气相色谱定性分析

合集下载

气相色谱分析法-定性定量分析

气相色谱分析法-定性定量分析

利用保留值定性(3)
色谱操作条件不稳定时的定性 相对保留值定性:相对保留值只受柱温和固定相性质的影响, 而柱长、固定相的填充情况和载气的流速均不影响相对保留 值的大小。 用已知标准物增加峰高法定性:在得到未知样品的色谱图后, 在未知样品中加入一定量的已知标准物质,然后在同样的色 谱条件下,作已知标准物质的未知样品的色谱图。对比这两 张色谱图,哪个峰增高了,则说明该峰就是加入的已知纯物 质的色谱峰。
f 'i f ' S 分别为组分i和内标物S的质量校正因子
Ai、AS分别为组分i和内标物S的峰面积
问题:内标法中,如以内标物为基准,则其相应 计算公式如何? 提示:此时 f ' S =1.0。
内标物的选择
内标物应是试样中不存在的纯物质; 内标物的性质应与待测组分性质相近,以使内标物的色谱峰 与待测组分色谱峰靠近并与之完全分离; 内标物与样品应完全互溶,但不能发生化学反应; 内标物加入量应接近待测组分含量。
一般来说,对浓度型检测器,常用峰高定量;对质量型检测器, 常用峰面积定量。
校正因子
校正因子分为相对校正因子和绝对校正因子。 绝对校正因子:表示单位峰面积或单位峰高所代表的物质质量。
mi fi = Ai

f i(h)
mi = hi
绝对校正因子的测定一方面要准确知道进入检测器的组分的 量mi,另一方面要准确测量出峰面积或峰高,并要求严格控制色 谱操作条件,这在实际工作中是有一定的困难的。
答:没有。由测定过程和计算公式我们可以发现,进样量的大小不影 响最终的测定结果。
内标法应用实例:甲苯试剂纯度的测定
标准溶液和试样溶液的配制 标准溶液的配制 甲苯试样溶液的配制 相对校正因子的测定 仪器开机、点火、调试; 标准溶液的分析 相对校正因子的计算: 甲苯试样中甲苯含量的测定 甲苯试样溶液的分析

气相色谱定性和定量分析实验报告

气相色谱定性和定量分析实验报告

气相色谱定性和定量分析实验报告气相色谱(Gas Chromatography,简称GC)是一种常用的分离和分析技术,广泛应用于化学、生物、环境等领域的定性和定量分析。

本实验旨在通过气相色谱仪对样品进行定性和定量分析,并探讨其在实际应用中的意义和局限性。

实验一:定性分析在定性分析中,我们使用了一台高效液相色谱仪(HPLC)进行实验。

首先,我们准备了一系列标准品和未知样品,包括有机化合物和无机化合物。

然后,将样品注入气相色谱仪中,并设置好适当的温度和流速条件。

样品在色谱柱中被分离,并通过检测器检测到其相对峰面积和保留时间。

通过对比标准品和未知样品的色谱图,我们可以确定未知样品中的化合物成分。

根据保留时间和相对峰面积的对比,我们可以推断未知样品中的化合物种类和含量。

这种定性分析方法可以帮助我们快速准确地确定样品中的化学成分,为后续的定量分析提供依据。

实验二:定量分析在定量分析中,我们使用了气相色谱-质谱联用仪(GC-MS)进行实验。

与定性分析类似,我们首先准备了一系列标准品和未知样品,并将其注入GC-MS 中。

通过GC-MS的联用分析,我们可以获得更加准确和详细的样品信息。

GC-MS技术结合了气相色谱和质谱技术的优势,可以对样品中的化合物进行高效、灵敏的定量分析。

通过质谱仪的检测,我们可以获得化合物的分子量和结构信息,进一步确定样品中的化合物种类和含量。

这种定量分析方法可以广泛应用于环境监测、食品安全、药物研发等领域,为科学研究和工业生产提供有力支持。

实验结果与讨论在实验中,我们成功地对标准品和未知样品进行了定性和定量分析。

通过对比色谱图和质谱图,我们准确地确定了未知样品中的化合物种类和含量。

实验结果表明,气相色谱技术在化学分析中具有较高的分辨率和灵敏度,能够有效地分离和检测复杂的样品。

然而,气相色谱技术也存在一些局限性。

首先,样品的挥发性和稳定性对分析结果有一定影响。

某些化合物可能在分析过程中发生分解或损失,导致定性和定量分析的误差。

气相色谱分析有哪些定性和定量分析的方法

气相色谱分析有哪些定性和定量分析的方法

气相色谱分离技术原理当汽化后的试样(Sample)被载气带入色谱柱中运行时,色谱柱中的流动相(Mobile Phase)与固定相(Stationary Phase)之间因各种物质的化学物理特性不同,产生的相互作用大小、强弱术1司,这种作用可以是溶解度,挥发,极性等化学键或者范德华力;组份在两相间经过一定时间的动力学和热力学平衡后,组分在两相间的浓度有所不同,也即该组分对应固定相的分配系数不同,使得各组分被固定相保留的时间不同,彼此分离,随着载气的移动,从而按一定次序由固定相中先后流出,然后进入检测器,产生的讯号经放大后,在记录器上描绘出各组份的色谱峰。

根据出峰位置,确定组分的名称,根据峰面积确定浓度大小。

如下图简示:在这里分配系数K值如下定义:叱组分在固定相中的浓度6组分在流动相中的浓度%•-定温度下,组分的分配系数爪越大,出峰越慢;• 试样一定时,K主要取决「固定相性质;•每个组份在各种固定相上的分配系数X不同;•试样中的各组分;Mi不同的K值是分离的基础;•某组分的技=0时,即不被固定相保留.最先流出;・选择适宜的固定相可改善分离效果。

在色谱分离理论里有两个经典理论:塔板理论和速率理论。

这里面涉及到组分保留时间和色谱峰变宽的问题。

气相色谱分析有哪些定性和定量分析的方法定性主要的:标样对照定性,利用相对保留值定性。

定量:峰面积测量归一法内标法,外标法。

「、气相色谱定性分析■通常利用组分□知的标准物质在相同色谱分析条件卜的色谱峰的保用时间来确定■ •定色i孽件卜*每•种物质都行•-个确定的保留值二、气相色谱定量分析■』(相色谱定廿分析】:要是确定样品中各种组分的相对或绝对含牡,方法有:口归化法口外标法口内标法4.定量方法■常用的定处方法口归一化法口外标法(标准曲线法)口内标准法口标准龙:入法。

气相色谱的定性与定量分析实验

气相色谱的定性与定量分析实验

气相色谱的定性与定量分析一、 实验目的:1、 学习计算色谱峰的分享度2、 掌握根据纯物质的保留值进行定性分析3、 掌握用归一化法定量测定混合物各组分的含量4、 学习气相色谱信的使用方法二、 方法原理1、 柱效能的测定:色谱柱的分享效能,主要由柱效和分离度来衡量。

柱效率是以样品中验证分离组分的保留值用峰宽来计算的理论塔板数或塔板高度表示的。

22211654.5⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=bR RW t W t n 理论塔板数: nL H =理论塔板高度: 式中R t 为保留值(S 或mm ):21W 为半峰宽(S 或mm ):b W 为峰底宽(S 或mm ):L 为柱长(cm )。

理论塔板数越大或塔板高度越小,说明柱效率越好。

但柱效率只反应了色谱对某一组分的柱效能,不能反映相邻组分的分离度,因此,还需计算最难分离物质对的分离度。

分离度是指色谱柱对样品中相邻两组分的分离程度,对一个混合试样成功的分离,是气相色谱法完成定性及定量分析的前提和基础。

分离度R 的计算方法是:)()(22112112W W t t R R R +-=或 2112)(2B b R R W W t t R +-=分离度数值越大,两组分分开程度越大,当R 值达到1.5时,可以认为两组分完全分开。

2、 样品的定性:用纯物质的保留值对照定性。

在一个确定的色谱条件下,每一个物质都有一个确定的保留值,所以在相同条件下,未知物的保留值和已知物的保留值相同时,就可以认为未知物即是用于对照的已知纯物质。

但是,有不少物质在同一条件下可能有非常相近的而不容易察觉差异的保留值,所以,当样品组分未知时,仅用纯物质的保留值与样品的组分的保留值对照定性是困难的。

这种情况,需用两根不同的极性的柱子或两种以上不同极性固定液配成的柱子,对于一些组成基本上可以估计的样品,那么准备这样一些纯物质,在同样的色谱条件下,以纯物质的保留时间对照,用来判断其色谱峰属于什么组分是一种简单而行方便的定性方法。

气相色谱仪的定性、定量分析

气相色谱仪的定性、定量分析

常用峰面积定量被测组分经
校正过的峰面积(或峰高)占样品中各组分 经校正过的峰面积(或峰高)的总和的比例
来表示样品中各组分含量的定量方法。 当试样中所有组分均能流出色谱柱,且
完全分离,并在检测器上都能产生信号时, 可用归一化法计算组分含量。
4、标准曲线法 标准曲线法也称外标法或直接比较法, 是一种简便、快速的定量方法,具体方法与 分光光度分析中的标准曲线法相似。 优点:绘制好标准工作曲线后测定工作 就变得相当简单,可直接从标准曲线上读出
含量,因此特别适合于大批样品分析。缺点: 每次样品色谱分析的色谱操作条件(检测器 的响应性能、柱温、流动相流量及组成、进 样量、柱效等)很难完全相同,因此容易出 现圈套误差。
这个结论并不准确可靠。
(2)双柱法定性。若要得到更为准确可靠 的结论,可再用另一根极性完全不同的色谱 柱,做同样的对照比较。如果结论同上,那 么最终的定性结果相对更为可靠。
(3)色谱操作条件不稳定时的定性。这时 可以采用相对保留值定性或用已知标准物增
加峰高法定性。 ① 相对保留值定性; ② 用已知标准物增加峰高法定性。 2、利用保留指数定性 在利用已知标准物直接对照定性时,已
缺点是必须在所有样品中加入内标物, 选择合适的内标物比较困难,内标物的称量 要准确,操作较复杂。
3、标准加入法 标准加入法是一种将欲测组分的纯物质 加入到待测样品中,然后在相同的色谱条件 下,分别测定加入欲测组分纯物质前后欲测 组分的峰面积(或峰高),从而计算欲测组 分在样品中的含量的方法。
优点:不需要别处的标准物质作内标物, 只需要欲则组分的纯物质,进样量不必十分 准确,操作简单,是色谱分析中较常用的定 量分析方法。缺点:要求加入欲测组分前后 两次色谱测定的色谱操作条件完全相同,否 则将引起分析测定的误差。

气相色谱的定性分析方法

气相色谱的定性分析方法


fm'

Ms Mi
(3)、相对响应值
相对响应值是物质 i 与标准物质 S 的响应值(灵敏度)
之比,单位相同时,与校正因子互为倒数,即
Si
1 fi
和只与试样、标准物质以及检测器类型有关,而与操
作条件和柱温、载气流速、固定液性质等无关,不受
操作条件的影响,因而具有一定的通用性,是一个能
二、气相色谱的定量分析方法
定量分析就是要确定样品中组分的准确含量。气相 色谱的定量分析与大多数的仪器分析方法一样,是一 种相对定量方法,而不是绝对定量方法。
气相色谱定量分析的依据是:在一定的条件下,被
测谱本组峰公分的式峰为i 通面:过积检A测i 成器正的比数。量因(或此浓气度相)色w谱i定与量该分组析分的色基 W i = fi Ai 析再必用式须适中测当的量的f 其 定i称峰量为面计组积算分方A的法i校和,正确将因定色子组谱。分峰由的面式校积可正换知因算,子为定f试量i ,样分
的组分的量 mi ,另一方面要准确测量出峰面积或峰高,
并要求严格控制色谱操作条件,这在实际工作中有一 定困难。因此,实际测量中通常不采用绝对校正因子, 而采用相对校正因子。
(2)、相对校正因子
相对校正因子是指组分 i 与另一标准物 S 的绝
对校正因子之比,用表示:
fi'
fi fs
mi / Ai ms / As
中组分的含量。
1、峰面积的测量
在使用积分仪和色谱工作站测量蜂高和峰面积时,仪器可根据 人为设定积分参数(半峰宽、峰高和最小峰面积等)和基线来计算 每个色谱峰的峰高和峰面积。然后直接打印出峰高和峰面积的结 果,以供定量计算使用。
当使用一般的记录仪记录色谱峰时,则需要用手工测量的方法 对色谱峰和峰面积进行测量。虽然目前已很少采用手工测量法去 测量色谱峰的峰高和峰面积。但是了解手工测量色谱峰峰高和峰 面积的方法对理解积分仪和色谱工作站的工作原理及各种积分参 数的设定是大有裨益的。所以,以下简单介绍两种常用的手工测 量法。

气相色谱定性定量分析

气相色谱定性定量分析

气相色谱定性定量分析一.定性分析气相色谱的优点是能对多种组分的混合物进行分离分析,(这是光谱、质谱法所不能的)。

但由于能用于色谱分析的物质很多,不同组分在同一固定相上色谱峰出现时间可能相同,进凭色谱峰对未知物定性有一定困难。

对于一个未知样品,首先要了解它的来源、性质、分析目的;在此基础上,对样品可有初步估计;再结合已知纯物质或有关的色谱定性参考数据,用一定的方法进行定性鉴定。

(一)利用保留值定性1.已知物对照法各种组分在给定的色谱柱上都有确定的保留值,可以作为定性指标。

即通过比较已知纯物质和未知组分的保留值定性。

如待测组分的保留值与在相同色谱条件下测得的已知纯物质的保留值相同,则可以初步认为它们是属同一种物质。

由于两种组分在同一色谱柱上可能有相同的保留值,只用一根色谱往定性,结果不可靠。

可采用另一根极性不同的色谱柱进行定性,比较未知组分和已知纯物质在两根色谱柱上的保留值,如果都具有相同的保留值,即可认为未知组分与已知纯物质为同一种物质。

利用纯物质对照定性,首先要对试样的组分有初步了解,预先准备用于对照的已知纯物质(标准对照品)。

该方法简便,是气相色谱定性中最常用的定性方法。

2.相对保留值法对于一些组成比较简单的已知范围的混合物或无已知物时,可选定一基准物按文献报道的色谱条件进行实验,计算两组分的相对保留值:(5)式中:i-未知组分;s-基准物。

并与文献值比较,若二者相同,则可认为是同一物质。

(ris仅随固定液及柱温变化而变化。

)可选用易于得到的纯品,而且与被分析组分的保留值相近的物质作基准物。

2. 保留指数法又称为Kovats指数,与其它保留数据相比,是一种重现性较好的定性参数。

保留指数是将正构烷烃作为标准物,把一个组分的保留行为换算成相当于含有几个碳的正构烷烃的保留行为来描述,这个相对指数称为保留指数,定义式如下:(6)IX为待测组分的保留指数,z与z+n为正构烷烃对的碳数。

规定正己烷、正庚烷及正辛烷等的保留指数为600、700、800,其它类推。

气相色谱分析-定性分析方法

气相色谱分析-定性分析方法

气相色谱分析-定性分析方法气相色谱的定性分析就是要确定色谱图中每个色谱峰毕竟代表什么组分,因此必需了解每个色谱峰位置的表示办法及定性分析的办法。

(一)常用的保留值简介在气相色谱分析中,常用的保留值为保留时光tR、调节保留时光t'R、保留体积VR、调节保留体积V'R、相对保留值ris、比保留体积从和保留指数Ix。

各种保留值的计算公式如下: 1.保留时光tR 2.调节保留时光t'R t'R=tR-tM 死时光tM与被测组分的性质无关。

因此以保留时光与死时光的差值,即调节保留时光t'R,作为被测组分的定性指标,具有更本质的含义。

t'R反映了被测组分和固定相的热力学性质,所以用调节保留时光t'R比用保留时光tR作为定性指标要更好一些。

3.保留体积VR VR=tRFc 4.调节保留体积V'R V'R =(tR-tM)Fc=t'RFc=VR-VM 5.相对保留值ris 为了抵消色谱操作条件的变幻对保留值的影响,可将某一物质的调节保留时光:t'R(i)与一标准物(如正壬烷)的调节保留时光:t'R(s)相比,即为相对保留值(如相对壬烷值) 相对保留值ris仅与固定相的性质和柱温有关,与色谱分析的其它操作因素无关,因此具有通用性。

6.比保留体积Vg 比保留体积是气相色谱分析中的另一个重要保留值,其可按下式计算:式中t'R(i)—i组分的调节保留时光,min; m—固定液的质量,g;—在柱温、柱压下,柱内载气的平均体积流速; F'0—室温下由皂膜流量计测得的载气流速,ML/min; Tc—柱温,K; T0—室温,K; p0—室温下的大气压力,Pa; pw—室温下的饱和水蒸气压,pa; j—压力校正因子。

7.科瓦茨(Kovats)保留指数Ix 科瓦茨保留指数是气相色谱领域现已被广泛采纳的一定性指标,其规定为:在任一色谱分析操作条件下,对碳数为n的任何正构烷烃,其保留指数为100n。

气相色谱定性分析

气相色谱定性分析

气相色谱定性分析一、实验目的1、了解气相色谱仪的基本结构和工作原理。

2、学习和熟悉气相色谱仪的基本操作。

3、了解氢火焰离子化检测器和电子俘获检测器的原理和特点。

二、实验原理各种物质在一定的色谱条件(固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。

对于简单的多组分混合物,若其中所有待测组分均为已知且它们的色谱峰均能分开,则可将各个色谱峰的保留值与各相应的标准试样在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。

该法是气相色谱分析中最常用的一种定性方法。

以保留时间作为定性指标,虽然简便,但由于保留时间的测定受载气流速等色谱操作条件的影响较大,可靠性较差;若采用仅与柱温和固定相种类有关而不受其他操作条件影响的相对保留值r is 作为指标,则更适合用于色谱定性分析。

相对保留值r is 定义为:M R M R R R is t t t t t t r S i S i --=='' 式中'',,S i R R M t t t 分别为死时间,被测组分 i 及标准物质s 的调整保留时间;s i R R t t ,为被测组分i 及标准物质s 的保留时间。

氢火焰离子化检测器(FID )是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A )经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。

本实验以丙酮作为标准物质,利用保留时间和相对保留值进行甲苯和乙酸乙酯的定性分析。

三、仪器与试剂1、Agilent 6890N Network GC system ,FID 检测器2、氮气、氢气、空气3、微量注射器:1μL 和50μL4、 试剂:丙酮、甲醇5、配制混合试样 在2只10mL 的容量瓶内,按1:1的比例分别配制丙酮、甲醇溶液,摇匀备用。

第十一章 色谱分析法——定性定量分析

第十一章 色谱分析法——定性定量分析
知识目标:
气相色谱法的定性分析
1、知道气相色谱流出曲线及常用的基本术语。 2、知道气相色谱的定性和定量方法
一、色谱流出曲线
色谱流出曲线:以组分电信号为纵坐标,流出时间为横坐标所得的曲线称为色谱流 出曲线或色谱图。该曲线反映了试样在色谱柱分离的效果,是组分定性和定量的依 据,同时也是研究色谱动力学和热力学的依据。
空气峰有时有,有时没有。
tM
②保留时间(tR):组分从进样到柱后出现浓度极大值时所需的时间。
③调整保留时间(t R ’): (1) t′R = tR-tM (2)反映组分在固定相中停 留的时间
(3)在实验条件一定时, t′R 决定于组分的性质,是定性 的基本参数。
(2) 相对保留值r21 组分2与组分1调整保留值之比:
内标法 当组分不能全部流出色谱柱,或检测器对样品中某些组分不产生信号,或只测
定样品中某一组分,采用内标法可获得准确结果。
1、测定步骤 (1)称取样品m样(其中:样品中待测组分i的质量用mi表示) (2)选定内标物。称取内标物ms。 (3)将内标物加入到已准确称量的样品中去。 (4)进样,测定待测组分的峰面积Ai和内标物的峰面积As。
气相色谱的定量分析 一、定量依据
样品中组分的质量与组分色谱峰的面积或峰高成正比。
m i = f i ·A i 或 m i = f i ·h i

绝色

对谱

校峰

正面

因积

文献查出
①准确测定Ai和hi ②准确求出f i ③计算mi
峰 高
峰面积A 1、定义:色谱峰与峰底基线所围成区域的面积叫峰面积。
c.将所测组分的相对保留值ris与手册数据对比作出定性判断。

气相色谱定性和定量分析

气相色谱定性和定量分析

气相色谱定性和定量分析一、实验目的1、了解气相色谱各种定性定量方法的优缺点。

2、掌握纯标样对照、保留值定性的方法。

3、掌握面积和峰高归一化定量方法。

二、实验原理气相色谱是一种强有力的分离技术,但其定性鉴定能力相对较弱。

一般检测器只能“看到”有物质从色谱中流出,而不能直接识别其为何物。

若与强有力的鉴定技术如质谱及傅里叶变换红外光谱等联用,则能大大提高气相色谱的定性能力。

在实际工作中,有时遇到的样品其成分是大体已知的,或者是可以根据样品来源等信息进行推测的。

这时利用简单的气相色谱定性方法往往能解决问题。

气相色谱定性方法主要有以下几种:(1)标准样品对照定性;(2)相对保留值定性;(3)利用调整保留时间与同系物碳数的线性关系定性;(4)利用调整保留时间与同系物沸点的线性关系定性;(5)利用Kovats 保留指数定性;(6)双柱定性或多柱定性。

(7)仪器联用定性,如用质谱、红外光谱及原子发射光谱检测器。

本实验采用标准样品对照和相对保留值定性方法。

气相色谱在定量分析方面是一种强有力的手段。

常用的定量方法有峰面积百分比法、内部归一化法、内标法和外标法等。

峰面积百分比法适合于分析响应因子十分接近的组分的含量,它要求样品中所有组分都出峰。

内部归一化法定时准确,但它不仅要求样品中所有组分都出峰,而且要求具备所有组分的标准品,以便测定校正因子。

内标法是精度最高的色谱定量方法,但要选择一个或几个合适的内标物并不总是易事,而且在分析样品之前必须将内标物加入样品中。

外标法简便易行,但定量精度相对较低,且对操作条件的重现性要求较严。

本实验采用内部归一化法,其计算公式如下:%100%⨯=∑mii mi i i f A f A A 式中Ai 为组分i 的峰面积,fmi 为组分i 的相对校正因子,它可由计算相对响应值S ’的方法求得:is i s m yA x A S S S f ==='1 式中,Ss 、Si 分别为标准物(常为苯)和被测物的响应因子,As 、y 和Ai 、x 分别为标准物和被测物的色谱峰面积及进样量。

气相色谱定性定量分析方法

气相色谱定性定量分析方法
气相色谱定性定量分析方法
一、气相色谱定性分析
? 通常利用组分已知的标准物质在相同色谱 分析条件下的色谱峰的保留时间来确定
? 一定色谱条件下,每一种物质都 有一个确 定的保留值
二、气相色谱定量分析
? 气相色谱定量分析主要是确定样品中各种 组分的相对或绝对含量,方法有:
? 归一化法 ? 外标法 ? 内标法
准物质的相关色谱信息 ? 根据公? 归一化法 ? 外标法(标准曲线法) ? 内标准法 ? 标准加入法
(1)归一化法
以试样中被测组分经校正的峰面积(或峰高)占试样各组分 经校正的峰面积(或峰高)的总和的比例
?
i
?
mi m
?
m1 ?
mi m2 ? ?
ms fi hi m样品 f shs
内标法中常以内标物为基准,即fs=1.0,则:
?i
?
mi m
?
ms fi Ai m试 As
? 内标法最关键是选择合适的内标物,对内标物的 要求:
? 内标物应是试样中不存在的纯物质 ? 内植物的性质应与待测组分性质接近,内标物的色谱
峰应在待测组分色谱峰附近并完全分离 ? 加入内标物的量应接近待测组分的量 ? 内标物应与试样完全互溶,不可发生化学反应
1.定量校正因子
? 色谱定量分析是基于被测物质的量与其峰面积的 正比关系。但由于同一检测器对不同的物质具有 不同的响应值,所以 两个相等量的物质出的峰面 积往往不相等 ,或者说,相同的峰面积并不意味 着相等物质的量 。这样就不能用峰面积来直接计 算物质的量。
? 因此,在计算组分的量时需将面积乘上一个换算 系数,使组分的面积转换成相应物质的量。即必 须将峰面积 A乘上一个换算系数进行“校正”。
? ? mn

气相色谱常用定量和定性方法ppt课件

气相色谱常用定量和定性方法ppt课件

定量注意事项
• 一般定量以峰面积为基准 • 所有参加计算的峰形正常(谱峰不前伸、不拖尾、不过载)的情
况下,也可以以峰高为基准进行计算 • 分子量相差不大或分子量较大的同系物校正因子相差不大,可直
接用峰面积(或峰高)定量
谢 谢!
准物S的调整保留时间ti’和ts ’ : ai,s = ti’/ ts ’
(2)计算ai,s并与文献相应值比较定性。 2.3.1.3特点 可消除实验条件不一致带来的误差。
2.3.2保留指数(I)定性法
2.3.2.1依据
保留指数I只与柱温和固定相的性质和被测物质的性质有关,与色谱柱 的尺寸、固定相的液膜厚度、载气流量、流速无关。
校正因子与待测物/标准物的性质和检测器的类型有关,可查文献, 也可测定
3.2.1定量校正因子的分类
• 质量校正因子
• 摩尔校正因子
• 体积校正因子
• fM ′ =fV ′
fm
f' m(i)
f' m(s)
m(i) A(s) m(s) A(i)
fM
f' M (i)
f' M (s)
m(i) A(s)M (s) m(s) A(i)M (i)
• 绝对校正因子:用已知准确浓度的标准 样品
3.3常用的定量计算方法
3.3.1 归一化法 3.3.2 外标法 3.3.3 单点校正法 3.3.4 内标法 3.3.5 标准加入法 3.3.6 加内标的标准加入法
3.3.1 归一化法
3.3.1.1 方法
当样品中各组分都能出峰时,将各组分的含量之和
按100%计算的定量方法。
2024/1/26
1
主要内容
1.什么是色谱定性和定量分析 2.常用的色谱定性分析方法 3.常用的色谱定量分析方法

气相色谱的定性和定量分析

气相色谱的定性和定量分析

实验七 气相色谱的定性和定量分析一、实验原理对一个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。

衡量一对色谱峰分离的程度可用分离度R 表示:()211221Y Y t t R R R -⨯-=,,式中,T R,2,Y 2和T R,1,Y 1分别是两个组分的保留时间和峰底宽,当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。

在实际应用中,R=1.0一般可以满足需要。

用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。

在色谱条件一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。

因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。

当手头上有待测组分的纯样时,作与已知物的对照进行定性分桥极为简单。

实验时,可采用单柱比较法、峰高加入法或双柱比较法。

单柱比较法是在相同的色谱条件下.分别对已知纯样及待测试样进行色谱分析.得到两张色谱图,然后比较其保留参数。

当两者的数值相同时,即可认为待测试样中有纯样组分存在。

双柱比较法是在两个极性完全不同的色谱住上,在各自确定的操作条件下,测定纯样和待测组分在其上的保留参数,如果都相同,则可准确地判断试样中有与此纯样相同的物质存在。

由于有些不同的化合物会在某一固定相上表现出相同的热力学性质,故双柱法定性比单柱法更为可靠。

在一定的色谱条件下,组分i 的质景m :或其在流动相中的浓度,与检测器的响应信号峰面积Ai 或峰高h ,成正比:2-10 或 2-11式中,f i A 和f i h 称为绝对校正因子。

式(2-10)和式(2-11)是色谱定量的依据。

不难看出,响应信号A 、h 及校正因了的淮确测量直接影响定定分析的准确度。

由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。

测量峰面积的方法分为于上测量和自动测量。

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析基本原理气相色谱是将有机物分离的一种方法,它也可以对混合物的组成进行定性定量分析。

混合物是通过在流动相和固定相中的相作用而分离的。

流动相和固定相构成色谱法的基础。

流动相可以有气体和液体两种状态,固定相则有液体和固体两种状态。

流动相是气体的称作气相色谱。

流动相是液体的称做液相色谱。

气相色谱是一种分配色谱,其固定相是由特定的液体黏附在一些固体基质上组成的。

各种气相色谱仪虽然在功能、价格和操作上有所不同,但其都是由气流系统、分离系统、检测系统和数据处理系统所组成的。

如下图:气相色谱的气流系统主要包括气源和气体纯化及调节装置。

气源一部分是作为流动相的载气,我们所使用的载气是氮气。

气源的另一部分是作为后期检测所用的燃烧气体,主要是氢气和空气。

由于进入分离系统的气体纯度需要保证,所以不论气源纯度如何,都应通过气体净化装置才能进入色谱分离系统。

虽然根据检测器或色谱柱不同,气相色谱的气体纯度有所差异,但所有气体的纯度至少要达到99 %以上,许多情况下应达99?99 %。

气相色谱分离系统包括样品汽化室和色谱柱两部分。

气相色谱分离技术需要所测有机物样品必须在气态才能进行,因此,首先需要将液态或固态的样品加热(100 —300 C )汽化才能进入色谱柱进行分离。

这样气相色谱进样是用人工或自动注射的方式将有机样品首先注入汽化室。

气相色谱的定性定量分析气相色谱主要功能不仅是将混合有机物中的各种成分分离开来,而且还要对结果进行定性定量分析。

所谓定性分析就是确定分离出的各组分是什么有机物质,而定量分析就是确定分离组分的量有多少。

色谱在定性分析方面远不如其它的有机物结构鉴定技术,但在定量分析方面则远远优于其它的仪器方法。

有机物进入气相色谱后得到两个重要的测试数据:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。

色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。

㈠定性分析气相色谱的定性分析主要有保留值定性法、化学试剂定性法和检测器定性法。

气相色谱定性和色谱柱效的测定

气相色谱定性和色谱柱效的测定
符合规定标准。
农药残留检测
色谱柱效的测定对于检测食品中的 农药残留至关重要,可以提高检测 的灵敏度和准确性,确保食品中农 药残留量在安全范围内。
营养成分分析
在食品安全检测中,色谱柱效的测 定也用于营养成分的分析,如脂肪、 蛋白质和维生素等,以评估食品的 营养价值。
实际应用中气相色谱定性与色谱柱效的结合使用
THANKS
感谢观看
定性分析与色谱柱效的相互影响
定性分析结果影响色谱柱效评估
通过对比不同色谱柱在相同条件下的定性分析结果,可以评估色谱柱效的优劣。
色谱柱效的提高有助于改进定性分析
不断改进色谱柱的填料和制备技术,可以提高色谱柱效,从而改进定性分析的准 确性和可靠性。
提高色谱柱效的方法与技巧
选择合适的固定相
根据待测物的性质选择合 适的固定相,是提高色谱 柱效的关键。
定性分析与色谱柱效的关联
定性分析依赖于色谱柱效
色谱柱效的高低直接影响到定性分析的准确性,因为只有高 效的色谱柱才能确保样品中的各组分得到有效的分离,从而 准确地进行定性分析。
色谱柱效与定性分析的分辨率
分辨率是定性分析的一个重要指标,高效的色谱柱能提高分 辨率,使样品中的组分更好地分离,便于定性分析。
控制操作条件
如温度、流量和进样量等, 这些因素都会影响色谱柱 效,因此需要严格控制。
维护色谱柱
定期清洗和再生色谱柱, 可以保持其高效性能,延 长使用寿命。
04
实际应用与案例分析
气相色谱定性分析在环境监测中的应用
空气质量检测
土壤和沉积物分析
气相色谱定性分析可以用于检测空气 中的有害气体和挥发性有机物,如苯、 甲苯、二甲苯等,以评估空气质量状 况。
质谱定性

2-气相色谱

2-气相色谱

正构烷烃的保留指数为碳数100,测定时,将碳 数为Z和Z +n的正构烷烃加入到样品 x 中进行色谱
分析,此时测得这三个物质的调整保留值。
例:乙酸正丁酯在阿皮松L柱上的流出曲线如下 图所示。由图中测得调整保留距离为:乙酸正 丁酯310.0 mm,正庚烷174.0 mm,正辛烷373.4 mm。求乙酸正定酯的保留指数。
lg 310.0 lg174.0 I x 100 [7 ] 775.6 lg 373.4 lg174.0
在与文献值对照时,一定 要重视文献值的实验条件, 如固定液、柱温等。而且 要用几个已知组分进行验 证。
与其它分析仪器联用定性
气相色谱-质谱(GC-MS) 、NMR联用; 气相色谱-富里叶变换红外光谱(GC-FTIR)联用; 与化学方法配合进行定性鉴定;
A 1.065h t R b
适用范围:狭窄峰。 (5)数字积分仪求峰面积 应用范围广,精度一般可达0.2~2%。
定量校正因子
绝对校正因 子 单位峰面积(或单位峰高)的组分的量
f i mi / Ai
相对校正因子
f i mi / Ai mi As fi f s ms / As ms Ai
f f
' V
2 常用的几种定量分析方法 (1)归一化法
依据:组分含量与峰面积成正比
f i ' Ai Wi ' 100% ' ' f1 A1 f 2 A2 f 中所有组分 均须出峰
操作条件如进样量、载气流速等 变化时对结果的影响较小。
f i' hi i 100% f i' hi
已知水与内标物甲醇的相对质量校正因子分别为0.70和0.75,计算样品中水分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱定性分析
一、实验目的
1、了解气相色谱仪的基本结构和工作原理。

2、学习和熟悉气相色谱仪的基本操作。

3、了解氢火焰离子化检测器和电子俘获检测器的原理和特点。

二、实验原理
各种物质在一定的色谱条件(固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。

对于简单的多组分混合物,若其中所有待测组分均为已知且它们的色谱峰均能分开,则可将各个色谱峰的保留值与各相应的标准试样在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。

该法是气相色谱分析中最常用的一种定性方法。

以保留时间作为定性指标,虽然简便,但由于保留时间的测定受载气流速等色谱操作条件的影响较大,可靠性较差;若采用仅与柱温和固定相种类有关而不受其他操作条件影响的相对保留值ris作为指标,则更适合用于色谱定性分析。

相对保留值ris定义为:
式中
分别为死时间,被测组分i及标准物质s的调整保留时间;
为被测组分i及标准物质s的保留时间。

氢火焰离子化检测器(FID)是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。

本实验以丙酮作为标准物质,利用保留时间和相对保留值进行甲苯和乙酸乙酯的定性分析。

三、仪器与试剂
1、Agilent 6890N Network GC system,FID检测器
2、氮气、氢气、空气
3、微量注射器:1L和50L
4、试剂:丙酮、甲醇
5、配制混合试样在2只10mL的容量瓶内,按1:1的比例分别配制丙酮、甲醇溶液,摇匀备用。

四、实验步骤
1、开机
(1) 打开气源(按相应的检测器所需气体);分析化学博客_]1a_[
W___U(}
(2) 打开计算机;
(3) 打开6890N GC电源开关;
(4) 待仪器自检完毕,双击Instrument Online图标,化学工作站自动与6890N通讯,此时6890N 显示屏上显示“Loading…”。

2、编辑方法
(1) 从“View”菜单中选择“Method and run control”画面,单击“Show top toolbar”,“Show status toolbar”,“Instrument diagram”, “Sampling Diagram” ,使其命令前有“√”标志,来调用所需的界面。

(2) 设定参数
(a)流动相:氮气,流量为1 mLmin-1;
(b)柱温:起始温度:120 C;
(c)检测器温度:180C;
(d)进样量:1.0 L
(e)分流比:100:1
(f)H2流量40 mLmin-1,空气流量400 mLmin-1。

(3) 单击“Method”菜单,选中“Save Method As…”,输入方法名,单击OK。

(4) 从“Run Control”菜单中选择“Sample Info…”选项,输入操作者名称,在“Data file”中选择“Manual”或“Prefix”。

(5) 单击Ok,等仪器Ready,基线平稳。

3、色谱分析
(1)吸取1.0L乙酸乙酯,丙酮和甲醇的混合液进样,记录色谱数据。

(2)吸取1.0L乙酸乙酯溶液进样,记录色谱数据。

(3)吸取1.0L甲醇溶液进样,记录色谱数据。

(4) 吸取1.0L丙酮溶液进样,记录色谱数据。

分析化学博客(@_q_~_x_L_Z:E"T_H-L4、关机分析化学博客_d*W/D J_g!x
(1) 实验结束后,调出一提前编好的关机方法, 此方法内容包括同时关闭FID/NPD/FPD/ECD/μECD/TCD检测器,降温各热源(Oven temp,Inlet temp,Det temp), 关闭FID/NPD/FPD气体(H2,Air)分析化学博客5z k$Q_p_g'w-H
(2) 待各处温度降下来后(低于50℃),退出化学工作站,退出Windows 所有的应用程序 (3)关闭PC, 关闭打印机电源
(4) 关GC电源,最后关载气。

五、数据及处理
记录各色谱图中各组分的保留时间tR 。

混合液:
单溶质溶液:
六、思考题
1、为什么可以利用色谱峰的保留值进行色谱定性分析?
答:相同的物质在同样的色谱条件下,色谱峰的保留值是固定的。

所以可以进行定性。

2、在利用相对保留值进行色谱定性时,对实验条件是否可以不必严格控制,为什么?
答:对实验条件可以不必严格控制。

由于相对保留值是被测组分与加入的参比组分(其保留值应与被测组分相近)的调整保留值之比,因此当栽气的流速和温度发生微小变化时,被测组分与参比组分的保留值同时发生变化,而它们的比值-相对保留值则不变。

也就是说相对保留值只受柱温和固定相性质的影响,而柱长,固定相的填充情况(即固定相的紧密情况)和载气的流速均不影响相对保留值。

因此在柱温和固定相一定时相对保留值为定值,可作为定性的较可靠参数。

相关文档
最新文档