人教版图形的旋转教案

合集下载

人教版小学数学图形的运动旋转教案

人教版小学数学图形的运动旋转教案

图形的运动——旋转学情分析“图形的旋转”这部分教材是在二年级下册“平移和旋转”初步认识了生活中的旋转现象,能够较为准确的判断出某一物体的运动现象是“平移还是旋转”的基础上进一步明确旋转的含义,探索旋转的特征和性质,并让学生学会在方格纸上把简单图形旋转90°。

是空间与图形领域的重要知识点,对发展学生的空间观念是一个渗透,是后续学习中心对称图形及其图形变换的基础,在教材中起着承上启下的作用。

同时,旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题。

教学目标知识与技能目标:通过生活实例,认识图形的旋转变换,理解旋转的含义,探索它的特征和性质。

能在方格纸上将简单的图形旋转90°。

过程与方法目标:通过在方格纸上画出一个简单图形旋转90°后的图形,加深对旋转的理解。

情感态度与价值观目标:1、通过画图,培养学生动手操作的能力,提高学生的空间想象能力和综合运用知识的能力。

2、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。

教学重点:说清“指针是绕哪个点旋转”“是向什么方向旋转”“转动了多少度”。

教学难点:探索图形旋转的特征和性质。

教学准备:方格纸、三角尺、多媒体课件。

教学过程一新知导入在玩中学,导入新课1、谈话:(出示风车)这个玩具你们会玩吗?怎么玩?2、学生自由发言。

3、你发现了什么?(风车在旋转)真棒,旋转也是物体运动的一种现象。

4、在生活中,你还见过哪些旋转现象呢?学生举例。

那么这几张图片上的运动是旋转现象吗?生活中这样的旋转现象非常多,老师也找了一些。

瞧,这是电风扇在旋转,旋转木马绕着中间的轴在旋转、摩天轮在旋转……(课件依次出示电风扇、旋转木马、地球、摩天轮、旋转门)5、教师:像这样物体或图形绕着一个点或一个轴转动的现象就是旋转现象。

这节课,我们就来研究“旋转现象”。

二新知探究认识线段的旋转,理解旋转的含义1、钟面上有什么?(绕着点O 旋转)用手跟着箭头比划。

初中旋转模型教案人教版

初中旋转模型教案人教版

初中旋转模型教案人教版教学目标:1. 理解旋转的概念和性质,能够识别旋转中心和旋转角度。

2. 能够运用旋转性质解决实际问题,培养空间想象力。

3. 培养观察图形的能力,发展学生的审美能力。

教学重点:1. 旋转的概念和性质。

2. 运用旋转性质解决实际问题。

教学难点:1. 理解旋转的性质。

2. 运用旋转性质解决复杂实际问题。

教学准备:1. 多媒体课件。

2. 几何模型和实物模型。

教学过程:一、导入(5分钟)1. 引导学生回顾平移和轴对称两种图形变换,提问:除了这两种变换,还有其他的图形变换吗?2. 引导学生思考生活中的旋转现象,如风扇旋转、车轮旋转等,引发学生对旋转的兴趣。

二、新课讲解(15分钟)1. 讲解旋转的概念:旋转是图形在平面内围绕一个固定点进行的运动,这个固定点称为旋转中心,旋转的方向称为旋转方向。

2. 讲解旋转的性质:旋转不改变图形的大小和形状,只改变图形的位置;旋转后的图形与原图形的对应点与旋转中心连线的夹角等于旋转角度。

3. 举例说明旋转的性质,引导学生观察和理解。

三、课堂练习(10分钟)1. 让学生分组进行课堂练习,运用旋转性质解决实际问题。

2. 教师巡回指导,解答学生的疑问。

四、拓展与应用(10分钟)1. 引导学生思考如何运用旋转性质解决实际问题,如设计图案、制作模型等。

2. 让学生分组讨论,分享各自的想法和成果。

五、总结与反思(5分钟)1. 教师引导学生总结本节课所学内容,巩固旋转的概念和性质。

2. 学生反思自己在课堂上的表现和学习成果,提出改进措施。

教学评价:1. 学生能够正确理解旋转的概念和性质。

2. 学生能够运用旋转性质解决实际问题。

3. 学生能够积极参与课堂讨论,展示自己的创新思维。

教学反思:本节课通过引导学生回顾平移和轴对称两种图形变换,引出旋转的概念,然后讲解旋转的性质,并通过课堂练习和拓展应用,让学生运用旋转性质解决实际问题。

在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,引导学生在课堂上积极参与,发挥自己的想象力和创造力。

《图形的旋转》教案14篇

《图形的旋转》教案14篇

《图形的旋转》教案14篇《图形的旋转》教案篇1一、游戏创设情景,导入新课。

幸运大转盘:转一转转盘上的指针,你想玩哪一种,看看你幸运吗?师:盼望每个同学都能拥有健康的身体,学会聪慧地思索,在学习数学的过程中体验胜利的欢乐。

转盘上指针的运动方式,在三班级我们已经有肯定了解,叫旋转。

请看大屏幕〔转杆的关和合〕,在小区门口看过这个转杆吗?转杆的运动方式是〔同学一起说〕师:对了,转杆的打开和关闭也是旋转。

今日我们一起来讨论旋转。

〔揭示课题:旋转〕二、探究线段旋转,体会旋转三要素1、对比讨论转杆的运动〔1〕用手势来比划转杆的运动转杆的打开、关闭是旋转运动,今日我们就以这个为例来讨论。

举起右手,用手臂来表示转杆,一起来做做打开、关闭的运动。

〔2〕争论:转杆的打开与关闭这两次旋转运动的相同点与不同点。

你们觉的打开、关闭的运动完全一样吗?想想有哪些地方是相同的。

哪些地方是不同的?同桌沟通。

不同点:这两次旋转的方向不同。

你们知道转杆关闭的方向叫〔顺时针方向〕为什么叫顺时针方向呢?〔显示钟面是时针的运动〕那和钟面上相反呢?叫逆时针方向,这里转杆的打开是什么方向啊?伸出手一起来表示这两个方向。

相同点:都围着一个点在旋转,这个点就是旋转的中心点。

都旋转了90度。

〔3〕小结刚才我们学了旋转重要的三个特点:中心、方向、角度。

其实全部的物体的旋转都是这样围绕中心不是顺时针就是逆时针旋转的,都转有肯定的角度,角度有大有小〔显示旋转的图片时钟、折扇、风车〕2.巩固练习刚才我们认识了顺时针或逆时针旋转90度,你们能利用这些知识解决下面的问题吗?a、:多重的物品可以使台称上的指针按顺时针方向旋转90度。

〔演示将一袋盐放入盘中〕取出物品指针又是怎样旋转的呢?b、请看,老师这里还有一个转盘呢!谁情愿和老师合作玩“我说你转”的游戏:〔老师提要求,同学转动转盘〕请把指针从A点顺时针旋转90,转到〔〕,再把指针从B点逆时针旋转90,转到〔〕。

要想清晰地知道一个物体是怎样旋转的,就得把这三方面说清晰。

人教版九年级数学上册23.1:图形的旋转(教案)

人教版九年级数学上册23.1:图形的旋转(教案)
五、教学反思
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第五章第二节的内容。

本节内容是在学生已经掌握了图形的平移、缩放、轴对称等基本变换的基础上进行学习的,是进一步培养学生的空间想象能力和抽象思维能力的重要内容。

图形旋转的概念和性质在日常生活和生产实践中有着广泛的应用,如地图的绘制、机械设计等。

通过本节课的学习,让学生了解图形的旋转概念,理解旋转的性质,学会用旋转来解决实际问题。

二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,对于图形的平移、缩放、轴对称等基本变换已经有了一定的了解。

但是,学生在学习过程中可能对旋转的概念和性质理解不深,不易掌握旋转的计算方法。

因此,在教学过程中,教师需要通过大量的实例和练习,帮助学生理解和掌握旋转的相关知识。

三. 教学目标1.知识与技能:使学生掌握图形旋转的概念,理解旋转的性质,学会用旋转来解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.教学重点:图形旋转的概念,旋转的性质。

2.教学难点:旋转的计算方法,旋转在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣,激发学生的学习欲望。

2.探究式教学法:引导学生观察、操作、猜想、验证,培养学生的自主学习能力。

3.合作学习法:学生进行小组讨论和合作交流,提高学生的团队协作能力。

六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和性质。

2.教学素材:准备一些图形,如正方形、三角形等,用于讲解和练习。

3.计算器:为学生提供计算器,便于进行旋转的计算练习。

七. 教学过程1.导入(5分钟)教师通过一个有趣的数学故事引入本节课的内容,引发学生的兴趣。

2.呈现(10分钟)教师通过课件展示一些图形旋转的实例,如地球的自转、钟表的指针等,引导学生观察和思考。

人教版教材小学数学五年级下册《图形的旋转》教学设计及教学反思

人教版教材小学数学五年级下册《图形的旋转》教学设计及教学反思

案例名称:人教版教材五年级下册《图形的旋转》讲课教师:王彦伟(北京东城区教师研修中心,中学高级教师)【教学设计】教学目标:(1)知识与技能:进一步认识图形的旋转,明确含义,感悟特征及性质。

能够运用数学语言清楚描述旋转运动的过程。

会在方格纸上画出线段旋转90度后的图形。

(2)过程与方法:经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。

(3)情感态度价值观:欣赏图形旋转变换所创造的美,学会用数学的眼光观察、思考生活,体会数学的价值。

教学重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。

教学难点:用数学语言描述物体的旋转过程及会在方格纸上画出线段旋转90度后的图形。

教学过程设计◆认识旋转要素1.呈现生活实例,引出研究问题(1)出示动态挂钟,请同学判断挂钟中哪些物体在做旋转运动。

问题:看一看挂钟上哪些物体在运动?用我们学过的知识描述一下它们在做怎样运动?引导:大家都认可钟面上的指针在旋转,但是钟摆到底是在平移还是旋转意见不统一。

这是我们今天要弄明白的一个问题。

(2)师生举例,温故引新①学生举例。

问题:在二年级的时候我们初步学习了生活中的旋转现象,能举几个例子吗?②教师举例。

课件展示生活中的旋转现象。

(动态)王老师也收集了一些,我们一起来看看。

(出示课件)选择你喜欢的一个,说说它是怎么旋转的?问题:通过刚才的观察,你认为什么样的运动就是旋转?出示课题:看来同学们已经初步认识了生活中的旋转现象,今天我们进一步学习图形的旋转,从数学的角度研究图形旋转到底有哪些特征。

【设计意图:通过课前调研,教师从学生的问题入手,选取学生熟悉的但又有争议的实例作为研究旋转现象的素材,有意识地引导学生探讨:"钟摆的运动方式属于平移还是旋转?"学生有明显的争议,以此产生认知冲突,引发探究的欲望。

特别是教师注意选取旋转角度不是360°的实例作为教材补充实例,如道闸等,丰富学生的认知。

人教版小学数学六年级上册图形的旋转教案

人教版小学数学六年级上册图形的旋转教案

人教版小学数学六年级上册图形的旋转教案一、教学目标:1. 理解图形旋转的概念,能够正确描述图形旋转的基本特征。

2. 掌握图形旋转的基本操作方法,能够正确进行图形旋转。

3. 运用图形旋转的方法解决相关数学问题。

二、教学重点与难点:1. 理解图形旋转的概念,把握旋转的基本特征。

2. 掌握图形旋转的基本操作方法,正确进行旋转。

3. 运用图形旋转解决实际问题。

三、教学准备:1. 教具准备:白板、彩色粉笔、图形卡片、转盘。

2. 学具准备:学生练习册、铅笔、橡皮。

四、教学过程:Step 1 导入新知1. 教师通过简短的视频或图片展示,引导学生思考什么是图形旋转。

2. 学生思考后,教师提问:“你们在生活中见过哪些旋转的图形?”请学生积极回答。

3. 教师总结学生的回答,向学生介绍图形旋转的概念和应用场景。

Step 2 学习图形旋转的基本特征1. 教师通过白板上的示意图或板书,向学生展示旋转的基本特征。

2. 教师引导学生观察、分析,提出旋转的特征是:旋转中心、旋转方向、旋转角度。

3. 学生根据教师的引导,通过图示对旋转的特征进行总结,记录在学生练习册上。

Step 3 学习图形旋转的基本操作方法1. 教师通过示范,向学生展示图形旋转的基本操作方法。

2. 学生跟随教师的示范,进行图形旋转的基本操作练习。

3. 学生自主练习,教师巡视指导,纠正错误操作,并提供帮助。

Step 4 运用图形旋转解决问题1. 教师出示一些与图形旋转有关的实际问题,引导学生进行思考和讨论。

2. 学生根据问题要求,进行图形旋转的操作,找出问题的解决方法。

3. 学生互相交流讨论各自的解决方法,并找出最佳答案。

Step 5 拓展练习1. 教师布置一些图形旋转的拓展练习,要求学生独立完成。

2. 学生在完成后,互相交流答案,并与教师进行对比和讨论。

五、巩固与评价:1. 教师对学生的练习册进行检查,评价学生对图形旋转的理解与应用。

2. 教师与学生一起总结本节课的学习内容,强化学生对图形旋转的记忆和理解。

人教版数学九年级上册23.1《图形的旋转(3)》教学设计

人教版数学九年级上册23.1《图形的旋转(3)》教学设计

人教版数学九年级上册23.1《图形的旋转(3)》教学设计一. 教材分析人教版数学九年级上册23.1《图形的旋转(3)》是本册教材的一个重点章节。

在此之前的章节中,学生已经学习了图形的旋转、平移等基本知识。

本节课将继续深入学习图形的旋转,通过实例让学生理解旋转的性质,掌握旋转的计算方法,并能应用于实际问题中。

本节课的内容对于学生来说较为抽象,需要通过大量的实例和练习来理解和掌握。

二. 学情分析九年级的学生已经具备了一定的几何知识,对于图形的旋转、平移等基本概念有一定的了解。

但是,对于图形的旋转性质和计算方法,部分学生可能还较为模糊。

因此,在教学过程中,需要结合学生的实际情况,通过实例和练习来引导学生理解和掌握。

三. 教学目标1.让学生理解旋转的性质,掌握旋转的计算方法。

2.培养学生运用图形旋转解决实际问题的能力。

3.提高学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.旋转的性质和计算方法。

2.将旋转应用于实际问题中。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索和解决问题来理解和掌握旋转的性质和计算方法。

2.利用多媒体和实物模型,帮助学生直观地理解旋转的概念和性质。

3.采用小组合作和讨论的方式,培养学生的团队协作能力和沟通能力。

4.通过大量的练习和实际问题,巩固学生对旋转的理解和应用能力。

六. 教学准备1.多媒体教学设备。

2.实物模型和几何画板。

3.练习题和实际问题。

七. 教学过程1.导入(5分钟)通过一个实际问题,如地图上的两个城市如何通过旋转来观察,引发学生对旋转的兴趣和思考。

2.呈现(15分钟)利用多媒体和实物模型,呈现旋转的概念和性质,引导学生直观地理解旋转。

同时,介绍旋转的计算方法,如旋转角度的计算、旋转后图形的位置和大小变化等。

3.操练(15分钟)学生分组进行练习,运用旋转的性质和计算方法解决实际问题。

教师巡回指导,解答学生的疑问,并给予反馈。

4.巩固(10分钟)学生独立完成一些关于图形旋转的练习题,巩固对旋转的理解和应用能力。

人教版五年级数学下册第五单元图形的运动(三)——旋转教案

人教版五年级数学下册第五单元图形的运动(三)——旋转教案

第1课时旋转(1)教学内容教科书P83~84例1、例2及“做一做”,完成教科书P85“练习二十一”中第1~3题。

教学目标1.进一步认识图形的旋转,明确含义,感悟其特征及性质。

会运用数学语言简单描述旋转运动的过程。

2.经历观察实例、操作想象、语言描述等活动,培养学生的推理能力。

积累几何活动经验,发展空间观念。

3.体验数学与生活的联系,学会用数学的眼光观察、思考生活,感受数学的美,体会数学的应用价值。

教学重点通过多种学习活动沟通联系,理解旋转的含义,初步感悟旋转的性质。

教学难点用数学语言描述物体的旋转过程。

教学准备课件,三角尺。

教学过程一、认识旋转要素1.课件出示生活实例,引出研究问题。

师:同学们,你们见过这些现象吗?仔细观察。

师:你们看见了什么?【学情预设】学生可能会说,看见风车在旋转,时钟转动起来等等。

师:看一看这些物体的运动,用我们学过的知识描述一下它们在做怎样的运动。

【学情预设】学生对图形的旋转已经具有了一定的认识,能够比较准确地感知生活中简单的旋转现象,并能对其进行判断。

仅有少数学生能够判断“道闸挡车杆的运动”和“秋千运动”是旋转现象,说明学生对旋转角度不是360°及比较复杂的旋转现象还不能做出正确判断。

师:这些物体的运动,都可以称为旋转运动。

在二年级的时候我们已经初步学习了生活中的旋转现象,能举几个例子吗?学生举例。

师:我也收集了一些生活中的实例,大家一起来看看。

选择一个你喜欢的,说说它是怎样旋转的。

◎教学笔记【教学提示】学生在回答“旋转”时,最好让学生对着具体的物体比画一下是怎样旋转。

课件展示生活中的动态旋转现象。

师:通过刚才的观察,你认为什么样的运动是旋转?学生简单描述后,教师板书课题:旋转(1)。

【设计意图】由于在第一阶段学习时,具体实例多是物体围绕一个点或一个轴做整圆周运动,所以部分学生形成了认识上的误区,认为只有转一圈才是旋转,所以本节课从学生的问题入手,选取学生熟悉的但又有争议的实例作为研究旋转现象的素材,有意识地引导学生探讨:“荡秋千属于平移还是旋转?”学生有明显的争议,以此产生认知冲突,引发探究的欲望。

人教版数学九年级上册教学设计23.1《图形的旋转》

人教版数学九年级上册教学设计23.1《图形的旋转》

人教版数学九年级上册教学设计23.1《图形的旋转》一. 教材分析《图形的旋转》是人教版数学九年级上册第23.1节的内容,本节课主要让学生了解图形的旋转概念,掌握图形旋转的性质和运用。

通过本节课的学习,学生能够理解图形旋转的定义,掌握旋转中心、旋转方向和旋转角等基本概念,并能够运用旋转性质解决实际问题。

二. 学情分析学生在之前的学习中已经掌握了图形的平移、翻转等变换知识,具备一定的几何图形基础。

但图形旋转与平移、翻转存在一定的区别,学生可能对旋转概念和性质的理解存在一定的困难。

因此,在教学过程中,教师需要通过具体实例和实际操作,帮助学生理解和掌握图形旋转的性质。

三. 教学目标1.知识与技能:学生能够理解图形旋转的概念,掌握图形旋转的性质,并能够运用旋转性质解决实际问题。

2.过程与方法:学生通过观察、操作、思考等活动,培养空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生感受数学与生活的紧密联系,增强学习数学的兴趣和信心。

四. 教学重难点1.重点:图形旋转的概念和性质。

2.难点:图形旋转的性质运用。

五. 教学方法1.情境教学法:通过生活实例和实际操作,引发学生对图形旋转的思考,提高学生的学习兴趣。

2.问题驱动法:教师提出问题,引导学生思考和探索,培养学生的问题解决能力。

3.合作学习法:学生分组讨论和操作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和操作过程。

2.学具:准备一些图形卡片和模型,供学生操作和观察。

3.教学视频:准备一些关于图形旋转的实际操作视频,供学生观看和分析。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生关注图形旋转,激发学生的学习兴趣。

2.呈现(10分钟)教师通过课件呈现图形旋转的实例,引导学生观察和思考,引出图形旋转的概念。

同时,教师讲解图形旋转的性质,如旋转中心、旋转方向和旋转角等。

人教版新课标小学五年级下册数学《旋转》教案及教学反思

人教版新课标小学五年级下册数学《旋转》教案及教学反思

【导语】在⽣活中,有各种美丽的图案,其中有很多图案是由简单的图形经过平移或旋转得到的。

®⽆忧考⽹准备了以下内容,希望对你有帮助!篇⼀ 教学⽬标: 1.进⼀步认识图形的旋转,探索图形旋转的特征和性质。

2.通过观察、想象、分析和推理等过程,独⽴探究、增强空间观念。

3.让学⽣体会图形变换在⽣活中的应⽤,利⽤图形变换进⾏图案设计,感受图案带来的美感和数学的应⽤价值。

教学重点: 理解、掌握旋转现象的特征和性质。

教学难点: 理解、掌握旋转现象的特征和性质。

教学过程: ⼀、情景导⼊ 1.教师⽤课件演⽰:(1)钟表的转动;(2)风车的转动。

提问:观察课件的演⽰,你看到了什么? 学⽣在交流汇报时可能会说出 (1)钟表上的指针和风车都在转动; (2)钟表上的指针和风车都是绕着⼀点转动; (3)钟表上的指针沿着顺时针⽅向转动,风车沿着逆时针⽅向转动。

教师:像钟表上指针和风车都绕着⼀个点或⼀个轴转动的这种现象就是旋转。

(板书课题:图形的旋转变换) 2.提问:旋转现象有⼏种情况? ⽣回答后板书。

3.师:在⽇常⽣活中你在哪些地⽅见到过旋转现象?学⽣⾃⼰举例说⼀说。

⼆、新课讲授 出⽰课本第83页例题1的钟⾯。

(1)观察,描述旋转现象。

观察:出⽰动画(指针从12指向1),请同学们仔细观察指针的旋转过程。

提问:谁能⽤⼀句话完整地描述⼀下刚才的这个旋转过程? (教师引导学⽣叙述完整) 观察:出⽰动画(指针从1指向3)。

提问:这次指针⼜是如何旋转的? 观察:出⽰动画(指针从3指向6)。

同桌互相说⼀说指针⼜是如何旋转的? 提问:如果指针从“6”继续绕点O顺时针旋转180°会指向⼏呢? (2)教师:根据我们刚才描述的旋转现象,想想看,要想把⼀个旋转现象描述清楚,应该从哪些⽅⾯去说明? ⼩结:要把⼀个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起⽌位置,更重要的是要说清楚旋转围绕的点,⽅向以及⾓度。

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

23.1图形的旋转(第2课时)一、教学目标【知识与技能】进一步加深对旋转性质的理解,能用旋转的性质解决具体问题及进行图案设计.【过程与方法】经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切联系.【情感态度与价值观】进一步培养学生学习数学的兴趣和热爱生活的情感,体会生活的旋转美,发展学生的美感,增强学生的艺术创作能力和艺术欣赏能力.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】利用旋转的性质设计简单的图案.【教学难点】利用旋转性质进行旋转作图.五、课前准备课件、直尺、圆规、铅笔、图片等.六、教学过程(一)导入新课教师问:1.平移的特征有哪些.(出示课件2)2.旋转的特征有哪些.(出示课件3)3.如何做出符合要求的旋转后的图形呢?学生回顾前面所学过知识,巩固旋转的性质.(二)探索新知探究一简单的旋转作图画一画:如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.(出示课件5)学生回顾前面所学过知识,并完成画图.作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°.(2)在射线AX上取点C,使得AC=AB,线段AC为所求.画出下图所示的四边形ABCD以O为中心,旋转角都为60°的旋转图形.(出示课件6)学生画图,教师加以巡视并订正.师生共同总结:平移与旋转的异同(出示课件7)2同:都是一种运动;运动前后不改变图形的形状和大小.②不同:出示课件8:例如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.图形变换运动方向运动量的衡量平移直线移动一定距离旋转顺时针或逆时针转动一定的角度教师问:本题中作图的关键是什么?学生答:作图关键-确定点E的对应点E′.师生共同解答如下:(出示课件9)解:∵点A是旋转中心,∴它的对应点是点A.正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与点B重合.设点E的对应点为E′.∵△ADE≌△ABE′∴∠ABE′=∠ADE=90°,BE′=DE,因此在CB的延长线上截取点E′,使BE′=DE.则△ABE′为旋转后的图形.教师问:还有其他方法确定点E的对应点E′吗?(出示课件10)学生答:延长CB,以点A为圆心,AE的长为半径画弧,交CB的延长线于E',连接AE',则△ABE'为旋转后的图形.教师归纳:旋转作图的基本步骤:(出示课件11)(1)明确旋转三要素:旋转中心、旋转方向和旋转角度;(2)找出关键点;(3)作出关键点的对应点;(4)作出新图形;(5)写出结论.巩固练习:1.如何确定它们的旋转中心位置?(出示课件12,13)学生自主解答:找到两条对应点所连线段的垂直平分线的交点.2.下图为4×4的正方形网格,每个小正方形的边长均为1,将△OAB绕点O逆时针旋转90°,你能画出△OAB旋转后的图形△O'A'B'吗?学生自主操作:如图所示.探究二利用多种图形变化的方法进行图形变化教师问:下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?还有其他方式吗?(出示课件14)学生1:仅靠平移无法得到.学生2:整个图形可以看作是右边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.(出示课件15)学生3:整个图形可以看作是右边的两个小“十字”先通过一次平移成图形左侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.(出示课件16)出示课件17:例怎样将甲图案变成乙图案?学生通过观察,感受图案的形成过程,然后师生共同解答.可以先将甲图案绕图上的A点旋转,使得图案被“扶直”,然后,再沿AB 方向将所得图案平移到B点位置,即可得到乙图案.巩固练习:如图,怎样将右边的图案变成左边的图案?(出示课件18)学生观察后自主解答.答:以右边图案的中心为旋转中心,将图案按逆时针方向旋转90°,然后平移,即可得到左边的图案探究三利用旋转设计图案选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.(出示课件19)教师利用课件19,20,21进一步展示“月芽”的旋转效果.思考:(1)在旋转过程中,产生了不同旋转效果,这是什么原因造成的呢?(2)你能仿照上述图示方法进行图案设计吗?与同伴交流.(三)课堂练习(出示课件22-28)1.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O、A1、B为顶点的三角形的形状.(无须说明理由)2.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A. B. C. D.3.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁4.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?5.如图,△ABC中,∠C=90°,∠B=40°,点D在边BC上,BD=2CD.△ABC绕着点D顺时针旋转一定角度后,点B恰好落在初始△ABC的边上.求旋转角α(0°<α<180°)的度数.参考答案:1.解:(1)如图所示,△A1B1C1即为所求。

23.1图形的旋转 教案- 2022-2023学年人教版九年级数学上册

23.1图形的旋转 教案- 2022-2023学年人教版九年级数学上册

23.1 图形的旋转教案- 2022-2023学年人教版九年级数学上册一、教学目标1.理解图形的旋转概念,能够描述旋转的方向和角度;2.掌握图形旋转的基本性质,能够判断旋转后图形是否重合;3.运用旋转的性质解决相关问题。

二、教学准备1.教材:人教版九年级数学上册;2.工具:直尺、铅笔、量角器。

三、教学过程步骤一:导入与引入1.引入问题:小明在画画时,想把一个图形旋转90度,你能告诉他应该怎么做吗?2.学生回答后,引导学生思考旋转的概念。

步骤二:旋转的概念1.定义旋转:将一个图形按照一定的方式和角度,沿着一个固定的点旋转。

2.引导学生找出旋转中的三个要素:旋转中心、旋转方向和旋转角度。

3.通过示例和讲解,让学生理解旋转的基本概念。

步骤三:旋转的性质1.引导学生观察并总结旋转的性质:–旋转前后,线段的长度保持不变;–旋转前后,线段的平行关系保持不变;–旋转前后,角的度数保持不变。

2.通过练习题,让学生巩固旋转的性质。

步骤四:判断旋转后图形的重合性1.如果两个图形旋转后重合,我们称它们是旋转同一图形。

2.引导学生思考如何判断旋转后的两个图形是否重合:–比较线段的长度和角的度数是否相等。

3.通过练习题,让学生练习判断旋转后图形的重合性。

步骤五:解决问题1.给学生设计一些实际问题,要求运用旋转的概念解决问题,如:根据指定旋转角度和顺时针/逆时针方向,求旋转后图形的坐标。

2.引导学生分析问题,并逐步解决。

3.鼓励学生自主思考和讨论,提供帮助和指导。

四、教学延伸1. 图形的旋转应用图形的旋转在现实生活中有着广泛的应用,比如旋转扇叶、旋转木马等。

通过图形旋转的相关知识,我们能够更好地理解和应用这些实际问题。

2. 旋转的其他性质在进一步学习中,学生可以了解到旋转还有其他的性质,比如: - 旋转的合成:将一个图形先按一定角度旋转,然后再按另一个角度旋转,可以用一个旋转的角度表示这两次旋转的合成。

- 旋转的反运算:旋转后再按相反的角度旋转,可以得到旋转前的图形。

《图形的旋转》教案(15篇)

《图形的旋转》教案(15篇)

《图形的旋转》教案(15篇)《图形的旋转》教案1[课时]:1节课[教学内容]:复制粘贴和旋转功能的使用[教学目标]:1、使同学熟练掌握复制粘贴和旋转功能的使用方法。

2、使同学养成在实际操作中的动手动脑和小组合作的学习习惯。

3、培养同学对电脑绘图的兴趣。

[教学重点]:复制、旋转的操作使用[教学难点]:在实际绘图中的复制的多种用法[教学准备]:多媒体教室、远志多媒体教室广播软件[教学过程]:一、导入播放《欢乐的小鸡》图师:在这图里你看到了什么?生回答师:同学们,观察得真仔细啊!这幅图里的小鸡小花不是都要我们一笔一笔的画呢?其实我们只要画好其中的一朵花,一只鸡就可以利用绘图软件中的一个新功能来实现这幅画了,今天老师就来和大家一起学习新知识。

二、复制功能的学习。

师:要完成那么多的小花的绘制,我们得先画出一朵花。

活动一:下面请大家选好前景色,用工具栏中的'“椭圆”、“刷子”等来花小花。

1、教师先示范,同学动手一起画一朵花。

(可参考课本第20页的方法,画出一朵花)2、单击“图像”菜单,检查菜单中“不透明处置”前是否有打钩,有的话把钩去掉。

3、单击工具箱中“选定”工具,在小花周围拖动鼠标把要复制的小花围出。

4、选“编辑”菜单的“复制”,再点“粘贴”。

5、在出现新的小花选区上按住鼠标左键就可以把小花拖到其他位置,这样就复制了一朵小花了。

6、教学新的复制方法:选择要复制的图像后按CTRL键同时用鼠标脱动也可以复制。

让同学动手,教师指导,让好的同学进行演示。

三、画小鸡大家庭师:在草地上有许多的小鸡,大家能用刚才学习的知识进行绘制吗?但是如何绘制有大有小的呢?活动二:1、请同学们先用学的知识进行操作,画出1只小鸡。

2、然后复制一只小鸡后用选定工具再将一只小鸡选中,将鼠标指针移到“选定”框四周图像大小调整柄上,拖动鼠标后你发现什么?(变大变小)3你们试一试。

完成练习后,老师根据实际中出现的问题进行讲解并请一些操作较好的同学进行讲解。

人教版小学四年级数学《图形的旋转》优秀教学教案

人教版小学四年级数学《图形的旋转》优秀教学教案

人教版小学四年级数学《图形的旋转》优秀教学教案一、教学目标1.知识目标:了解图像的旋转是将图形绕某一点旋转一定角度后得到新图形。

2.能力目标:通过训练,使学生能够掌握简单图形的旋转方法,并能应用于实际问题中。

3.情感目标:培养学生的观察力和逻辑思维,培养学生对数学的兴趣和自信心。

二、教学重点和难点•教学重点:掌握图形旋转的概念和方法。

•教学难点:能够正确理解旋转图形的基本原理。

三、教学准备1.教学素材:图形的旋转教学PPT、画板、彩色粘土、学生教材。

2.教学环境:教室布置整齐,保持安静和充满学习氛围。

3.教师准备:熟悉本节课教学内容,准备教学活动并确保课堂秩序。

四、教学过程1.导入新知识•向学生展示一个旋转的图形,引出本节课要学习的知识点,并提出问题引导学生思考。

2.讲解基本概念•通过画板和教学PPT介绍图形的旋转概念,并讲解旋转的基本原理。

3.示范操作•以简单的图形为例,让学生通过将图形绕某一点旋转一定角度来体会旋转的过程。

4.练习和巩固•让学生在彩色粘土上尝试绘制图形并进行旋转操作,加深对旋转概念的理解。

•给学生一些练习题目,让他们通过实际操作巩固所学知识。

5.拓展应用•引导学生思考,图形的旋转在生活中有何实际应用,并让他们尝试举例说明。

五、课堂总结•对本节课所学内容进行总结,强调重点和难点,提醒学生今后的学习重点。

六、作业布置•布置相关练习题作业,巩固学习内容。

七、教学反思•结合本节课的教学实际,分析学生掌握程度,反思教学过程,为下节课的教学进行调整。

通过本节课的学习,相信学生对图形的旋转有了更深入的理解,能够灵活运用于实际生活中,提升数学思维和解决问题的能力。

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计一. 教材分析人教版九年级数学上册《23.1图形的旋转(第1课时)》这一章节主要介绍了图形的旋转性质及其在实际问题中的应用。

通过本节课的学习,学生能够理解图形旋转的定义,掌握图形旋转的性质,并能够运用旋转性质解决一些实际问题。

本节课的内容是学生进一步学习图形变换的基础,对于培养学生的空间想象能力和解决问题的能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算规则有一定的了解。

但是,对于图形旋转这一概念,学生可能较为陌生,因此需要在教学中给予充分的引导和解释。

此外,学生可能对于实际问题中的应用方面存在一定的困难,因此需要通过具体的例子和练习来帮助学生理解和掌握。

三. 教学目标1.知识与技能目标:学生能够理解图形旋转的定义和性质,并能够运用旋转性质解决一些实际问题。

2.过程与方法目标:通过观察和操作,学生能够培养空间想象能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,对图形变换产生兴趣,并能够自主学习和探索。

四. 教学重难点1.重点:图形旋转的定义和性质。

2.难点:图形旋转在实际问题中的应用。

五. 教学方法1.引导法:通过提问和解释,引导学生思考和探索图形旋转的性质。

2.实例教学法:通过具体的例子和练习,帮助学生理解和掌握图形旋转的应用。

3.小组合作学习:学生分组进行讨论和练习,培养学生的合作和沟通能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示图形旋转的定义和性质,以及一些实际问题的例子。

2.练习题:准备一些与图形旋转相关的练习题,用于巩固学生对知识的理解和应用能力。

3.教学工具:准备一些教具,如图形模板和旋钮,用于直观地展示图形旋转的过程。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学习过的图形成交和平移的知识,为新课的学习做好铺垫。

2023年人教版初中九年级数学图形的旋转(精华版教案三)

2023年人教版初中九年级数学图形的旋转(精华版教案三)

2023年人教版初中九年级数学图形的旋转(精华版教案三)教材分析:图形的旋转是在学习了图形的两种变换——轴对称和平移的基础上,进一步学习的一种图形基本变换,是将来进一步研究图形全等及其有关性质的基础。

本课通过多媒体课件展示实际生活中经常看到的一些图形旋转现象,给出图形旋转的大致形象,然后引导学生探索研究平面图形的旋转变换。

通过学生的自主探索、合作研究、交流体会,培养学生的观察能力、图形辨析能力和探索学习的能力。

教学目标:1、通过多媒体课件展示实际生活中经常看到的一些图形旋转现象和学生自己动手操作观察认识旋转,探索它的基本性质。

2、在发现、探究的过程中,完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳、抽象概括的思维能力。

3、学生在经历了实验探究、知识应用以及知识内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性。

教学重点:归纳图形旋转的特征,并能根据这些特征绘制旋转后的几何图形。

教学难点:对图形进行旋转变换。

教学方式:按照学生认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思想,采用以实验观察法为主,直观演示法为辅的教学方法。

教学资源准备:教师准备多媒体课件(开拓学生视野,激发学生学习兴趣)、课堂练习题、课堂达标测试题。

学生准备硬纸板、剪刀(训练学生的动手能力)。

教学过程:一、创设情境,导入新课问题:1.观察实例(课件展示)。

①钟表的指针在不停地旋转,从3点到5点,时针转动了多少度?②风车风轮的每个叶片在风的吹动下转动到新的位置。

这些现象有哪些共同特点?教师应关注:(1)学生观察实例的角度;(2)在学生发现实例现象的共同特点后,要求学生试着描述出旋转的定义。

归纳定义:把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转.点O 叫做旋转中心,转动的角叫做旋转角。

(设计意图:旋转是属于动态的问题,对于运动的图形学生在学习掌握上会存在一定的困难。

2022年人教版九年级数学上册第二十三章旋转教案 图形的旋转 (第1课时)

2022年人教版九年级数学上册第二十三章旋转教案  图形的旋转 (第1课时)

23.1 图形的旋转(第1课时)一、教学目标【知识与技能】通过观察生活中的具体实例认识旋转,探索它的基本性质.【过程与方法】在发现、探索的过程中完成对旋转这一图形变化从直观到抽象、从感性认识到理性认识的转变,发展学生直观想象能力,分析、归纳,抽象概括的思维能力.【情感态度与价值观】学生在实验探究、知识应用等数学活动中,能体验数学的具体、生动、灵活,增强数学应用意识,调动学生学习数学的主动性.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】归纳图形的旋转特征.【教学难点】旋转概念的形成过程及性质的探究过程.五、课前准备课件、图片等.六、教学过程(一)导入新课教师问:以前我们学过图形的平移、轴对称等变换,它们有哪些特征呢?想想看,并与同伴交流.学生思考并让学生感受到现实生活中存在着平移,轴对称变换.教师问:请观察下列图形的变化.1.新疆的风车田;(出示课件2)2.荷兰的大风车;(出示课件3)3.游乐场的摩天轮;(出示课件4)4.卫星拍摄到的台风“桑美”的中心旋涡;(出示课件5)5.钟表时针的转动;电扇上扇叶的转动.(出示课件6)(1)以上现象有什么共同特点?(2)钟表的指针、电扇的风叶在转动过程中,其形状、大小、位置是否发生变化呢?学生通过观察、思考、讨论,用自己的语言来描述这个现象的共同特征,初步感受到旋转的基本性质是绕某一固定点转动一定的角度.(二)探索新知探究一旋转的概念教师问:1.观察下列图形的运动,它有什么特点?(出示课件8)2.钟表的指针在不停地转动,从12时到4时,时针转动了_120度.(出示课件9)3.怎样来定义这种图形变换?学生观察后思考并口答:把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.教师问:1.风车风轮的每个叶片在风的吹动下转动到新的位置.(出示课件10)2.怎样来定义这种图形变换?学生观察后思考并口答:把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.师生共同归纳如下:旋转的概念:把一个平面图形绕着平面内某一个定点O 转动一个角度,叫做图形的旋转.这个定点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P’,那么这两个点叫做这个旋转的对应点.线段OP与OP’叫做对应线段.出示课件12:如图点A绕_O点,往顺时针方向,转动了45度到点B.师生共同认定:旋转的三要素:旋转中心、旋转方向、旋转角度.出示课件13:例1 如图,△ABC为等边三角形,点P在△ABC中,将△ABP 旋转后能与△CBQ重合.(1)旋转中心是哪一点?(2)旋转角是多少度?(3)△BPQ是什么三角形?教师分析:(1)根据对应点到旋转中心的距离相等来确定旋转中心的位置.(2)对应点与旋转中心连线的夹角都等于旋转角.(3)由旋转角和对应边的关系可以得到答案.师生共同解答:解:(1)旋转中心是点B.(2)因为△ABC为等边三角形,当边AB旋转到边BC的位置时,正好转过了60°,所以旋转角的度数是60°.(3)BP=BQ,而旋转角又等于60°,所以∠PBQ=60°,这样△BPQ就是一个等边三角形.想一想:图形在旋转时,旋转的方向有几种?(出示课件15)教师提示:有两种情况,分别为逆时针方向旋转和顺时针方向旋转.出示课件16:巩固练习:若叶片A绕O顺时针旋转到叶片B,则旋转中心是______,旋转角是_________,旋转角等于____度,其中的对应点有_______、_______、_______、_______、_______、_______.学生口答:O;∠AOB;60;A与B;B与C;C与D;D与E;E与F;F 与A出示课件17:师生共同认定:确定平面图形旋转时,必须明确:旋转中心,旋转方向,旋转角.教师提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋转的三要素;②旋转变换同样属于全等变换.出示课件18:例2 如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )A.30°B.45°C.90°D.135°教师分析:对应点与旋转中心的连线的夹角,就是旋转角,由图可知,OB、OD 是对应边,∠BOD是旋转角,所以,旋转角为90°.出示课件19:巩固练习:如图,点P是正方形ABCD内一点,将△ABP绕B 点顺时针方向旋转到△CBP′的位置时,其旋转中心是点,旋转角度为.学生思考后口答:B;90°探究二旋转的性质出示课件20:如图,△ABC是如何运动到△A′B′C的位置?学生观察后口答:绕点C逆时针旋转45°.出示课件21:学生观察并根据上图填空:旋转中心是点__________;图中对应点_______________________________________;图中对应线段有_____________________________________.每对对应线段的长度.图中旋转角等于________.教师问:观察下图,你能得到什么结论?(出示课件22)学生答:角:∠AOA'=∠BOB'=∠COC'.线:AO=A'O,BO=B'O,CO=C'O.师生共同总结:旋转的性质(出示课件23)1.对应点到旋转中心的距离相等.(OD=OA,OE=OB,OF=OC)2.两组对应点分别与旋转中心的连线所成的角相等.(∠DOA=∠EOB=∠FOC)3.旋转中心是唯一不动的点.(旋转中心O)4.旋转不改变图形的形状和大小.出示课件24:例3 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=________度.师生共同解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴∠BE'E=45°,EE′=2√2在△EE′C中,E′C=1,EC=3,EE′=2√2,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.出示课件25:巩固练习:如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.求证:△BCF≌△BA1D.教师分析:根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A1=∠A=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D.出示课件26:学生板演:证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,由旋转的性质,可得A 1B=AB=BC,∠A=∠A 1=∠C,∠A 1BD=∠CBC 1,在△BCF 与△BA 1D 中,111∠=∠⎧⎪=⎨⎪∠=∠⎩A C A B BC A BD CBF ,,,所以△BCF ≌△BA 1D (ASA ).(三)课堂练习(出示课件27-37)1.如图,在△ABC 中,∠ACB=90°,AC=BC,D 是AB 边上一点(点D 与A,B 不重合),连结CD,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE,连结DE 交BC 于点F,连接BE .(1)求证:△ACD ≌△BCE ;(2)当AD=BF 时,求∠BEF 的度数.2.下列现象中属于旋转的有( )个①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.A.2B.3C.4D.53.下列说法正确的是( )A.旋转改变图形的形状和大小B.平移改变图形的位置C. 图形可以向某方向旋转一定距离D.由平移得到的图形也一定可由旋转得到4.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt △ADE,点B的对应点D恰好落在BC边上.若,∠B=60°,则CD的长为()A.0.5B.1.5C.D.15.△A′OB′是△AOB绕点O按逆时针方向旋转得到的.已知∠AOB=20°,∠A′OB=24°,AB=3,OA=5,则A′B′= ,OA′= ,旋转角等于.6.△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A.DE=3B.AE=4C.∠CAB是旋转角D.∠CAE是旋转角7.如图(1)中,△ABC和△ADE都是等腰直角三角形,∠ACB和∠D都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合,再将图(1)作为“基本图形”绕着A点经过逆时针旋转得到图(2).两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°8.如图,△ADE可由△CAB旋转而成,点B的对应点是E,点A的对应点是D,在平面直角坐标系中,三点坐标为A(1,0)、B(3,0)、C(1,4).请找出旋转中心P的位置,并写出P的坐标.9.如图所示,AB是长为4的线段,且CD⊥AB于O.你能借助旋转的方法求出图中阴影部分的面积吗?说说你的做法.10.将一个直角三角板绕30°角的顶点顺时针旋转,使一直角边与原斜边在同一条直线上(如图所示).你知道旋转角是多少吗?连结BB′,△ABB′有什么特征吗?参考答案:1.解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB, ∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS).(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°.2.C3.B4.D5.3;5;44°6.D7.A8.解:根据旋转中心到对应点距离相等可以知道,旋转中心P既在线段AD的垂直平分线上,又在线段BE的垂直平分线上,它们的交点就是点P.9.解:把所有的阴影部分通过旋转都转移到同一个BC所在的圆中,则有大圆的半径OC=2.π×22=π.因此:S阴影=1410.解:150°;△ABB′是等腰三角形.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(23.1第2课时)的相关内容.七、课后作业1.教材59页练习1,2,3.2.配套练习册内容八、板书设计:九、教学反思:1.积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,再让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.2.此外,本节课需要注意的地方:(1)教师在提问时需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯.(2)如何将“创设情境”有机地与教学结合起来,更有效地为教学服务.问题情境的创设不能流于形式,而应更多的考虑学生的年龄特征、兴趣爱好,多从学生的角度来设计、创造.。

《旋转》教案

《旋转》教案

《旋转》教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!《旋转》教案《旋转》教案(精选15篇)《旋转》教案篇1学习目标1、进一步认识图形的平移,能在方格纸上把简单图形先沿水平(或竖直)方向平移,再沿竖直(或水平)方向平移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版图形的旋转教案
第一课时图形的旋转
教学难点:体验并能说出图形旋转的过程。

教学准备:
多媒体课件等腰直角三角形
教学过程:
一、谈话导入1.谈话:同学们,我们已经认识了图形变换的两种形式——轴对称和平移。

今天我们继续来认识图形变换中的另一种形式——旋转。

2.引入:旋转现象在我们日常生活中随处可见,同学们能不能把你见过的旋转现象说出来和大家一起分享一下呢?
二、互动新授过渡:刚才同学们都把自己看到的生活中的旋转现象说出来与大家一起分享了,老师也从钟表指针的运动中,看到了旋转现象。

接下来,我们就一起来探究钟面上指针的旋转现象。

1.教学例题1
(1)引导学生观察钟表,指导描述指针的旋转现象。

多媒体课件演示:钟表的指针从“12”指向“1”
(思考:指针从“12”指向“1’,是怎样旋转的?)引导学生从以下四个方面,将旋转的过程说得完整一些。

①出示三个要素:旋转的点、方向及角度,并对每一个要点加以说明。

②让学生同桌之间结合三个要素,互相说说旋转的过程。

③全班反馈。

教师小结:从“12”到“1”,指针绕点O按顺时针方向旋转了30°。

(2)尝试描述钟面上的指针现象,让学生思考并解决以下三个问题。

①从“1”到(),指针绕点O按顺时针方向旋转了60°。

②从“3”到“6”,指针绕点O按顺时针方向旋转了()。

③从“6”到“12”,指针绕点O按顺时针方向旋转了()。

(3)即时练习。

让学生完成教材第83页“做一做”
先让学生独立解决问题,在组织交流。

通过交流,得出以下结果:
右侧有车通过,车杆要绕点O2按逆时针方向旋转90°
(注意:车杆打开和关闭的过程中,车杆下端的点是固定不动的)
2.教学例题2
(1)出示题目,让学生理解题意。

提问:你知道方格纸中的三角形是怎样变化的吗?
让学生观察例2情境图,从中获得信息,引导学生回答以下两个要点:①O点是固定不动。

②三角板在方格纸上顺时针方向旋转90°。

(2)操作感知。

让学生拿出直角三角形尺按题意要求进行操作,体验旋转过程的变化。

(3)用语言描述旋转现象。

引导学生通过观察与操作,说说有何发现。

学生可能会说出一下几种答案:
①我发现O点的位置是不变的。

②三角尺的两条直角边每条边都绕点O顺时针旋转了90°。

教师归纳小结:三角尺在旋转过程中,除了O点位置没有发生变化,其他部分的位置都发生变化,但三角形的形状、大小没有变化。

(4)即时练习:
完成教材第84页例2的“做一做”。

三、巩固练习
指导学生完成教材第85页“练习二十一”第1—3题。

四、课堂小结
同学们,今天这节课我们学习了关于图形旋转的知识,谁来说一说你有哪些新的收获?
第一课时图形的旋转
旋转三要素:
点:旋转中心
方向:顺时针方向逆时针方向
角度:旋转的度数
旋转的特征:图形旋转后,形状、大小等都没发生变化,只是位置变了。

旋转的性质:图形旋转后,对应线段的长度不变,对应线段的夹角大小也不变。

人教版图形的旋转教案
猜你感兴趣的:。

相关文档
最新文档