ,点E 是AH 上一点,延长AH 至点F ,使FH EH =.求证:四边形EBFC 是菱形.20.某公司2017年产值2500万元,2019年产值3025万元(1)求2017年至2019年该公司产值的年平均增长率;(2)由(1)所得结果,预计2020年该公司产值将达多少万元?21.已知一次函数2y x b =-+(b 为常数,0b >)的图象分别与x 轴、y 轴交于A 、B 两点,且与反比例函数4y x=-的图象交于C 、D 两点(点C 在第二象限内,过点C 作CE x ⊥轴于点E(1)求tan ACE ∠的值(2)记1S 为四边形CEOB 的面积,2S 为OAB ∆的面积,若1279S S =,求b 的值22.如图,三角形ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图象与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图象上,且该二次函数图象上存在一点D 使四边形ABCD 能构成平行四边形.(1)试求b、c的值,并写出该二次函数表达式;(2)动点P沿线段AD从A到D,同时动点Q沿线段CA从C到A都以每秒1个单位的速度运动,问:①当P运动过程中能否存在PQ AC?如果不存在请说明理由;如果存在请说明点的位置?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?23.已知:如图,线段AB=2,BD⊥AB于点B,且BD=12AB,在DA上截取DE=DB.在AB上截取AC=AE.求证:点C是线段AB的黄金分割点.24.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=m x的图象在第一象限的交点为C,CD⊥x轴于D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的表达式;(2)当x>0时,比较kx+b与mx的大小.25.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.参考答案1.C【详解】试题分析:俯视图是从物体上面看,所得到的图形.从几何体的上面看所得到的图形是两个同心圆.故选C.考点:简单几何体的三视图2.C【分析】根据反比例函数的定义即可得出答案.【详解】A为正比例函数,B为一次函数,C为反比例函数,D为二次函数,故答案选择C.【点睛】本题考查的是反比例函数的定义:形如kyx的式子,其中k≠0.3.D【详解】因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,所以D选项说法正确,故选D.4.B【分析】根据相似三角形的性质即可得出答案.【详解】根据“相似三角形对应高的比等于相似比”可得对应高的比为4:9,故答案选择B.【点睛】本题考查相似三角形的性质,相似三角形对应边、对应高、对应中线以及周长比都等于相似比.5.A【解析】试题分析:根据抛物线的平移规律即可得答案,故答案选A .考点:抛物线的平移规律.6.A 【分析】在Rt ABC ∆,直接根据正弦的定义求解即可.【详解】如图:AB=13,作BC ⊥AC ,∵5sin 13BC ABa ==∴551351313BC AB =×=´=.故小车上升了5米,选A.【点睛】本题考查解直角三角形的应用-坡度坡角问题.解决本题的关键是将实际问题转化为数学问题,构造Rt ABC ∆,在Rt ABC ∆中解决问题.7.C 【分析】首先根据题意作图,然后由菱形的周长为40cm ,可得AB=10cm ,OA=12AC ,OB=12BD ,AC ⊥BD ,由两对角线长度比为3:4,可设OA=3xcm ,OB=4xcm ,由勾股定理即可求得AB=5xcm ,继而求得答案.【详解】如图,∵四边形ABCD 是菱形,且菱形的周长为40cm ,∴AB=14×40=10(cm),OA=12AC,OB=12BD ,AC ⊥BD ,∵AC:BD=3:4,∴OA:OB=3:4,设OA=3xcm ,OB=4xcm ,∴22OA OB +=5x(cm),∴5x=10,解得:x=2,∴OA=6cm ,OB=8cm ,∴AC=12cm ,BD=16cm.故选C.【点睛】此题考查菱形的性质,勾股定理,解题关键在于画出图形.8.D 【详解】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =--> ,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.A【分析】根据菱形的基本性质得出∠ABD=∠CDB=20°,然后进一步得出∠EAC的度数,最后根据直角三角形斜边中线性质得出OA=OE,从而进一步得出答案即可.【详解】∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,AB=BC,AO=OC,∵40ABC︒∠=,∴∠ABD=12∠ABC=∠CDB=20°,∴∠OCD=70°,∵AE⊥DC,∴∠EAC+∠OCD=90°,∴∠EAC=20°,∵在Rt△AEC中,AO=OC,∴OE=OA,∴∠OEA=∠EAC=20°.所以答案为A选项.【点睛】本题主要考查了菱形与直角三角形性质的综合运用,熟练掌握相关概念是解题关键. 10.C【分析】由正方形EFGH是由正方形ABCD经过位似变换得到的,点O是位似中心,E,F,G,H 分别是OA,OB,OC,OD的中点,易求得位似比等于EH:AD=1:2,又由相似三角形面积的比等于相似比的平方,即可求得正方形EFGH与正方形ABCD的面积比.【详解】∵正方形EFGH是由正方形ABCD经过位似变换得到的,点O是位似中心,∴正方形EFGH∽正方形ABCD,∵E,F,G,H分别是OA,OB,OC,OD的中点,∴EH=12 AD,即位似比为:EH:AD=1:2,∴正方形EFGH 与正方形ABCD 的面积比是:1:4.故选C .【点睛】此题考查位似变换,解题关键在于利用相似的性质进行解答.11.-3【分析】将点(2)m -,代入反比例函数6y x=,即可求出m 的值.【详解】解:将点(2)m -,代入反比例函数6y x =得:632m ==--.故答案为-3.【点睛】本题主要考查反比例函数图象上点的坐标特征,只要点在函数的图象上,就一定满足函数的解析式12.53【详解】2,3a b =a b b +∴=2511b 33a +=+=.13.9【分析】直接把a 的值代入得出2a 2−a =4,进而将原式变形得出答案.【详解】∵a 是方程2x 2=x+4的一个根,∴2a 2﹣a =4,∴4a 2﹣2a+1=2(2a 2﹣a )+1=2×4+1=9.故答案为9.【点睛】此题主要考查了一元二次方程的解,正确将原式变形是解题关键.14.5【详解】根据题意,易得△MBA ∽△MCO ,根据相似三角形的性质可知AB AM OC OA AM =+,即1.6AM 820AM=+,解得AM=5.∴小明的影长为5米.15.54.6【分析】过P 点作PD 垂直直线b 于点D ,构造出两个直角三角形,设河两岸之间的距离约为x 米,根据所设分别求出BD 和AD 的值,再利用AD=AB+BD 得出含x 的方程,解方程即可得出答案.【详解】过P 点作PD 垂直直线b 于点D设河两岸之间的距离约为x 米,即PD=x ,则BD 75x tan =︒,AD 30x tan =︒可得:803075x x tan tan =+︒︒解得:x=54.6故答案为54.6【点睛】本题考查的是锐角三角函数的应用,解题关键是做PD 垂直直线b 于点D ,构造出直角三角形.16.【分析】连接AC 交BD 于O ,作FG ⊥BE 于G ,证出△BFG 是等腰直角三角形,得出BF=AED=30°,由直角三角形的性质得出,求出∠FEG=60°,∠EFG=30°,进而求出OA 的值,即可得出答案.【详解】连接AC交BD于O,作FG⊥BE于G,如图所示则∠BGF=∠EGF=90°∵四边形ABCD是正方形∴AC⊥BD,OA=OB=OC=OD,∠ADB=∠CBG=45°∴△BFG是等腰直角三角形∴BG=FG=22BF=32∵∠ADB=∠EAD+∠AED,∠EAD=15°∴∠AED=30°∴OE=3OA∵EF⊥AE∴∠FEG=60°∴∠EFG=30°∴EG=33FG=6∴BE=BG+EG=326+∵OA+3AO=326+解得:OA=6∴AB=2OA=23故答案为23【点睛】本题考查了正方形和等腰直角三角形的性质,综合性较强,需要熟练掌握相关性质.17.(1)127x=227x=;(223-(1)利用配方法解一元二次方程即可得出答案;(2)先将sin45°和tan60°的值代入,再计算即可得出答案.【详解】解:(1)方程整理得:243x x -=,配方得:2447x x -+=,即()227x -=,开方得:2x -=,解得:12x =,22x =-;(2)原式2=3-.【点睛】本题考查的是解一元二次方程和三角函数值,比较简单,需要牢记特殊三角函数值.18.画图见解析,111A B C △的面积为6.【分析】先找出ABC 各顶点的对应顶点A 1、B 1、C 1,然后用线段顺次连接即可得到111A B C △,用割补法可以求出111A B C △的面积.【详解】如图所示:111A B C △,即为所求,111A B C △的面积为:111442422246222⨯⨯⨯⨯⨯⨯⨯﹣﹣﹣=.本题考查了作图-位似变换:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.19.见解析.【分析】根据等腰三角形的三线合一可得BH=HC ,结合已知条件FH EH =,从而得出四边形EBFC 是平行四边形,再根据AH CB ⊥得出四边形EBFC 是菱形.【详解】证明:,AB AC AH CB =⊥ ,BH HC∴=FH EH = ,∴四边形EBFC 是平行四边形又AH CB ⊥ ,∴四边形EBFC 是菱形.【点睛】本题考查了菱形的判定和性质,以及等腰三角形的性质,熟练掌握相关的知识是解题的关键.20.(1)这两年产值的平均增长率为10%;(2)预计2020年该公产值将达到3327.5万元.【分析】(1)先设出增长率,再根据2019年的产值列出方程,解方程即可得出答案;(2)根据(1)中求出的增长率乘以2019年的产值,再加上2019年的产值,即可得出答案.【详解】解:设增长率为x ,则2018年()25001x +万元,2019年()225001x +万元.则()2250013025x +=,解得0.110%x ==,或 2.1x =-(不合题意舍去).答:这两年产值的平均增长率为10%.(2)()3025110%3327.5⨯+=(万元).故由(1)所得结果,预计2020年该公产值将达到3327.5万元.【点睛】本题考查的是一元二次方程的应用——增长率问题,解题关键是根据题意列出方程.21.(1)1tan 2ACE ∠=;(2)b =【分析】(1)先求出A 和B 的坐标,进而求出tan ABO ∠,即可得出答案;(2)根据题意可得△AOB ∽△AEC ,得出34OB CE =,设出点C 的坐标,列出方程,即可得出答案.【详解】解:(1)一次函数2y x b =-+(b 为常数,0b >)的图象分别与x 轴、y 轴交于A 、B 两点,令0x =,则y b =;令0y =,则求得2b x =,∴,02b A ⎛⎫ ⎪⎝⎭,()0,B b ,∴2b OA =,OB b =,在Rt AOB ∆,12tan 22b OA ABO OB b ∠===,∵CE x ⊥轴于点E ,∴CE y 轴,∴ACE ABO ∠=∠,∴1tan 2ACE ∠=;(2)根据题意得:22916AOB AEC S OB S CE ∆∆==,∴34OB CE =.设点C 的坐标为(),2x x b -+,则OB b =,2CE x b =-+,∴32442b x b x b x ⎧=⎪⎪-+⎨⎪-+=-⎪⎩,解得:b =b =-.【点睛】本题考查的是反比例函数的综合,综合性较强,注意面积比等于相似比的平方.22.(1)143b c ⎧=-⎪⎨⎪=-⎩,211384y x x =--;(2)①当点P 运动到距离A 点259个单位长度处,有PQ AC ⊥;②当点P 运动到距离点A 52个单位处时,四边形PDCQ 面积最小,最小值为818.【分析】(1)根据一次函数解析式求出A 和C 的坐标,再由△ABC 是等腰三角形可求出点B 的坐标,根据平行四边形的性质求出点D 的坐标,利用待定系数法即可得出二次函数的表达式;(2)①设点P 运动了t 秒,PQ ⊥AC ,进而求出AP 、CQ 和AQ 的值,再由△APQ ∽△CAO ,利用对应边成比例可求出t 的值,即可得出答案;②将问题化简为△APQ 的面积的最大值,根据几何关系列出APQ S 关于时间的二次函数,根据二次函数的性质,求出函数的最大值,即求出△APQ 的面积的最大值,进而求出四边形PDCQ 面积的最小值.【详解】解:(1)由334y x =-+,令0x =,得3y =,所以点()0,3A ;令0y =,得4x =,所以点()4,0C ,∵ABC ∆是以BC 为底边的等腰三角形,∴B 点坐标为()4,0-,又∵四边形ABCD 是平行四边形,∴D 点坐标为()8,3,将点()4,0B -、点()8,3D 代入二次函数218y x bx c =++,可得240883b c b c -+=⎧⎨++=⎩,解得:143b c ⎧=-⎪⎨⎪=-⎩,故该二次函数解析式为:211384y x x =--.(2)∵3OA =,4OB =,∴5AC =.①设点P 运动了t 秒时,PQ AC ⊥,此时AP t =,CQ t =,5AQ t =-,∵PQ AC ⊥,∴90AQP AOC ∠=∠=︒,PAQ ACO ∠=∠,∴APQ CAO ∆∆∽,∴APAQ AC CO =,即554t t-=,解得:259t =.即当点P 运动到距离A 点259个单位长度处,有PQ AC ⊥.②∵APQ APQ ACD PDCQ S S S S ∆∆∆==+四边形,且183122ACD S ∆=⨯⨯=,∴当APQ ∆的面积最大时,四边形PDCQ 的面积最小,当动点P 运动t 秒时,AP t =,CQ t =,5AQ t =-,设APQ ∆底边AP 上的高为h ,作QH AD ⊥于点H ,由AQH CAO ∆∆∽可得:535h t-=,解得:()355h t =-,∴()()2133552510APQ S t t t t ∆=⨯-=-+235151028t ⎛⎫=--+ ⎪⎝⎭,∴当52t =时,APQ S ∆达到最大值158,此时15811288PDCQ S =-=四边形,故当点P 运动到距离点A 52个单位处时,四边形PDCQ 面积最小,最小值为818.【点睛】本题考查的是二次函数的综合题,难度系数较大,解题关键是将四边形PDCQ 面积的最小值转化为△APQ 的面积的最大值并根据题意列出APQ S 的函数关系式.23.见解析【分析】在直角△ABD 中根据勾股定理计算出55,再利用画法得到5,即512-AB ,然后根据黄金分割的定义得到点C 就是线段AB 的黄金分割点.【详解】证明:∵AB =2,BD =12AB ,∴BD =1.∵BD ⊥AB 于点B ,∴AD 225AB BD +=∴AE =AD ﹣DE 51,∴AC =AE 51,∴AC =512AB ,∴点C 就是线段AB 的黄金分割点.【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC=AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=12AB≈0.618AB ,并且线段AB 的黄金分割点有两个.24.(1)223y x =-,12y x =;(2)当0<x <6时,kx +b <m x ,当x >6时,kx +b >mx【分析】(1)根据点A 和点B 的坐标求出一次函数的解析式,再求出C 的坐标6,2),利用待定系数法求解即可求出解析式(2)由C (6,2)分析图形可知,当0<x <6时,kx +b <mx ,当x >6时,kx +b >mx【详解】(1)S △AOB =12OA •OB =3,∴OA =2,∴点A 的坐标是(0,﹣2),∵B (3,0)∴230b k b =-⎧⎨+=⎩∴232k b ⎧=⎪⎨⎪=-⎩∴y =23x ﹣2.当x =6时,y =23×6﹣2=2,∴C (6,2)∴m =2×6=12.∴y =12x .(2)由C (6,2),观察图象可知:当0<x <6时,kx +b <mx ,当x >6时,kx +b >mx .【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C 的坐标25.(1)20;(2)作图见试题解析;(3)12.【分析】(1)由A 类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:3162.21。
(完整版)最新北师大版九年级数学(上册)期末考试题含答案解析,推荐文档
2九年级上数学期末考试试题一.选择题(每题 3 分,共 30 分)41. 在△ABC 中,∠C=90°,sinA = ,则 tanB =( )5A. 4 3B. 3 4C. 3 5D.4 52. 二次函数 y =x 2 的图象向左平移 2 个单位,得到新的图象的二次函数表达式是 ( ). A . y = x 2 + 2B . y = (x + 2)2C . y = (x - 2)2D . y = x 2 - 23. 如果函数 y = 2x 的图象与双曲线 y = k(k ≠ 0) 相交,则当 x < 0 x时,该交点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4. 在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色2 1棋子的概率是 ,如再往盒中放进3 颗黑色棋子,取得白色棋子的概率变为 ,则原来5 4盒里有白色棋子( )A.1 颗B.2 颗C.3 颗D.4 颗5. 抛物线 y = x 2 + 2x +1的顶点坐标是()A. (0,-1)B. (-1,1)C. (-1,0)D.(1,0)6. 如图,⊙O 的直径 AB 的长为 10,弦 AC 长为 6, ∠ACB 的平分线交⊙O 于 D ,则 CD 长为()A. 7B. 7C. 8D. 9第 6 题图7. 抛物线 y = ax 2 + bx + c 图像如图所示,则一次函数 y = -bx - 4ac +b 2 与反比y =a +b +c 例函数 x 在同一坐标系内的图像大致为( ).xxx x x23 C BB 'DA y D '第 9 题图CBDO Ax⎝第 7 题图8. 如图,⊙O 的半径为 2,点 A 的坐标为(2, 2B 为切点.则 B 点的坐标为().),直线 AB 为⊙O 的切线, ⎛3 8 ⎫ - 2 , A . ⎪5 ⎭⎪ B .(-,1 ⎛- 4 ,9 ⎫ (C . ⎝ 5 5 ⎭⎪D . - 1,9. 如图,边长为 1 的正方形 ABCD 绕点 A AB 'C 'D ' , 则它们的公共部分的面积等于( ). A .1- 33B .1- 34C . 12D .3C '10. 如图,已知梯形 ABCO 的底边 AO 在x 轴上,kBC∥AO,AB⊥AO,过点 C 的双曲线 y = x交 OB 于D ,且 OD :DB=1 :2,若△OBC 的面积等于 3,则 k 的值 等于 ( )3 24A . 2B .C .D .无法确定4 5二、填空题(每题 3 分,共 24 分)第 10 题图11. 函数 y =x +1的自变量 x 的取值范围是 .12. 已知实数 x , y 满足x 2 + 3x + y - 3 = 0,则x + y 的最大值为 .13. 若一个圆锥的侧面积是18π ,侧面展开图是半圆,则该圆锥的底面圆半径是 .14. 如图, ∆ABC 内接于 O , ∠B = 90 , AB = BC ,D 是 O 上与点 B 关于圆心O 成中心对称的点, P 是BC 边上一点,连结 AD 、DC AP .已知 AB = 8 , CP = 2 , Q 是线段 AP 上一动点,连结 BQ 并延长交四边形 ABCD 的一边于点 R ,且满足 AP = BR ,则 BQ的值为 . QR第 14 题图3 x - 3 33 yAB1O1x第 8 题图8 Eç ÷ 第17 题图第18 题图15.有一个正十二面体,12 个面上分别写有1~12 这12 个整数,投掷这个正十二面体一次,向上一面的数字是3 的倍数或4 的倍数的概率是. 16.如图,矩形ABCD 中,AB = 3 cm,AD = 6 cm,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且EF = 2BE ,则S△AFC=cm2 .A DFGB C第15 题第16 题图17.如图,直角梯形ABCD 中,AD∥BC,AB⊥BC,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC 的长为.18.如图,扇形OAB,∠AOB=90︒,⊙P与OA、OB 分别相切于点F、E,并且与弧AB 切于点C,则扇形OAB 的面积与⊙P的面积比是.三、解答题:(46 分)19.(1)计算(3 分):.æ1ö-1+ + 1-è2ø0 - 2 sin 60° tan 60°(2)解方程(3 分):2(x +1)2+x +1-=x2 x 6 0.23 20.(6 分)西安市某中学数学兴趣小组在开展“保护环境,爱护树木”的活动中,利用课外时间 测量一棵古树的高,由于树的周围有水池,同学们在低于树基 3.3 米的一平坝内(如图 11).测得树顶 A 的仰角∠ACB=60°,沿直线 BC 后退 6 米到点 D ,又测得树顶 A 的仰角∠A DB=45°.若测角仪 DE 高 1.3 米,求这棵树的高 AM .( 3≈1.732)第 20 题图21. (9 分) 如图,已知△ABC 中,AB=BC ,以 AB 为直径的⊙O 交 AC 于点 D ,过D 作 DE⊥BC,垂足为E ,连结 OE ,CD= ,∠ACB=30°.(1) 求证:DE 是⊙O 的切线; (2) 分别求 AB ,OE 的长;第 21 题图22. (6 分) 在毕业晚会上,同学们表演哪一类型的节目由自己摸球来决定.DOE B在一个不透明的口袋中,装有除标号外其它完全相同的 A 、B 、C 三个小球,表演节目前,先从袋中摸球一次(摸球后又放回袋中),如果摸到的是 A 球,则表演唱歌;如果摸到的是 B 球,则表演跳舞;如果摸到的是 C 球,则表演朗诵.若小明要表演两个节目,则他表演的节目不是同一类型的概率是多少?23.(9 分)如图,抛物线 y = ax 2 + bx + 4 与 x 轴的两个交点分别为 A (-4,0)、 B (2,0),与 y 轴交于点 C ,顶点为 D .E (1,2)为线段 BC 的中点,BC 的垂直 平分线与 x 轴、y 轴分别交于 F 、G . (1) 求抛物线的函数解析式,并写出顶点 D 的坐标; (2) 若点 K 在 x 轴上方的抛物线上运动,当 K 运动到什么位置时,△EFK 的面积最大?并求出最大面积.第 23 题图k 24.(本小题 12 分)如图,已知直线 y =-x +4 与反比例函数y x 2,a ),并且与 x 轴相交于点 B 。
北师大版九年级(上)期末数学试卷及答案
北师大版九年级(上)期末数学试卷及答案第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列图形中,是中心对称图形的是( )A. B. C. D.2.下列关于x的函数是二次函数的是( )B. y=4x3+5A. y=9xC. y=3x−2D. y=2x2−x+13.如图,将一块含45°角的三角板ABC绕点A按逆时针方向旋转到△AB′C′的位置.若∠CAB′=20°,则旋转角的度数为( )A. 20°B. 25°C. 65°D. 70°4.一元二次方程3x2+2x−1=0的根的情况是( )A. 无法确定B. 无实数根C. 有两个相等的实数根D. 有两个不等的实数根5.如图,PA,PB与⊙O分别相切于点A,B,PA=2,∠P=60°,则AB=( )A. √3B. 2C. 2√3D. 36.下列事件为随机事件的是( )A. 一个图形旋转后所得的图形与原图形全等B. 直径是圆中最长的弦第2页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………C. 方程ax 2+x =0是关于x 的一元二次方程D. 任意画一个三角形,其内角和为360°7. 一次函数y =x +a 与二次函数y =ax 2−a 在同一平面直角坐标系中的图象可能是( )A. B.C. D.8. 为响应国家传统文化进校园的号召,某校准备购进一批毕加索笔来奖励经典诵读优秀生.某文具超市为让利给学校,经过两次降价,每支毕加索笔单价由121元降为100元,两次降价的百分率相同,设每次降价的百分率为x ,根据题意列方程得( )A. 121(1−x 2)=100B. 121(1+x)2=100C. 121(1−2x)=100D. 121(1−x)2=1009. 数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB⏜于点D ,测出AB ,CD 的长度,即可计算得出轮子的半径.现测出AB =40cm ,CD =10cm ,则轮子的半径为( )A. 50cmB. 35cmC. 25cmD. 20cm10. 从−1,0,1,2中任取一个数作为a 的值,既要使关于x 的方程x 2+2x −2a =0有实数根,又要满足2a −1<−a +2,则a 符合条件的概率为( )A. 14 B. 12 C. 34 D. 111. 已知⊙O 是正六边形ABCDEF 的外接圆,P 为⊙O 上除C 、D 外任意一点,则∠CPD 的度数为( )A. 30°B. 30°或150°C. 60°D. 60°或120°12. 如图,已知二次函数y =ax 2+bx +c 的图象过点(−1,0)和(m,0),下列结论:①abc <0;②4a +c <2b ;③b =a −am ;④bc =1−1m .其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④第II卷(非选择题)二、填空题(本大题共4小题,共16.0分)13.若点A(1,a)与点B(−1,−2)关于原点对称,则a的值为______.14.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了图②所示的折线统计图,由此他估计不规则图案的面积大约为______ m2(结果取整数).15.已知抛物线y=(x−1)2−4如图1所示,现将抛物线在x轴下方的部分沿x轴翻折,图象其余部分不变,得到一个新图象如图2.当直线y=m与新图象有四个交点时,m的取值范围是______.16.如图,在平面直角坐标系中,点A在y轴的正半轴上,OA=1,将OA绕点O顺时针旋转45°到OA1,扫过的面积记为S1,A1A2⊥OA1交x轴于点A2;将OA2绕点O顺时针旋转45°到OA3,扫过的面积记为S2,A3A4⊥OA3交y轴于点A4;将OA4绕点O顺时针旋转45°到OA5,扫过的面积记为S3,A5A6⊥OA5交x轴于点A6;…;按此规律,则S2022的值为______.第4页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………三、解答题(本大题共9小题,共98.0分。
北师大版九年级上册数学期末考试试题附答案解析
北师大版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列函数中,表示y 是x 的反比例函数的是( )A .y =2xB .y =x 2C .y =2xD .y 2.黄金分割是一种最能引起美感的分割比例,人体结构中有许多比例关系接近黄金比.如图,当人体的下半身长a 与身高b 的比值越接近黄金比时越美.若图中b 为1.7米,则a 约为( )A .1.05米B .1.06米C .1.07米D .1.08米 3.用配方法解方程2420x x -+=,下列配方正确的是( )A .()222x -=B .()222x +=C .()222x -=-D .()226x -= 4.反比例函数y =k x (k≠0)的图象经过点(2,-4),若点(4,n)在反比例函数的图象上,则n 等于( )A .﹣8B .﹣4C .﹣18D .﹣2 5.如图,点P 在反比例函数3y x =的图象上,且横坐标为1,过点P 作两条坐标轴的平行线,分别与x 轴、y 轴交于A 、B 两点,则直线AB 与x 轴所夹锐角的正切值为( )A .3B .13C .﹣3D .﹣13 6.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .10B .12C .14D .12或147.在△ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D ,AD =3,BD =2,则CD 的长为( )A .2B .3C .43D .928.已知1x ,2x 是一元二次方程21402x mx m -+-=的两个实数根且12110x x +=,则m 的值为( )A .0或1B .0C .1D .1-9.如图,在长方形ABCD 中,AB =10cm ,BC =6cm ,动点P ,Q 分别从点A ,B 同时出发,点P 以3cm/s 的速度沿AB ,BC 向点C 运动,点Q 以1cm/s 的速度沿BC 向点C 运动.设P ,Q 运动的时间是t 秒,当点P 与点Q 重合时t 的值是( )A .52B .4C .5D .610.如图,一次函数1(0)y kx b k =+≠的图象与反比例函数2m y x =(m 为常数且0m ≠)的图象都经过()()1,2,2,1A B --,结合图象,则不等式m kx b x+>的解集是( )A .1x <-B .10x -<<C .1x <-或02x <<D .10x -<<或2x > 11.如图,△ABC 中AB =AC =4,∠C =72°,D 是AB 中点,点E 在AC 上,DE ⊥AB ,则cosA 的值为()A B C D 12.如图,在正方形ABCD 中,BPC △是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ,BD 与CF 相交于点H .有下列结论:①2BE AE =;②DFP BPH ∽△△;③PFD PDB ∽△△;④2DP PH PC =⋅.其中正确的个数是( )A .1B .2C .3D .4二、填空题 13.一元二次方程22410x x +-=的二次项系数、一次项系数及常数项之和为______. 14.为了对1000件某品牌衬衣进行抽检,统计合格衬衣的件数,在相同条件下,经过大量的重复抽检,发现一件合格衬衣的频率稳定在常数0.98附近,由此可估计这1000件中不合格的衬衣约为__________件.15.△ABC 中,已知)21tan 0A B -+=,∠A 、∠B 为锐角,则∠C=______° 16.一块矩形耕地大小尺寸如图所示,要在这块地上沿东西、南北方向分别挖3条和4条水渠.如果水渠的宽相等,而且要保证余下的可耕地面积为8700m 2,那么水渠应挖的宽度是_________米.17.如图,有一块三角形的土地,它的一条边100BC =米,BC 边上的高80AH =米,某单位要沿着边BC 修一座底面是矩形DEFG 的大楼,点E ,F 在边BC 上,点D ,G 分别在边AB ,AC 上,若大楼的宽是40米(即40DE =米),则这个矩形的面积是______平方米.18.如图,反比例函数()0k y x x=>的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为______.三、解答题19.用适当的方法解下列方程.(1)x 2+4x =2;(2)2x (x ﹣3)=7(3﹣x ).20.如图,在68⨯的网格图中,每个小正方形的边长均为1,点O 和ABC 的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作A B C ''',使A B C '''和ABC 位似,且位似比为1:2; (2)连接(1)中的C C ',求四边形AA C C ''的周长.(结果保留根号)21.已知关于x 的方程x 2+ax+a ﹣2=0.(1)求证:不论a 取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a 的值及该方程的另一根.22.如图,为测量一段笔直自西向东的河流的河面宽度,小明在南岸B 处测得对岸A 处一棵柳树位于北偏东60︒方向,他以每秒1.5米的速度沿着河岸向东步行40秒后到达C 处,此时测得柳树位于北偏东30方向,试计算此段河面的宽度.23.如图,点C 在反比例函数y 1=x的图象上,CA ∥y 轴,交反比例函数y 3=x 的图象于点A ,CB ∥x 轴,交反比例函数y 3=x的图象于点B ,连结AB 、OA 和OB ,已知CA =2,则△ABO 的面积为__.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?25.如图,在Rt ABC △中,90ACB ∠=︒,点M 是斜边AB 的中点,//MD BC ,且MD CM =,DE AB ⊥于点E ,连接AD ,CD ,BD .(1)求证:MED BCA ∽△△;(2)求证:AMD CMD △≌△;(3)设MDE 的面积为1S ,四边形BCMD 的面积为2S ,当21175S S =时,求cos ABC ∠的值.26.如图,在平行四边形ABCD 中,点E 、F 分别为边AB ,CD 的中点,连接DE ,BF ,BD .(1)求证:ADE CBF ≌;(2)若90ADB ∠=︒,求证:四边形BFDE 为菱形.参考答案1.C 【分析】利用反比例函数定义进行解答即可,一般地,形如kyx=(k为常数,0k≠)的函数叫做反比例函数.【详解】解:A、是正比例函数,不是反比例函数,故此选项不合题意;B、是二次函数,不是反比例函数,故此选项不合题意;C、是反比例函数,故此选项符合题意;D、不是反比例函数,故此选项不合题意;故选:C.【点睛】本题考查了反比例函数的定义,掌握反比例函数的定义是解题的关键.2.A【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分【详解】解:∵人体的下半身长a与身高b的比值越接近黄金比时越美,∴ab≈0.618,∴a≈0.618b=0.618×1.7≈1.05(米),故选:A.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.3.A【分析】先把方程变形为x2-4x=-2,再把两方程两边加上4,然后把方程左边用完全平方公式表示即可.【详解】解:x2-4x=-2,x2-4x+4=2,(x-2)2=2.故选:A.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.4.D【分析】利用反比例函数图象上点的坐标特征得到4n=2×(-4),然后解关于n的方程即可.【详解】∵点(2,-4)和点(4,n)在反比例函数y=kx的图象上,∴4n=2×(-4),∴n=-2.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.A【分析】点P在反比例函数y=3x的图象上,且横坐标为1,则点P(1,3),则点A、B的坐标分别为(1,0),(0,3),求出OB,OA的值,然后即可求解.【详解】解:如图,∵点P在反比例函数y=3x的图象上,且横坐标为1,∴3y=∴点P(1,3),∴点A、B的坐标分别为(1,0),(0,3),∴OB=3,OA=1∴3 tan31OBBAOOA∠===故直线AB与x轴所夹锐角的正切值为3,故选:A.【点睛】本题考查的是反比例函数图象上点的坐标特征,求出OB,OA的值是解题的关键.6.B【分析】用因式分解法求得方程的根,后根据三角形三边关系判断三角形的存在性,后计算周长. 【详解】∵212350x x-+=,∴(x-7)(x-5)=0,∴x=7或x=5;当x=7时,3+4=7,∴三角形不存在;当x=5时,3+4>5,∴三角形存在,∴三角形的周长为3+4+5=12;故选B.【点睛】本题考查了一元二次方程的因式分解求解法和三角形的存在性,熟练求方程的根,准确判断三角形的存在性是解题的关键.7.D【分析】先证明△BDA ∽△ADC ,然后再根据相似三角形的性质列出比例式,最后代入已知数据计算即可.【详解】解:∵∠BAC =90°,∴∠BAD +∠CAD =90°,∵AD ⊥BC ,∴∠C +∠CAD =90°,∴∠C =∠BAD ,∵∠BDA =∠ADC =90°,∴△BDA ∽△ADC , ∴BD AD AD DC =,即233DC =,解得:DC =92. 故选:D .【点睛】本题主要考查了相似三角形的判定与性质,根据已知条件证得△BDA ∽△ADC 是解答本题的关键.8.B【分析】根据韦达定理,可得出12x x m += ,12142x x m =- ,再根据12110x x +=得出一个关于m 的一元一次方程,解方程即可得出m 的值.【详解】∵1x ,2x 是一元二次方程21402x mx m -+-=的两个实数根, ∴12x x m += ,12142x x m =- , ∵121212110142x x m x x x x m ++===- ∴m=0.故选B.【点睛】本题考查了一元二次方程根与系数的关系,得出12x x + ,12x x 的值是解题的关键. 9.C【详解】解:设当点P 与点Q 重合时t 的值是x 秒,由题意得:3x ﹣x =10,解得:x =5,故选C . 点睛:此题主要考查了一元一次方程的应用.解答本题的关键是,找出等量关系: 点P 与点Q 重合时,P 、Q 的路程之差等于AB .10.C【分析】根据一次函数图象在反比例函数图象上方的x 的取值范围便是不等式m kx b x +>的解集. 【详解】解:由函数图象可知,当一次函数()10y kx b k =+≠的图象在反比例函数2m y x =(m 为常数且0m ≠)的图象上方时,x 的取值范围是:1x <-或02x <<,∴不等式m kx b x +>的解集是1x <-或02x <<. 故选C .【点睛】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.11.C【分析】先根据等腰三角形的性质与判定以及三角形内角和定理得出∠EBC=36°,∠BEC=72°,AE=BE=BC .再证明△BCE ∽△ABC ,根据相似三角形的性质列出比例式CE BE BC AC=,求出AE ,然后在△ADE 中利用余弦函数定义求出cosA 的值.【详解】解:∵△ABC 中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D 是AB 中点,DE ⊥AB ,∴AE=BE ,∴∠ABE=∠A=36°,∴∠EBC=∠ABC-∠ABE=36°,∠BEC=180°-∠EBC-∠C=72°,∴∠BEC=∠C=72°,∴BE=BC ,∴AE=BE=BC .设AE=x ,则BE=BC=x ,EC=4-x .在△BCE 与△ABC 中,3672CBE BAC C ABC ∠=∠=︒⎧⎨∠=∠=︒⎩∴△BCE ∽△ABC , ∴CE BE BC AC = ,即44x x x -=,解得,∴在△ADE 中,∵∠ADE=90°,∴cosA=AD AE , 故选:C .【点睛】本题考查了解直角三角形,等腰三角形的性质与判定,三角形内角和定理,线段垂直平分线的性质,相似三角形的判定与性质,难度适中.证明△BCE ∽△ABC 是解题的关键. 12.C【分析】利用直角三角形30度角的性质即可解决①;证明∠FDP=∠PBD ,根据∠DFP=∠BPC ,∠FDP=∠PBD 即可判断②;通过计算证明∠PFD≠∠PDB ,即可判断③;证明△DPH ∽△CPD 即可判断④.【详解】解:∵△BPC 是等边三角形,∴BP=PC=BC ,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DP PH PC DP,∴DP2=PH•PC,故④正确;故选:C.【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.13.5【分析】确定二次项系数,一次项系数,常数项以后即可求解.【详解】解:根据题意,可得一元二次方程2x2+4x-1=0的二次项系数为2,一次项系数为4,及常数则其和为2+4-1=5;故答案为:5.【点睛】本题考查了一元二次方程的一般形式,利用二次项系数、一次项系数、常数项之和出算式是解题关键.14.20【分析】用总件数乘以不合格衬衣的频率即可得出答案.【详解】这1000件中不合格的衬衣约为:()100010.9820⨯-=(件);故答案为:20.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.15.105【分析】根据非负数的性质结合特殊角的三角函数值、三角形内角和定理计算即可.【详解】∵)21tan 0A B -+=,10A -=,tan 0B =,∴sin A =,tan B ∴∠A=45°,∠B=30°,∴∠C=180°-30°-45°=105°,故答案为:105.【点睛】本题考查了特殊角的三角函数值、非负数的性质,熟记特殊角的三角函数值是解题的关键.【分析】由题意,设水渠的宽度为x m,然后列出方程,解方程即可得到答案.【详解】解:设水渠的宽度为xm,即可耕土地的长为(120-4x)m,宽为(78-3x)m.(120-4x)(78-3x)=8700,即x2-56x+55=0,解得:x1=1,x2=55.当x=55时,3×55=165>78,(不合题意,舍去),∴x=1.答:水渠应挖1m宽.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.2000【分析】由于四边形DEFG是矩形,即DG∥EF,此时有∠ADG=∠B,∠AGD=∠C,所以△ADG∽△ABC,利用相似三角形的性质求得线段DG的长,最后求得矩形的面积.【详解】解:设AH与DE交于点M,由已知得,DG∥BC∴∠ADG=∠B,∠AGD=∠C,∴△ADG∽△ABC,∵AH⊥BC∴AH⊥DG,且AM=AH-MH=80-40=40(m)DG AM,BC AH即DG=AM BC AH⨯=50(m ), ∴S 矩形DEFG =DE×DG=2000(m 2).故答案为:2000.【点睛】本题主要考查利用矩形的性质得出两个角相等,进而证明两个三角形相似,再利用相似三角形的性质得出比例关系,最终求得DG 或DE 的长,进而求得矩形的面积.18.4【分析】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出OCE ∆、OAD ∆、OABC 的面积与k 的关系,列出等式求出k 值.【详解】∵E 、M 、D 位于反比例函数图象上, ∴12OCE S k ∆=,12OAD S k ∆=, 过点M 作MG y ⊥轴于点G ,作MN x ⊥轴于点N ,∴四边形ONMG 是矩形, ∴ONMG S k =矩形,∵M 为矩形ABCO 对角线的交点, ∴44ABCO ONMG S S k ==矩形矩形,∵函数图象在第一象限,∴0k >,∴ABCO S =矩形OCE S ∆+OAD S ∆+S 四边形ODBE =12422k k k ++=, 解得:4k =.故答案为4【点睛】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.19.(1)1222x x =-=-(2)1273,2x x ==- 【分析】(1)利用配方法求解可得答案;(2)利用因式分解法求解即可.【详解】解:(1)∵x 2+4x =2,∴x 2+4x +4=2+4,即(x +2)2=6,∴x +2=∴1222x x =-=-(2)∵2x (x ﹣3)=7(3﹣x ),∴2x (x ﹣3)+7(x ﹣3)=0,则(x ﹣3)(2x +7)=0,∴x ﹣3=0或2x +7=0, ∴1273,2x x ==-. 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(1)见解析;(2)3+【分析】(1)分别取OA ,OC ,OB 的中点即可;(2)根据勾股定理计算即可.【详解】(1)取OA 得中点A ',取OB 得中点B ',取OC 得中点C ',依次连接A 'B ',B 'C ',C 'A ',A B C'''即为所求作的三角形.如图所示,(2)根据勾股定理得AC=A C''所以,四边形AA′C′C 的周长123=+=+【点睛】本题考查了位似变换,位似作图,熟练掌握位似比,灵活作位似图形是解题的关键.21.(1)见解析;(2)a=12,x1=﹣32【分析】(1)根据根的判别式即可求解;(2)将x=1代入方程x2+ax+a﹣2=0,求出a,再利用根与系数的关系求出方程的另一根.【详解】解:(1)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.(2)将x=1代入方程x2+ax+a﹣2=0得1+a+a﹣2=0,解得a=12;∴方程为x2+12x﹣32=0,即2x2+x﹣3=0,设另一根为x1,则1×x1=ca=﹣32,∴另一根x1=﹣32.【点睛】此题主要考查一元二次方程根的求解,解题的关键是熟知根的判别式与根与系数的关系.22.【分析】如图,作AD ⊥于BC 于D .由题意得到BC=1.5×40=60米,∠ABD=30°,∠ACD=60°,根据三角形的外角的性质得到∠BAC=∠ACD-∠ABC=30°,求得∠ABC=∠BAC ,得到BC=AC=60米.在Rt △ACD 中,根据三角函数的定义即可得到结论.【详解】如图, 作AD BC ⊥于D .由题意可知: 1.54060BC =⨯=米,30,60ABD ACD ∠=︒∠=︒,∴30BAC ACD ABC ∠=∠-∠=︒,∴ABC BAC ∠=∠,∴60BC AC ==米.在Rt ACD ∆中,sin6060AD AC =⋅︒==(米).答:这条河的宽度为【点睛】此题主要考查了解直角三角形-方向角问题,解题时首先正确理解题意,然后作出辅助线构造直角三角形解决问题.23.4【分析】设A (a ,3a ),则C (a ,1a ),根据题意求得a =1,从而求得A (1,3),C (1,1),进一步求得B (3,1),然后作BE ⊥x 轴于E ,延长AC 交x 轴于D ,根据S △ABO =S △AOD +S 梯形ABED ﹣S △BOE 和反比例函数系数k 的几何意义得出S △ABO =S 梯形ABED ,即可求得结果.【详解】解:设A(a,3a),则C(a,1a),∵CA=2,∴31a a-=2,解得a=1,∴A(1,3),C(1,1),∴B(3,1),作BE⊥x轴于E,延长AC交x轴于D,∵S△ABO=S△AOD+S梯形ABED﹣S△BOE,S△AOD=S△BOE32 =,∴S△ABO=S梯形ABED12=(1+3)(3﹣1)=4;故答案为:4.【点睛】本题考查了反比例函数系数k的几何意义和三角形的面积,得出S△ABO=S梯形ABED是解题的关键.24.(1)10%;(2)23.【详解】试题分析:(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)2”,列出方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”表示出总利润,再根据总利润不少于3210元,即可的出关于m的一元一次不等式,解不等式即可得出结论.试题解析:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m 件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100-m )=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品23件.考点:一元二次方程的应用;一元一次不等式的应用.25.(1)见解析;(2)见解析;(3)5cos 7ABC ∠=. 【分析】(1)利用两直线平行,内错角相等,提供一组等角证明即可;(2)活用等腰三角形三线合一的性质,证明AD=CD 即可;(3)利用相似三角形面积之比等于相似比的平方,把面积之比转化为线段的比,从而利用三角函数定义计算即可.【详解】(1)证明:∵DE AB ⊥,90ACB ∠=︒,∴90DEM ACB ∠=∠=︒,∵//MD BC ,∴DME CBA ∠=∠,∴MED BCA ∽△△;(2)如图,延长DM 交AC 于点F ,∵//MD BC ,90ACB ∠=︒,∴DF AC ⊥,在Rt ABC △中,点M 是斜边AB 的中点,∴CM AM BM ==,∴AF CF =,∴AD CD =,在AMD 和CMD △中,AM CM =,AD CD =,M D M D =.∴()SSS AMD CMD ≌;(3)在Rt ABC △中,90ACB ∠=︒,点M 是斜边AB 的中点∴12CM AB =,即12CMAB =,∵MD CM =, ∴12MDAB =,∵MED BCA ∽△△, ∴21124MDE ABC S S ⎛⎫== ⎪⎝⎭△△,∵AM BM =, ∴12BCM ABC S S =△△, ∴124MDEBCMS S =△△即2BCM MDE S S =△△, ∵21175S S =, ∴175BCM MDE BDE MDE S S S S ++=△△△△, 即1725MDE MDE BDE MDE S S S S ++=△△△△, 整理得25BDE MDE S S =△△, ∴25BEME =,设2BE a =,5ME a =,则7BM a =,∵MD CM BM ==在Rt MDE △中,55cos 77ME a DME MD a ∠===, ∵ABC DME ∠=∠, ∴5cos 7ABC ∠=. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,三角形的全等,能根据题目的特点,熟练选择知识解决问题是解题的关键.26.(1)见解析;(2)见解析【分析】(1)根据平行四边形的对边相等的性质可以得到AD =BC ,AB =CD ,又点E 、F 是AB 、CD 中点,所以AE =CF ,然后利用边角边即可证明两三角形全等;(2)先证明BE 与DF 平行且相等,然后根据一组对边平行且相等的四边形是平行四边形可得四边形BEDF 是平行四边形;再根据直角三角形斜边上的中线等于斜边的一半可得DE =EB =12AB ,从而可得四边形BFDE 为菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴A C ∠=∠,AD BC =,AB CD =.∵E 、F 分别为AB 、CD 的中点, ∴12AE BE AB ==,12DF CF CD ==, ∴AE CF =,DF BE =,在△ADE 和△CBF 中,AD BC A CAE CF ⎧⎪∠∠⎨⎪⎩===∴ADE CBF ≌.(2)∵AB =CD ,AE =CF ,∴BE =DF ,又AB ∥CD ,∴四边形BEDF是平行四边形,∵∠ADB=90°,∴点E为边AB的中点,∴1=2DE BE AB,∴平行四边形BFDE为菱形.【点睛】此题主要考查了菱形的判定,以及全等三角形的判定,关键是掌握一组邻边相等的平行四边形是菱形,直角三角形斜边上的中线等于斜边的一半.。
北师大版九年级(上)期末数学试卷(含答案)
北师大版九年级(上)期末数学试卷及答案一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.(3分)下列既是轴对称图形又是中心对称图形的是( ) A .菱形B .平行四边形C .等边三角形D .等腰梯形2.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是( ) A .4B .2C .1D .2-3.(3分)在如图所示的电路中,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡1L 发光的概率是( )A .12B .13C .14D .254.(3分)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为( )A .0.6mB .1.2mC .1.3mD .1.4m5.(3分)如图,把抛物线2y x =沿直线y x =平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .2(1)1y x =+-B .2(1)1y x =++C .2(1)1y x =-+D .2(1)1y x =--6.(3分)如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE 的面积始终等于433;④BDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)已知α,β均为锐角,且满足21|sin |(tan 1)02αβ-+-=,则αβ+= .8.(3分)已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是 . 9.(3分)某校九(1)班的学生互赠新年贺卡,共用去1560张贺卡,则九(1)班有 名学生.10.(3分)如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且DF DC =,连接FC ,则ACF ∠的度数为 度.11.(3分)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n ,则n 的所有可能的值之和为 .12.(3分)如图,矩形ABCD 中,6AB =,43AD =,点E 是BC 的中点,点F 在AB 上,2FB =,P 是矩形上一动点.若点P 从点F 出发,沿F A D C →→→的路线运动,当30FPE ∠=︒时,FP 的长为 .三、解答题(本大题共5小题,每小题6分,共30分) 13.(6分)解方程: (1)2(21)9x +=; (2)2(4)3(4)x x +=+.14.(6分)如图,在ABCD 中,AE BC ⊥,CF AD ⊥,E ,F 分别为垂足. (1)求证:BE DF =;(2)求证:四边形AECF 是矩形.15.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =的图象相交于点(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=︒. (1)求k 的值及B 点坐标; (2)求ABC ∆的面积.16.(6分)如图,在矩形ABCD 中,点E 为AD 的中点,请只用无刻度的直尺作图 (1)如图1,在BC 上找点F ,使点F 是BC 的中点;(2)如图2,在AC 上取两点P ,Q ,使P ,Q 是AC 的三等分点.17.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈四、(本大题共3小题,每小题8分,共24分)18.(8分)已知如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,且2BD BE BC =; (1)求证:BDE C ∠=∠; (2)求证:2AD AE AB =.19.(8分)如图,//AB CD ,点E ,F 分别在AB ,CD 上,连接EF ,AEF ∠、CFE ∠的平分线交于点G ,BEF ∠、DFE ∠的平分线交于点H .(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G 作//MN EF ,分别交AB ,CD 于点M ,N ,过H 作//PQ EF ,分别交AB ,CD 于点P ,Q ,得到四边形MNQP ,此时,他猜想四边形MNQP 是菱形,他的猜想是否正确,请予以说明.20.(8分)小聪同学周六到某欢乐谷玩迷宫游戏,从迷宫口A到达迷宫口D有多个路口,如图所示(迷宫的一部分),规定从迷宫口A到达D处不能重复走同一路线,且小聪走每一条路线的可能性相同.(1)请用画树状图的方法,求小聪同学从迷宫口A到达D处所走的所有可能路线;(2)求小聪同学从迷宫口A到达D处经过路口B的概率.五、(本大题共2小题,每小题9分,共18分)21.(9分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?22.(9分)对于两个不相等的有理数a,b,我们规定符号{max a,}b表示a,b中的较大值,如{2max,3}2-=,{1max-,0}0=.请解答下列问题:(1)2{1,1}5max--=;(2)如果{max x,2}x x-=,求x的取值范围;(3)如果{max x ,2}2|1|5x x -=--,求x 的值. 六、(本大题共12分)23.(12分)如图,抛物线2(0)y ax bx a =+≠经过点(2,0)A ,点(3,3)B ,BC x ⊥轴于点C ,连接OB ,等腰直角三角形DEF 的斜边EF 在x 轴上,点E 的坐标为(4,0)-,点F 与原点重合 (1)求抛物线的解析式并直接写出它的对称轴;(2)DEF ∆以每秒1个单位长度的速度沿x 轴正方向移动,运动时间为t 秒,当点D 落在BC 边上时停止运动,设DEF ∆与OBC ∆的重叠部分的面积为S ,求出S 关于t 的函数关系式;(3)点P 是抛物线对称轴上一点,当ABP ∆是直角三角形时,请直接写出所有符合条件的点P 坐标.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.(3分)下列既是轴对称图形又是中心对称图形的是( ) A .菱形B .平行四边形C .等边三角形D .等腰梯形【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A .菱形既是轴对称图形又是中心对称图形,故此选项符合题意;B .平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;C .等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意;D .等腰梯形是轴对称图形不是中心对称图形,故此选项不合题意.故选:A .【点评】本题考查了中心对称图形和轴对称图形的定义,能熟记中心对称图形和轴对称图形的定义是解此题的关键. 2.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是( ) A .4B .2C .1D .2-【分析】根据根与系数的关系得到121x x +=,122x x =-,然后利用整体代入的方法计算121(1)(1)x x x ++-的值. 【解答】解:根据题意得121x x +=,122x x =-, 所以1211212(1)(1)111(2)4x x x x x x x ++-=++-=+--=. 故选:A .【点评】本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a+=-,12cx x a=. 3.(3分)在如图所示的电路中,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡1L 发光的概率是( )A .12 B .13C .14D .25【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让灯泡1L 发光的情况,再利用概率公式求解即可求得答案. 【解答】解:画树状图得:共有6种等可能的结果,能让灯泡1L 发光的有2种情况,∴能让灯泡1L 发光的概率为2163=, 故选:B .【点评】本题考查了列表法、树状图法求概率,画出树状图得出所有可能出现的结果情况是正确解答的关键. 4.(3分)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为( )A .0.6mB .1.2mC .1.3mD .1.4m【分析】利用平行得出三角形相似,运用相似比即可解答. 【解答】解://AB DE ,∴AB CBDE CD =, ∴40.87h=, 1.4h m ∴=,经检验: 1.4h =是原方程的根. 故选:D .【点评】此题主要考查了相似三角形的判定,根据已知得出AB CBDE CE=是解决问题的关键. 5.(3分)如图,把抛物线2y x =沿直线y x =平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .2(1)1y x =+-B .2(1)1y x =++C .2(1)1y x =-+D .2(1)1y x =--【分析】首先根据A 点所在位置设出A 点坐标为(,)m m 再根据2AO =,利用勾股定理求出m 的值,然后根据抛物线平移的性质:左加右减,上加下减可得解析式. 【解答】解:A 在直线y x =上,∴设(,)A m m ,2OA =222(2)m m ∴+=,解得:1(1m m =±=-舍去), 1m ∴=,(1,1)A ∴,∴平移后的抛物线解析式为:2(1)1y x =-+,故选:C .【点评】此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.6.(3分)如图,等边三角形ABC 的边长为4,点O 是ABC ∆的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S ∆∆=;③四边形ODBE 的433④BDE ∆周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4【分析】连接OB 、OC ,如图,利用等边三角形的性质得30ABO OBC OCB ∠=∠=∠=︒,再证明BOD COE ∠=∠,于是可判断BOD COE ∆≅∆,所以BD CE =,OD OE =,则可对①进行判断;利用BOD COE S S ∆∆=得到四边形ODBE 的面积14333ABC S ∆==则可对③进行判断;作OH DE ⊥,如图,则DH EH =,计算出23ODE S ∆=,利用ODE S ∆随OE 的变化而变化和四边形ODBE 的面积为定值可对②进行判断;由于BDE ∆的周长443BC DE DE OE =+=+=,根据垂线段最短,当OE BC ⊥时,OE 最小,BDE ∆的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB 、OC ,如图, ABC ∆为等边三角形, 60ABC ACB ∴∠=∠=︒,点O 是ABC ∆的中心,OB OC ∴=,OB 、OC 分别平分ABC ∠和ACB ∠,30ABO OBC OCB ∴∠=∠=∠=︒120BOC ∴∠=︒,即120BOE COE ∠+∠=︒,而120DOE ∠=︒,即120BOE BOD ∠+∠=︒, BOD COE ∴∠=∠,在BOD ∆和COE ∆中 BOD COEBO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, BOD COE ∴∆≅∆,BD CE ∴=,OD OE =,所以①正确; BOD COE S S ∆∆∴=,∴四边形ODBE 的面积21134433343OBC ABC S S ∆∆===⨯⨯=,所以③正确; 作OH DE ⊥,如图,则DH EH =,120DOE ∠=︒,30ODE OEH ∴∠=∠=︒,12OH OE ∴=,332HE OH OE ==, 3DE OE ∴=,21133224ODE S OE OE OE ∆∴=⋅⋅=, 即ODE S ∆随OE 的变化而变化,而四边形ODBE 的面积为定值,ODE BDE S S ∆∆∴≠;所以②错误;BD CE =,BDE ∴∆的周长443BD BE DE CE BE DE BC DE DE OE =++=++=+=+=+,当OE BC ⊥时,OE 最小,BDE ∆的周长最小,此时233OE =, BDE ∴∆周长的最小值426=+=,所以④正确.故选:C .【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)已知α,β均为锐角,且满足21|sin |(tan 1)02αβ-+-=,则αβ+= 75︒ . 【分析】直接利用绝对值的非负性和偶次方的非负性得出1sin 02α-=,tan 10β-=,再结合特殊角的三角函数值得出答案.【解答】解:21|sin |(tan 1)02αβ-+-=, 1sin 02α∴-=,tan 10β-=, 1sin 2α∴=,tan 1β=, 30α∴=︒,45β=︒,则304575αβ+=︒+︒=︒.故答案为:75︒.【点评】此题主要考查了特殊角的三角函数值以及非负数的性质,正确记忆特殊角的三角函数值是解题关键.8.(3分)已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是(1,3)-- .【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(1,3)--.故答案为:(1,3)--.【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.9.(3分)某校九(1)班的学生互赠新年贺卡,共用去1560张贺卡,则九(1)班有 40 名学生.【分析】设九(1)班有x 名学生,则每名学生需送出(1)x -张新年贺卡,利用九(1)班共用去贺卡的数量=人数⨯每人送出新年贺卡的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【解答】解:设九(1)班有x 名学生,则每名学生需送出(1)x -张新年贺卡,依题意得:(1)1560x x -=,整理得:215600x x --=,解得:140x =,239x =-(不合题意,舍去),∴九(1)班有40名学生.故答案为:40.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.(3分)如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且DF DC =,连接FC ,则ACF ∠的度数为 15度.【分析】利用菱形的性质得出DCB∠的度数,进而得出答案.∠的度数,再利用等腰三角形的性质得出DCF【解答】解:菱形ABCD中,60∠=︒,DF DC=,DAB∠=∠,AB CD,DFC DCF∴∠=︒,//60BCD⊥于点E,DF AB90∴∠=︒,FDCDFC DCF∴∠=∠=︒,45菱形ABCD中,DCA ACB∠=∠,∴∠=∠=︒,30DCA ACB︒-︒=︒.ACF∴∠的度数为:453015故答案为:15︒.【点评】此题主要考查了菱形的性质以及等腰三角形的性质等知识,得出45∠=∠=︒是解题关键.DFC DCF11.(3分)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的所有可能的值之和为38.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:主视图最右边可能有4或5或6个小正方体;由主视图最左边看到只有一列,俯视图也只有一列,则左边有一个小正方体;主视图中间有两列,俯视图亦有两列,则中间可以有3或4个小正方形.n∴的值可能为:1438++=,16411++=,++=,15410++=,1539++=,16310++=,1449则n的所有可能的值之和89101138=+++=.故本题答案为:38.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.12.(3分)如图,矩形ABCD 中,6AB =,43AD =,点E 是BC 的中点,点F 在AB 上,2FB =,P 是矩形上一动点.若点P 从点F 出发,沿F A D C →→→的路线运动,当30FPE ∠=︒时,FP 的长为 4或8或43 .【分析】如图,连接DF ,AE ,DE ,取DF 的中点O ,连接OA 、OE .以O 为圆心画O 交CD 于3P .只要证明12330EPF FP F FP E ∠=∠=∠=︒,即可推出14FP =,28FP =,343FP=解决问题. 【解答】解:如图,连接DF ,AE ,DE ,取DF 的中点O ,连接OA 、OE .以O 为圆心OE 的长度为半径,画O 交CD 于3P .四边形ABCD 是矩形,90BAD B ∴∠=∠=︒,2BF =,23BE =4AF =,43AD =3tan tan FEB ADF ∴∠=∠=, 30ADF FEB ∴∠=∠=︒, 易知4EF OF OD ===,OEF ∴∆是等边三角形,12330EPF FP F FP E ∴∠=∠=∠=︒, 14FP ∴=,28FP=,343FP =, 故答案为4或8或3【点评】本题考查矩形的性质、锐角三角函数、圆的有关知识、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考填空题中的压轴题.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)解方程:(1)2(21)9x +=;(2)2(4)3(4)x x +=+.【分析】(1)两边直接开平方,继而得到两个关于x 的一元一次方程,解之即可;(2)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x 的一元一次方程,再进一步求解即可.【解答】解:(1)2(21)9x +=,213x ∴+=或213x +=-,解得11x =,22x =-;(2)2(4)3(4)x x +=+,2(4)3(4)0x x ∴+-+=,则(4)(1)0x x ++=,40x ∴+=或10x +=,解得14x =-,21x =-.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.14.(6分)如图,在ABCD 中,AE BC ⊥,CF AD ⊥,E ,F 分别为垂足.(1)求证:BE DF =;(2)求证:四边形AECF 是矩形.【分析】(1)由平行四边形的性质得出B D ∠=∠,AB CD =,//AD BC ,由已知得出90AEB AEC CFD AFC ∠=∠=∠=∠=︒,由AAS 证明ABE CDF ∆≅∆即可;(2)证出90EAF AEC AFC ∠=∠=∠=︒,即可得出结论.【解答】(1)证明:四边形ABCD 是平行四边形,B D ∴∠=∠,AB CD =,//AD BC ,AE BC ⊥,CF AD ⊥,90AEB AEC CFD AFC ∴∠=∠=∠=∠=︒,在ABE ∆和CDF ∆中,B D AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CDF AAS ∴∆≅∆,BE DF ∴=;(2)证明://AD BC ,90EAF AEB ∴∠=∠=︒,90EAF AEC AFC ∴∠=∠=∠=︒,∴四边形AECF 是矩形.【点评】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.15.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =的图象相交于点(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=︒.(1)求k 的值及B 点坐标;(2)求ABC ∆的面积.【分析】(1)先把(1,)A a 代入2y x =中求出a 得到(1,2)A ;再把A 点坐标代入k y x=中可确定k 的值,然后利用反比例函数和正比例函数图象的性质确定B 点坐标;(2)设(1,)C t ,根据两点间的距离公式和勾股定理得到22222(11)(2)(11)(22)(2)t t +++++++=-,求出t 得到(1,3)C -,从而得到AC 的长,然后关键三角形面积公式求得即可.【解答】解:(1)把(1,)A a 代入2y x =得2a =,则(1,2)A ;把(1,2)A 代入k y x =得122k =⨯=, 点A 与点B 关于原点对称,(1,2)B ∴--;(2)//CA y 轴,C ∴点的横坐标为1,设(1,)C t ,90ABC ∠=︒.222BC AC AB ∴+=,即22222(11)(2)(11)(22)(2)t t +++++++=-,解得3t =-,(1,3)C ∴-,5AC ∴=,11()5(11)522ABC A B S AC x x ∆∴=-=⨯⨯+=. 【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.16.(6分)如图,在矩形ABCD 中,点E 为AD 的中点,请只用无刻度的直尺作图(1)如图1,在BC 上找点F ,使点F 是BC 的中点;(2)如图2,在AC 上取两点P ,Q ,使P ,Q 是AC 的三等分点.【分析】(1)根据矩形的对角线相等且互相平分作出图形即可;(2)根据矩形的性质和三角形中位线定理作出图形即可.【解答】解:(1)如图1,连接AC 、BD 交于点O ,延长EO 交BC 于F ,则点F 即为所求;(2)如图2,BD 交AC 于O ,延长EO 交BC 于F ,连接EB 交AC 于P ,连接DF 交AC 于Q ,则P 、Q 即为所求.【点评】本题考查的是作图的应用,掌握矩形的性质和三角形中位线定理、正确作出图形是解题的关键.17.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈【分析】利用已知结合锐角三角函数关系得出BM 的长.【解答】解:如图所示:连接MN ,由题意可得:90AMN ∠=︒,30ANM ∠=︒,45BNM ∠=︒,8AN km =, 在直角AMN ∆中,3cos30843()MN AN km =︒==. 在直角BMN ∆中,tan 4543 6.9BM MN km km =︒=≈.答:此时火箭所在点B 处与发射站点M 处的距离约为6.9km .【点评】本题考查解直角三角形的应用-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.四、(本大题共3小题,每小题8分,共24分)18.(8分)已知如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,且2BD BE BC =;(1)求证:BDE C ∠=∠;(2)求证:2AD AE AB =.【分析】(1)根据角平分线的定义得到ABD CBD ∠=∠,由2BD BE BC =,得到BD BC BE BD=,推出EBD DBC ∆∆∽,根据相似三角形的性质即可得到结论;(2)由BDE C ∠=∠,推出DBC ADE ∠=∠,等量代换得到ABD ADE ∠=∠,证得ADE ABD ∆∆∽,根据相似三角形的性质即可得到结论.【解答】证明:(1)BD 平分ABC ∠,ABD CBD ∴∠=∠, 2BD BE BC =, ∴BD BC BE BD=, EBD DBC ∴∆∆∽,BDE C ∴∠=∠;(2)BDE C ∠=∠,DBC C BDE ADE ∠+∠=∠+∠,DBC ADE ∴∠=∠,ABD CBD ∠=∠,ABD ADE ∴∠=∠,ADE ABD ∴∆∆∽, ∴AD AE AB AD=, 即2AD AE AB =.【点评】本题考查了相似三角形的判定和性质,角平分线的性质,熟练掌握相似三角形的性质即可得到结论.19.(8分)如图,//AB CD ,点E ,F 分别在AB ,CD 上,连接EF ,AEF ∠、CFE ∠的平分线交于点G ,BEF ∠、DFE ∠的平分线交于点H .(1)求证:四边形EGFH 是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G 作//MN EF ,分别交AB ,CD 于点M ,N ,过H 作//PQ EF ,分别交AB ,CD 于点P ,Q ,得到四边形MNQP ,此时,他猜想四边形MNQP 是菱形,他的猜想是否正确,请予以说明.【分析】(1)根据角平分线的性质进行导角,可求得四边形EGFH 的四个内角均为90︒,进而可说明其为矩形.(2)根据题目条件可得四边形MNQP 为平行四边形,要证菱形只需邻边相等,连接GH ,由于MN EF GH ==,要证MN MP =,只需证GH MP =,只需证四边形MFHP 为平行四边形,可证G 、H 点分别为MN 、PQ 中点,即可得出结果.【解答】(1)证明:EH 平分BEF ∠,FH 平分DFE ∠,12FEH BEF ∴∠=∠,12EFH DFE ∠=∠, //AB CD ,180BEF DFE ∴∠+∠=︒,11()1809022FEH EFH BEF DFE ∴∠+∠=∠+∠=⨯︒=︒, 180FEH EFH EHF ∠+∠+∠=︒,180()1809090EHF FEH EFH ∴∠=︒-∠+∠=︒-︒=︒,同理可得:90EGF ∠=︒,EG 平分AEF ∠,EH 平分BEF ∠,12GEF AEF ∴∠=∠,12FEH BEF ∠=∠, 点A 、E 、B 在同一条直线上,180AEB ∴∠=︒,即180AEF BEF ∠+∠=︒,11()1809022FEG FEH AEF BEF ∴∠+∠=∠+∠=⨯︒=︒, 即90GEH ∠=︒,∴四边形EGFH 是矩形(2)解:他的猜想正确,理由是:////MN EF PQ ,//MP NQ ,∴四边形MNQP 为平行四边形.如图,延长EH 交CD 于点O ,PEO FEO ∠=∠,PEO FOE ∠=∠,FOE FEO ∴∠=∠,EF FD ∴=,FH EO ⊥,HE HO ∴=,EHP OHQ ∠=∠,EPH OQH ∠=∠,EHP OHQ ∴∆≅∆,HP HQ ∴=,同理可得GM GN =,MN PQ =,MG HP ∴=,∴四边形MGHP 为平行四边形,GH MP ∴=,//MN EF ,//ME NF ,∴四边形MEFN 为平行四边形,MN EF ∴=,四边形EGFH 是矩形,GH EF ∴=,MN MP∴=,∴平行四边形MNQP为菱形.【点评】本题考查矩形、菱形的性质与判定,属于综合题,熟练掌握菱形和矩形的性质及判定方法是解题关键.20.(8分)小聪同学周六到某欢乐谷玩迷宫游戏,从迷宫口A到达迷宫口D有多个路口,如图所示(迷宫的一部分),规定从迷宫口A到达D处不能重复走同一路线,且小聪走每一条路线的可能性相同.(1)请用画树状图的方法,求小聪同学从迷宫口A到达D处所走的所有可能路线;(2)求小聪同学从迷宫口A到达D处经过路口B的概率.【分析】(1)根据题意得出小聪同学从迷宫口A到达D处所走的所有可能路线共有4种;(2)根据概率公式进行求解即可.【解答】解:(1)根据题意画图如下:小聪同学从迷宫口A到达D处所走的所有可能路线共有4种;(2)一共有4种情况,而过B的有3种,故小聪同学从迷宫口A到达D处经过路口B的概率为34.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.五、(本大题共2小题,每小题9分,共18分)21.(9分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,100)、(45,70)代入一次函数表达式,即可求解;(2)由题意得2(30)(2160)2(55)1250w x x x =--+=--+,即可求解;(3)由题意得(30)(2160)800x x --+,解不等式即可得到结论.【解答】解:(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b =+⎧⎨=+⎩, 解得:2160k b =-⎧⎨=⎩, 故函数的表达式为:2160y x =-+;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,故当55x <时,w 随x 的增大而增大,而3050x ,∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该商店每天的利润最大,最大利润1200元;(3)由题意得:(30)(2160)800x x --+,解得:4070x ,又216020y x =-+,则y 的最小值为27016020-⨯+=,每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量⨯每件的利润w =得出函数关系式是解题关键.22.(9分)对于两个不相等的有理数a ,b ,我们规定符号{max a ,}b 表示a ,b 中的较大值,如{2max ,3}2-=,{1max -,0}0=.请解答下列问题:(1)2{1,1}5max --= 1- ; (2)如果{max x ,2}x x -=,求x 的取值范围;(3)如果{max x ,2}2|1|5x x -=--,求x 的值.【分析】(1)根据定义即可得;(2)由已知等式知2x x >-,解之可得;(3)分2x x >-和2x x <-两种情况分别求解可得.【解答】解:(1)2115->-, ∴2{1,1}15max --=-. 故答案为:1-;(2){max x ,2}x x -=,2x x ∴>-.1x ∴>.x ∴的取值范围是1x >.(3)由题意,得:2x x ≠-.①若2x x >-,即1x >时,{max x ,2}x x -=,|1|1x x -=-.{max x ,2}2|1|5x x -=--,2(1)5x x ∴=--.解得7x =符合题意;)②若2x x <-,即1x <时,{max x ,2}2x x -=-,|1|(1)1x x x -=--=-.{max x ,2}2|1|5x x -=--,22(1)5x x ∴-=--.解得5x =-符合题意.综上所述,7x =或5x =-.【点评】本题主要考查解一元一次不等式,解题的关键是理解新定义,并根据新定义列出关于x 的不等式及分类讨论思想的运用.六、(本大题共12分)23.(12分)如图,抛物线2(0)y ax bx a =+≠经过点(2,0)A ,点(3,3)B ,BC x ⊥轴于点C ,连接OB ,等腰直角三角形DEF 的斜边EF 在x 轴上,点E 的坐标为(4,0)-,点F 与原点重合(1)求抛物线的解析式并直接写出它的对称轴;(2)DEF ∆以每秒1个单位长度的速度沿x 轴正方向移动,运动时间为t 秒,当点D 落在BC 边上时停止运动,设DEF ∆与OBC ∆的重叠部分的面积为S ,求出S 关于t 的函数关系式;(3)点P 是抛物线对称轴上一点,当ABP ∆是直角三角形时,请直接写出所有符合条件的点P 坐标.【分析】(1)根据待定系数法解出解析式和对称轴即可;(2)从三种情况分析①当03t 时,DEF ∆与OBC ∆重叠部分为等腰直角三角形;②当34t <时,DEF ∆与OBC ∆重叠部分是四边形;③当45t <时,DEF ∆与OBC ∆重叠部分是四边形得出S 关于t 的函数关系式即可;(3)直接写出当ABP ∆是直角三角形时符合条件的点P 坐标.【解答】解:(1)根据题意得042393a b a b=+⎧⎨=+⎩, 解得1a =,2b =-,∴抛物线解析式是22y x x =-,对称轴是直线1x =;(2)有3种情况:①当03t 时,DEF ∆与OBC ∆重叠部分为等腰直角三角形,如图1:214S t =; ②当34t <时,DEF ∆与OBC ∆重叠部分是四边形,如图2:219342S t t =-+-; ③当45t <时,DEF ∆与OBC ∆重叠部分是四边形,如图3:211322S t t =-+-; (3)当ABP ∆是直角三角形时,可得符合条件的点P 坐标为(1,1)或(1,2)或1(1,)3或11(1,)3. 【点评】此题考查了难度较大的函数与几何的综合题,关键是根据03t ,34t <,45t <三种情况进行分析.。
北师大版九年级上册数学期末考试试卷含答案
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.如图是由6个完全相同的小正方体组成的几何体,其俯视图为()A .B .C .D .2.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡的坡度为()A .512B .1213C .513D .13123.关于x 的一元二次方程x 2+2x ﹣a =0的一个根是1,则实数a 的值为()A .0B .1C .2D .34.能判断一个平行四边形是矩形的条件是()A .两条对角线互相平分B .一组邻边相等C .两条对角线互相垂直D .两条对角线相等5.已知两个相似三角形的面积比为4:9,则周长的比为()A .2:3B .4:9C .3:2D6.已知反比例函数y =kx的图象经过P (﹣2,6),则这个函数的图象位于()A .第二,三象限B .第一,三象限C .第三,四象限D .第二,四象限7.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到期后自动续期,两期结束后共收回本息10926元设此款理财产品每期的平均收益率为x ,则根据题意可得方程()A .10000(12)10926x +=B .210000(1)10926x +=C .210000(12)10926x +=D .10000(1)(12)10926x x ++=8.一个不透明的袋子中装有仅颜色不同的1个红球和3个绿球,从袋子中随机摸出一个小球,记下颜色后,不放回再随机摸出一个小球,则两次摸出的小球恰好是一个红球和一个绿球的概率为()A .12B .716C .14D .389.已知反比例函数7y x=-图像上三个点的坐标分别是()()()1232,1,2,A y B y C y -、、,能正确反映123y y y ,,的大小关系的是()A .123y y y >>B .132y y y >>C .213y y y >>D .231y y y >>10.如图,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A 'B 'C ,使得△A 'B 'C 的边长是△ABC 的边长的2倍.设点B 的横坐标是﹣3,则点B '的横坐标是()A .2B .3C .4D .511.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若△ADE 与四边形DBCE 的面积相等,则DEBC等于()A .1B .2C .12D .14二、填空题12.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是的边AB ,BC 边的中点.若5AB =,8BD =,则线段EF 的长为______.13.如图,过y 轴上任意一点p ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于A 点和B 点.若C 为x 轴上任意一点,连接AC BC 、,则ABC 的面积为__________.14.小芳参加图书馆标志设计大赛,他在边长为2的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于F 、G 点,制成了图中阴影部分的标志,则这个标志AFEGD 的面积是_____.15.某学校的初三(1)班,有男生20人,女生23人.现随机抽一名学生,则:抽到一名男生的概率是_____.三、解答题16.解方程:(1)2x 2+3x ﹣1=0(2)1122x x x -=+-17.用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,“幸福”小区为了方便住在A 区、B 区、和C 区的居民(A 区、B 区、和C 区之间均有小路连接),要在小区内设立物业管理处P .如果想使这个物业管理处P 到A 区、B 区、和C 区的距离相等,应将它建在什么位置?请在图中作出点P .18.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,则抽到数字“2”的概率是___________;(2)从四张卡片中随机抽取2张卡片,请用列表或画树状图的方法求抽到“数字和为5”的概率.19.如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求AC和BD 的长.20.镇江某特产专卖店销售某种特产,其进价为每千克40元,若按每千克60元出售,则平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,平均每天的销售量增加10千克,若专卖店销售这种特产想要平均每天获利2240元,且销量尽可能大,则每千克特产应定价多少元?21.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=AC=4,求OE的长.22.已知,如图在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发沿AB 方向向终点B匀速移动,速度为1cm/s,点Q由点B出发沿BC方向向终点C匀速移动,速度为2cm/s.如果动点P,Q同时从A,B出发,当P或Q到达终点时运动停止.几秒后,以Q,B,P为顶点的三角形与△ABC相似?23.已知在平面直角坐标系中,一次函数y=x+b的图象与反比例函数y=kx的图象交于点A(1,m)和点B(-2,-1).(1)求k,b的值;(2)连结OA,OB,求△AOB的面积.24.数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m.经测量,得到其它数据如图所示.其中∠CAH=37°,∠DBH=67°,AB=10m,请你根据以上数据计算GH的长.(参考数据125123sin67,cos67,tan67,cos37131355︒︒︒≈≈≈≈,4sin375︒≈,3tan374︒≈)25.如图,平面直角坐标中,把矩形OABC沿对角线OB所在的直线折叠,点A落在点D 处,OD与BC交于点E.OA、OC的长是关于x的一元二次方程x2﹣9x+18=0的两个根(OA >OC).(1)求A、C的坐标.(2)直接写出点E的坐标,并求出过点A、E的直线函数关系式.(3)点F是x轴上一点,在坐标平面内是否存在点P,使以点O、B、P、F为顶点的四边形为菱形?若存在请直接写出P点坐标;若不存在,请说明理由.参考答案1.B【分析】根据从上面看到的图形即为俯视图进一步分析判断即可.【详解】从上面看第一排是三个小正方形,第二排右边是一个小正方形,故选:B.【点睛】本题主要考查了三视图的判断,熟练掌握相关方法是解题关键.2.A【详解】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,,∴这个斜坡的坡度为:50:120=5:12.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.3.D【分析】方程的解就是能使方程左右两边相等的未知数的值,把x=1代入方程,即可得到一个关于a 的方程,即可解得实数a的值;【详解】解:由题可知,一元二次方程x2+2x﹣a=0的一个根是1,⨯,将x=1代入方程得,21+21-a=0解得a=3;故选D.【点睛】本题主要考查了一元二次方程的解,掌握一元二次方程的解是解题的关键.4.D【分析】根据矩形的判定进行分析即可;【详解】选项A中,两条对角线互相平分是平行四边形,故选项A错误;选项B中,一组邻边相等的平行四边形是菱形,故选项B错误;选项C中,两条对角线互相垂直的平行四边形是菱形,故选项C错误;选项D中,两条对角线相等的平行四边形是矩形,故选项D正确;故选D.【点睛】本题主要考查了矩形的判定,掌握矩形的判定是解题的关键.5.A【分析】由于相似三角形的面积比等于相似比的平方,已知了两个相似三角形的面积比,即可求出它们的相似比;再根据相似三角形的周长比等于相似比即可得解.【详解】∵两个相似三角形的面积之比为4:9,∴两个相似三角形的相似比为2:3,∴这两个相似三角形的周长之比为2:3.故选A【点睛】本题考查的是相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.6.D【分析】将点P(-2,6)代入反比例函数求出k,若k>0,则函数的图象位于第一,三象限;若k <0,则函数的图象位于第二,四象限;【详解】∵反比例函数ky=x的图象经过P(﹣2,6),∴6=k -2,∴k=-12,即k <0,这个函数的图象位于第二、四象限;故选D.【点睛】本题主要考查了反比例函数的图像性质,掌握反比例函数的图像是解题的关键.7.B 【分析】根据题意,找出等量关系列出方程,即可得到答案.【详解】解:根据题意,设此款理财产品每期的平均收益率为x ,则210000(1)10926x +=;故选择:B.【点睛】本题考查了一元二次方程的应用——增长率问题,解题的关键是找到等量关系,列出方程.8.A 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球恰好是一个红球和一个绿球的情况,再利用概率公式即可求得答案.【详解】画树状图为:共有12种等可能的结果数,其中两次摸出的小球恰好是一个红球和一个绿球的结果数为6,所以两次摸出的小球恰好是一个红球和一个绿球的概率=612=12.故选A .【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.9.B 【分析】根据反比例函数关系式,把-2、1、2代入分别求出123、、y y y ,然后比较大小即可.【详解】将A 、B 、C 三点横坐标带入函数解析式可得12377722y y y ==-=-,,,∵77722>->-,∴132y y y >>.故选B.【点睛】本题考查反比例函数图象上点的坐标,正确利用函数表达式求点的坐标是解题关键.10.B 【分析】作BD ⊥x 轴于D ,B′E ⊥x 轴于E ,根据位似图形的性质得到B′C =2BC ,再利用相似三角形的判定和性质计算即可.【详解】解:作BD ⊥x 轴于D ,B′E ⊥x 轴于E ,则BD ∥B′E ,由题意得CD =2,B′C =2BC ,∵BD ∥B′E ,∴△BDC ∽△B′EC ,∴1'2CD BC CE B C ==,∴CE =4,则OE =CE−OC =3,∴点B'的横坐标是3,故选B .【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.11.B【分析】由DE ∥BC 可判断△ADE ∽△ABC ,由S △ADE =S 四边形DBCE 可知,S △ADE :S △ABC =1:2,即可求得答案.【详解】∵DE ∥BC ,∴△ADE ∽△ABC ,又∵S △ADE =S 四边形DBCE ,∴S △ADE :S △ABC =1:2,∴DE AD BC AB =,故选:B .【点睛】此题考查相似三角形的性质,解题关键在于掌握相似三角形的相似比等于面积比的平方..12.3【分析】由菱形性质得AC ⊥BD,BO=118422BD =⨯=,AO=12AC ,由勾股定理得3==,由中位线性质得EF=132A C =.【详解】因为,菱形ABCD 中,对角线AC ,BD 相交于点O ,所以,AC ⊥BD,BO=118422BD =⨯=,AO=12AC ,所以,3==,所以,AC=2AO=6,又因为E ,F 分别是的边AB ,BC 边的中点.所以,EF=132A C =.故答案为3【点睛】本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.13.3【分析】先设(0,)P b ,由直线//AB x 轴,则A ,B 两点的纵坐标都为b ,而A ,B 分别在反比例函数4y x =-和2y x=的图象上,可得到A 点坐标为4(b -,)b ,B 点坐标为2(b ,)b ,从而求出AB 的长,然后根据三角形的面积公式计算即可.【详解】解:设(0,)P b ,直线//AB x 轴,A ∴,B 两点的纵坐标都为b ,而点A 在反比例函数4y x=-的图象上,∴当y b =,4x b =-,即A 点坐标为4(b -,)b ,又 点B 在反比例函数2y x =的图象上,∴当y b =,2x b =,即B 点坐标为2(b ,)b ,246()AB b b b∴=--=,116322ABC S AB OP b b ∴=⋅⋅=⋅⋅=△.故答案为:3.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数k y x=的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是1||2k ,且保持不变.14.【分析】首先过点G 作GN ⊥CD 于N ,过点F 作FM ⊥AB 于M ,由在边长为2的正方形ABCD 内作等边△BCE ,即可求得△BEC 与正方形ABCD 的面积,由直角三角形的性质,即可求得GN 的长,即可求得△CDG 的面积,同理即可求得△ABF 的面积,又由S 阴影=S 正方形ABCD -S △ABF -S △BCE -S △CDG ,即可求得阴影图形的面积.【详解】解:过点G 作GN ⊥CD 于N ,过点F 作FM ⊥AB 于M ,∵在边长为2的正方形ABCD 内作等边△BCE ,∴AB =BC =CD =AD =BE =EC =2,∠ECB =60°,∠ODC =45°,∴S △BEC =12S 正方形=AB 2=4,设GN =x ,∵∠NDG =∠NGD =45°,∠NCG =30°,∴DN =NG =x ,CN ,∴x x =2,解得:x 1,∴S △CGD =12CD •GN =12×2×1﹣1,同理:S △ABF 1,∴S 阴影=S 正方形ABCD ﹣S △ABF ﹣S △BCE ﹣S △CDG =411)=6﹣故答案为6﹣【点睛】此题考查了正方形,等边三角形,以及直角三角形的性质等知识.此题综合性较强,难度适中,解题的关键是注意方程思想与数形结合思想的应用.15.2043【分析】随机抽取一名学生总共有20+23=43种情况,其中是男生的有20种情况.利用概率公式进行求解即可.【详解】解:一共有20+23=43人,即共有43种情况,∴抽到一名男生的概率是2043.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.16.(1)x 1=34-+,x 2=34-;(2)x =23【分析】(1)将方程化为一般形式a x 2+b x +c=0确定a ,b ,c 的值,然后检验方程是否有解,若有解,代入公式即可求解;(2)最简公分母是(x +2)(x ﹣2),去分母,转化为整式方程求解,需检验结果是否为原方程的解;【详解】解:(1)∵a=2,b=3,c=-1,∴∆=b 2﹣4ac =32﹣4×2×(﹣1)=17>0,∴x =-b 2a∴x 1x 2=34-;(2)方程两边都乘以(x +2)(x ﹣2)得:x (x ﹣2)﹣(x +2)(x ﹣2)=x +2,解得:x =23,检验:当x =23时,(x +2)(x ﹣2)≠0,所以x =23是原方程的解;【点睛】本题主要考查了解一元二次方程-公式法,解分式方程,掌握解一元二次方程-公式法,解分式方程是解题的关键.17.见解析【分析】物业管理处P 到B ,A 的距离相等,那么应在BA 的垂直平分线上,到A ,C 的距离相等,应在AC 的垂直平分线上,那么到A 区、B 区、C 区的距离相等的点应是这两条垂直平分线的交点;【详解】解:如图所示:【点睛】本题主要考查了作图—应用与设计作图,掌握作图—应用与设计作图是解题的关键.18.(1)14;(2)P=13.【分析】(1)根据概率公式直接解答;(2)画出树状图,找到所有可能的结果,再找到抽到“数字和为5”的情况,即可求出其概率.【详解】解:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,抽到数字“2”的概率=1 4;(2)随机抽取第一张卡片有4种等可能结果,抽取第二张卡片有3种等可能结果,列树状图为:所有可能结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1)(4,2),(4,3),总的结果共12种,数字和为“5”的结果有4种:(1,4),(2,3),(3,2),(4,1)抽到数字和为“5”的概率P=1 3.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.【分析】根据菱形的性质可得Rt △ABO 中,∠ABO =∠ABD =12∠ABC =30°,则可得AO 和BO 的长,根据AC=2AO ,BD=2BO 可得AC 和BD 的长;【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=OC=12AC ,OB=OD=12BD ,∠ABD =12∠ABC =30°,在Rt △ABO 中,AB =10,∠ABO =∠ABD =30°,∴AO =12AB=5,BO∴AC =2AO =10,BD =2BO =【点睛】本题主要考查了菱形的性质,解直角三角形,掌握菱形的性质,解直角三角形是解题的关键.20.54【解析】【分析】设定价为x 元,利用销售量×每千克的利润=2240元列出方程求解即可.【详解】设定价为x 元.根据题意可得,()()4010010602240x x ⎡⎤-+-=⎣⎦解之得:154x =,256x =∵销售量尽可能大∴x=54答:每千克特产应定价54元.【点睛】本题主要考查了一元二次方程的应用,关键是弄懂题意,找出题目中的等量关系,表示出销售量和每千克的利润,再列出方程.21.(1)证明见解析;(2)4.【分析】(1)由AD∥BC,BD平分∠ABC,可得AD=AB,结合AD∥BC,可得四边形ABCD是平行四边形,进而,可证明四边形ABCD是菱形,(2)由四边形ABCD是菱形,可得OC=12AC=2,在Rt△OCD中,由勾股定理得:OD=4,根据“在直角三角形中,斜边上的中线等于斜边的一半”,即可求解.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=12AC=2,在Rt△OCD中,由勾股定理得:OD4,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=12BD=4.【点睛】本题主要考查菱形的判定定理及性质定理,题目中的“双平等腰”模型是证明四边形是菱形的关键,掌握直角三角形的性质和勾股定理,是求OE长的关键.22.2.4秒或18 11秒【分析】设t秒后,以Q,B,P为顶点的三角形与△ABC相似;则PB=(6-t)cm,BQ=2tcm,分两种情况:①当PB BQAB BC=时,②当PB BQBC AB=时,分别解方程即可得出结果.【详解】解:设t秒后,以Q,B,P为顶点的三角形与△ABC相似,则PB=(6﹣t)cm,BQ=2tcm,∵∠B=90°,∴分两种情况:①当PB BQAB BC=时,即6t2t=68-,解得:t=2.4;②当PB BQBC AB=时,即6t2t=86-,解得:t=18 11;综上所述:2.4秒或1811秒时,以Q,B,P为顶点的三角形与△ABC相似.【点睛】本题主要考查了相似三角形的判定,掌握相似三角形的判定是解题的关键.23.(1)k=2;b=1;(2)3 2【解析】【分析】(1)把B (-2,-1)分别代入k y x=和y x b =+即可求出k ,b 的值;(2)直线AB 与x 轴交于点C ,求出点C 的坐标,可得OC 的长,再求出点A 的坐标,然后根据AOB AOC BOC S S S =+△△△求解即可.【详解】解:(1)把B (-2,-1)代入k y x=,解得2k =,把B (-2,-1)代入y x b =+,解得1b =.(2)如图,直线AB 与x 轴交于点C ,把y=0代入1y x =+,得x=-1,则C 点坐标为(-1,0),∴OC =1.把A (1,m )代入1y x =+得2m =,∴A 点坐标为A (1,2).1131211222AOB AOC BOC S S S =+=⨯⨯+⨯⨯=△△△.【点睛】本题考查了一次函数与反比例函数图形上点的坐标特征,一次函数与坐标轴的交点,坐标与图形,以及三角形的面积公式,运用数形结合的思想是解答本题的关键.24.GH 的长为10m【分析】首先构造直角三角形,设DE=xm ,则CE=(x+2)m ,由三角函数得出AE 和BE ,由AE=BE=AB 得出方程,解方程求出DE ,即可得出GH 的长【详解】解:延长CD 交AH 于点E ,则CE ⊥AH,如图所示.设DE =xm ,则CE =(x +2)m ,在Rt △AEC 和Rt △BED 中,tan37°=CE AE ,tan67°=DE BE ,∴AE =0tan 37CE,BE =0tan 67DE.∵AE ﹣BE =AB ,∴0tan 37CE ﹣0tan 67DE=10,即231245x x +-=10,解得:x =8,∴DE =8m ,∴GH =CE =CD +DE =2m +8m =10m .答:GH 的长为10m .【点睛】本题考查解直角三角形的应用,解题关键在于作出点E25.(1)A (6,0),C (0,3);(2)E (94,3),y =﹣45x +245;(3)满足条件的点P 坐标为(6﹣3)或(3)或(94,3)或(6,﹣3).【解析】【分析】(1)解方程求出OA 、OC 的长即可解决问题;(2)首先证明EO =EB ,设EO =EB =x ,在Rt △ECO 中,EO 2=OC 2+CE 2,构建方程求出x ,可得点E 坐标,再利用待定系数法即可解决问题;(3)分情形分别求解即可解决问题;【详解】(1)由x 2﹣9x +18=0可得x =3或6,∵OA 、OC 的长是关于x 的一元二次方程x 2﹣9x +18=0的两个根(OA >OC ),∴OA=6,OC=3,∴A(6,0),C(0,3).(2)如图1中,∵OA∥BC,∴∠EBC=∠AOB,根据翻折不变性可知:∠EOB=∠AOB,∴∠EOB=∠EBO,∴EO=EB,设EO=EB=x,在Rt△ECO中,∵EO2=OC2+CE2,∴x2=32+(6﹣x)2,解得x=15 4,∴CE=BC﹣EB=6﹣154=94,∴E(94,3),设直线AE的解析式为y=kx+b,则有60 93 4k bk b⎧⎪⎨⎪⎩+=+=,解得45245kb⎧-⎪⎪⎨⎪⎪⎩==,∴直线AE的函数解析式为y=﹣45x+245.(3)如图,OB①当OB为菱形的边时,OF1=OB=BP1=3P1(6﹣3),OF3=P3F3=BP3=P3(6+3).②当OB为菱形的对角线时,∵直线OB的解析式为y=12 x,∴线段OB的垂直平分线的解析式为y=﹣2x+15 2,可得P2(94,3),③当OF4问问对角线时,可得P4(6,﹣3)综上所述,满足条件的点P坐标为(6﹣3)或(6+3)或(94,3)或(6,﹣3).【点睛】本题考查的是一次函数的综合题,熟练掌握一次函数是解题的关键.。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.若反比例函数12my x-=的图象位于第一、三象限,则m 的取值范围是()A .m <0B .m >0C .m <12D .m >122.如图是某个几何体的展开图,则把该几何体平放在平面上时,其俯视图为()A .B .C .D .3.如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标()A .(﹣1,﹣1)B .(﹣43,﹣1)C .(﹣1,﹣43)D .(﹣2,﹣1)4.已知关于x 的一元二次方程224x m x +=有两个不相等的实数根,则m 的取值范围是A .m≥2B .m<2C .m≥0D .m<05.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C′上.若AB =6,BC =9,则BF 的长为()A .4B .C .4.5D .56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是()A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=8.如图,在矩形ABCD 中,AB =4,BC =3,点E 为AB 上一点,连接DE ,将△ADE 沿DE 折叠,点A 落在A '处,连接A C ',若F ,G 分别为A C ',BC 的中点,则FG 的最小值为()A .2BCD .19.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为()A .20B .24C .28D .3010.某数学兴趣小组来到城关区时代广场,设计用手电来测量广场附近某大厦CD 的高度,如图,点P 处放一水平的平面镜.光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,测得AB =1.5米,BP =2米,PD =52米,那么该大厦的高度约为()A .39米B .30米C .24米D .15米11.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .412.计算2cos 30°的值为()A .1B 3C 2D .12二、填空题13.已知一元二次方程()222340m x x m --+-=的一个根为0,则m =________.14.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4,那么sinA=___.15.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.16.如图,矩形OABC 的顶点A ,C 分别在坐标轴上,A (8,0),D (5,7),点P 是边AB 或边OA 上的一点,连接CP ,DP ,当△CDP 为等腰三角形时,点P 的坐标为_____.17.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题18.解方程:()32142x x x +=+19.如图,在四边形ABCD 中,AB ∥CD ,连接BD ,点E 在BD 上,连接CE ,若∠1=∠2,AB=ED .(1)求证:BD=CD .(2)若∠A=150°,∠BDC=2∠1,求∠DBC 的度数.20.如图,在平行四边形ABCD 中,AC ⊥DE ,AE=AD ,AE 交BC 于O .(1)求证:∠BCA=∠EAC ;(2)若CE=3,AC=4,求 COE 的周长.21.某兴趣小组开展课外活动.如图,小明从点M 出发以1.5米/秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米.(1)请在图中画出光源O点的位置,并画出O到MN的垂线段OH(不写画法);(2)若小明身高1.5m,求OH的长.22.某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低1万元时,平均每周能多售出2辆.该4S店要想平均每周的销售利润为96万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?23.如图,△ABC是等边三角形,点D在AC上,连接BD并延长,与∠ACF的角平分线交于点E.(1)求证:△ABD∽△CED;(2)若AB=8,AD=2CD,求CE的长.24.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.(1)求证:四边形ABEF是正方形;(2)如果AB=6,AD=8,求tan∠ADP的值.25.某气象研究中心观测到一场沙尘暴从发生到减弱的全过程.开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y(千米/小时)与时间x(小时)成反比例函数关系缓慢减弱.(1)这场沙尘暴的最高风速是__________千米/小时,最高风速维持了__________小时;(2)当20x≥时,求出风速y(千米/小时)与时间x(小时)的函数关系式;(3)在这次沙尘暴形成的过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻为“危险时刻”,那么在沙尘暴整个过程中,求“危险时刻”共有几小时.26.如图,一次函数y=kx+b(k≠0)与反比例函数y=ax(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是以AO为直角边的直角三角形,直接写出所有可能的E点坐标.27.如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.参考答案1.C【分析】根据反比例函数图象位于第一、三象限,可得1-2m>0,解不等式即可求解.【详解】解:∵反比例函数12myx-=的图象位于第一、三象限,∴1-2m>0,∴m<1 2 .故选C.【点睛】本题主要考查反比例函数图象性质,解决本题的关键是要熟练掌握反比例函数图象的性质.2.B【分析】先根据几何体的展开图,判断所围成的几何体的形状,然后利用三视图的概念求解.【详解】解:因为几何体的展开图为一个扇形和一个圆形,故这个几何体是圆锥,故选:B.【点睛】此题主要考查了展开图折叠成几何体以及三视图问题,熟悉圆锥的展开图特点是解答此题的关键.3.B【分析】根据关于以原点为位似中心的对应点的坐标的关系,把A 点的横纵坐标都乘以13-即可.【详解】解:∵以点O 为位似中心,位似比为13,而A (4,3),∴A 点的对应点C 的坐标为(43-,﹣1).故选:B .【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .4.B【分析】根据根的判别式,可知Δ>0,据此即可求出m 的取值范围.【详解】解:∵关于x 的一元二次方程224x m x +=有两个不相等的实数根,∴2420x x m -+=Δ=()24420m --⨯>,解得:m<2,故选:B 5.A【分析】先求出BC′,再由图形折叠特性知,C′F =CF =BC ﹣BF =9﹣BF ,在Rt △C′BF 中,运用勾股定理BF 2+BC′2=C′F 2求解.【详解】解:∵点C′是AB 边的中点,AB =6,∴BC′=3,由图形折叠特性知,C′F =CF =BC ﹣BF =9﹣BF ,在Rt △C′BF 中,BF 2+BC′2=C′F 2,∴BF 2+9=(9﹣BF )2,解得,BF =4,故选:A .【点睛】本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.6.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.7.D【分析】分别表示出5月,6月的营业额进而得出等式即可.【详解】解:设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程得:2250025001250019100x x ++++()()=.故选D .【点睛】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.8.D【分析】由勾股定理和折叠的性质可求5BD =,3AD A D '==,由三角形的三边关系,A B BD A D >'-',则当点A '在DB 上时,A B '有最小值为2BD A D '-=,由三角形的中位线定理可求解.【详解】解:如图,连接A B ',BD ,4AB =Q ,3AD BC ==,5BD ∴===,将ADE ∆沿DE 折叠,3AD A D '∴==,在△A DB '中,A B BD A D >'-',∴当点A '在DB 上时,A B '有最小值为2BD A D '-=,F ,G 分别为A C ',BC 的中点,12FG A B '∴=,FG ∴的最小值为1,故选:D .9.D【分析】直接由概率公式求解即可.【详解】根据题意得9n=30%,解得:n=30,经检验:n=30符合题意,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选:D .10.A【分析】同学和大厦均和地面垂直,且光线的入射角等于反射角,因此构成一组相似三角形,利用对应边成比例即可解答.【详解】解:∵AB ⊥BD ,CD ⊥BD ,∴∠ABP=∠CDP ,∵∠APB=∠CPD ,∴△ABP ∽△PDC ,∴CD PDAB BP=,∴CD =PDBP ×AB =522×1.5=39米;那么该大厦的高度是39米.故选:A .11.A【分析】连接OA 、OB ,延长AB ,交x 轴于D ,如图,利用三角形面积公式得到S △OAB =S △ABC ,再根据反比例函数的比例系数k 的几何意义得到S △OAD =3,S △OBD =2,即可求得S △OAB =S △OAD -S △OBD =1.【详解】连结OA 、OB ,延长AB ,交x 轴于D ,如图,∵AB ∥y 轴,∴AD ⊥x 轴,OC ∥AB ,∴S △OAB=S △ABC ,而S △OAD=12×6=3,S △OBD=12×4=2,∴S △OAB=S △OAD ﹣S △OBD=1,∴S △ABC=1,故选:A .12.B【分析】直接利用特殊角的三角函数值进行计算即可得出答案.【详解】解:2cos30°,=2×32,3故选B .13.-2【分析】把x=0代入已知方程,列出关于m 的新方程,通过解新方程可以求得m 的值.【详解】解:根据题意将x=0代入原方程得:m 2-4=0,解得:m=2或m=-2,又∵m-2≠0,即m≠2,∴m=-2,故答案为:-2.14.35【详解】解:由题意知∠C=90°,BC=3,AC=4,根据勾股定理得,AB=5,因此可得:sinA=35BC AB .故答案为:3.515.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC∴=ADE ABC∴ 21()4ADE ABC S DE S BC ∴==△△,即4ABC ADES S =△△又12ADE S = 1422ABC S ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.16.(8,3)或(52,0)【分析】分两种情形分别讨论即可解决问题;【详解】解:∵四边形OABC 是矩形,A (8,0),D (5,7),∴B (8,7),OA =BC =8,OC =AB =7,∴CD =5,BD =3,∵点P 是边AB 或边OA 上的一点,∴当点P 在AB 边时,CD =DP =5,∴BP4,∴PA =AB ﹣BP =3,∴P (8,3).当点P 在边OA 上时,只有PC =PD ,此时P 在CD 的垂直平分线上,∴P (52,0).综上所述,满足条件的点P 坐标为(8,3)或(52,0).故答案为(8,3)或(52,0).17.60.【分析】设∠OAC=x ,∠CAB=y ,根据等腰三角形的性质,则∠OCA=x ,∠OBA=x+y ,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x ,∠CAB=y ,∵OA=OC ,∴∠OCA=x ,∵OA=OB ,∴∠OBA=x+y ,∵OC=OB ,∴∠OBC=x+30°,∵30ACB ∠=︒,∴∠CAB+∠OBA+∠OBC=150°,∴y+x+y+x+30°=150°,∴2(x+y)=120°,∵∠AOB=180°-2∠OBA=180°-2(x+y),∴∠AOB=180°-120°=60°,故答案为:60.18.123x =,212x =-【分析】先把方程化为:3(21)2(21)0x x x +-+=,再利用因式分解法解方程即可得到答案.【详解】解:方程整理得:3(21)2(21)0x x x +-+=,分解因式得:(32)(21)0x x -+=,可得320x -=或210x +=,解得:123x =,212x =-.19.(1)见解析(2)80°【分析】(1)根据平行线的性质可得ABD EDC ∠=∠,依据全等三角形的判定和性质即可证明;(2)根据全等三角形的性质可得150DEC A ∠=∠=︒,21∠=∠,再由各角之间的数量关系得出210∠=︒,利用等边对等角及三角形内角和定理即可得出结果.(1)证明:∵AB CD ∥,∴ABD EDC ∠=∠,在ABD 和EDC 中,12ABD EDC AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABD EDC ≌,∴DB CD =;(2)∵ABD EDC ≌,∴150DEC A ∠=∠=︒,21∠=∠,∵21BDC ∠=∠,∴22BDC ∠=∠,∵222230BDC ∠+∠=∠+∠=︒,∴210∠=︒,∴20BDC ∠=︒,∵BD CD =,∴()()11180180208022DBC DCB BDC ∠=∠=︒-∠=⨯︒-︒=︒.20.(1)证明见解析(2)8【分析】(1)先根据平行四边形的性质证明∠DAC=∠BCA ,再由三线合一定理证明EAC DAC ∠=∠,即可证明∠BCA=∠EAC ;(2)先根据等角对等边证明OA=OC ,再由勾股定理求出AE 的长,最后证明△COE 的周长=AE+CE 即可得到答案.(1)解:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴∠DAC=∠BCA ,∵AE=AD ,AC ⊥ED ,∴EAC DAC ∠=∠,∴∠BCA=∠EAC ;(2)解:∵∠BCA=∠EAC ,∴OA=OC ,∵AC ⊥DE ,即∠ACE=90°,∴在Rt △ACE 中,由勾股定理得:5AE ==,∴△COE 的周长=CE+OC+OE=OA+OE+CE=AE+CE=8.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,勾股定理,熟知等腰三角形的性质与判定条件是解题的关键.21.(1)见解析;(2)4m【分析】(1)作射线MA 和GC 交于O ,过O 作OH ⊥MN ,垂足为H ;(2)证明△CDG ∽△OHG 和△ABM ∽△OHM ,列比例式,可得OH 的长.【详解】解:(1)如图所示:(2)由题意得:BM=BD=2×1.5=3,∵CD∥OH,∴△CDG∽△OHG,∴CD DG OH GH=,∵AB=CD=1.5,∴1.5 1.21.2OH DH=+①,∵AB∥OH,∴△ABM∽△OHM,AB BMOH MH=,∴1.536OH DH=+②,由①②得:OH=4,则OH的长为4m.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.也考查了构建相似三角形,利用相似三角形的性质计算相应线段的长.22.21万元【分析】销售利润=一辆汽车的利润×销售汽车数量,一辆汽车的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”,根据每辆的盈利×销售的件数=96万元,即可列方程求解.【详解】解:设每辆汽车的定价应为x元,(x-15)[8+2(25-x)]=96解得x1=21,x2=23,为使成本尽可能的低,则x=21.答:每辆汽车的定价应为21万元.【点睛】此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的件数=96万元是解决问题的关键.23.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=【点睛】此题考查了相似三角形的判定与性质,涉及了等边三角形的性质,角平分线的性质,熟练掌握相关基本性质是解题的关键.24.(1)证明见解析(2)35【分析】(1)由矩形的性质得出∠FAB=∠ABE=90°,AF ∥BE ,证出四边形ABEF 是矩形,再证明AB=BE,即可得出四边形ABEF是正方形;(2)由正方形的性质得出BP=PF,BA⊥AD,∠PAF=45°,得出AB∥PH,求出DH=AD-AH=5,在Rt△PHD中,由三角函数即可得出结果.【详解】(1)证明:∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE,∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是正方形;(2)解:过点P作PH⊥AD于H,如图所示:∵四边形ABEF是正方形,∴BP=PF,BA⊥AD,∠PAF=45°,∴AB∥PH,∵AB=6,∴AH=PH=3,∵AD=8,∴DH=AD﹣AH=8﹣3=5,在Rt△PHD中,∠PHD=90°.∴tan∠ADP=PHHD=35.25.(1)32,10;(2)640yx;(3)共有59.5小时【分析】(1)由速度=增加幅度×时间可得4时风速为8千米/时,10时达到最高风速,为32千米/时,与x轴平行的一段风速不变,最高风速维持时间为20-10=10小时;(2)设k y x=,将(20,32)代入,利用待定系数法即可求解;(3)由于4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,所以4.5时风速为10千米/时,再将y=10代入(2)中所求函数解析式,求出x 的值,再减去4.5,即可求解.【详解】解:(1)0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,10~20时,风速不变,最高风速维持时间为20-10=10小时;故答案为:32,10.(2)设k y x=,将()20,32代入,得:3220k =,解得:640k =.所以当20x ≥时,风速y (千米/小时)与时间x (小时)之间的函数关系为:640y x =.(3)∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,∴4.5时风速为10千米/时.将10y =代入640y x =,得64010x=,解得64x =,64 4.559.5-=(小时)故在沙尘暴整个过程中,“危险时刻”共有59.5小时.【点睛】本题考查反比例函数的应用,待定系数法求函数的解析式,学生阅读图象获取信息的能力,理解题意,读懂图象是解决本题的关键.26.(1)y=6x ,y=43-x+6;(2)92;(3)(316-,2)或(416,2).【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A 的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB 的解析式,进而求出AG ,用三角形的面积公式即可得出结论.(3)分情形分别讨论求解即可解决问题;【详解】解:(1)∵点B (3,2)在反比例函数y=a x的图象上,∴a=3×2=6,∴反比例函数的表达式为y=6x,∵点A 的纵坐标为4,∵点A 在反比例函数y=6x 图象上,∴A (32,4),∴32342k b k b +=⎧⎪⎨+=⎪⎩,∴436k b ⎧=-⎪⎨⎪=⎩,∴一次函数的表达式为y=-43x+6;(2)如图1,过点A 作AF ⊥x 轴于F 交OB 于G,∵B (3,2),∴直线OB 的解析式为y=23x ,∴G (32,1),A (32,4),∴AG=4-1=3,∴S △AOB =S △AOG +S △ABG =12×3×3=92.(3)①当∠AOE=90°时,∵直线AC 的解析式为y=83x ,∴直线OE 的解析式为y=83-x ,当y=2时,x=-316,∴E (-316,2);②当∠OAE=90°时,可得直线AE 的解析式为y=-83x+7316,当y=2时,x=416,∴E (416,2).综上所述,满足条件的E 的坐标为(-316,2)或(416,2).【点睛】此题主要考查了反比例函数综合题、待定系数法,三角形的面积公式,直角三角形的判定和性质,解本题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.27.(1)AF =AE ;(2)AF =kAE ,证明见解析;(3)EG 2【分析】(1)证明△EAB ≌△FAD (AAS ),由全等三角形的性质得出AF =AE ;(2)证明△ABE ∽△ADF ,由相似三角形的性质得出AB AE AD AF=,则可得出结论;(3)①如图1,当点F 在DA 上时,证得△GDF ∽△GBA ,得出12DF G GA BA F ==,求出AG=3.由△ABE ∽△ADF 可得出12AB A AF AD E ==,求出AE 2.则可得出答案;②如图2,当点F 在DC 的延长线上时,同理可求出EG 的长.【详解】解:(1)AE =AF .∵AD =AB ,四边形ABCD 矩形,∴四边形ABCD 是正方形,∴∠BAD =90°,∵AF ⊥AE ,∴∠EAF =90°,∴∠EAB =∠FAD ,∴△EAB ≌△FAD (AAS ),∴AF =AE ;故答案为:AF =AE .(2)AF =kAE .证明:∵四边形ABCD 是矩形,∴∠BAD =∠ABC =∠ADF =90°,∴∠FAD+∠FAB =90°,∵AF ⊥AE ,∴∠EAF=90°,∴∠EAB+∠FAB=90°,∴∠EAB=∠FAD,∵∠ABE+∠ABC=180°,∴∠ABE=180°﹣∠ABC=180°﹣90°=90°,∴∠ABE=∠ADF.∴△ABE∽△ADF,∴AB AE AD AF=,∵AD=kAB,∴1 ABAD k=,∴1 AEAF k=,∴AF=kAE.(3)解:①如图1,当点F在DA上时,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AD=2AB=4,∴AB=2,∴CD=2,∵CF=1,∴DF=CD﹣CF=2﹣1=1.在Rt△ADF中,∠ADF=90°,∴AF=∵DF∥AB,∴∠GDF=∠GBA,∠GFD=∠GAB,∴△GDF ∽△GBA ,∴12DFG GA BA F==∵AF =GF+AG ,∴AG =233AF =∵△ABE ∽△ADF ,∴2142ABA A D EAF ===,∴AE =1122AF =在Rt △EAG 中,∠EAG =90°,∴EG ==,②如图2,当点F 在DC 的延长线上时,DF =CD+CF =2+1=3,在Rt △ADF 中,∠ADF =90°,∴AF 5==.∵DF ∥AB ,∵∠GAB =∠GFD ,∠GBA =∠GDF ,∴△AGB ∽△FGD ,∴23ABA FG FD G ==,∵GF+AG =AF =5,∴AG =2,∵△ABE ∽△ADF ,∴2142ABA A D EAF ===,∴1155222 AE AF==⨯=,在Rt△EAG中,∠EAG=90°,∴EG2=.综上所述,EG2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上数学期末试卷一.选择题(共10小题)1.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B. 3 C.0 D.0或32.方程x2=4x的解是()A.x=4 B.x=2 C.x=4或x=0 D.x=03.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A.B.C.D.3题4.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+5.有一等腰梯形纸片ABCD(如图),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下,由△DEC与四边形ABED不一定能拼成的图形是()A.直角三角形B.矩形C.平行四边形D.正方形5题6.如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A.B.C.D.7.下列函数是反比例函数的是()A.y=x B.y=kx﹣1 C.y=D.y=8.矩形的面积一定,则它的长和宽的关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数9.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.极差是5 B.中位数是9 C.众数是5 D.平均数是910.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D. 6二.填空题(共6小题)11.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为_____.12.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_________度.13.有两张相同的矩形纸片,边长分别为2和8,若将两张纸片交叉重叠,则得到重叠部分面积最小是_________,最大的是_________.14.直线l1:y=k1x+b与双曲线l2:y=在同一平面直角坐标系中的图象如图所示,则关于x的不等式>k1x+b的解集为_________.15.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有_________个黄球.16.如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为_________.三.解答题(共11小题)17.解方程:(1)x2﹣4x+1=0.(配方法)(2)解方程:x2+3x+1=0.(公式法)(3)解方程:(x﹣3)2+4x(x﹣3)=0.(分解因式法)18.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.19.如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.20.如图,梯形ABCD中,AB∥CD,AC⊥BD于点0,∠CDB=∠CAB,DE⊥AB,CF⊥AB,E.F为垂足.设DC=m,AB=n.(1)求证:△ACB≌△BDA;(2)求四边形DEFC的周长.21.如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.22.一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.23.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.24.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.参考答案一.选择题(共10小题)1.A 2.C 3.A 4.D 5.D 6.A 7.C8.C9.A10.C二.填空题(共6小题)11.20%12.5013.14.x<或0<x<15.1516.9三.解答题(共11小题)17..(1).x1=2+,x2=2﹣(2)x1=,x2=.(3).18.解答:(1)证明:∵△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4>0,即△>0,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)解:根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为:;该直角三角形的周长为1+3+=4+;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2;则该直角三角形的周长为1+3+2=4+2.19.解答:证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠FAC=∠B+∠ACB=2∠ACB,∵AD平分∠FAC,∴∠FAC=2∠CAD,∴∠CAD=∠ACB,∵在△ABC和△CDA中,∴△ABC≌△CDA(ASA);(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB,∴AD∥BC,∵∠BAC=∠ACD,∴AB∥CD,∴四边形ABCD是平行四边形,∵∠B=60°,AB=AC,∴△ABC是等边三角形,∴AB=BC,∴平行四边形ABCD是菱形.20.解答:(1)证明:∵AB∥CD,∠CDB=∠CAB,∴∠CDB=∠CAB=∠ABD=∠DCA,∴OA=OB,OC=OD,∴AC=BD,在△ACB与△BDA中,,∴△ACB≌△BDA.(2)解:过点C作CG∥BD,交AB延长线于G,∵DC∥AG.CG∥BD,∴四边形DBGC为平行四边形,∵△ACB≌△BDA,∴AD=BC,即梯形ABCD为等腰梯形,∵AC=BD=CG,∴AC⊥BD,即AC⊥CG,又CF⊥AG,∴∠ACG=90°,AC=BD,CF⊥FG,∴AF=FG,∴CF=AG,又AG=AB+BG=m+n,∴CF=.又∵四边形DEFC为矩形,故其周长为:2(DC+CF)=.21.解答:解:(1)如图:线段MG和GE就表示旗杆在阳光下形成的影子.(2)过M作MN⊥DE于N,设旗杆的影子落在墙上的长度为x,由题意得:△DMN∽△ACB,∴又∵AB=1.6,BC=2.4,DN=DE﹣NE=15﹣xMN=EG=16∴解得:x=22.解答:解:(1)50÷25%=200(次),所以实验总次数为200次,条形统计图如下:(2)=144°;(3)10÷25%×=2(个),答:口袋中绿球有2个.23.解答:证明:(1)∵四边形ABDE是平行四边形(已知),∴AB∥DE,AB=DE(平行四边形的对边平行且相等);∴∠B=∠EDC(两直线平行,同位角相等);又∵AB=AC(已知),∴AC=DE(等量代换),∠B=∠ACB(等边对等角),∴∠EDC=∠ACD(等量代换);∵在△ADC和△ECD中,,∴△ADC≌△ECD(SAS);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;又∵BD=CD,∴AE=CD(等量代换),∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,∴AD⊥BC(等腰三角形的“三合一”性质),∴∠ADC=90°,∴▱ADCE是矩形.24.解答:解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=(x>0)得k=1×3=3;∵BA∥y轴,∴点E的横坐标与点B的横坐标相等,为2,∵点E在双曲线上,∴y=∴点E的坐标为(2,);(2)∵点E的坐标为(2,),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=,BC=2∵△FBC∽△DEB,∴即:∴FC=∴点F的坐标为(0,)设直线FB的解析式y=kx+b(k≠0)则解得:k=,b=∴直线FB的解析式y=。