不等关系与不等式经典教案

合集下载

不等关系与不等式精品教案

不等关系与不等式精品教案
1.回答下列问题:
(1)如果a>b,c>d,是否可以推出ac>bd?举例说明;
(2)如果a>b,c<d,且c≠0,d≠0,是否可以推出 ?举例说明.
3.若 ,则下列不等式总成立的是(C)
A. B。 C。 D。
4.有以下四个条件: (3) ;(4)
其中能使 成立的有3个
5.若a.b.c ,a>b,则下列不等式成立的是(C)
(1)若a>b,则a+c>b+c,a-c>b-c;
(2)若a>b,c>0,则ac>bc, > ;
(3)若a>b,c<0,则ac<bc, < ..
二、新授
常用的不等式的基本性质(1) (对称性)Fra bibliotek2) (传递性)
(3) (可加性)
(4) ; (可乘性)
(5) (同向不等式的可乘性)
(6) (可乘方性、可开方性)
3.情感、态度与价值观
通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量。
教学重点
理解不等式的性质及其证明
教学难点
利用不等式的基本性质证明不等式
教学过程:
批注
一、复习提问
1.比较两实数大小的理论依据是什么?
2.“作差法”比较两实数的大小的一般步骤.
3.初中我们学过的不等式的基本性质是什么?
基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.
基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.
其数学含义:
不等关系与不等式
课题:不等关系与不等式(二)

不等关系与不等式教案

不等关系与不等式教案

不等关系与不等式教学目标:1、知识与技能目标:(1)、理解不等关系及其在数轴上的几何表示。

(2)、会用两个实数之间的差运算确定两实数之间的大小关系,能比较两个代数式的大小。

教学重点:实数(代数式)大小比较的基本方法:作差法。

教学难点:判断差的符号板书设计:黑板中央板书课题,左侧依次书写定义、实数(代数式)大小的比较法,其余位置留作演算使用,屏幕保留小结和作业。

教学过程:一、课前预习:(预习课本P38---P41页,约20分钟,思考以下问题)1、如何表示不等关系?2、如何用数轴表示两个数的大小?3、怎样比较两个代数式的大小?4、比较x2+2x与-x-3的大小二、课内探究:1、新课引入:现实世界中存在着等量关系,也存在着大量的不等关系,同学们能举出一些例子吗?如:今天的天气预报说:明天早晨最低温度为7℃,明天白天的最高温度为13℃,7℃≤t ≤13℃三角形ABC的两边之和大于第三边,AB+AC>BCa是一个非负实数,a≥0又如:P61 速度与话费问题。

这些问题的表示即是我们今天要研究的问题(板书课题)2、合作探究:(学生思考并回答以下问题)问题一:不等式的定义用不等号连接两个解析式所得的式子,叫做不等式.不等号的种类:>、<、≥、≤、≠.问题二:2≥2,这样写正确吗?“≥“的含义是什么?这样写是对的,因为“>”和“=”只要一个满足就可以了,即a≥b表示a>b或a=b ,同样a≤b即为a<b或a=b。

练习:P63 2问题三:实数与数轴上的点有怎样的对应关系?右边的点表示的实数与左边的点表示的实数谁大?与数轴上的点是一一对应的,右边的点表示的实数比左边的点表示的实数大问题四:数轴上两点A、B有怎样的位置关系?两实数有怎样的大小关系?点的关系:点A在点B右侧点A在点B左侧点A和点B重合数的关系:a>b、a=b 、a<b问题五:如何比较两数大小?(小组讨论)a b强调:“如果P,则q”为正确命题,记作qp⇒,如果qp⇒,同时pq⇒,则记为qp⇔。

不等关系与不等式教案

不等关系与不等式教案

不等关系与不等式教案教案标题:不等关系与不等式教案教案目标:1. 理解不等关系的概念,并能够正确运用不等关系符号(大于、小于、大于等于、小于等于)。

2. 掌握解不等式的方法,包括图像法和代数法。

3. 能够在实际问题中运用不等关系和不等式解决数学问题。

教学资源:1. 教材:包含不等关系和不等式的相关知识点。

2. 白板、黑板或投影仪:用于展示教学内容和解题步骤。

3. 练习题:用于巩固学生对不等关系和不等式的理解和运用能力。

教学步骤:引入(5分钟):1. 引导学生回顾等关系的概念,例如“大于”和“小于”。

2. 提出问题:“在数学中,我们还可以比较两个数的大小,但不一定是相等的关系,你知道这个叫什么吗?”引导学生理解不等关系的概念。

概念讲解(10分钟):1. 解释不等关系的符号表示,包括大于(>)、小于(<)、大于等于(≥)和小于等于(≤)。

2. 通过示例和图示,帮助学生理解不等关系符号的含义和使用方法。

解不等式的方法(15分钟):1. 图像法:通过绘制数轴和标记关键点的方式,帮助学生直观地理解不等式的解集。

演示解不等式的图像法步骤,并让学生跟随进行练习。

2. 代数法:通过运用数学运算规则和性质,将不等式转化为等价的形式,从而求解不等式。

演示解不等式的代数法步骤,并让学生进行练习。

练习与巩固(20分钟):1. 给学生分发练习题,包括不等关系的填空题和不等式的求解题。

确保题目涵盖不同难度和类型,以满足不同学生的需求。

2. 引导学生独立或合作完成练习题,并及时给予指导和反馈。

3. 随堂检查学生的练习情况,并解答他们可能遇到的问题。

拓展应用(10分钟):1. 提出一些实际问题,要求学生利用不等关系和不等式进行求解。

例如:“某超市举行促销活动,商品原价的80%作为折扣,你能计算出打折后的价格吗?”2. 鼓励学生思考如何将实际问题转化为数学不等式,并运用所学知识解决问题。

总结与反思(5分钟):1. 总结不等关系和不等式的概念和解题方法。

高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题&#61480;1&#61481;回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系&#61480;2&#61481;在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗&#61480;3&#61481;数轴上的任意两点与对应的两实数具有怎样的关系&#61480;4&#61481;任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC| 实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,--b 应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=&#61480;a+b&#61481;2-4ab2&#61480 ;a+b&#61481;=&#61480;a-b&#61481;22&#61480;a+b&#61481;.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴&#61480;a-b&#61481;22&#61480;a+b&#61481;>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)] =-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2] ∴a4-b4 点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y 当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m&#61480;b-a&#61481;b&#61480;b+m&#61481;>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()2.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y) =(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y ∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的证明二【基础训练】1.若,,则下列不等始终正确的是()2.设a,b为实数,且,则的最小值是()4.求证:对任何式数x,y,z,下述三个不等式不可能同时成立。

不等关系与不等式教案02

不等关系与不等式教案02

不等关系与不等式(一)教学目标1.知识与技能:使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容。

2.过程与方法:以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系;3.情态与价值:通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量。

(二)教学重、难点重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。

难点:用不等式(组)正确表示出不等关系。

(三)教学设想[创设问题情境]问题1:设点A 与平面α的距离为d ,B 为平面α上的任意一点,则d ≤AB 。

问题2:某种杂志原以每本元的价格销售,可以售出8万本。

根据市场调查,若单价每提高元,销售量就可能相应减少2000本。

若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元?分析:若杂志的定价为x 元,则销售的总收入为 2.580.20.1x x -⎛⎫-⨯ ⎪⎝⎭万元。

那么不等关系“销售的总收入不低于20万元”可以表示为不等式 2.580.20.1x x -⎛⎫-⨯ ⎪⎝⎭≥20 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍。

怎样写出满足上述所有不等关系的不等式呢?分析:假设截得500mm 的钢管x 根,截得600mm 的钢管y 根..根据题意,应有如下的不等关系:(1)解得两种钢管的总长度不能超过4000mm(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;(3)解得两钟钢管的数量都不能为负。

由以上不等关系,可得不等式组:500600400030x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩ [练习]:第82页,第1、2题。

高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案【导语】高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。

这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。

为了助你一臂之力,无忧考网高中频道为你精心准备了《高三数学必修五《不等关系与不等式》教案》助你金榜题名!教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0��a>b;a-b=0��a=b;a-b<0��a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差――变形――判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y<0时,x-yy<0,即xy-1<0.∴xy<1;当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m b-a b b+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3―1A组3;习题3―1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的�C明二【基�A��】1.若,,�t下列不等始�K正�_的是()2.�Oa,b����担�且,�t的最小值是()4.求�C:�θ魏问��x,y,z,下述三��不等式不可能同�r成立。

高中数学必修5《不等关系与不等式》教案

高中数学必修5《不等关系与不等式》教案

高中数学必修5《不等关系与不等式》教案一、教学内容不等关系与不等式二、教学目标1. 理解不等关系和不等式的概念;2. 掌握表示不等式的方法;3. 掌握一元一次不等式的解法;4. 掌握二元一次不等式的解法;5. 能够应用不等式解决实际问题。

三、教学重点1. 不等关系与不等式的概念;2. 一元一次不等式的解法;3. 能够应用不等式解决实际问题。

四、教学难点1. 二元一次不等式的解法;2. 能够应用不等式解决实际问题。

五、教学方法1. 讲授法;2. 举例法;3. 练习法。

六、教学过程1. 引入(10分钟)教师先用几道小学的例题,考察学生的知识储备,比如:“如果a>b,b>c,那么a>c吗?”,“a+b+b+c>c+c+a,a+b的大小关系是什么?”,建议让学生互相出题。

2. 讲授(40分钟)(1) 不等关系与不等式- 定义:如果两个数x、y之间存在大小关系,那么我们就称它们之间是一种关系,叫做不等关系。

而$x>y$、$x\geqslanty$等代数形式表示的关系就叫做不等式。

- 内容:不等关系的分类(大于、小于、大于等于、小于等于、等于),不等式的基本性质(两侧都加或减同一个有理数,符号不变;两侧都乘或除同一个正数,符号不变;两侧都乘或除同一个负数,符号不变反)(2)表示不等式的方法- 直观法:把不等式中的数相对数线上表示出来,即可得到不等式的关系。

- 求解法:对于 $a \space \Delta \space b$型的不等式,可以将它化为$a-b\space \Delta \space 0$型的不等式,即将不等式移到一个边上,然后求解。

(3)一元一次不等式的解法- 一元一次不等式:$ax+b\space \Delta \space0(ax+b\geqslant0\text{或} ax+b>0)$- 思路:先将不等式移到一个边上,然后根据系数a的正负以及$b\neq 0$的情况分类讨论解不等式。

不等关系与不等式经典教案设计

不等关系与不等式经典教案设计

不等关系与不等式【学习目标】1.了解不等式(组)的实际背景.2.掌握比较两个实数大小的方法.3.掌握不等式的八条性质.【学法指导】1.不等关系广泛存在于现实生活中,应用不等式(组)表示不等关系实质是将“自然语言”或“图形语言”转化成“数学语言”,是用不等式知识解决实际问题的第一步.只需根据题意建立相应模型,把模型中的量具体化即可.2.作差法是比较两个数(或式)大小的重要方法之一,可简单概括为“三步一结论”,其中关键步骤“变形”要彻底,当不能“定号”时注意分类讨论.3.不等式的基本性质是解决不等式的有关问题的依据,应用时每步都要做到等价变形.一、知识温故a-b>0⇔;a-b=0⇔;a-b<0⇔ .3.常用的不等式的基本性质(1)a>b⇔b a(对称性);(2)a>b,b>c⇒a c(传递性);(3)a>b⇒a+c b+c(可加性);(4)a>b,c>0⇒ac bc;a>b,c<0⇒ac bc;(5)a>b,c>d⇒a+c b+d;(6)a>b>0,c>d>0⇒ac bd;(7)a>b>0,n∈N,n≥2⇒a n b n;(8)a>b>0,n∈N,n≥2⇒二、经典范例问题探究一实数比较大小问题1(实数比较大小的依据)在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左边的点表示的数大,从实数减法在数轴上的表示可以看出a,b之间具有以下性质:如果a-b是正数,那么;如果a-b是负数,那么;如果a-b等于零,那么 .以上结论反过来也成立,即a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.问题2(作差法比较实数的大小)向一杯a克糖水中加入m克糖,糖水变得更甜了.你能把这一现象用一个不等式表示出来吗?并证明你的结论.问题探究二不等式的基本性质问题3在实数大小比较的基础上,可以给出不等式八条基本性质的严格证明.证明时,可以利用前面的性质推证后续的性质.请同学们借助前面的性质证明性质6:如果a>b>0,c>d>0,那么ac>bd.问题4 初学者对不等式的八条基本性质往往重视不够,其实不等式的基本性质是不等式变形(证明不等式和求解不等式)的重要依据.请同学们解下面这个简单的一元一次不等式,体会并证明不等式基本性质的应用. 解不等式:-16x +34<23x -112.小结 (1)当问题中同时满足几个不等关系时,应用不等式组来表示它们之间的不等关系,另外若问题有几个变量,则选用几个字母分别表示这些变量即可.(2)解决这类有多个不等关系的问题时,要注意根据题设将所有不等关系都找出来. (3)若有表格、图象等,读懂表格,图象对解决这类问题很关键.变式练习1:某用户计划购买单价分别为60元、70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒.问:软件数与磁盘数应满足什么条件?变式练习2:已知x <1,试比较x 3-1与2x 2-2x 的大小.小结 作差后变形是比较大小的关键一环,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式.变式练习3:(1)比较(a +3)(a -5)与(a +2)(a -4)的大小;(2)设x ,y ,z ∈R ,比较5x 2+y 2+z 2与2xy +4x +2z -2的大小.变式练习4:已知a 、b 、c 为实数,判断以下各命题的真假.(1)若a >b ,则ac <bc ; (2)若ac 2>bc 2,则a >b ; (3)若a <b <0,则a 2>ab >b 2; (4)若c >a >b >0,则ac -a >bc -b;(5)若a >b ,1a >1b,则a >0,b <0.小结 在不等式的各性质中,乘法的性质极易出错,即在不等式两边同乘或除以一个数时,必须要确定该数是正数、负数或零,否则结论就不确定.变式练习5:判断下列各命题是否正确,并说明理由.(1)若c a <c b且c >0,则a >b ; (2)若a >b >0且c >d >0,则 a d> b c; (3)若a >b ,ab ≠0,则1a <1b;(4)若a >b ,c >d ,则ac >bd .三、过关测试 一、选择题1.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( ) A.1a <1b B .a 2>b 2C.a c 2+1>bc 2+1D .a |c |>b |c | 2.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >aC.a b >a >a b 2D.a b >a b2>a 3.已知a 、b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab 2C.1ab 2<1a 2bD.b a <a b4.若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <b C .b <a <c D .b <c <a5.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( )A .b -a >0B .a 3+b 3<0C .a 2-b 2<0 D .b +a >06.若a >b >c 且a +b +c =0,则下列不等式中正确的是( ) A .ab >ac B .ac >bcC .a |b |>c |b |D .a 2>b 2>c 2二、填空题7.若1≤a ≤5,-1≤b ≤2,则a -b 的取值范围为________.8.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是________.9.若x ∈R ,则x 1+x 2与12的大小关系为________.10.设n >1,n ∈N ,A =n -n -1,B =n +1-n ,则A 与B 的大小关系为________. 三、解答题11.设a >b >0,试比较a 2-b 2a 2+b 2与a -ba +b的大小.12.设f (x )=1+log x 3,g (x )=2log x 2,其中x >0且x ≠1,试比较f (x )与g (x )的大小.能力提升13.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.1214.设x ,y ,z ∈R ,试比较5x 2+y 2+z 2与2xy +4x +2z -2的大小.四、课后练习一、选择题1.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1b B .a 2>b 2C.a c 2+1>bc 2+1D .a |c |>b |c |2.已知a 、b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab 2C.1ab 2<1a 2bD.b a <a b3.若x ∈(e-1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a4.若a >0且a ≠1,M =log a (a 3+1),N =log a (a 2+1),则M ,N 的大小关系为( )A .M <NB .M ≤NC .M >ND .M ≥N5.若a >b >c 且a +b +c =0,则下列不等式中正确的是( )A .ab >acB .ac >bcC .a |b |>c |b |D .a 2>b 2>c2二、填空题6.若1≤a ≤5,-1≤b ≤2,则a -b 的取值范围是________.7.若x ∈R ,则x 1+x 2与12的大小关系为________.8.设n >1,n ∈N ,A =n -n -1,B =n +1-n ,则A 与B 的大小关系为________. 三、解答题9.比较x 6+1与x 4+x 2的大小,其中x ∈R .10.设a >b >0,试比较a 2-b 2a 2+b 2与a -ba +b 的大小.11.已知12<a <60,15<b <36,求a -b 及a b的取值范围.四、探究与拓展12.设f (x )=1+log x 3,g (x )=2log x 2,其中x >0且x ≠1,试比较f (x )与g (x )的大小.部分参考答案:问题2:设原来a 克糖水中含糖b 克,加入m 克糖后,糖水浓度变大了,用不等式表示为b a <b +ma +m(其中a ,b ,m 均为正数,且a >b ).证明如下:b +m a +m -b a =a (b +m )-b (a +m )a (a +m )=m (a -b )a (a +m ),又a ,b ,m 均为正数且a >b ,∴a -b >0,m (a -b )>0,a (a +m )>0,∴m (a -b )a (a +m )>0.因此,b +m a +m >b a,也就是糖水浓度更大了,糖水变得更甜了.问题3:证明⎭⎬⎫⎭⎪⎬⎪⎫a >b >0c >0⇒ac >bc >0⎭⎪⎬⎪⎫c >d >0b >0⇒bc >bd >0⇒ac >bd .问题4:解 -16x +34<23x -112⇔-2x +9<8x -1 (不等式两边都乘以12,不等式方向不改变)⇔-2x <8x -10 (不等式两边都加上-9)⇔-10x <-10 (不等式两边都加上-8x )⇔x >1 (不等式两边都乘以-110,不等式方向改变)变式练习1:设软件数为x ,磁盘数为y ,根据题意可得⎩⎪⎨⎪⎧ 60x +70y ≤500,x ≥3且x ∈N ,y ≥2且y ∈N.变式练习2: ∵(x 3-1)-(2x 2-2x ): =x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1) =x 2(x -1)-(x -1)2=(x -1)(x 2-x +1)=(x -1)[(x -12)2+34],∵(x -12)2+34>0,x -1<0,∴(x -1)[(x -12)2+34]<0,∴x 3-1<2x 2-2x .变式练习3:解 (1)∵(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0.∴(a +3)(a -5)<(a +2)(a -4). (2)∵5x 2+y 2+z 2-(2xy +4x +2z -2) =4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1=(2x -1)2+(x -y )2+(z -1)2≥0,∴5x 2+y 2+z 2≥2xy +4x +2z -2,当且仅当x =y =12且z =1时取等号.变式练习4:解 (1)c 是正、负或为零未知,因而缺少判断ac 与bc 的大小依据,故该命题为假命题. (2)由ac 2>bc 2知c ≠0,∴c 2>0,∴a >b ,故该命题为真命题.(3)⎭⎪⎬⎪⎫a <b a <0⇒a 2>ab ;又⎭⎪⎬⎪⎫a <b b <0⇒ab >b 2,∴a 2>ab >b 2,故该命题为真命题.(4)∵a >b >0,∴-a <-b ,∴c -a <c -b ,又∵c >a >b >0,∴1(c -a )(c -b )>0,在c -a <c -b 两边同乘1(c -a )(c -b ),得1c -a >1c -b >0,又a >b >0,∴a c -a >bc -b .故该命题为真命题.(5)由已知条件知a >b ⇒a -b >0,又1a >1b ⇒1a -1b >0⇒b -aab>0,∵a -b >0,∴b -a <0,∴ab <0.又a >b ,∴a >0,b <0,故该命题为真命题.变式练习5:解 (1)⎭⎪⎬⎪⎫c a <c b c >0⇒1a <1b ,但推不出a >b ,故(1)错.(2)⎭⎪⎬⎪⎫a >b >0c >d >0⇒a d >b c>0⇒ ad> bc成立,故(2)对. (3)错.例如,当a =1,b =-1时,不成立. (4)错.例如,当a =c =1,b =d =-2时,不成立.过关测试:1、答案 C解析 对A ,若a >0>b ,则1a >0,1b <0,此时1a >1b,∴A 不成立;对B ,若a =1,b =-2,则a 2<b 2,∴B 不成立; 对C ,∵c 2+1≥1,且a >b ,∴a c 2+1>bc 2+1恒成立,∴C 正确; 对D ,当c =0时,a |c |=b |c |,∴D 不成立. 2、答案 D解析 取a =-2,b =-2,则a b =1,a b 2=-12,∴a b >ab2>a .3、答案 C解析 对于A ,当a <0,b <0时,a 2<b 2不成立;对于B ,当a <0,b >0时,a 2b >0,ab 2<0,a 2b <ab 2不成立;对于C ,∵a <b ,1a 2b2>0,∴1ab 2<1a 2b ; 对于D ,当a =-1,b =1时,b a =ab=-1.4、答案 C解析 ∵1e<x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0.∴a -b =t -2t =-t >0,∴a >b .c -a =t 3-t =t (t 2-1)=t (t +1)(t -1), 又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a .∴c >a >b . 5、答案 D解析 由a >|b |得-a <b <a ,∴a +b >0,且a -b >0.∴b -a <0,A 错,D 对.可取特值,如a =2,b =-1,a 3+b 3=7>0,故B 错.而a 2-b 2=(a -b )(a +b )>0,∴C 错. 6、答案 A 解析 由a >b >c 及a +b +c =0知a >0,c <0,又∵a >0,b >c ,∴ab >ac .故选A. 7、答案 [-1,6]解析 ∵-1≤b ≤2,∴-2≤-b ≤1,又1≤a ≤5,∴-1≤a -b ≤6.8、答案 f (x )>g (x )解析 ∵f (x )-g (x )=x 2-2x +2=(x -1)2+1>0,∴f (x )>g (x ).9、答案 x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 221+x 2=-x -1221+x 2≤0,∴x 1+x 2≤12.10、答案 A >B 解析 A =1n +n -1,B =1n +1+n .∵n +n -1<n +1+n ,并且都为正数,∴A >B .11、解 方法一 作差法 a 2-b 2a 2+b 2-a -b a +b =a +b a 2-b 2-a -b a 2+b2a 2+b 2a +b =a -b[a +b 2-a 2+b 2]a 2+b 2a +b =2ab a -ba +b a 2+b 2∵a >b >0,∴a +b >0,a -b >0,2ab >0.∴2ab a -b a +b a 2+b 2>0,∴a 2-b 2a 2+b 2>a -b a +b .方法二 作商法∵a >b >0,∴a 2-b 2a 2+b 2>0,a -b a +b >0.∴a 2-b 2a 2+b 2a -b a +b=a +b 2a 2+b 2=a 2+b 2+2ab a 2+b 2=1+2ab a 2+b 2>1.∴a 2-b 2a 2+b 2>a -ba +b.12、解 f (x )-g (x )=1+log x 3-2log x 2=log x 3x4,①当⎩⎪⎨⎪⎧0<x <1,3x4>1,或⎩⎪⎨⎪⎧x >1,0<3x4<1,即1<x <43时,log x 3x4<0,∴f (x )<g (x );②当3x 4=1,即x =43时,log x 3x4=0,即f (x )=g (x );③当⎩⎪⎨⎪⎧0<x <1,0<3x4<1,或⎩⎪⎨⎪⎧x >1,3x4>1,即0<x <1,或x >43时,log x 3x4>0,即f (x )>g (x ).综上所述,当1<x <43时,f (x )<g (x );当x =43时,f (x )=g (x );当0<x <1,或x >43时,f (x )>g (x ).13、答案 A解析 方法一 特殊值法.令a 1=14,a 2=34,b 1=14,b 2=34,则a 1b 1+a 2b 2=1016=58,a 1a 2+b 1b 2=616=38,a 1b 2+a 2b 1=616=38,∵58>12>38,∴最大的数应是a 1b 1+a 2b 2.方法二 作差法.∵a 1+a 2=1=b 1+b 2且0<a 1<a 2,0<b 1<b 2,∴a 2=1-a 1>a 1,b 2=1-b 1>b 1,∴0<a 1<12,0<b 1<12.又a 1b 1+a 2b 2=a 1b 1+(1-a 1)(1-b 1)=2a 1b 1+1-a 1-b 1,a 1a 2+b 1b 2=a 1(1-a 1)+b 1(1-b 1)=a 1+b 1-a 21-b 21,a 1b 2+a 2b 1=a 1(1-b 1)+b 1(1-a 1)=a 1+b 1-2a 1b 1,∴(a 1b 2+a 2b 1)-(a 1a 2+b 1b 2)=a 21+b 21-2a 1b 1=(a 1-b 1)2≥0,∴a 1b 2+a 2b 1≥a 1a 2+b 1b 2.∵(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=4a 1b 1+1-2a 1-2b 1 =1-2a 1+2b 1(2a 1-1)=(2a 1-1)(2b 1-1)=4⎝⎛⎭⎪⎫a 1-12⎝ ⎛⎭⎪⎫b 1-12>0,∴a 1b 1+a 2b 2>a 1b 2+a 2b 1. ∵(a 1b 1+a 2b 2)-12=2a 1b 1+12-a 1-b 1=b 1(2a 1-1)-12(2a 1-1)=(2a 1-1)⎝⎛⎭⎪⎫b 1-12 =2⎝⎛⎭⎪⎫a 1-12⎝ ⎛⎭⎪⎫b 1-12>0,∴a 1b 1+a 2b 2>12. 综上可知,最大的数应为a 1b 1+a 2b 2.14、解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2)=4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1=(2x -1)2+(x -y )2+(z -1)2≥0,∴5x 2+y 2+z 2≥2xy +4x +2z -2,当且仅当x =y =12且z =1时取到等号.课后练习答案:1.C 2.C 3.C 4.C 5.A6.[-1,6] 7.x 1+x 2≤12 8.A >B9.解 x 6+1-(x 4+x 2)=x 6-x 4-x 2+1 =x 4(x 2-1)-(x 2-1)=(x 2-1)(x 4-1) =(x 2-1)2(x 2+1)≥0.∴当x =±1时,x 6+1=x 4+x 2; 当x ≠±1时,x 6+1>x 4+x 2. 综上所述,x 6+1≥x 4+x 2, 当且仅当x =±1时取等号. 10.解 方法一 作差法∵a 2-b 2a 2+b 2-a -b a +b=(a +b )(a 2-b 2)-(a -b )(a 2+b 2)(a 2+b 2)(a +b )=(a -b )[(a +b )2-(a 2+b 2)](a 2+b 2)(a +b )=2ab (a -b )(a +b )(a 2+b 2). ∵a >b >0,∴a +b >0,a -b >0,2ab >0.∴2ab (a -b )(a +b )(a 2+b 2)>0,∴a 2-b 2a 2+b 2>a -b a +b. 方法二 作商法∵a >b >0,∴a 2-b 2a 2+b 2>0,a -b a +b>0. ∴a 2-b 2a 2+b 2a -b a +b=(a +b )2a 2+b 2=a 2+b 2+2ab a 2+b 2=1+2ab a 2+b 2>1.∴a 2-b 2a 2+b 2>a -b a +b. 11.解 ∵15<b <36,∴-36<-b <-15.∴12-36<a -b <60-15,∴-24<a -b <45.又136<1b <115,∴1236<a b <6015, ∴13<a b<4. ∴-24<a -b <45,13<a b<4. 12.解 f (x )-g (x )=1+log x 3-2log x 2=log x 3x 4, ①当⎩⎪⎨⎪⎧ 0<x <1,3x 4>1,或⎩⎪⎨⎪⎧ x >1,0<3x 4<1,即1<x <43时,log x 3x 4<0, ∴f (x )<g (x );②当3x 4=1,即x =43时,log x 3x 4=0, 即f (x )=g (x );③当⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1,或⎩⎪⎨⎪⎧ x >1,3x 4>1,即0<x <1,或x >43时,log x 3x 4>0, 即f (x )>g (x ).综上所述,当1<x <43时,f (x )<g (x ); 当x =43时,f (x )=g (x ); 当0<x <1,或x >43时,f (x )>g (x ).。

不等关系与不等式教学设计

不等关系与不等式教学设计

不等关系与不等式教学设计教学目标:1.理解不等关系与不等式的概念及其应用;2.能够正确表示不等关系和不等式;3.能够解决与不等关系和不等式相关的问题。

教学内容:1.不等关系的概念及表示方法;2.不等式的定义及其解的概念;3.不等式的性质和解决方法。

教学过程:Step 1:导入和概念解释(15分钟)1.教师通过举例子引出学生对不等关系的概念,如:1<2、3≥2等;2.教师解释不等关系的含义,即不相等关系;3.教师讨论学生对不等关系的表示方法的理解,引出不等式的概念。

Step 2:不等关系与不等式(30分钟)1.教师介绍不等式的定义,即一个用不等号连接两个数的算式,如:a≠b;2.教师对不等式的符号以及含义进行解释,如:>表示大于,<表示小于,≥表示大于等于,≤表示小于等于;3.教师引导学生通过实例学习如何表示不等式,比如:x+1>5,3x-2≤10等;4.教师通过例题展示如何解决不等式,如:2x+3>9,通过移项和化简求出x的解;5.教师让学生通过练习巩固不等式的表示和解决方法。

Step 3:不等式的性质(25分钟)1.教师介绍一元一次不等式的基本性质,如:同加同减不等式两边仍不等,同乘同除不等式两边仍不等等;2.教师通过实例演示不等式性质的应用,如:化简不等式求解;3.教师探讨学生对不等式性质的应用情况,以及在解决实际问题中的意义;4.教师通过练习巩固学生对不等式性质的理解和应用。

Step 4:综合应用与拓展(30分钟)1.教师通过一些应用题目,让学生将所学的不等关系和不等式的知识应用到实际问题中,如:长度、面积等问题;2.教师扩展不等式的应用领域,如:不等式在数学建模、优化问题中的应用;3.教师以小组讨论的形式,让学生针对一个具体实际问题运用不等式解决,并展示解决过程和结果。

Step 5:归纳总结(10分钟)1.教师引导学生对本节课学习的内容进行总结,包括不等关系、不等式的概念和表示方法,不等式的性质和解决方法;2.教师鼓励学生提出遇到的问题和疑惑,进行答疑解惑。

不等关系与不等式教案及练习

不等关系与不等式教案及练习

§3.1 不等式关系与不等式教学目的:1.在学生理解了一些不等式(组)生产的实际背景的前提下,学习不等式的相关内容;2.利用数轴回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小,以及用实数理论来证明不等式的一些性质;3.通过回忆和复习学生所熟悉的等式性质类比得到不等式的一些基本性质;4.在理解不等式的一些基本性质的基础上,利用它们来证明一些简单的不等式;5.通过对富有实际意义问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生学习的兴趣. 教学重点:1.用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题;2.掌握不等式性质定理及推论,注意每个定理的条件;3.不等式的基本性质的应用.教学难点:1.用不等式(组)准确地表示出不等关系;2.差值比较法:作差→变形→判断差值的符号;3.不等式的基本性质的应用.教学过程:一、引入新课:在现实世界和日常生活中,既有相等关系,又存有着大量的不等关系.如两点之间线段最短,三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或很多于等来描绘某种客观事物在数量上存有的不等关系.在数学中,我们用不等式来表示不等关系.下面我们首先来看如何利用不等式来表示不等关系.二、讲解新课:(一)用不等式表示不等关系引例1 限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h,写成不等式就是:40v ≤引例2 某品牌酸奶的质量检查规定,酸奶中脂肪的含量应很多于%5.2,蛋白质的含量p 应很多于%3.2,写成不等式组就是——用不等式组来表示2.5%2.3%f p ≤⎧⎨≥⎩ 问题1: 设点A 与平面α的距离为d ,B 为平面α上的任意一点,则||d AB ≤.问题2: 某种杂志原以每本5.2元的价格销售,能够售出8万本.据市场调查,若单价每提升1.0元,销售量就可能相对应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解: 设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯万元, 那么不等关系“销售的总收入仍不低于20万元”能够表示为不等式2.5(80.2)200.1x x --⨯≥ 问题3: 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍.怎样写出满足所有上述不等关系的不等式呢? 解: 假设截得500mm 的钢管x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4000mm;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;(3)截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,能够用下面的不等式组来表示:5006004000;3;0;0.x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩(二)不等式的基本性质1.判断两个实数大小的充要条件对于任意两个实数b a ,,在b a b a b a <=>,,三种关系中有且仅有一种成立.判断两个实数大小的充要条件是:0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a由此可见,要比较两个实数的大小,只要考察它们的差的符号就能够了.2.不等式的定义用不等号连接两个解析式所得的式子,叫做不等式.说明: (1)不等号的种类:≠≤≥<>,,,,.(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等).(3)不等式研究的范围是实数集R .3.同向不等式与异向不等式同向不等式:两个不等号方向相同的不等式;例如d c b a >>,,是同向不等式.异向不等式:两个不等号方向相反的不等式;例如d c b a <>,,是异向不等式.4.不等式的性质定理1:假设b a >,那么a b <,假设a b <,那么b a >.(对称性)即a b b a <⇔>证明: ∵b a >∴0>-b a由正数的相反数是负数,得0)(<--b a即0<-a b∴a b <(定理的后半部分略)点评:定理1即 a b b a <⇔>定理2:假设b a >且c b >,那么c a >.(传递性)即c a c b b a >⇒>>,证明:∵c b b a >>,∴0,0>->-c b b a根据两个正数的和仍是正数得0)()(>-+-c b b a 即0>-c a∴c a >点评:(1)根据定理l,定理2还能够表示为a c a b b c <⇒<<,;(2)不等式的传递性能够推广到n 个的情形.定理3:假设b a >,那么c b c a +>+.即c b c a b a +>+⇒>(加法性质)证明:∵b a >∴0>-b a∴0)()(>+-+c b c a 即c b c a +>+点评:(1)定理3的逆命题也成立;(2)利用定理3能够得出,假设c b a >+,那么b c a ->,也就是说,不等式中任何一项改变符号后,能够把它从—边移到另一边.推论:假设b a >且d c >,那么d b c a +>+(相加法则)即d b c a d c b a +>+⇒>>,证法一:d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒> 证法二:⇒>-+-⇒⎭⎬⎫>-⇒>>-⇒>000d c b a d c d c b a b a d b c a +>+ 点评:这个推论能够推广到任意有限个同向不等式两边分别相加,即两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向.定理4:假设b a >且0>c ,那么bc ac >;假设b a >且0<c ,那么bc ac <.(乘法性质)证明:∵c b a bc ac )(-=-∵b a >∴0>-b a当0>c 时,0)(>-c b a 即bc ac >当0<c 时,0)(<-c b a 即bc ac <推论1: 假设0>>b a 且0>>d c ,那么bd ac >.(相乘法则)证明:,0a b c >> ac bc ∴> ①又,0,c d b >> ∴bc bd > ②由①、②可得ac bd >.说明: (1)所有的字母都表示正数,假设仅有,a b c d >>,就推不出ac bd > 的结论.(2)这个推论能够推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.推论2: 若0,(1)n n a b a b n N n >>>∈>则且.说明:(1)推论2是推论1的特殊情形;(2)应强调学生注意N n ∈1n >且的条件,假设0>>b a ,那么n n b a >(N n ∈且1>n ).定理5: 若0>>b a ,则n n b a >(N n ∈且1>n ).(指数运算性质)点拨:遇到困难时,可从问题的反面入手,即所谓的“正难则反”.我们用反证法来证明定理5,因为反面有两种情形,=所以不能仅仅<就“归谬”了事,而必须实行“穷举”.证明:假定n a 不大于n b ,<或者n n b a =由推论2和定理1,<,有a b <; 当n n b a =时,显然有b a = 这些都同已知条件0a b >>矛盾>点评:反证法证题思路是:反设结论→找出矛盾→肯定结论. 定理6:若b a >且0>ab ,则11.a b <(倒数性质) 证明:aba b b a -=-11 0,>>ab b a 又 011,0<-=-<-∴ab a b b a a b ba 11<∴ 5.不等式的基本性质小结(1)a b b a <⇔>;a b b a <⇔>(定理1,对称性)(2)c a c b b a >⇒>>,(定理2,传递性)(3)c b c a b a +>+⇒>(定理3,加法单调性)(4)d b c a d c b a +>+⇒>>,(定理3推论,同向不等式相加)(5)d b c a d c b a ->-⇒<>,(异向不等式相减)(6)bc ac c b a >⇒>>0,.;bc ac c b a <⇒<>0,(定理4,乘法单调性)(7)bd ac d c b a >⇒>>>>0,0(定理4推论1,同向不等式相乘) (8)d b c a d c b a >⇒<<>>0,0(异向不等式相除) (9)0,>>ab b a ba 11<⇒(倒数关系) (10))1,(0>∈>⇒>>n Z nb a b a n n 且(定理4推论2,平方法则) (11))1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则)(**)ααααααb a b a b a b a <⇒<>>>⇒>>>0,0;0,0(**)0,0>>b a ,则1 ;1 ;1<⇔<=⇔=>⇔>ba b a b a b a b a b a三、讲解范例:(一)用不等式表示不等关系例1 如图,函数)(x f y =反映了某公司产品的销售收入y 万元与销售量x 吨的函数关系,)(x g y =反映了该公司产品的销售成本与销售量的函数关系,试问:(1)当销售量为多少时,该公司赢利(收入大于成本);(2)当销售量为多少时,该公司亏损(收入小于成本).解: 略例2 某用户计划购买单价分别为60元,70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒.问:软件数与磁盘数应满足什么条件? 解: 略例3 某厂使用两种零件B A ,,装配两种产品甲,乙,该厂的生产水平是月产量甲最多2500件,月产量乙最多1200件,而组装一件产品,甲需要4个A ,2个B ;乙需要6个A ,8个B .某个月,该厂能用的A 最多有14000个,B 最多有12000个.用不等式将甲,乙两种产品产量之间的关系表示出来.解: 略例4 若需要在长为4000mm 的圆钢上,截出长为698mm 和518mm 两种毛坯,问怎样写出满足上述条件所有不等关系的不等式组?解: 略(二)不等式的基本性质例1 已知0≠x ,比较22)1(+x 与124++x x 的大小.引伸: 在例中,假设没有0≠x 这个条件,那么两式的大小关系如何?结论: 例1是用作差比较法来比较两个实数的大小,其一般步骤是:作差——变形——判断符号.这样把两个数的大小问题转化为判断它们差的符号问题,至于差本身是多少,在此无关紧要.例2 已知0,0>>>m b a ,试比较m a m b ++与a b 的大小. 解: 略例3 已知d c b a <<>>0,0,求证:d b c a > 证明: 略例4 已知y x >且0≠y ,比较y x 与1的大小. 解: 略思考题:1.设*,0,,a b n N >∈且b a ≠,比较()()n n a b a b ++与112()n n ab +++的大小.2.比较222c b a ++与ca bc ab ++的大小.3.已知y x ,均为正数,设yx N y x M +=+=4,11,试比较M 和N 的大小.例5 若31,51<-<-<+<b a b a ,求b a 23-的范围.解: 略类型题: 已知bx ax x f +=2)(,假设4)1(2,2)1(1≤≤≤-≤f f .求证:14)2(7≤≤f .分析: 利用(1)f -与(1)f 设法表示b a ,然后再代入(2)f 的表达式中,从而用(1)f - 与来表示(2)f , 最后使用已知条件确定(2)f 的取值范围.思考题:1.若R b a ∈,,求不等式b a b a 11,>>同时成立的条件.2.||||,0b a ab >>,比较a 1与b 1的大小.3.若0,0<<>>d c b a ,求证:db c a ->-ππααsin sin log log .4.设函数)(x f 的图象为一条开口向上的抛物线.已知y x ,均为不等正数, 0,0>>q p 且1=+q p ,求证:)()()(y qf x pf qy px f +<+四、课堂练习:1.在以下各题的横线处适当的不等号: (1)2)23(+ 626+; (2)2)23(- 2)16(-;; (4)当0.>>b a 时,a 21log b 21log . 2.选择题:(1)若01,0<<-<b a ,则有( )A. 2ab ab a >>B. a ab ab >>2C. 2ab a ab >>D. a ab ab >>2(2)2log 2log n m >成立当且仅当( )A .1>>m n 或01>>>n mB .01>>>n mC .1>>m n 或01>>>m n 或01>>>n mD .1>>n m3.比较大小:(1))7)(5(++x x 与2)6(+x (2)31log 21与21log 314.假设0>x ,比较2)1(-x 与2)1(+x 的大小.5.已知0≠a ,比较)12)(12(22+-++a a a a 与)1)(1(22+-++a a a a 的大小.6.已知142=+y x ,比较22y x +与201的大小.7.比较θsin 2与θ2sin 的大小(πθ20<<).8.设0>a 且1≠a ,0>t ,比较t a log 21与21log +t a 的大小.9.设0>a 且1≠a ,比较)1(log 3+a a 与)1(log 2+a a 的大小.10.假设0,>b a ,求证:a b a b >⇔>1。

不等关系与不等式经典教案

不等关系与不等式经典教案

不等关系与不等式【学习目标】1.了解不等式(组)的实际背景.2.掌握比较两个实数大小的方法.3.掌握不等式的八条性质.【学法指导】1.不等关系广泛存在于现实生活中,应用不等式(组)表示不等关系实质是将“自然语言”或“图形语言”转化成“数学语言”,是用不等式知识解决实际问题的第一步.只需根据题意建立相应模型,把模型中的量具体化即可.2.作差法是比较两个数(或式)大小的重要方法之一,可简单概括为“三步一结论”,其中关键步骤“变形”要彻底,当不能“定号”时注意分类讨论.3.不等式的基本性质是解决不等式的有关问题的依据,应用时每步都要做到等价变形.一、知识温故a-b>0⇔;a-b=0⇔;a-b<0⇔.3.常用的不等式的基本性质(1)a>b⇔ba(对称性);(2)a>b,b>c⇒a c(传递性);(3)a>b⇒a+c b+c(可加性);(4)a>b,c>0⇒ac bc;a>b,c<0⇒ac bc;(5)a>b,c>d⇒a+cb+d;(6)a>b>0,c>d>0⇒ac bd;(7)a>b>0,n∈N,n≥2⇒a nbn;(8)a>b>0,n∈N,n≥2⇒错误!错误!.二、经典范例问题探究一实数比较大小问题1 (实数比较大小的依据)在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左边的点表示的数大,从实数减法在数轴上的表示可以看出a,b之间具有以下性质:如果a-b是正数,那么;如果a-b是负数,那么;如果a-b等于零,那么.以上结论反过来也成立,即a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.问题2(作差法比较实数的大小)向一杯a克糖水中加入m克糖,糖水变得更甜了.你能把这一现象用一个不等式表示出来吗?并证明你的结论.问题探究二不等式的基本性质问题3在实数大小比较的基础上,可以给出不等式八条基本性质的严格证明.证明时,可以利用前面的性质推证后续的性质.请同学们借助前面的性质证明性质6:如果a>b>0,c>d>0,那么ac>bd.问题4 初学者对不等式的八条基本性质往往重视不够,其实不等式的基本性质是不等式变形(证明不等式和求解不等式)的重要依据.请同学们解下面这个简单的一元一次不等式,体会并证明不等式基本性质的应用.解不等式:-\f(1,6)x +\f(3,4)<23x -112.小结 (1)当问题中同时满足几个不等关系时,应用不等式组来表示它们之间的不等关系,另外若问题有几个变量,则选用几个字母分别表示这些变量即可.(2)解决这类有多个不等关系的问题时,要注意根据题设将所有不等关系都找出来. (3)若有表格、图象等,读懂表格,图象对解决这类问题很关键.变式练习1:某用户计划购买单价分别为60元、70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒.问:软件数与磁盘数应满足什么条件?变式练习2:已知x <1,试比较x 3-1与2x 2-2x 的大小.小结 作差后变形是比较大小的关键一环,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式.变式练习3:(1)比较(a+3)(a-5)与(a+2)(a-4)的大小;(2)设x,y,z∈R,比较5x2+y2+z2与2xy+4x+2z-2的大小.变式练习4:已知a、b、c为实数,判断以下各命题的真假.(1)若a>b,则ac<bc;(2)若ac2>bc2,则a>b;(3)若a<b<0,则a2>ab>b2;(4)若c>a>b>0,则错误!>错误!;(5)若a>b,\f(1,a)>\f(1,b),则a>0,b<0.小结在不等式的各性质中,乘法的性质极易出错,即在不等式两边同乘或除以一个数时,必须要确定该数是正数、负数或零,否则结论就不确定.变式练习5:判断下列各命题是否正确,并说明理由.(1)若错误!<错误!且c>0,则a>b;(2)若a>b>0且c>d>0,则ad> \r(bc);(3)若a>b,ab≠0,则\f(1,a)<错误!;(4)若a>b,c>d,则ac>bd.三、过关测试 一、选择题1.若a ,b ,c∈R ,a >b ,则下列不等式成立的是( ) A.1a<错误! B.a 2>b 2 C.错误!>错误! D .a|c |>b |c|2.已知a <0,b<-1,则下列不等式成立的是( ) A.a >错误!>错误! B.错误!>错误!>a C.ab>a >\f(a,b2) D.\f(a,b )>\f(a,b 2)>a 3.已知a 、b 为非零实数,且a<b ,则下列命题成立的是( )A.a 2<b2 B.a 2b<a b2C.错误!<错误! D.错误!<错误!4.若x ∈(e -1,1),a =l n x ,b =2ln x ,c=ln 3x ,则( ) A.a <b <c B.c <a <b C.b <a<c D.b <c <a5.设a ,b ∈R ,若a -|b|>0,则下列不等式中正确的是( ) A .b -a >0 B .a3+b 3<0 C.a 2-b 2<0 D.b +a>06.若a >b >c且a+b +c =0,则下列不等式中正确的是( ) A .ab >ac B .a c>b c C .a |b |>c |b | D.a 2>b2>c2 二、填空题7.若1≤a≤5,-1≤b≤2,则a -b 的取值范围为________.8.若f (x )=3x 2-x+1,g (x )=2x 2+x -1,则f (x )与g (x)的大小关系是________.9.若x∈R ,则x1+x2与错误!的大小关系为________.10.设n >1,n ∈N ,A =\r(n)-\r(n-1),B=错误!-错误!,则A 与B 的大小关系为________. 三、解答题11.设a >b >0,试比较错误!与错误!的大小.12.设f (x )=1+lo gx 3,g (x)=2lo gx2,其中x >0且x ≠1,试比较f (x )与g (x)的大小.能力提升13.若0<a 1<a 2,0<b 1<b 2,且a 1+a2=b 1+b 2=1,则下列代数式中值最大的是( ) A.a 1b 1+a2b2 B.a1a 2+b 1b 2 C.a 1b 2+a2b 1 D.错误!14.设x ,y,z∈R ,试比较5x2+y2+z 2与2x y+4x +2z -2的大小.四、课后练习一、选择题1.若a ,b,c∈R ,a >b ,则下列不等式成立的是 ﻩﻩﻩﻩﻩ ( )A.1a <1b ﻩ ﻩ ﻩ ﻩB.a 2>b 2 C.ac2+1>b c 2+1 ﻩﻩﻩ ﻩ D.a |c |>b |c| 2.已知a、b 为非零实数,且a <b ,则下列命题成立的是ﻩﻩ ( )A.a 2<b 2 ﻩﻩﻩﻩB .a2b<ab 2C .\f (1,a b2)<\f(1,a 2b ) ﻩ ﻩﻩﻩD.\f(b,a )<错误!3.若x ∈(e -1,1),a =ln x ,b=2ln x ,c =ln 3x ,则ﻩ ﻩﻩﻩ( )A .a <b<c ﻩﻩ ﻩﻩ B.c<a <b C.b <a<c ﻩD.b <c <a4.若a >0且a ≠1,M =log a (a 3+1),N =log a (a2+1),则M ,N的大小关系为 ﻩ( )A .M <N ﻩﻩﻩﻩﻩ ﻩB.M ≤N C .M >N ﻩﻩﻩﻩD.M≥N5.若a >b >c 且a +b +c=0,则下列不等式中正确的是 ﻩﻩﻩﻩ( )A .ab >a c ﻩ ﻩﻩﻩ ﻩB.ac >b c C.a |b |>c |b| ﻩﻩﻩﻩD.a2>b 2>c 2二、填空题6.若1≤a ≤5,-1≤b ≤2,则a-b 的取值范围是________. 7.若x ∈R ,则\f(x ,1+x 2)与\f(1,2)的大小关系为________.8.设n >1,n ∈N ,A =\r(n )-错误!,B =错误!-错误!,则A与B 的大小关系为________. 三、解答题9.比较x 6+1与x 4+x 2的大小,其中x ∈R . 10.设a >b >0,试比较错误!与错误!的大小.11.已知12<a <60,15<b<36,求a -b 及错误!的取值范围. 四、探究与拓展12.设f (x )=1+log x 3,g (x)=2log x 2,其中x >0且x≠1,试比较f (x )与g(x)的大小.部分参考答案:问题2:设原来a 克糖水中含糖b 克,加入m克糖后,糖水浓度变大了,用不等式表示为\f(b,a )<错误!(其中a ,b ,m 均为正数,且a >b ).证明如下:b +ma +m-错误!=错误!=错误!,又a,b ,m均为正数且a>b,∴a-b >0,m(a -b )>0,a (a +m )>0,∴错误!>0.因此,错误!>错误!,也就是糖水浓度更大了,糖水变得更甜了.问题3:证明错误!⇒ac>bd.问题4:解-\f(1,6)x+\f(3,4)<错误!x-错误!⇔-2x+9<8x-1(不等式两边都乘以12,不等式方向不改变)⇔-2x<8x-10 (不等式两边都加上-9)⇔-10x<-10 (不等式两边都加上-8x)⇔x>1(不等式两边都乘以-\f(1,10),不等式方向改变)变式练习1:设软件数为x,磁盘数为y,根据题意可得错误!变式练习2:∵(x3-1)-(2x2-2x):=x3-2x2+2x-1=(x3-x2)-(x2-2x+1)=x2(x-1)-(x-1)2=(x-1)(x2-x+1)=(x-1)[(x-\f(1,2))2+错误!],∵(x-错误!)2+错误!>0,x-1<0,∴(x-1)[(x-错误!)2+错误!]<0,∴x3-1<2x2-2x.变式练习3:解(1)∵(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0.∴(a+3)(a-5)<(a+2)(a-4).(2)∵5x2+y2+z2-(2xy+4x+2z-2)=4x2-4x+1+x2-2xy+y2+z2-2z+1=(2x-1)2+(x-y)2+(z-1)2≥0,∴5x2+y2+z2≥2xy+4x+2z-2,当且仅当x=y=\f(1,2)且z=1时取等号.变式练习4:解 (1)c 是正、负或为零未知,因而缺少判断a c与bc 的大小依据,故该命题为假命题. (2)由ac 2>bc 2知c≠0,∴c 2>0,∴a>b,故该命题为真命题.(3)错误!⇒a 2>ab ;又错误!⇒ab >b 2,∴a2>ab >b2,故该命题为真命题. (4)∵a>b >0,∴-a<-b ,∴c -a <c -b,又∵c >a>b >0,∴错误!>0,在c -a <c -b两边同乘错误!,得错误!>错误!>0,又a >b >0,∴错误!>错误!.故该命题为真命题. (5)由已知条件知a>b ⇒a-b >0,又错误!>错误!⇒错误!-错误!>0⇒错误!>0,∵a -b >0,∴b -a <0,∴ab <0.又a >b ,∴a >0,b <0,故该命题为真命题.变式练习5:解 (1)错误!⇒错误!<错误!,但推不出a >b ,故(1)错.(2)错误!⇒错误!>错误!>0⇒ 错误!> 错误!成立,故(2)对. (3)错.例如,当a =1,b=-1时,不成立. (4)错.例如,当a=c =1,b =d =-2时,不成立.过关测试:1、答案 C解析 对A,若a >0>b,则1a >0,1b<0,此时错误!>错误!,∴A不成立; 对B,若a =1,b=-2,则a 2<b2,∴B不成立;对C,∵c 2+1≥1,且a>b ,∴错误!>错误!恒成立,∴C 正确; 对D,当c=0时,a |c |=b|c|,∴D 不成立.2、答案 D解析 取a =-2,b =-2,则\f(a,b )=1,\f(a ,b 2)=-错误!,∴错误!>错误!>a. 3、答案 C解析 对于A,当a <0,b <0时,a2<b 2不成立; 对于B ,当a <0,b >0时,a 2b >0,ab2<0,a 2b <ab 2不成立; 对于C ,∵a <b,错误!>0,∴错误!<错误!;对于D,当a=-1,b=1时,b a =ab=-1.4、答案 C解析 ∵错误!<x <1,∴-1<l n x <0.令t =ln x ,则-1<t <0. ∴a -b=t -2t =-t >0,∴a>b .c-a =t 3-t =t(t 2-1)=t (t +1)(t -1), 又∵-1<t<0,∴0<t +1<1,-2<t -1<-1,∴c-a >0,∴c >a .∴c >a >b . 5、答案 D解析 由a >|b |得-a<b <a,∴a +b >0,且a -b >0.∴b -a<0,A 错,D 对.可取特值,如a =2,b =-1,a 3+b 3=7>0,故B 错.而a 2-b 2=(a-b )(a +b)>0,∴C 错. 6、答案 A解析 由a >b >c 及a +b +c =0知a >0,c <0,又∵a >0,b >c ,∴ab >ac .故选A.7、答案 [-1,6]解析 ∵-1≤b ≤2,∴-2≤-b≤1,又1≤a ≤5,∴-1≤a -b ≤6. 8、答案 f (x )>g(x )解析 ∵f(x )-g(x )=x 2-2x +2=(x -1)2+1>0,∴f (x )>g (x ). 9、答案x1+x2≤错误!解析 ∵错误!-错误!=错误!=错误!≤0,∴错误!≤错误!.10、答案 A >B 解析 A =错误!,B =错误!. ∵n +错误!<错误!+错误!,并且都为正数,∴A >B . 11、解 方法一 作差法 \f(a 2-b 2,a 2+b2)-a -ba+b =错误!=错误!=错误! ∵a >b>0,∴a +b >0,a-b >0,2ab >0. ∴错误!>0,∴错误!>错误!. 方法二 作商法∵a >b >0,∴\f(a2-b2,a 2+b2)>0,错误!>0.∴错误!=错误!=错误!=1+错误!>1.∴错误!>错误!. 12、解 f(x)-g (x )=1+log x 3-2log x 2=l ogx 3x4,①当错误!或错误!即1<x<错误!时,log x 错误!<0,∴f (x )<g (x); ②当错误!=1,即x=错误!时,l og x 错误!=0,即f (x )=g(x );③当错误!或错误!即0<x<1,或x >错误!时,log x 错误!>0,即f(x )>g (x).综上所述,当1<x<43时,f (x)<g(x );当x=\f(4,3)时,f (x )=g (x );当0<x <1,或x >错误!时,f(x)>g (x ).13、答案 A解析 方法一 特殊值法.令a 1=\f (1,4),a2=错误!,b1=错误!,b 2=错误!,则a 1b 1+a 2b 2=错误!=错误!,a 1a 2+b 1b 2=616=38, a1b 2+a2b1=错误!=错误!,∵错误!>错误!>错误!,∴最大的数应是a 1b 1+a 2b 2.方法二 作差法.∵a 1+a 2=1=b1+b 2且0<a 1<a 2,0<b 1<b 2,∴a2=1-a 1>a 1,b 2=1-b 1>b 1,∴0<a 1<12,0<b 1<错误!.又a 1b 1+a 2b 2=a1b 1+(1-a 1)(1-b 1)=2a 1b 1+1-a 1-b 1,a 1a 2+b 1b2=a 1(1-a1)+b1(1-b 1)=a 1+b 1-a 错误!-b 错误!,a 1b 2+a 2b1=a 1(1-b1)+b1(1-a 1)=a 1+b 1-2a1b1,∴(a 1b 2+a 2b 1)-(a 1a 2+b 1b 2)=a 错误!+b 错误!-2a 1b 1=(a 1-b 1)2≥0,∴a 1b2+a2b1≥a 1a2+b 1b 2.∵(a1b 1+a 2b2)-(a1b 2+a 2b1)=4a 1b1+1-2a 1-2b 1 =1-2a 1+2b 1(2a 1-1)=(2a 1-1)(2b 1-1) =4错误!错误!>0,∴a 1b 1+a 2b2>a 1b 2+a 2b1. ∵(a 1b 1+a 2b 2)-错误!=2a 1b 1+错误!-a 1-b1=b 1(2a1-1)-12(2a 1-1)=(2a 1-1)错误!=2错误!错误!>0,∴a 1b1+a 2b 2>错误!.综上可知,最大的数应为a 1b1+a 2b 2.14、解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2)=4x 2-4x +1+x 2-2x y+y 2+z 2-2z+1=(2x-1)2+(x -y )2+(z -1)2≥0,∴5x2+y 2+z2≥2x y+4x +2z-2,当且仅当x =y =错误!且z=1时取到等号.课后练习答案:1.C 2.C 3.C 4.C 5.A6.[-1,6] 7.错误!≤错误! 8.A>B 9.解 x 6+1-(x 4+x 2)=x6-x 4-x 2+1 =x 4(x2-1)-(x2-1)=(x2-1)(x4-1) =(x2-1)2(x2+1)≥0. ∴当x =±1时,x 6+1=x 4+x 2; 当x≠±1时,x 6+1>x 4+x 2. 综上所述,x 6+1≥x 4+x2, 当且仅当x=±1时取等号. 10.解 方法一 作差法∵\f(a2-b 2,a2+b 2)-错误! =错误! =错误! =错误!.∵a >b >0,∴a+b >0,a -b>0,2ab >0.ﻩ ∴错误!>0,∴错误!>错误!. 方法二 作商法∵a>b >0,∴错误!>0,错误!>0.∴\f (a 2-b 2a 2+b 2,\f(a -b ,a+b ))=错误!=错误!=1+\f(2ab,a 2+b2)>1.∴错误!>错误!. 11.解 ∵15<b <36,∴-36<-b<-15.∴12-36<a -b <60-15,∴-24<a-b <45.ﻩ 又136<错误!<错误!,∴错误!<错误!<错误!, ∴\f(1,3)<ab<4.∴-24<a -b <45,错误!<错误!<4.12.解 f(x )-g (x )=1+log x 3-2log x2=log x 3x4,①当错误!或错误!即1<x <错误!时,l og x 错误!<0, ∴f (x)<g (x );---- ②当\f(3x,4)=1,即x =错误!时,lo gx 错误!=0, 即f(x )=g (x);③当错误!或错误!即0<x<1,或x >43时,log x\f(3x ,4)>0, 即f(x )>g(x ).综上所述,当1<x<\f(4,3)时,f (x)<g(x ); 当x =错误!时,f (x )=g (x);当0<x <1,或x >错误!时,f (x )>g (x ).。

《不等式与不等关系》教案

《不等式与不等关系》教案

《不等关系与不等式》教学设计一教学目标1.掌握比较两个实数大小的方法.2.掌握不等式的八条性质,并能进行简单应用.二教学重难点重点:1.作差法比较两个实数(式)的大小.2.不等式的八条性质的理解和应用.难点:不等式性质的理解和应用.三教学过程(1)复习引入师:在上节课的学习中,我们知道生活中存在着大量的不等关系,怎样用数学语言表示这些不等关系呢?生:用不等式表示.师:本节课我们就具体来学习不等关系与不等式。

(板书课题)(2)课堂探究探究一实数(式)比较大小在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左边的点表示的数大,从实数减法在数轴上的表示可以看出a,b之间具有以下性质:如果a-b>0,那么;如果a-b<0,那么;如果a-b=0,那么 .该结论反过来也成立,即a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b. 师:从这种等价关系来看,要比较两个实数a,b的大小,可以由它们的差与0的大小关系来决定,即作差法。

例1 试比较 (x+1)(x+5) 与23(+的大小.x)解由于 (x+1)(x+5)−2)3x(+=)9+xx+x-x6(6+)5(2+=-4<0所以 (x+1)(x+5)<23(+.x)师:请你总结作差法比较实数大小的方法。

生:作差变形判断符号得出结论。

师:在变形时,常用的方法有:配方法,因式分解、分子有理化等,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式.练习设a=2x−x,b=x−2,则a与b的大小关系为( ).A.a>bB.a=bC.a<bD.与x有关生:自主思考,由一名学生黑板展示并讲解。

探究二不等式的基本性质师:初中我们学过哪些不等式的性质?生:性质1(对称性) 如果a>b,那么b<a;如果b<a,那么a>b.性质2(传递性) 如果a>b,b>c,那么a>c.性质3(可加性) 如果a>b,则a+c>b+c.性质4(可乘性) 如果a>b,c>0,则a c>bc;如果a>b,c<0,则a c<bc.师:思考:用“>”或“<”填空(1)如果a>b,c>d,则a+c b+d(2)如果a>b>0,c>d>0,则a c bd(3) 如果a>b>0,则2a2b(4) 如果a>b>0,.生:独立思考后小组交流,由一个小组回答并证明.师:这样我们就讲不等式的性质又拓展出以下四条:1. (同向可加性)如果a >b ,c>d ,则a +c>b+d ;2. (同向同正可乘性)如果a >b>0,c>d>0,则a c>bd ;3. (可乘方性)如果a >b>0,则n n b a >,(n ∈+N );4. (可开方性)如果a>b>0,则n n b a >,(n ∈+N , n ≥2).例2 若0>>b a ,0<<d c ,则下列结论正确的是( )A. 0>-b d c aB.0<-b d c aC.c b d a >D.c b d a <生:思考后,由一名学生回答。

不等关系与不等式 教案

不等关系与不等式 教案

3.1不等关系与不等式教学目标知识与技能通过具体情境,感受在现实和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

过程与方法根据具体问题,让学生经历从不等关系实际情境中抽象出不等式模型的过程。

感知不等关系和不等式之间的内在联系,并通过具体的操作归纳、总结已达到理解的目的。

让学生在获得数学基础知识的基础上,了解它们产生的背景、应用、使学生学会数学思考问题,解决问题。

情感、态度与价值观让学生感受数学来源于生活,初步体会数学形成过程,逐步培养学生学习数学的良好品质重点与难点重点用不等式(组)表示实际问题中的不等关系,用不等式(组)研究含有不等关系的问题。

难点用不等式(组)正确表示出不等关系。

一:课题导入教学内容:举出生活中和以前不等关系的例子。

提出问题:在日常生活中,我们经常遇到不等关系的问题,你能举出不等关系的例子吗?引导:以前学过相等关系表示,那么如何表示不等关系呢?设计意图:通过让学生一起举出我们日常生活中不等关系的例子,可让学生充分讨论。

使学生感受到现实世界中存在大量不等关系,引起学生探求新知识的欲望。

二:讲授新课提问题:表示不等关系的符号有哪些?举例子:在数学中我们不等式表示不等关系。

例如,限速40km/h的路标,指示司机在前方路段时,应使汽车的速度v不超过40km/h,谢忱不等式就是V≤40某品牌酸奶的质量检查规定,酸奶中脂肪含量f 应不少于2.5%蛋白质含量p 应不少于2.3%写成不等式组就是{f ≤2.5%且p ≥2.3%}设计意图:通过引例以及自例的处理过程,培养学生的问题意识与探究意识。

三、应用举例问题1 设点A 与平面a 的距离d,平面a 上任一点,则d ≤│AB │问题2某种杂志原以每本2.5元的价格销售,可以售出8万本。

根据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。

若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入扔不低于20万元呢?问题3铁厂要把长度为4000mm 的钢管截成500mm 和600mm 的两种。

高三数学不等关系与不等式教案

高三数学不等关系与不等式教案

高三数学不等关系与不等式教案教案:高三数学不等关系与不等式一、教学目标:1. 理解不等关系的含义和性质;2. 掌握不等式的基本性质和解法方法;3. 能够应用不等式解决实际问题。

二、教学内容:1. 不等关系:a. 不等关系的定义;b. 不等关系的性质。

2. 不等式:a. 不等式的定义;b. 不等式的基本性质;c. 不等式的解法方法;d. 不等式的实际应用。

三、教学过程:1. 不等关系:a. 引入不等关系的概念,通过实际例子说明不等关系的含义;b. 讲解不等关系的定义,并通过例题让学生理解不等关系的性质。

2. 不等式:a. 讲解不等式的定义和基本性质,包括加减乘除等运算对不等式的影响;b. 教授不等式的解法方法,包括图像法、试数法和代数法;c. 通过例题和练习让学生掌握不等式的解题技巧。

3. 不等式的实际应用:a. 引导学生观察和分析实际问题中的不等关系;b. 结合实际问题,讲解不等式在解决实际问题中的应用;c. 练习解决实际问题的不等式。

四、教学评价:1. 课堂练习:通过课堂上的例题和练习题,考察学生对不等关系和不等式的理解和掌握程度;2. 作业完成情况:布置相关的作业,检查学生对知识点的掌握情况;3. 课堂参与度:评价学生在课堂上的积极参与程度以及对问题的思考和解答能力。

五、教学资源:1. 教材:高中数学教材;2. 教具:黑板、彩色粉笔、多媒体投影仪等。

六、教学反思:1. 需要注重练习:不等式解题需要通过大量的练习来提高方法和技巧;2. 注意引导思考:教师要注重引导学生思考,让学生在解题过程中不仅能够得到正确答案,更重要的是理解解题的原理和思路;3. 结合实际应用:要注重将不等式的知识点与实际问题相结合,让学生能够在实际生活中灵活运用。

3.1不等关系与不等式教案

3.1不等关系与不等式教案

一、复习准备: 1、提问:你能回顾一下以前所学的不等关系吗?2、讨论:除了书上列举的现实生活中的不等关系,你还能列举出你周围日常生活中的不等关系吗? 1.实数的运算性质与大小顺序之间的关系(1)如果a b -是正数,那么a b >; a b ->0⇔a >b ;如果a b -等于零,那么a b =; a b -=0⇔a =b如果a b -是负数,那么a b <. a b -<0⇔a <b ).反之也成立,就是.(;【例1】b 克糖水中有a 克糖(0b a >>),若在添上m 克糖()0m >,问:糖水是否变甜了. 请依据此事实,提炼一个不等式并回答问题.2.不等式的性质:1.性质1(对称性)如果 a>b ,那么 ;如果b a <,那么 .即a b b a >⇔<.2.性质2(传递性)如果,a b b c >>,那么 .即,a b b c a c >>⇒>.同理 .3.性质3(加法法则)如果 a>b ,那么a c + b c +.(是不等式移向法则的基础)4.性质4(乘法法则)如果 a>b ,0c >,那么 . 如果 a>b ,0c <,那么 . (a 、b 可以是数字,也可以是代数式,运用过程中一定要注意c 的符号)5.性质5(同向可加性)如果,a b c d >>,那么a c + b d +.(两个或多个同向不等式相加,所得不等式与原不等式同向)6.性质6(同向可乘性)如果0,0a b c d >>>>,那么ac bd .7.性质7(乘方法则)如果 ,那么,n n a b >(n ∈N ,2n ≥).8.性质8(开方法则)如果,那么>(n ∈N ,2n ≥).(性质6、7、8注意条件)【例2】用不等号“>”或“<”填空:(1),a b c d a c ><⇒- b d -.(2)0,0a b c d >><<⇒ac bd .(3)0a b >>⇒(4)0>ab ,则a b a 1⇔> b 1;0<ab ,则a b a 1⇒> b 1. 【变式训练】比较下列两数(或代数式)的大小:(2)()22121x y x y +++-与. 【例3】已知 1260,1536a b <<<<,则a b -及a b 的取值范围分别是. 【变式训练】 1.已知22ππαβ-<<<,求αβ-的范围.2.若二次函数()y f x =的图象过原点,且()()112,314,f f ≤-≤≤≤求()2f -的取值范围.教学过程一、复习不等式性质二、讨论讲解【例1】已知0,0a b c >><,求证:c c a b >. 【变式练习】1.已知0,0a b c d >>>>,求证>2.已知0,0,0,a bc d e >><<<求证:e e a c b d>--. 【例2】 若0,0a b >>,求证:22b a a b a b+≥+. 【变式练习】已知a 、b . 【例3】若R b a ∈,,求证: ab b a 222≥+(当且仅当b a =时取“=”);【变式训练】证明下列不等式(1)若0,>b a ,则ab b a 2≥+(当且仅当b a =时取“=”);(2)22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”); (3)若0,>b a ,则2211222b a b a ab b a +≤+≤≤+(当且仅当b a =时取“=”).。

不等式与不等关系教案

不等式与不等关系教案

不等式与不等关系教案教案标题:不等式与不等关系教案目标:1. 学生能够理解不等式和不等关系的概念。

2. 学生能够解决简单的一元一次不等式,并理解解集的含义。

3. 学生能够在实际问题中应用不等式和不等关系。

教学准备:1. 幻灯片或黑板/白板2. 笔和纸3. 一些实际问题的示例4. 不等式和不等关系的定义和性质的学习材料教学流程:一、导入(5分钟)1.通过示例问题引入不等式的概念,例如:“小明现在身高150厘米,他想知道自己是否已经超过了平均身高,该怎么判断?”二、概念讲解(10分钟)1.解释不等式的定义和符号表示,例如:“不等式是一个数学语句,其中包含不等于号(<,>)。

”2.引导学生了解不等关系,例如:“不等关系是比较两个数之间的大小关系,如大于、小于、大于等于、小于等于。

”三、解决一元一次不等式(15分钟)1.通过示例解决一元一次不等式,让学生熟悉解题步骤和方法。

2.学生进行课堂练习,检查答案。

四、实际问题应用(15分钟)1.给学生提供一些实际问题的示例,要求学生用不等式和不等关系来解决问题。

2.让学生分享解决问题的过程和答案。

五、巩固与拓展(10分钟)1.进行一些巩固练习,确保学生掌握了不等式和不等关系的概念和解题方法。

2.拓展练习,提升学生的思维能力和应用水平。

六、作业布置(5分钟)1.布置一些相关的作业题目,巩固学生的知识和技能。

2.鼓励学生积极思考,并提供必要的指导和支持。

教学反思:在教学过程中,要确保学生理解不等式和不等关系的概念,并能够运用到实际问题中。

教师可以通过引入示例问题、课堂练习和实际问题应用等方式,激发学生的兴趣并提高他们的学习效果。

在教学过程中,要适时进行巩固和拓展,确保学生牢固掌握所学知识。

《不等关系与不等式》教案

《不等关系与不等式》教案

《不等关系与不等式》教案教学要求:1.了解现实世界和日常生活中存在着的不等关系;2.会从实际问题中找出不等关系,并能列出不等式与不等式组.3.了解不等式与不等式组的实际背景;4.掌握常用不等式的基本基本性质;5.会将一些基本性质结合起来应用.教学重点:1.从实际问题中找出不等关系.2.理解不等式的性质及其证明.教学难点:1.正确理解现实生活中存在的不等关系.2.从实际的不等关系中抽象出具体的不等式.3.从实际的不等关系中抽象出具体的不等式.教学过程:一、情景导入1.在现实生活中,存在着许许多多的不等关系,在数学中,我们用不等式来表示这样的不等关系.2.举例:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是v≤40.3.文字语言与数学符号之间的转换.4.实数的运算性质与大小顺序之间的关系对于任意两个实数a,b,如果a>b,那么a-b是正数;如a<b,那么a-b是负数;如果a-b 等于0.它们的逆命题也正确.即5.用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理化等方法.常用的结论有等.6.“作差法”的一般步骤是:(1).作差;(2)变形;(3)判断符号;(4)得出结论.7.常用的不等式的基本性质二、课堂例题示例1:某种杂志以每本2.5元的价格销售,可以售出8万本。

据市场调查,若单价每提高0.1元,销量就相应地减少2000本。

若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入还不底于20万元呢?示例2:已知求证:(教师讲思路→学生板演→小结方法)三、课堂小结文字语言与数学语言之间的转换,实数的运算性质与大小顺序之间的关系.四、巩固练习1.比较的大小,其中.2.比较当时,的大小.3.(2001.济南)设实数满足,则的大小关系是_____________.4.配制A、B两种药剂需要甲、乙两种原料,已知配一剂A种药需甲料3毫克,乙料5毫克,配一剂B药需甲料5毫克,乙料4毫克。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等关系与不等式【学习目标】1.了解不等式(组)的实际背景.2.掌握比较两个实数大小的方法.3.掌握不等式的八条性质.【学法指导】1.不等关系广泛存在于现实生活中,应用不等式(组)表示不等关系实质是将“自然语言”或“图形语言”转化成“数学语言”,是用不等式知识解决实际问题的第一步.只需根据题意建立相应模型,把模型中的量具体化即可.2.作差法是比较两个数(或式)大小的重要方法之一,可简单概括为“三步一结论”,其中关键步骤“变形”要彻底,当不能“定号”时注意分类讨论.3.不等式的基本性质是解决不等式的有关问题的依据,应用时每步都要做到等价变形.一、知识温故大于小于大于等于小于等于至多至少不少于不多于><≥≤≤≥≥≤a-b>0⇔;a-b=0⇔;a-b<0⇔.3.常用的不等式的基本性质(1)a>b⇔b a(对称性);(2)a>b,b>c⇒a c(传递性);(3)a>b⇒a+c b+c(可加性);(4)a>b,c>0⇒ac bc;a>b,c<0⇒ac bc;(5)a>b,c>d⇒a+c b+d;(6)a>b>0,c>d>0⇒ac bd;(7)a>b>0,n∈N,n≥2⇒a n b n;(8)a>b>0,n∈N,n≥2⇒nanb.二、经典范例问题探究一实数比较大小问题1(实数比较大小的依据)在数轴上不同的点A与点B分别表示两个不同的实数a与b,右边的点表示的数比左边的点表示的数大,从实数减法在数轴上的表示可以看出a,b之间具有以下性质:如果a-b是正数,那么;如果a -b 是负数,那么 ;如果a -b 等于零,那么 .以上结论反过来也成立,即a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . 问题2 (作差法比较实数的大小)向一杯a 克糖水中加入m 克糖,糖水变得更甜了.你能把这一现象用一个不等式表示出来吗?并证明你的结论.问题探究二 不等式的基本性质问题3 在实数大小比较的基础上,可以给出不等式八条基本性质的严格证明.证明时,可以利用前面的性质推证后续的性质.请同学们借助前面的性质证明性质6: 如果a >b >0,c >d >0,那么ac >bd .问题4 初学者对不等式的八条基本性质往往重视不够,其实不等式的基本性质是不等式变形(证明不等式和求解不等式)的重要依据.请同学们解下面这个简单的一元一次不等式,体会并证明不等式基本性质的应用. 解不等式:-16x +34<23x -112.小结 (1)当问题中同时满足几个不等关系时,应用不等式组来表示它们之间的不等关系,另外若问题有几个变量,则选用几个字母分别表示这些变量即可.(2)解决这类有多个不等关系的问题时,要注意根据题设将所有不等关系都找出来. (3)若有表格、图象等,读懂表格,图象对解决这类问题很关键.变式练习1:某用户计划购买单价分别为60元、70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒.问:软件数与磁盘数应满足什么条件?变式练习2:已知x <1,试比较x 3-1与2x 2-2x 的大小.小结 作差后变形是比较大小的关键一环,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式.变式练习3:(1)比较(a +3)(a -5)与(a +2)(a -4)的大小;(2)设x ,y ,z ∈R ,比较5x 2+y 2+z 2与2xy +4x +2z -2的大小.变式练习4:已知a 、b 、c 为实数,判断以下各命题的真假.(1)若a >b ,则ac <bc ;(2)若ac 2>bc 2,则a >b ; (3)若a <b <0,则a 2>ab >b 2; (4)若c >a >b >0,则a c -a >bc -b; (5)若a >b ,1a >1b,则a >0,b <0.小结 在不等式的各性质中,乘法的性质极易出错,即在不等式两边同乘或除以一个数时,必须要确定该数是正数、负数或零,否则结论就不确定.变式练习5:判断下列各命题是否正确,并说明理由.(1)若c a <cb 且c >0,则a >b ;(2)若a >b >0且c >d >0,则 a d> b c; (3)若a >b ,ab ≠0,则1a <1b ;(4)若a >b ,c >d ,则ac >bd .三、过关测试 一、选择题1.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( ) A.1a <1b B .a 2>b 2 C.ac 2+1>bc 2+1D .a |c |>b |c | 2.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >aC.a b >a >a b 2D.a b >a b2>a 3.已知a 、b 为非零实数,且a <b ,则下列命题成立的是( ) A .a 2<b 2 B .a 2b <ab 2 C.1ab 2<1a 2b D.b a <a b4.若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( ) A .a <b <c B .c <a <b C .b <a <c D .b <c <a5.设a ,b ∈R ,若a -|b |>0,则下列不等式中正确的是( ) A .b -a >0 B .a 3+b 3<0 C .a 2-b 2<0 D .b +a >06.若a >b >c 且a +b +c =0,则下列不等式中正确的是( ) A .ab >ac B .ac >bc C .a |b |>c |b | D .a 2>b 2>c 2 二、填空题7.若1≤a ≤5,-1≤b ≤2,则a -b 的取值范围为________.8.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是________.9.若x ∈R ,则x 1+x 2与12的大小关系为________.10.设n >1,n ∈N ,A =n -n -1,B =n +1-n ,则A 与B 的大小关系为________. 三、解答题11.设a >b >0,试比较a 2-b 2a 2+b 2与a -ba +b的大小.12.设f (x )=1+log x 3,g (x )=2log x 2,其中x >0且x ≠1,试比较f (x )与g (x )的大小.能力提升13.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.1214.设x ,y ,z ∈R ,试比较5x 2+y 2+z 2与2xy +4x +2z -2的大小.四、课后练习一、选择题1.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1b B .a 2>b 2 C.ac 2+1>bc 2+1 D .a |c |>b |c | 2.已知a 、b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab 2 C.1ab 2<1a 2bD.b a <a b3.若x ∈(e-1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a4.若a >0且a ≠1,M =log a (a 3+1),N =log a (a 2+1),则M ,N 的大小关系为( )A .M <NB .M ≤NC .M >ND .M ≥N5.若a >b >c 且a +b +c =0,则下列不等式中正确的是( )A .ab >acB .ac >bcC .a |b |>c |b |D .a 2>b 2>c 2二、填空题6.若1≤a ≤5,-1≤b ≤2,则a -b 的取值范围是________.7.若x ∈R ,则x 1+x 2与12的大小关系为________. 8.设n >1,n ∈N ,A =n -n -1,B =n +1-n ,则A 与B 的大小关系为________. 三、解答题9.比较x 6+1与x 4+x 2的大小,其中x ∈R .10.设a >b >0,试比较a 2-b 2a 2+b 2与a -ba +b的大小.11.已知12<a <60,15<b <36,求a -b 及ab 的取值范围.四、探究与拓展12.设f (x )=1+log x 3,g (x )=2log x 2,其中x >0且x ≠1,试比较f (x )与g (x )的大小. 部分参考答案:问题2:设原来a 克糖水中含糖b 克,加入m 克糖后,糖水浓度变大了,用不等式表示为b a <b +ma +m (其中a ,b ,m 均为正数,且a >b ).证明如下:b +m a +m -b a =a (b +m )-b (a +m )a (a +m )=m (a -b )a (a +m ),又a ,b ,m 均为正数且a >b ,∴a -b >0,m (a -b )>0,a (a +m )>0,∴m (a -b )a (a +m )>0.因此,b +m a +m>b a ,也就是糖水浓度更大了,糖水变得更甜了.问题3:证明⎭⎪⎬⎪⎫ ⎭⎪⎬⎪⎫a >b >0c >0⇒ac >bc >0⎭⎪⎬⎪⎫c >d >0b >0⇒bc >bd >0⇒ac >bd . 问题4:解 -16x +34<23x -112⇔-2x +9<8x -1 (不等式两边都乘以12,不等式方向不改变)⇔-2x <8x -10 (不等式两边都加上-9)⇔-10x <-10 (不等式两边都加上-8x )⇔x >1 (不等式两边都乘以-110,不等式方向改变) 变式练习1:设软件数为x ,磁盘数为y ,根据题意可得⎩⎪⎨⎪⎧60x +70y ≤500,x ≥3且x ∈N ,y ≥2且y ∈N.变式练习2: ∵(x 3-1)-(2x 2-2x ): =x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1) =x 2(x -1)-(x -1)2=(x -1)(x 2-x +1)=(x -1)[(x -12)2+34],∵(x -12)2+34>0,x -1<0,∴(x -1)[(x -12)2+34]<0,∴x 3-1<2x 2-2x .变式练习3:解 (1)∵(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0.∴(a +3)(a -5)<(a +2)(a -4). (2)∵5x 2+y 2+z 2-(2xy +4x +2z -2) =4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1=(2x -1)2+(x -y )2+(z -1)2≥0,∴5x 2+y 2+z 2≥2xy +4x +2z -2,当且仅当x =y =12且z =1时取等号.变式练习4:解 (1)c 是正、负或为零未知,因而缺少判断ac 与bc 的大小依据,故该命题为假命题. (2)由ac 2>bc 2知c ≠0,∴c 2>0,∴a >b ,故该命题为真命题.(3)⎭⎬⎫a <b a <0⇒a 2>ab ;又⎭⎬⎫a <b b <0⇒ab >b 2,∴a 2>ab >b 2,故该命题为真命题. (4)∵a >b >0,∴-a <-b ,∴c -a <c -b ,又∵c >a >b >0,∴1(c -a )(c -b )>0,在c -a <c -b 两边同乘1(c -a )(c -b ),得1c -a >1c -b >0,又a >b >0,∴a c -a >bc -b .故该命题为真命题.(5)由已知条件知a >b ⇒a -b >0,又1a >1b ⇒1a -1b >0⇒b -aab>0,∵a -b >0,∴b -a <0,∴ab <0.又a >b ,∴a >0,b <0,故该命题为真命题.变式练习5:解 (1)⎭⎪⎬⎪⎫c a <c b c >0⇒1a <1b ,但推不出a >b ,故(1)错.(2)⎭⎪⎬⎪⎫a >b >0c >d >0⇒a d >b c>0⇒ ad> bc成立,故(2)对. (3)错.例如,当a =1,b =-1时,不成立. (4)错.例如,当a =c =1,b =d =-2时,不成立.过关测试:1、答案 C解析 对A ,若a >0>b ,则1a >0,1b <0,此时1a >1b ,∴A 不成立;对B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对C ,∵c 2+1≥1,且a >b ,∴a c 2+1>bc 2+1恒成立,∴C 正确;对D ,当c =0时,a |c |=b |c |,∴D 不成立. 2、答案 D解析 取a =-2,b =-2,则a b =1,a b 2=-12,∴a b >ab2>a .3、答案 C解析 对于A ,当a <0,b <0时,a 2<b 2不成立;对于B ,当a <0,b >0时,a 2b >0,ab 2<0,a 2b <ab 2不成立;对于C ,∵a <b ,1a 2b 2>0,∴1ab 2<1a 2b;对于D ,当a =-1,b =1时,b a =ab=-1.4、答案 C解析 ∵1e <x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0.∴a -b =t -2t =-t >0,∴a >b .c -a =t 3-t =t (t 2-1)=t (t +1)(t -1), 又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a .∴c >a >b . 5、答案 D解析 由a >|b |得-a <b <a ,∴a +b >0,且a -b >0.∴b -a <0,A 错,D 对.可取特值,如a =2,b =-1,a 3+b 3=7>0,故B 错.而a 2-b 2=(a -b )(a +b )>0,∴C 错. 6、答案 A 解析 由a >b >c 及a +b +c =0知a >0,c <0,又∵a >0,b >c ,∴ab >ac .故选A. 7、答案 [-1,6]解析 ∵-1≤b ≤2,∴-2≤-b ≤1,又1≤a ≤5,∴-1≤a -b ≤6. 8、答案 f (x )>g (x )解析 ∵f (x )-g (x )=x 2-2x +2=(x -1)2+1>0,∴f (x )>g (x ).9、答案 x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0,∴x 1+x 2≤12.10、答案 A >B 解析 A =1n +n -1,B =1n +1+n.∵n +n -1<n +1+n ,并且都为正数,∴A >B .11、解 方法一 作差法a 2-b 2a 2+b 2-a -b a +b =(a +b )(a 2-b 2)-(a -b )(a 2+b 2)(a 2+b 2)(a +b )=(a -b )[(a +b )2-(a 2+b 2)](a 2+b 2)(a +b )=2ab (a -b )(a +b )(a 2+b 2) ∵a >b >0,∴a +b >0,a -b >0,2ab >0. ∴2ab (a -b )(a +b )(a 2+b 2)>0,∴a 2-b 2a 2+b 2>a -b a +b. 方法二 作商法∵a >b >0,∴a 2-b 2a 2+b 2>0,a -b a +b >0.∴a 2-b 2a 2+b 2a -b a +b=(a +b )2a 2+b 2=a 2+b 2+2ab a 2+b 2=1+2ab a 2+b 2>1.∴a 2-b 2a 2+b 2>a -b a +b.12、解 f (x )-g (x )=1+log x 3-2log x 2=log x 3x4,①当⎩⎪⎨⎪⎧ 0<x <1,3x 4>1,或⎩⎪⎨⎪⎧x >1,0<3x 4<1,即1<x <43时,log x 3x 4<0,∴f (x )<g (x );②当3x 4=1,即x =43时,log x 3x4=0,即f (x )=g (x );③当⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1,或⎩⎪⎨⎪⎧x >1,3x 4>1,即0<x <1,或x >43时,log x 3x 4>0,即f (x )>g (x ).综上所述,当1<x <43时,f (x )<g (x );当x =43时,f (x )=g (x );当0<x <1,或x >43时,f (x )>g (x ).13、答案 A解析 方法一 特殊值法.令a 1=14,a 2=34,b 1=14,b 2=34,则a 1b 1+a 2b 2=1016=58,a 1a 2+b 1b 2=616=38,a 1b 2+a 2b 1=616=38,∵58>12>38,∴最大的数应是a 1b 1+a 2b 2.方法二 作差法.∵a 1+a 2=1=b 1+b 2且0<a 1<a 2,0<b 1<b 2,∴a 2=1-a 1>a 1,b 2=1-b 1>b 1, ∴0<a 1<12,0<b 1<12.又a 1b 1+a 2b 2=a 1b 1+(1-a 1)(1-b 1)=2a 1b 1+1-a 1-b 1,a 1a 2+b 1b 2=a 1(1-a 1)+b 1(1-b 1)=a 1+b 1-a 21-b 21,a 1b 2+a 2b 1=a 1(1-b 1)+b 1(1-a 1)=a 1+b 1-2a 1b 1,∴(a 1b 2+a 2b 1)-(a 1a 2+b 1b 2)=a 21+b 21-2a 1b 1=(a 1-b 1)2≥0,∴a 1b 2+a 2b 1≥a 1a 2+b 1b 2.∵(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=4a 1b 1+1-2a 1-2b 1 =1-2a 1+2b 1(2a 1-1)=(2a 1-1)(2b 1-1)=4⎝⎛⎭⎫a 1-12⎝⎛⎭⎫b 1-12>0,∴a 1b 1+a 2b 2>a 1b 2+a 2b 1. ∵(a 1b 1+a 2b 2)-12=2a 1b 1+12-a 1-b 1=b 1(2a 1-1)-12(2a 1-1)=(2a 1-1)⎝⎛⎭⎫b 1-12 =2⎝⎛⎭⎫a 1-12⎝⎛⎭⎫b 1-12>0,∴a 1b 1+a 2b 2>12. 综上可知,最大的数应为a 1b 1+a 2b 2.14、解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2)=4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1=(2x -1)2+(x -y )2+(z -1)2≥0,∴5x 2+y 2+z 2≥2xy +4x +2z -2,当且仅当x =y =12且z =1时取到等号.课后练习答案:1.C 2.C 3.C 4.C 5.A6.[-1,6] 7.x 1+x 2≤12 8.A >B9.解 x 6+1-(x 4+x 2)=x 6-x 4-x 2+1 =x 4(x 2-1)-(x 2-1)=(x 2-1)(x 4-1) =(x 2-1)2(x 2+1)≥0.∴当x =±1时,x 6+1=x 4+x 2; 当x ≠±1时,x 6+1>x 4+x 2. 综上所述,x 6+1≥x 4+x 2, 当且仅当x =±1时取等号. 10.解 方法一 作差法∵a 2-b 2a 2+b 2-a -b a +b=(a +b )(a 2-b 2)-(a -b )(a 2+b 2)(a 2+b 2)(a +b )=(a -b )[(a +b )2-(a 2+b 2)](a 2+b 2)(a +b )=2ab (a -b )(a +b )(a 2+b 2).∵a >b >0,∴a +b >0,a -b >0,2ab >0. ∴2ab (a -b )(a +b )(a 2+b 2)>0,∴a 2-b 2a 2+b 2>a -ba +b . 方法二 作商法∵a >b >0,∴a 2-b 2a 2+b 2>0,a -b a +b>0.∴a 2-b 2a 2+b 2a -b a +b=(a +b )2a 2+b 2=a 2+b 2+2ab a 2+b 2=1+2ab a 2+b 2>1.∴a 2-b 2a 2+b 2>a -b a +b .11.解 ∵15<b <36,∴-36<-b <-15.∴12-36<a -b <60-15, ∴-24<a -b <45. 又136<1b <115,∴1236<a b <6015, ∴13<a b<4. ∴-24<a -b <45,13<ab<4.12.解 f (x )-g (x )=1+log x 3-2log x 2=log x 3x4,①当⎩⎪⎨⎪⎧ 0<x <1,3x 4>1,或⎩⎪⎨⎪⎧x >1,0<3x 4<1,即1<x <43时,log x 3x4<0,∴f (x )<g (x ); ②当3x 4=1,即x =43时,log x 3x4=0,即f (x )=g (x );③当⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1,或⎩⎪⎨⎪⎧x >1,3x 4>1,即0<x <1,或x >43时,log x 3x4>0,即f (x )>g (x ).综上所述,当1<x <43时,f (x )<g (x );当x =43时,f (x )=g (x );当0<x <1,或x >43时,f (x )>g (x ).。

相关文档
最新文档