基础有机化学.周环反应
《周 环 反 应》课件
![《周 环 反 应》课件](https://img.taocdn.com/s3/m/0a4e656aeffdc8d376eeaeaad1f34693daef109b.png)
A
1
3
2
A
1
3
2
四.周环反应的理论
1. 分子轨道和成键轨道
周环反应的过程,可用轨道来描述,有机化 学中涉及最多的原子轨道为1p轨道和2s轨道。
原子轨道线性组合成分子轨道。当两个等价 原子轨道组合时,总是形成两个新的分子轨道, 一个是能量比原子轨道低的成键轨道,另一个是 能量比原子轨道高的反键轨道。
前者对电子的束缚力较松弛,具电子供体的性质,易给予电 子;后者对电子的亲和力较强,具电子受体的性质,易接受电子。 它们在化学反应中犹如价电子一样起作用,处于反应的最前沿, 所以称为前线轨道,其上的电子称为前线电子。
进行反应时是前线分子轨道,即HOMO和LUMO之间的作用。
发生作用的HOMO和LUMO必须对称性一致。能量水平接近。
电环化反应的立体选择性规律
π电子数
反应条件
立体化学
4n
分子轨道对称守恒原理有三种理论解释: 前线轨道理论; 能量相关理论; 芳香过渡态理论(休克尔-莫比乌斯结构理论)。
现代有机合成之父伍德沃德
伍德沃德1917年4月10日生于美国波士顿。从小喜读书, 善思考。1933年夏,仅16岁的伍德沃德以优异的成绩,考入美 国著名大学麻省理工学院。在全班学生中,他年龄最小,素有
3 H
CH3 H
CH3 LUMO HOMO
hv 对旋
H H3C
CH3
H3C
+
H
H
H CH3
子
H3C
CH3
H
H
轨 道
2 H
CH3 H
CH3 HOMO
+
高等有机第七章-周环反应
![高等有机第七章-周环反应](https://img.taocdn.com/s3/m/fe0602d550e2524de5187e2d.png)
H
H
第二节 环加成
一、Diels-Alder反应
(一) 一般特点 D-A反应中双烯与亲双烯体彼此平行同面接近:
亲双烯体
LUMO
双烯体
HOMO
亲双烯对双烯的加成有二种可能的立体化学取向, 内式(endo)和外式(exo).
内式:过渡态中亲双烯体上的取代基接近双烯体上的p轨道。 外式:过渡态中亲双烯体上的取代基远离双烯体上的p轨道。
由于角张力环丙基正离子不易形成,环丙基卤代烃和磺酸酯在一般溶剂解的条 件下都很不活泼。例如,环丙基磺酸酯在乙酸中溶剂解需在180oC进行,产物为 烯丙基乙酸酯而不是环丙基乙酸酯。反应中间体可能是先形成环丙基正离子, 然后开环成烯丙基正离子。
X -XH slow
fast H
YY
形成烯丙基产物是其它环丙基卤代烃和磺酸酯溶剂解的特征。 环丙胺在水溶液中重氮化给出烯丙醇。
反应变慢。 R O
R
H
Me t-Bu
+
O
KR
1
42
<0.05
注:R从H变为Me,电子效应使反应加快。
O
第二、双烯体自身取代基对其形成s-cis构象有影响。例如反式
1,3-戊二烯活性比4-甲基-1,3-戊二烯大103倍。
CH3
NC
CN
R
R
H
Me
H
+
NC
CN
H
KR
1
10 -3
双烯体C-2, C-3上取代基对D-A反应影响很小。例如,2,3-二甲基
COOMe
+
+
COOMe
无催化剂: 120℃,6h AlCl3催化: 20℃,3h
COOMe
有机化学 第17章 周环反应
![有机化学 第17章 周环反应](https://img.taocdn.com/s3/m/2cce59c19ec3d5bbfd0a74d6.png)
Diels-Alder反应
W +
W
W
例:
+
O
O O
H H O O O + H H
O O O
顺式加成
endo(内型) 动力学控制产物
exo(外型) 热力学控制产物
[3, 3]s迁移(Claisen重排、Cope重排)
X H X
X
X=O or CH2
例:
H CH3 H CH3 225oC
Z型 CH3 E 型 CH3 CH3 H CH3 H 椅式构象过渡态 H
The Nobel Prize in Chemistry 1981
"for their theories, developed independently, concerning the course of chemical reactions"
Kenichi Fukui
Japan Kyoto University Kyoto, Japan (1918 – 1998)
CH3 hv
对旋 a
3 H H 1 CH3
H
a b
H hv CH3 CH3 2 H
1与2为 对映体
CH3 H
cis, trans
对旋 b
trans-二取代
trans-二取代
CH3 H CH3 H 3
cis-二取代
CH3 hv H H CH3
a
b hv
H
对旋 a
对旋 b
4
CH3 H CH3
3与4 相同
Roald Hoffmann USA Cornell University Ithaca, NY, USA 1937 -
有机化学18第十八章周环反应
![有机化学18第十八章周环反应](https://img.taocdn.com/s3/m/5bfc13236294dd88d0d26bf2.png)
A BA B
顺旋
AA BB
BB AA
AA BB
A BA B
AA BB
对旋
BB AA
对称性不匹配,不能成键。
链状和环状共轭烯烃的判断
一个环状的共轭多烯是由三个单键连接两端的 双键的,应将其恢复为链状共轭多烯,再判断 它是4n或是4n+2电子体系。
由双键转化而来的单键
电环化反应形成的单键
由双键转化而来的单键
B
A
B AA B
A
B
A
B
以键轴为轴向同一方向(均为顺
时针,或均为逆时针)称为顺旋。 B
A
B
A
A
B
(dl)
以键轴为轴向不同方向(一为顺 时针,另一为逆时针)称为对旋。
B
B
B AA B
A
A
A
A
B
B
对称性不匹配,不能成键。
C. 4n电子体系在光照条件下的电环化反应
在光照条件下,4n电子体系参与电环化反应的 最高占有轨道(HOMO)是3,3在顺旋和对旋 时的成键状态如下:
18.3 -迁移反应
-迁移反应:一个以键与共轭多烯相连 的原子或基团,在加热条件下从共轭体 系的一端到另一端的迁移反应,同时伴 随单双键的互变。
分类:-迁移反应分为原子或基团从共 轭体系的一端到另一端的迁移称为[1,j]迁 移,又可进一步分为氢原子迁移和烷基 迁移;联结两段共轭体系的键在共轭体 系上的位移,称为[i,j]迁移,主要是 [3,3’]--迁移。
1.4n电子体系的电环化反应
A. 4n电子体系的分子轨道
反键轨道
HOMO
成键轨道
加热条件下电子填充
反键轨道
有机合成机理1周环反应机理
![有机合成机理1周环反应机理](https://img.taocdn.com/s3/m/6e2b2c618bd63186bdebbc97.png)
分子轨道对称守恒原理和前线轨道理论是近代有机化学中的重大
成果之一。为此,轨道对称守恒原理创始人之一R.霍夫曼和前线轨
道理论的创始人福井谦一共同获得了1981年的诺贝尔化学奖。
1.σ-键的形成 当两个原子轨道沿着键轴方向对称重叠时,可形成两个σ-键的分
子轨道。对称性相同的原子轨道形成σ-成键轨道,对称性不同的原 子轨道形成σ*反键轨道。
以丁二烯为例讨论——丁二烯电环化成环丁烯时,要求: 1.C1—C2,C3—C4沿着各自的键轴旋转,使C1和C4的轨道结合形 成一个新的σ-键。 2.旋转的方式有两种,顺旋和对旋。 3.反应是顺旋还是对旋,取决于分子是基态还是激发态时的HOMO 轨道的对称性。 丁二烯在基态(加热)环化时,起反应的前线轨道HOMO是ψ2 所以丁二烯在基态(加热)环化时,顺旋允许,对旋禁阻。
25 ℃ 顺旋
CH3 Ph
CH3
CH3 H H CH3
顺旋 H3C H H
hυ 对旋 CH3
HH CH3 CH3
二、4n+2个π电子体系的电环化
以己三烯为例讨论,处理方式同丁二烯。先看按线性组合的己三烯的六个分子轨道。
ψ6
E6
ψ5
E5
ψ4
E4
E
ψ3
E3
ψ2
E2
ψ1
E1
基态 激发态
从己三烯为例的π轨道可以看出: 4n+2π电子体系的多烯烃在基态(热反应时)ψ3为HOMO,电环化
时对旋是轨道对称性允许的,C1和C6间可形成σ-键,顺旋是轨道对称 性禁阻的,C1和C6间不能形成σ-键。
顺旋(禁阻)
对旋(允许)
ψ3 己三烯的热环合
130 ℃
CH3 H
经典:有机化学-第17章-协同反应
![经典:有机化学-第17章-协同反应](https://img.taocdn.com/s3/m/b000c7185022aaea988f0f71.png)
CH3
基态 激发态
相同
15
例:
CH3 H H CH3
hv
CH3
CH3
CH3 H CH3 H
H 3C H H
CH3
H 3C H H
CH3
LUM O
LUMO HOMOLeabharlann H 3C H HCH3
hv 顺旋
H 3C H H
CH3
HOM O
对旋
H 3C H H
CH3
1
H 3C H H
CH3
基态 激发态
外消旋体
H H 3C
8
四 直链共轭多烯的分子轨道的一些特点
1. π分子轨道的数目与参与共轭体系的碳原子数是一致 的。
2. 对镜面(δv)按对称--反对称--对称交替变化。对二 重对称轴(C2)按反对称--对称--反对称交替变化。
3. 结(节)面数由0→1→2…逐渐增多。 4 轨道数目n为偶数时,n /2为成键轨道,n /2为反键
第十七章 周环反应 (协同反应)
1
第一节 周环反应和分子轨道对称守恒原理 一 周环反应概况简介 二 分子轨道对称守恒原理简介 三 前线轨道理论的概念和中心思想 四 直链共轭多烯π分子轨道的一些特点
2
一 周环反应概况简介
1. 定义
周环反应 在化学反应过程中,能形成环状过渡态的协同反应。
协同反应 协同反应是指在反应过程中有两个或两个以上的化学 键破裂和形成时,它们都相互协调地在同一步骤中完成。
4n+2电子体系?
HH
18
第三节 环加成反应
一 环加成反应的定义、分类和表示方法 二 环加成反应的选择规则 三 前线轨道理论对环加成反应选择规则的
常见的周环反应(简)
![常见的周环反应(简)](https://img.taocdn.com/s3/m/3e6626d882d049649b6648d7c1c708a1284a0a84.png)
快速构建骨架
一步周环反应可以快速构 建复杂的分子骨架,大大缩 短有机合成路线,提高合成 效率和产率。
周环反应在材料科学中的应用
高性能聚合物
周环反应可以用于制备环状单 体,从而合成出具有高度热稳 定性和机械性能的高分子材料 。
金属有机框架
以周环反应为基础的拓扑反应 可以构建出复杂的金属有机框 架材料,用于吸附、分离和催 化等领域。
什么是周环反应
周环反应是一种常见的分子环化反应,涉及碳碳键的形成。它在有机合成 中广泛应用,可用于构建复杂环状分子。该反应的机理包括路径选择、区 域选择性和立体选择性等多个考量因素。
AL 作者:艾说捝
周环反应的定义
环结构形成
周环反应是指通过使两个或多个基团在 分子内环化而形成环状结构的化学反应 。
生物化学反应
周环反应在生物化学中有重要应用,如 在核酸、蛋白质等生物大分子的合成和 修饰中发挥关键作用。
周环反应的创新思路
基于新型反应活性物种
探索利用各种过渡金属催化 剂、特殊结构有机小分子等 诱发新型反应中间体参与的 周环反应新路径。
基于绿色可持续化学
开发原子经济性高、无副产 物排放的清洁高效绿色周环 反应途径,实现化学过程的环 境友好性。
多相催化体系
周环反应可以构建复杂的催化剂载体, 实现对反应物和过渡态的精确调控,在 多相催化过程中有广泛应用。
生物酶催化
生物酶内部的周环结构在催化活性中心 的构筑和调控方面起关键作用,周环反 应是酶促反应的重要基础。
周环反应的研究方法
分析表征
利用各种光谱、显微镜等分析手段,对反应中间体、过渡态等进行精确测定和表征。
理论计算
采用量子化学计算方法,如密度泛函理论等,预测和解释反应机理、动力学、热力学参数。
邢其毅《基础有机化学》笔记和课后习题(含考研真题)详解(周环反应)
![邢其毅《基础有机化学》笔记和课后习题(含考研真题)详解(周环反应)](https://img.taocdn.com/s3/m/ee19d953a6c30c2259019e5c.png)
第16章周环反应16.1 复习笔记一、周环反应和分子轨道对称守恒原理1.周环反应(1)定义:在化学反应过程中,能形成环状过渡态(cyclic transition state)的协同反应(synergistic reaction)统称为周环反应。
(2)协同反应是一种基元反应(elementary reaction)。
其含义是:在反应过程中,若有两个或两个以上的化学键破裂和形成时,都必须相互协调地在同一步骤中完成。
(3)周环反应具有如下的特点:①反应过程中没有自由基或离子这一类活性中间体产生。
②反应速率极少受溶剂极性和酸、碱催化剂的影响,也不受自由基引发剂和抑制剂的影响。
③反应条件一般只需要加热或光照,而且在加热条件下得到的产物和在光照条件下得到的产物具有不同的立体选择性(stereoselectivity),是高度空间定向反应。
④遵循微观可逆性原理。
(4)周环反应主要包括电环化反应(electrocyclic reaction)、环加成反应(cycloaddition)和σ迁移反应(σmigrate reaction)。
2.分子轨道对称守恒原理电环化反应在加热和光照条件下具有不同的立体选向性。
分子轨道对称性是控制这类反应进程的关键因素。
分子轨道对称守恒原理认为:化学反应是分子轨道进行重新组合的过程,在一个协同反应中,分子轨道的对称性是守恒的,即由原料到产物,轨道的对称性始终不变。
因此分子轨道的对称性控制着整个反应的进程。
二、前线轨道理论1.前线轨道理论的概念和中心思想(1)基本概念①最高占有轨道(HOMO):已占有电子的能级最高的轨道。
②最低未占有轨道(LUMO):未占有电子的能级最低的轨道。
③单占轨道(single occupied molecular orbital):有的共轭体系中含有奇数个电子,它的已占有电子的能级最高的轨道中只有一个电子。
用SOMO表示。
单占轨道既是HOMO,又是LUMO。
第十七章 周环反应
![第十七章 周环反应](https://img.taocdn.com/s3/m/66794364a98271fe910ef985.png)
第十七章周环反应第一节周环反应的理论一周环反应1.定义:在最近的五十年里,有机化学家研究有机化学机理,主要有两种。
一种是游离基型反应,一种是离子型反应,它们都生成稳定或不稳定的中间体。
离子型或游离基型反应:反应物→中间体→产物另一种机理是,在反应中不形成离子或游离基的中间体,而认为是有电子重新组织经过四或六中心环的过渡态而进行的。
这类反应不受溶剂极性的影响,不被碱或酸所催化,没有发现任何引发剂对反应有什么关系。
这类反应似乎表明化学键的断裂和生成是同时发生的。
这种一步完成的多种心反应叫周环反应。
周环反应:反应物→产物2.周环反应的特征:①反应进行的动力,是加热或光照。
②反应进行时,有两个以上的键同时断裂或形成,是多中心一步反应。
③反应时作用物的变化有突出的立体选择性。
④在反应过渡态中原子排列是高度有序的。
二. 分子轨道理论几个原子轨道线性组合,形成几个分子轨道,比原子轨道能量低的为成键轨道,比原子轨道能量高的为反键轨道。
其电子填充符合Pauli原理和Hund规则。
σ轨道:Л轨道:丁二烯的分子轨道:镜面节面直链共轭多烯烃分子轨道特点:①节面数:若共轭多烯烃有几个原子,它的n个轨道就有n-1个节面。
②轨道的节面越多,能量越高。
③高一能级的轨道和低一能级的轨道的对称性是相反的。
④图中的共轭多烯烃的对称性都是指类顺型(像顺型)的。
三.前线轨道.福井认为最高的已占分子轨道(HOMO)上的电子被束缚得最松弛,最容易激发到能量最低的空轨道(LUMO)中去。
这些轨道是处于前线轨道(FMO),前线轨道理论认为:化学键的形成主要是由FMO的相互作用决定的。
分子的HOMO与LUMO 能量接近,容易组成新轨道。
第二节电环化反应1.定义:在n个Л电子的线型共轭体系中,在其两端点之间生成一个单键的反应及其逆过程称为电环化反应。
电环化反应中,多烯烃的一个Л键变成环烯烃里的一个σ键。
如:(Z,E)2,4-己二烯根据微观可逆性原则,正反应和逆反应所经过的途径是相同的。
周环反应 大学有机化学
![周环反应 大学有机化学](https://img.taocdn.com/s3/m/b8dbba48fe4733687e21aace.png)
1
2
3
1
2
3
CH2 CH CH2 CH2 CH CH2
1' 2' 3'
CH2 CH CH2 CH2 CH CH2
1' 2' 3'
ψ2
ψ2 柯普(Cope)重排,加热时是对称允许的
(2)克莱森(Claisen)重排
在热的作用下,烯丙基苯基醚分子中的烯丙基 CH CH=CH CH2 2 CH=CH2 2 CH CH HH2C CH CH2 2 2C 从氧原子转移到苯环碳原子上生成烯丙基酚的反应。
C C C
基态
C
加热时,同 面[1,5]σ 键 氢迁移允许
二、碳σ键迁移
1. [1,3 ]碳σ键迁移
H 1' CH3 3 2 1 1500C 2 3
H 1' CH3
1
2. [1,5 ]碳σ键迁移
CH3 1
2 3 4 5
CH3 2 1 5 CH3 4 3
CH3
3. [ 3,3 ]σ键迁移
(1)柯普(Cope)重排 在热的作用下,1,5-己二烯及其衍生物经过 六元环过渡态发生的重排。
CH CH2 3' CH2 H
CH2CH=CH2
1'
2'
CH2 CH=CH-CH 3 CH2 CH=CH-CH 3 1O
3 2 3
3' 1'
2'
3'
1 OH 2 3
2' 3' 1 OH 1' 2' 3' 2 CH-CH=CH 2 CH-CH=
CH3
3
CH3
OH CH2 CH2 CH=CH2 CH=CH2 OH OH OH O O Me Me Me Me Me Me Me Me Me e Me CH2-CH=CH2 CH2-CH=CH2 CH -CH=CH
第五版 有机化学 周环反应
![第五版 有机化学 周环反应](https://img.taocdn.com/s3/m/5139b523bd64783e09122ba0.png)
周环反应:不经过活性中间体,只经过环状过渡态
的一类协同反应(Concerted reaction)。
5
周环反应的特点:
Jiaying University
①反应进行的动力,是加热或光照。 ②反应进行时,有两个以上的键同时断裂或 形成,是多中心一步反应。 ③反应时作用物的变化有突出的立体选择性。 ④在反应过渡态中原子排列是高度有序的。 ⑤反应不受溶剂极性的影响,不被碱或酸所催化. 周环反应是分子轨道重新组合的过程,分子 轨道对称性控制化学反应的进程。
例:
CH2 [1,5]氢移位 △ H CD2
CH3 H2C H C9H17
CD2H
CH3 C9H17
[1,7] 氢移位 HO
H2CH
HO
35
Jiaying University
2. [ i , j ] 迁移
(1)[3,3]σ迁移
i j
C C C C C C C C C C
1' 2'
1 1' 2'
1
21
Jiaying University
环加成反应(Cycloaddition Reactions)
一、环加成反应 两分子烯烃或多烯烃生成环状化合物的反应。
hv + [ 2+2 ] 环加成
+
[ 4+2 ] 环加成
括号中的数字表示两个体系中参与反应的电子数。
22
Jiaying University
6
主要的三类周环反应:
1.环加成反应 Diels-Alder反应:
Jiaying University
2.电环化反应:
3.迁移反应
7
有机化学概论课件第七章 周环反应
![有机化学概论课件第七章 周环反应](https://img.taocdn.com/s3/m/f6019cc94a7302768f9939bf.png)
hv or heat
CH CH2 CH CH2
CH CH2 CH CH2
高度立体专一性:一定反应条件下 (光、热),一定构型的反应物只 能得到特定构型的产物。
CH3 H H CH3
hv
对旋
heat
顺旋
H
H CH3 heat
CH3 CH3 顺旋
H H hv
对旋
CH3
H H CH3 CH3
分子轨道对称守恒原理
“内型”是指:双烯体中的C2-C3键和亲双烯体中与烯键 或炔键共轭的不饱和基团处于连接平面的同一侧。两者 处于连接平面的异侧谓之“外型”(exo)产物。
CH3
4
H
3
H
+
2
H
1
H
H
COOCH3 H
连接平面
3 2 C(2)- C(3)键
4 CHH3
H
H
1 H
H COOCH3
H
与烯键共轭的 不饱和基团
内型加成产物受动力学控制,而外型加成产物受热力学 控制。内型产物通过加热等条件可能转化为外型产物。
Heat: HOMO
顺旋对称允许,对旋对称禁阻
hν: HOMO
hv
CH3 H H
CH3
heat
H H CH3 CH3 CH3 HH CH3
• 1.2. 环加成反应
共轭二烯烃及其衍生物与含有碳碳双键、三 键等的化合物进行1,4-加成生成环状化合物的反 应。(Diels-Alder` Reaction)
20世纪50年代,福井谦一提出。它的依据是:在分子中, HOMO上的电子能量最高,所受束缚最小,所以最活泼,容易 变动;而LUMO在所有的未占轨道中能量最低,最容易接受 电子,因此这两个轨道决定着分子的电子得失和转移能力, 决定着分子间反应的空间取向等重要化学性质。
第十一章周环反应
![第十一章周环反应](https://img.taocdn.com/s3/m/636666816529647d2728527d.png)
CH3 H H CH3 hv
CH3 H CH3 H
(4n个π 电子数的电环化反应)
电环化反应的立体选择性主要由两种因素所决定: (1)多烯烃中π 电子的数目 (2)反应条件是加热还是光照
CH3 H H CH3 hv 顺旋
H CH3 CH3 H
CH3 H H CH3 △ 对旋
H
CH 3 H
H 3C
H H
CH 3
△
H
基态 2 对称 ) (C
CH 3
H
CH 3
对旋允许
H 3C H H CH 3
CH 3
CH 3 CH CH 3 3 H
hv
H
) 激 发 态( m 对 称
H
H
H
顺旋 HOMO Ψ4
H3C H H
CH3 CH3 H
A
CH3
H
对旋 HOMO Ψ3
H3C H H
CH3 H CH3
常用反应机理方法对反应进行研究也未发现其它反应中 间体存在。
•
2.
具有立体专一性。
协同反应:旧的共价键断裂和新的共价键形成同时发生,反 应仅仅经过一个过渡态而没有离子或自由基等中间体生成的 反应。
周环反应(Percyclic reaction)
1. 2. •
周环反应:经过环状过渡态的协同反应。 周环反应特点: 反应过程中,旧的共价键断裂和新的共价键形 成同时发生,反应同时发生于一个过渡态中, 为多中心的一步完成的反应。 反应机理中不涉及离子或自由基中间体。 反应一般在光照或加热下进行。 反应一般有较好的立体选择性。
由一个分子的HOMO流向另一个分子的LUMO; • 两分子相互作用时,轨道必须同相重叠;
有机化学第十七章 周环反应
![有机化学第十七章 周环反应](https://img.taocdn.com/s3/m/edb7aba9f524ccbff12184ba.png)
π电子数之和: 4n+2
二、环加成反应规则
π 电子数
• • 2+2 4+2
π 电子体系
4n 4n+2
加热 禁阻 允许
光照 允许 禁阻
【例1】:顺-2-丁烯光照条件下的产物
+
【例2】:反-2-丁烯光照条件下的产物
+
【例3】:
+
O
80℃ O 苯
O H
O
第三节 σ迁移反应
• 在加热条件下,烯烃或共轭多烯体系中,一个原子 的σ键迁移到另一个碳原子上,随之π键发生转移 的反应。
情况①: HOMO
LUMO
丁二烯Ψ2,C 2 乙 烯Ψ2,C 2
基态时情况①轨道对称性相符,反应允许!
情况②:
LUMO HOMO 丁二烯Ψ3,m 乙 烯Ψ1,m
因此,基态时轨道对称性相符,反应允许!
(2)激发态 情况①:丁二烯激发,乙烯不激发: HOMO 丁二烯Ψ3, m
LUMO
乙 烯Ψ2,C 2
前线轨道理论
在反应中,起决定作用的是前线电子和前 线轨道(最高占据轨道HOMO和最低未占轨道 LUMO)。
LUMO
丁 二 烯 ( 共 轭 二 烯 ) 分 子 轨 道 π
HOMO
LUMO
HOMO
己 三 烯 ( 共 轭 三 烯 ) 分 子 轨 道 π
LUMO
LUMO
HOMO
HOMO
一、电环化反应机理
H
CH3
CH3
H 3C H H CH3
CH3 CH CH3 3 H
H
激 发 态(m 对称)
H
H
二、环加成反应机理
• 基本原则:
有机化学 第十七章 周环反应
![有机化学 第十七章 周环反应](https://img.taocdn.com/s3/m/18ef3917f12d2af90242e62e.png)
下面我们采用前线轨道理论进行讲解。
Organic Chemistry
© 2015 05 11
第十八章 周环反应
§18.1 电环化反应
在加热或光照条件下,共轭多烯烃转变成环烯烃或 环烯烃转变成共轭多烯烃的反应叫电环化反应。
例1
CH3
例2
CH3 H
第十八章 周环反应
3. 3,3-C 迁移 假定在加热条件下,C-C键断裂后生成自由基,其HOMO为
π2 ,反对称A。
例
· ·
Organic Chemistry
© 2015 05 11
第十八章 周环反应 例
例
Organic Chemistry
© 2015 05 11
4
第十八章 周环反应
例 Claisen 重排
π2
(HOMO)
简称
化性
问。
π1
题
Ground
state
基态 △
Organic Chemistry
分子轨道
A
S
(HOMO)
A
S
Excited state
激发态 hv 对称性
© 2015 05 11
第十八章 周环反应
CH3
CH3 H
HH CH3
H
CH3
hv
H
H CH3
CH3
加热,基态,HOMO π2 对称性 A 顺旋。
Organic Chemistry
© 2015 05 11
外型
Organic Chemistry
6+4
内型
© 2015 05 11
有机化学 周环反应
![有机化学 周环反应](https://img.taocdn.com/s3/m/f0a9231dff00bed5b9f31d7c.png)
C C
C C
C C
C C
C
1
C
2
C
3
C
4
C
5 [ 1, 5 ] 迁移
C Z C
[ i , j ] 迁移
i
C C
1'
1
C C
2'
2
C C
3'
2
3
C C
4'
4
C C
5'
5
[ 3, 3 ] 迁 移
C C
1'
2
1
C C
2'
2
C C
3'
3
C C
4'
4
C C
5'
5
j
1 1' 2'
3 3'
1 1' 2'
3 3'
[ 3, 3 ] 迁 移
两分子烯烃或共轭多烯烃加成成为环状化合物的反应叫环加成反应。
环加成反应可以根据每一个反应物分子所提供的反应 电子数来分类.
+
[ 2 + 2 ]环加成
+
[ 2 + 4 ]环加成
O
+
O + O O
O O
1,3-偶极环加成反应
二、[ 2 + 2 ]环加成
+
h
H 3C H H
H C CH3 C CH3 H
△
4n+2体系 对旋允许
H
H
△
H H
H
△
H
4n体系 顺旋允许
4n+2体系 对旋允许
考研 有机化学第十八章 周环反应
![考研 有机化学第十八章 周环反应](https://img.taocdn.com/s3/m/f20927320b4c2e3f5727631f.png)
18.1.3 能量相关理论
能级相关图的绘制步骤: 能级相关图的绘制步骤: ⑴ 将反应物中涉及旧键断裂的分子轨道和生成物中新 键形成的分子轨道按能级高低顺序由上到下分别排在 两侧。 两侧。 ⑵ 选择在整个反应中始终有效的对称元素,用此对称 选择在整个反应中始终有效的对称元素, 元素对( 中所画轨道按对称和反对称予以分类。 元素对(1)中所画轨道按对称和反对称予以分类。
丁二烯 (顺旋) 顺旋)
环丁烯
丁二烯 (对旋) 对旋)
环丁烯
丁二烯电环化反应轨道能级相关图
S A S A S A
ψ6 ψ5 ψ4 ψ3 ψ2 ψ1
C2
m π4* σ* π3* π2 σ π1 S A A S S A A S A S A S ψ6 ψ5 ψ4 ψ3 ψ2 ψ1 π4* σ* π3* π2 A A S A
[1,3]一一
[1,5]一一
.
.
.
同同/ 保保,禁禁 同同/ 反构,允允
同同/ 保保,允允 异同/ 反构,允允
H
3
M e 120oC
1
H
Me 异构构构
H
Me
2
外构
×
M e H
内构
M e
2 1 3 4 5
Me C [1,5]一一 H [1,5]一一
M e
Me
H Me M e
2
2 3
EtO C O EtO C O
⑶ 将对称性一致的反应物分子轨道和生成物分子轨道 用一直线连接起来,连接的直线称为关联线, 用一直线连接起来,连接的直线称为关联线,画关联 线时必须遵循“一一对应”原则( 线时必须遵循“一一对应”原则(即反应物体系的一 个分子轨道只能与产物体系的一个分子轨道相关联)、 个分子轨道只能与产物体系的一个分子轨道相关联)、 能量相近原则( 能量相近原则(即尽量使能量相接近的分子轨道相关 联)、不相交原则(即对称性相同的两条关联线不能 )、不相交原则( 不相交原则 相互交叉)。对于一个协同反应, )。对于一个协同反应 相互交叉)。对于一个协同反应,按以上原则绘出的 相关图是唯一的。 相关图是唯一的。
高教版 有机化学 第十五章 周环反应 课件ppt
![高教版 有机化学 第十五章 周环反应 课件ppt](https://img.taocdn.com/s3/m/43953a6227d3240c8447efed.png)
H CH3 H CH3
CH3
△
对旋
顺旋
HH CH3
6
(Z,E)-2,4-hexadiene
H
hv
对旋
H
H
H
△
H
80℃
顺旋
H
7
(乙)4n+2个π电子体系
CH3 H CH3 H
(Z,Z,E)-2,4,6-octatriene
△
CH3 H
H CH3
CH3 h ν
顺旋
对旋
H H CH3
CH3
CH3 H H CH3
N Ph N H COOR Ph
+
-
顺丁烯二酸酯
H ROOC
Ph C N NPh
Ph
+
-
N N Ph
反丁烯二酸酯
H ROOC
COOR H 30
对于某些1,3-偶极分子,当顺式加成按不 同方向时,生成两种异构体。
Ph H
H Ph H MeOOC N N H COOMe
C N N
-
+
H C C MeOOC
35
(甲)[1,n]移位反应
3 4
CH 2 [1,5] 氢移位 H △ CD 2
5
2 1
CD2H
CH3 C9H17
CH3 C9H17 7 H2CH 6 5 4 1 2 3
[1,7] 氢移位 HO
H2CH
HO
36
1
3 2 OAc H
1,3碳移位
D
CH3 2 CH3 1 5
300 C
CH 3
ψ
2
HOMO (顺旋成键)