初三数学(四边形综合练习)
中考数学真题解析_四边形综合题.(含答案)2
全国中考真题解析120考点汇编四边形综合题一、选择题1. (2011重庆江津区,10,4分)如图,四边形ABCD 中,AC =a ,BD =b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( )①四边形A 2B 2C 2D 2是矩形;②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长是4a b +错误!未找到引用源。
④四边形A n B n C n D n 的面积是12n ab +错误!未找到引用源。
.A 、①②B 、②③C 、②③④D 、①②③④考点:三角形中位线定理;菱形的判定与性质;矩形的判定与性质。
专题:规律型。
分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD 中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A 5B 5C 5D 5 的周长;④根据四边形A n B n C n D n 的面积与四边形ABCD 的面积间的数量关系来求其面积.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.2. (2011重庆市,9,4分)如图,在平行四边形 ABCD 中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD 、BC 于点M 、N ,交BA 、DC 的延长线于点E 、F ,下列结论:①AO=BO ;②OE=OF ; ③△EAM ∽△EBN ;④△EAO ≌△CNO ,其中正确的是A. ①②B. ②③C. ②④D.③④考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质. 分析:①根据平行四边形的对边相等的性质即可求得AO≠BO ,即可求得①错误; ②易证△AOE ≌△COF ,即可求得EO=FO ;③根据相似三角形的判定即可求得△EAM ∽△EBN ;④易证△EAO ≌△FCO ,而△FCO 和△CNO 不全等,根据全等三角形的传递性即可判定该选项错误.点评:本题考查了相似三角形的判定,考查了全等三角形对应边相等的性质,考查了平行四边形对边平行的性质,本题中求证△AOE ≌△COF 是解题的关键.3. (2010重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( ) 9题图BA .1B .2C .3D .4 考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理分析:根据翻折变换的性质和正方形的性质可证△ABG ≌△AFG ;在直角△ECG 中,根据勾股定理可证BG =GC ;通过证明∠AGB =∠AGF =∠GFC =∠GCF ,由平行线的判定可得AG ∥CF ;由于S △FGC =S △GCE ﹣S △FEC ,求得面积比较即可.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.4. (2011山东省潍坊, 11,3分)己知直角梯形ABCD 中,AD ∥BC .∠BCD=90°,BC=CD=2AD ,E 、F 分别是BC 、CD 边的中点.连接BF 、DF 交于点P .连接CP 并延长交AB 于点Q ,连揍AF ,则下列结论不正确...的是( ). A .CP 平分∠BCDB .四边形ABED 为平行四边形C ,CQ 将直角梯形ABCD 分为面积相等的两部分D .△ABF 为等腰三角形A B C DFEG10题图【考点】直角梯形;全等三角形的判定与性质;平行四边形的判定与性质.【专题】证明题;几何综合题.【分析】本题可用排除法证明,即证明A、B、D正确,C不正确;易证△BCF≌△DCE (SAS),得∠FBC=∠EDC,∴△BPE≌△DPF,∴BP=DP;∴△BPC≌△DPC,∴∠BCP=∠DCP,∴A正确;∵AD=BE且AB∥BE,所以,四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;【点评】本题考查了等腰三角形、平行四边形和全等三角形的判定,熟记以上图形的性质,并能灵活运用其性质,是解答本题的关键,本题综合性较好.5.(2011•河池)如图,在平行四边形ABCD中,E为AB的中点,F为AD上一点,EF交AC于G,AF=2cm,DF=4cm,AG=3cm,则AC的长为()A、9cmB、14cmC、15cmD、18cm考点:平行线分线段成比例;平行四边形的性质。
2021年中考数学第三轮专题复习:四边形的综合练习
2021年中考数学第三轮专题复习:四边形的综合练习1、如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.2、如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.3、如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连结AG,作DE⊥AG于点E,BF⊥AG于点F,设=k.(1)求证:AE=BF.(2)连结BE,DF,设∠EDF=α,∠EBF=β.求证:tanα=ktanβ.(3)设线段AG与对角线BD交于点H,△AHD和四边形CDHG的面积分别为S1和S2,求的最大值.4、如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=AB.(1)求证:EF⊥AG;(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)?(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当S△PAB =S△OAB,求△PAB周长的最小值.5、如图,在矩形ABCD中,AB= 2cm,∠ADB =30°. P,Q两点分别从A,B同时出发,点P沿折线AB--BC运动,在AB上的速度是2cm/s,在BC上的速度是23cm/s;点Q在BD上以2cm/s的速度向终点D运动.过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN 为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2).(1)当PQ⊥AB时,x= ;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.6、在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=√6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED﹣AG=FC.7、定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB//CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD.(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.8、如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN 沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.9、在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.10、在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.11、在图1,2,3中,已知▱ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE 为边向上作菱形AEFG,且∠EAG=120°.(1)如图1,当点E与点B重合时,∠CEF=°;(2)如图2,连接AF.①填空:∠FAD∠EAB(填“>”,“<“,“=”);②求证:点F在∠ABC的平分线上;(3)如图3,连接EG ,DG ,并延长DG 交BA 的延长线于点H ,当四边形AEGH 是平行四边形时,求BCAB 的值.12、如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD时,求矩形平移的距离; (3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E FG H ,将矩形1111E FG H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.13、邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n 次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形,如图1,□ABCD 为1阶准菱形. (1)猜想与计算邻边长分别为3和5的平行四边形是阶准菱形;已知□ABCD 的邻边长分别为b a ,(b a >),满足r b a +=8,r b 5=,请写出□ABCD 是阶准菱形. (2)操作与推理小明为了剪去一个菱形,进行如下操作:如图2,把□ABCD 沿BE 折叠(点E 在AD 上),使点A 落在BC 边上的点F 处,得到四边形ABEF .请证明四边形ABEF 是菱形.14、如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.15、在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.(1)如图①,求证:BA=BP;(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求的值;(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.16、已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D 开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.17、定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.18、已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)19、在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理).(3) 如图4,当点P在线段BD的延长线上时,连接BE,AB=2√3 ,BE=2√19 ,求四边形ADPE 的面积.20、问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN 交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.。
2022年人教版中考数学一轮复习:四边形综合 专项练习题2(Word版,含答案)
2022年人教版中考数学一轮复习:四边形综合专项练习题21.如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).2.如图1,平行四边形纸片ABCD的面积为120,AD=15.今沿两对角线将四边形ABCD剪成甲、乙.丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一个对称图形戊,如图2所示.则图形戊的两条对角线长度之和为.3.如图,菱形ABCD的两条对角线AC,BD交于点O,BE⊥AD于点E,若AC=8,BD=6,则BE的长为.4.如图,在▱ABCD中,∠A=70°,DB=DC,CE⊥BD于E,则∠BCE=.5.如图,在菱形ABCD中,AB=BD,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点H,若CG=1,则S=.四边形BCDG6.如图,正方形瓷砖图案是四个全等且顶角为45°的等腰三角形.已知该瓷砖的面积是1m2,则中间小正方形的面积为m2.7.如图所示,在Rt△ABC外作等边△ADE,点E在AB边上,AC=5,∠ABC=30°,AD=3.将△ADE沿AB方向平移,得到△A′D′E′,连接BD′.给出下列结论:①AB=10;②四边形ADD′A′为平行四边形;③AB平分∠D′BC;④当平移的距离为4时,BD′=3.其中正确的是(填上所有正确结论的序号).8.如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.9.如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD 的边长为cm.10.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.11.如图,在正方形ABCD内有一点P,若AP=4,BP=7,DP=9,则∠APB的度数为.12.如图是两个边长分别为2a,a的正方形,则△ABC的面积是.13.如图,点P是正方形ABCD内一点,连接AP、BP、DP,若AP=1,PD=,∠APB=135°,则正方形ABCD的面积为.14.如图,正三角形ABC与正方形CDEF的顶点B,C,D三点共线,动点P沿着CA由C向A 运动.连接EP,若AC=10,CF=8.则EP的最小值是.15.如图,正方形ABCD中,H为CD上一动点(不含C、D),连接AH交BD于G,过点G作GE⊥AH交BC于E,过E作EF⊥BD于F,连接AE,EH.下列结论:①AG=EG;②∠EAH=45°;③BD=2GF;④GE平分∠FEC.正确的是(填序号).16.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是.17.如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接FG,若AB=8,则FG的最小值为.18.如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是.19.如图,矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若∠DAE=3∠BAE.则的值为.20.将矩形ABCD按如图所示的方式折叠,BE、EG、FG为折痕,若顶点A、C、D都落在点O 处,且点B、O、G在同一条直线上,同时点E、O、F在另一条直线上.(1)的值为.(2)若AD=4,则四边形BEGF的面积为.参考答案1.解:①∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形;②∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形;③∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,因此∠ABC=∠ADC时,四边形ABCD还是平行四边形;故答案为:①.2.解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=1520,∴BC=AD=15,EF×AD=×120,∴EF=8,又BC=15,∴则图形戊中的四边形两对角线之和为20+3=23,故答案为23.3.解:∵四边形ABCD是菱形,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AD===5,=AD×BE=×AC×BD,∵S菱形ABCD∴BE=,故答案为:.4.解:∵四边形ABCD是平行四边形,∴∠BCD=∠A=70°,∵DB=DC,∴∠DBC=∠BCD=70°,∵CE⊥BD,∴∠CEB=90°,∴∠BCE=20°.故答案为:20°.5.解:过点C作CM⊥GB于M,CN⊥GD,交GD的延长线于N.∵四边形ABCD为菱形,∴AB=AD=CD=BC,∵AB=BD,∴AB=BD=AD=CD=BC,∴△ABD为等边三角形,△BCD是等边三角形,∴∠A=∠BDF=60°,∠ADC=60°,在△ADE和△DBF中,,∴△ADE≌△DBF(SAS),∴∠ADE=∠DBF,∵∠FBC =60°+∠DBF ,∠NDC =180°﹣(120°﹣∠ADE )=60°+∠ADE ,∴∠NDC =∠FBC ,在△CDN 和△CBM 中,,∴△CDN ≌△CBM (AAS ),∴CM =CN ,在Rt △CBM 与Rt △CDN 中,,∴Rt △CBM ≌Rt △CDN (HL ),∴S 四边形BCDG =S 四边形CMGN .S 四边形CMGN =2S △CMG ,∵∠CGM =60°,∴GM =CG =,CM =CG =,∴S 四边形BCDG =S 四边形CMGN =2S △CMG =2×××=, 故答案为:.6.解:如图,作大正方形的对角线,作小正方形的对角线并延长交大正方形各边于中点, 设小正方形的边长为xm , 则大正方形的边长为x +x x =(1)xm , ∵瓷砖的面积是1m 2,∴大正方形的边长为1m ,即(1)x =1, 解得x =﹣1, ∴中间小正方形的面积为()2=3﹣2, 故答案为:3﹣2.7.解:∵∠ACB=90°,AC=5,∠ABC=30°,∴AB=2AC=10,故①正确;由平移的性质得:A'D'=AD,A'D'∥AD,∴四边形ADD′A′为平行四边形,故②正确;当平移的距离为4时,EE'=4,∴BE'=AB﹣AE﹣EE'=10﹣3﹣4=3,由平移的性质得:∠A'D'E'=∠A'E'D'=∠AED=60°,A'D'=D'E'=DE=AD=3,∴BE'=D'E',∴∠E'BD'=∠E'D'B=∠A'E'D'=30°,∴∠A'D'B=60°+30°=90°,∴BD'=A'D'=3,故④正确;由④得:当平移的距离为4时,∠E'BD'=∠ABC=30°,故③错误;故答案为:①②④.8.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S=OA•OB=AB•OP,△ABO∴OP==,∴EF的最小值为,故答案为:.9.解:如图,过F作FI⊥BC于I,连接FE,FA,∴FI∥CD,∵CE=2BE,BF=2DF,∴设BE=EI=IC=a,CE=FI=2a,AB=3a,∴则FE=FC=FA=a,∴H为AE的中点,∴AH=HE=AE=a,∴AG=AH+GH=a+2,∵四边形ABCD是正方形,∴BE∥AD,∴==,∴GE=AG=(a+2),∵GE=HE﹣GH=a﹣2,∴(a+2)=a﹣2,解得,a=,∴AB=3a=.故答案为:.10.解:设图1中分成的直角三角形的长直角边为a,短直角边为b,,得,∴图1中菱形的面积为:×4=48,故答案为48.11.解:∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△BAP绕点A逆时针旋转90°可得△ADE,连接PE,由旋转的性质得,ED=BP=7,AE=AP=4,∠PBE=90°,∠AED=∠APB,∴△APE为等腰直角三角形,∴PE=AP=4,∠AEP=45°,在△PED中,∵PD=9,ED=7,PE=4,∴DE2+PE2=DP2,∴△PED为直角三角形,∠PED=90°,∴∠AED=90°+45°=135°,∴∠APB=135°,故答案为:135°.12.解:∵两个正方形的边长分别为2a,a,∴△ABC的的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.13.解:如图,将△APB绕点A逆时针旋转90°得到△AHD,连接PH,过点A作AE⊥DH交DH的延长线于E,∴△APB≌△AHD,∠PAH=90°,∴PB=DH,AP=AH=1,∠APB=∠AHD=135°,∴PH=AP=,∠APH=∠AHP=45°,∴∠PHD=90°,∴DH===2,∵∠AHD=135°,∴∠AHE=45°,∵AE⊥DH,∴∠AHE=∠HAE=45°,∴AE=EH,AH=AE,∴AE=EH=,∴DE=,∵AD2=AE2+DE2=13,∴正方形的面积为13,故答案为:13.14.解:如图,过点E作EP⊥AC,交FC于点G,当EP⊥AC时,EP取得最小值,∵正三角形ABC与正方形CDEF的顶点B,C,D三点共线,∴∠ACB=60°,∠FCD=90°,∴∠ACF=30°,∴∠CGP=∠EGF=60°,∵∠F=90°,∴∠FEG=30°,设PG=x,则CG=2x,∴FG=CF﹣CG=8﹣2x,∴EG=2FG=2(8﹣2x),∵FG=EF,∴8﹣2x=8×,∴x=4﹣,∴EP=EG+PG=2(8﹣2x)+x=16﹣3x=4+4.故答案为:4+4.15.解:连接GC,延长EG交AD于点L,∵四边形ABCD为正方形,∴AD∥CB,AD=CD,∠ADG=∠CDG=45°,∵DG=DG,∴△ADG≌△CDG(SAS),∴AG=GC,∠HCG=∠DAG,∵∠HCG+∠GCB=90°,∴∠DAG+∠GCB=90°,∵GE⊥AH,∴∠AGL=90°,∴∠ALG+∠LAG=90°,∵AD∥CB,∴∠ALG=∠GEC,∴∠GEC+∠LAG=90°,∴∠GEC=∠GCE,∴GE=GC,∴AG=EG,故①正确;∵GE⊥AH,∴∠AGE=90°,∵AG=EG,∴∠EAH=45°,故②正确;连接AC交BD于点O,则BD=2OA,∵∠AGF+∠FGE=∠GEF+∠EGF=90°,∴∠AGF=∠GEF,∵AG=GE,∠AOG=∠EFG=90°,∴△AOG≌△GFE(AAS),∴OA=GF,∵BD=2OA,∴BD=2GF,故③正确.过点G作MN⊥BC于点N,交AD于点M,交BC于点N,∵G是动点,∴GN的长度不确定,而FG=OA是定值,∴GE不一定平分∠FEC,故④错误;故答案为:①②③.16.解:将△ABD绕点D顺时针旋转90°,得△MCD,如图:由旋转不变性可得:CM=AB=4,AD=MD,且∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,AD最大,只需AM最大,而在△ACM中,AM<AC+CM,∴当且仅当A、C、M在一条直线上,即不能构成△ACM时,AM最大,且最大值为AC+CM =AC+AB=7,此时AD=AM=,故答案为:.17.解:连接BE,如图:∵四边形ABCD是正方形,∴∠ABC=90°,又EF⊥AB于点F,EG⊥BC,∴四边形FBGE是矩形,∴FG=BE,所以当BE最小时,FG就最小,根据垂线段最短,可知当BE⊥AC时,BE最小,当BE⊥AC时,在正方形ABCD中,△AEB是等腰直角三角形,在Rt△ABE中,根据勾股定理可得2BE2=AB2=64,解得BE=4,∴FG最小为4;故答案为4.18.解:∵四边形ABCD是边长为2的正方形,点E是BC的中点,∴AB=AD=BC=CD=2,BE=CE=,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS),∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS),∴∠BAE=∠BCF,∴∠BCF=∠CDE,又∵∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵CD=2,CE=,由勾股定理得,DE===5,=CD×CE=DE×CH,∵S△DCE∴CH=2,∵∠CHE=∠CBF,∠BCF=∠ECH,∴△ECH∽△FCB,∴=,∴=,∴CF=5,∴HF=CF﹣CH=3,∴=,故②正确;如图,过点A作AM⊥DE于点M,∵DC=2,CH=2,由勾股定理得,DH===4,∵∠CDH+∠ADM=90°,∠DAM+∠ADM=90°,∴∠CDH=∠DAM,又∵AD=CD,∠CHD=∠AMD=90°,∴△ADM≌△DCH(AAS),∴CH=DM=2,AM=DH=4,∴MH=DM=2,又∵AM⊥DH,∴AD=AH,故④正确;∵DE=5,DH=4,∴HE=1,∴ME=HE+MH=3,∵AM⊥DE,CF⊥DE,∴∠AME=∠GHE,∵∠HEG=∠MEA,∴△MEA∽△HEG,∴=,∴=,∴HG=,故③错误.综上,正确的有:①②④.故答案为:①②④.19.解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵∠DAE=3∠BAE,∴∠BAE=×90°=22.5°,∵AE⊥BD,∴∠OAB=∠OBA=90°﹣22.5°=67.5°,∴∠OAE=67.5°﹣22.5°=45°,∴△AOE是等腰直角三角形,∴OA=OE,设OE=a,则OB=OA=a,∴BE=OB﹣OE=(﹣1)a,BD=2OB=2a,∴DE=BD﹣BE=2a﹣(﹣1)a=(+1)a,∴==,故答案为:.20.解:(1)由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=OB=2a,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,在Rt△BCG中,CG2+BC2=BG2,∴a2+(2b)2=(3a)2,∴b=a,∴===,由折叠可得:∠ABE=∠EBG,∠AEB=∠BEO,∠DEG=∠GEO,∵∠AEB=∠BEO+∠DEG=∠GEO=180°,∴∠BEG=90°,∵∠A=∠BEG=90°,∠ABE=∠EBG,∴△ABE∽△EBG,∴==,故答案为:;(2)∵AD=BC=2b=4,∴b=2,a=2,∴AB=OB=4,CG=2,AE=OE=2,∴BG=6,∵∠OBF =∠CBG ,由折叠可得∠BOF =∠BCG =90°, ∴△BOF ∽△BCG , ∴=, 即=,∴OF =,∴S 四边形EBFG =S △BEG +S △BFG =×6×2+×6×=9. 故答案为:9.。
中考数学模拟题汇总《四边形》专项练习(附答案解析)
中考数学模拟题汇总《四边形》专项练习(附答案解析)一、单选题1.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有( )A .1B .2C .3D .42.如图,正方期ABCD 的边长为4,点E 在对角线BD 上,且22.5,BAE EF AB ︒∠=⊥为F ,则EF 的长为( )A .2BC .D .4-3.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB =2AG ;③∠GDB =45°;④S △BEF =725.在以上4个结论中,正确的有( )A .1B .2C .3D .44.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE //CD 于点E ,PF //BC 于点F ,连接AP ,EF.给出下列结论:①PD =;②四边形PECF 的周长为8;③APD 一定是等腰三角形;④AP EF =;⑤EF 的最小值为其中正确结论的序号为( )A .①②④⑤B .①③④⑤C .②④⑤D .②③⑤5.如图,在正方形ABCD 中,点M 是AB 上一动点,点E 是CM 的中点,AE 绕点E 顺时针旋转90°得到EF ,连接DE ,DF 给出结论:①DE EF =;②45CDF ∠=︒;③75AM DF =;④若正方形的边长为2,则点M 在射线AB 上运动时,CF .其中结论正确的是( )A .①②③B .①②④C .①③④D .②③④6.如图,E 、F 分别是正方形ABCD 的边BC 、CD 的中点,连接AF 、DE 交于点P ,过B 作BG ∥DE 交AD 于G ,BG 与AF 交于点M .对于下列结论:①AF ⊥DE ;②G 是AD 的中点;③∠GBP =∠BPE ;④S △AGM :S △DEC =1:4.正确的个数是( )A .1个B .2个C .3个D .4个7.如图,在正方形ABCD 中,点E 是边BC 上的点,且CE =2BE ,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于点F ,下列结论:①∠AED +∠EAC +∠EDB =90°;②AP =FP ;③AE =10AO ;④若四边形OPEQ 的面积为2,则该正方形的面积为36;⑤CE ·EF =EQ ·DE .其中正确的结论有( )A .1个B .2个C .3个D .4个8.如图,四边形ABCD 是边长为2的正方形,点P 为线段AB 上的动点,E 为AD 的中点,射线PE 交CD 的延长线于点Q ,过点E 作PQ 的垂线交CD 于点H 、交BC 的延长线于点F ,则以下结论:①AEP CHF ;②EHQ CHF ;③当点F 与点C 重合时3PA PB ;④当PA PB =时,CF =( )A .①③④B .②③④C .①③D .②④二、填空题9.如图,已知矩形ABCD 中,3AB =,4BC =,点M ,N 分别在边AD ,BC 上,沿着MN 折叠矩形ABCD ,使点A ,B 分别落在E ,F 处,且点F 在线段CD 上(不与两端点重合),过点M 作MH BC ⊥于点H ,连接BF .当四边形CDMH 为正方形时,NC =______;若13DF DC =,则折叠后重叠部分的面积为______.10.如图,将边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AEFC的位置,则图中阴影部分的面积为_______.11.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠AEB=75°,③EG=FG且∠AGE=90°,④BE=FG⑤S△ABE=1 2S△CEF.其中正确结论是_____(填序号).12.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为_____________________ .13.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为_________.14.如图,正方形ABCD中,AB=3,点E为对角线AC上一点,EF⊥DE交AB于F,若四边形AFED的面积为4,则四边形AFED的周长为______.15.如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△HED的面积是1﹣;③∠AFG=135°;④BC+FG其中正确的结论是_____.(填2入正确的序号)16.如图,以Rt ABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,BC=______.连接CO,如果AC=4,CO=三、解答题17.已知正方形ABCD,点E在AB上,点G在AD,点F在射线BC上,点H在CD上.(1)如图1,DE⊥FG,求证:BF=AE+AG;(2)如图2,DE⊥DF,P为EF中点,求证:BE=2PC;(3)如图3,EH交FG于O,∠GOH=45°,若CD=4,BF=DG=1,则线段EH的长为.18.已知正方形ABCD中AC与BD交于点O,点M在线段BD上,作直线AM交直线DC于点E,过D作DH⊥AE于H,设直线DH交AC于点N.(1)如图1,当M在线段BO上时,求证:OM=ON;(2)如图2,当M在线段OD上,连接NE和MN,当EN//BD时,求证:四边形DENM是菱形;(3)在(2)的条件下,若正方形边长为4,求EC的长.19.如图,在正方形ABCD 中,E 、F 是对角线BD 上两点,且∠EAF =45°,将△ADF 绕点A 顺时针旋转90°后,得到△ABQ ,连接EQ .(1)求证:EA 是∠QED 的平分线; (2)已知BE =1,DF =3,求EF 的长.20.如图1,在正方形ABCD 中,E 为边BC 上一点(不与点B 、C 重合),垂直于AE 的一条直线MN 分别交AB 、AE 、CD 于点M 、P 、N .(1)求证AE =MN ;(2)如图2,若垂足P 恰好为AE 的中点,连接BD ,交MN 于点Q ,连接EQ ,并延长交边AD 于点F .求∠AEF 的度数;(3)如图3,若该正方形ABCD 边长为10,将正方形沿着直线MN 翻折,使得BC 的对应边B ′C ′恰好经过点A ,过点A 作AG ⊥MN ,垂足分别为G ,若AG =6,请直接写出AC ′的长________.21.如图,在平面直角坐标系中,边长为4的正方形OABC 的顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕点O 按顺时针方向旋转,旋转角为θ,当点A 第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N .θ=︒时,求点A的坐标;(1)若30(2)设MBN△的周长为P,在旋转正方形OABC的过程中,P值是否有变化?请证明你的结论;22.在ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:;②BC,CD,CF之间的数量关系为:.(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①②是否仍然成立?若成立,请给予证明:若不成立,请你写出正确结论再给予证明,(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若AB=,CD=1,请求出GE的长.23.如图1,已知正方形ABCD 顶点A ,B 分别在y 轴和x 轴上,边CD 交x 轴的正半轴于点E .(1)若()20,45A a a -+,且2a =,求A 点的坐标.(2)在(1)的条件下,若34AO EO =,D 点的坐标.(3)如图2,连结AC 交x 轴于点F ,点H 是A 点上方轴上一动点,以AF ,AH 为边作平行四边形AFGH ,使G 点恰好落在AD 边上.求证:22224HG DG BF +=.24.已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?探究问题:(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;(2)然后考察点E的一般位置,分两种情况:情况1:当点E是正方形ABCD内部一点(如图②)时;情况2:当点E是正方形ABCD外部一点(如图③)时.在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF,用等式表示线段AF、CF、DF三者之间的数量关系:.25.如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.(1)写出BE与AF之间的关系,并证明你的结论;(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长.26.基础探究:如图①,在正方形ABCD中,点E为AD上一点,DF⊥CE交AB于F,垂足为点O.求证:CE=DF.应用拓展:如图②,在正方形ABCD中,点E为AD上一点,FG⊥CE分别交AB、CD于F、G,垂足为点O.若正方形ABCD的边长为12,DE=5,则四边形EFCG的面积为_______.参考答案与解析一、单选题1.【答案】D【分析】证明△ABE≌△DCE,可得结论①正确;由正方形的性质可得AB=AD=BC=CD,BE=CE,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,可证△ABE≌△DCE,△ABG≌△CBG,可得∠BCF=∠CDE,由余角的性质可得结论②;证明△DCE≌△CBF可得结论③,证明△CHF∽△CBF即可得结论④正确.【详解】解:∵四边形ABCD是正方形,点E是BC的中点,∴AB=AD=BC=CD,BE=CE,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS)∴∠DEC=∠AEB,∠BAE=∠CDE,DE=AE,故①正确,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴∠BAE=∠BCF,∴∠BCF=∠CDE,且∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故②正确,∵∠CDE=∠BCF,DC=BC,∠DCE=∠CBF=90°,∴△DCE≌△CBF(ASA),∴CE=BF,∵CE=12BC=12AB,∴BF=12 AB,∴AF=BF,故③正确,∵∠BCF+∠BFC=90°,∠DEC=∠BFC ∴∠BCF+∠DECC=90°,∴∠CHE=90°∴∠CHE=∠FBC又∠DEC=∠BFC∴△CHF∽△CBF∴CH CE BC CF=∵BC=2CE,∴2BC CE CE CE CHCF CF==∴22CE CH CF=⋅故选:D.【点评】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,熟练运用这些性质进行推理是本题的关键.2.【答案】D【分析】在AF上取FG=EF,连接GE,可得△EFG是等腰直角三角形,根据等腰直角三角形的性质可得,∠EGF=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAE+∠AEG=∠EGF,然后求出∠BAE=∠AEG=22.5°,根据等角对等边可得AG=EG,再根据正方形的对角线平分一组对角求出∠ABD=45°,然后求出△BEF是等腰直角三角形,根据等腰直角三角形的性质可得BF=EF,设EF=x,最后根据AB=AG+FG+BF列方程求解即可.【详解】解:如图,在AF上取FG=EF,连接GE,∵EF⊥AB,∴△EFG是等腰直角三角形,∴,∠EGF=45°,由三角形的外角性质得,∠BAE+∠AEG=∠EGF,∵∠BAE=22.5°,∠EGF=45°,∴∠BAE=∠AEG=22.5°,∴AG=EG,在正方形ABCD中,∠ABD=45°,∴△BEF是等腰直角三角形,∴BF=EF,设EF=x,∵AB=AG+FG+BF,∴,解得x=4故选:D.【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质,难点在于作辅助线构造出等腰直角三角形并根据正方形的边长AB列出方程.3.【答案】C【解析】试题解析:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12-x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12-x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=12×6×8=24,S△BEF=EFEGS△GBE=62410⨯=725,④正确.故选C.考点:正方形综合题.4.【答案】A【分析】①根据正方形的对角线平分对角的性质,得PDF是等腰直角三角形,在Rt DPF中,2222222DP DF PF EC EC EC=+=+=,求得DP=;②根据等腰直角三角形和矩形的性质可得其周长为2BC,则四边形PECF的周长为8;③根据P的任意性可以判断APD△不一定是等腰三角形;④由PECF为矩形,则通过正方形的轴对称性,证明AP EF=;⑤当AP最小时,EF最小,EF的最小值等于【详解】①如图,延长FP交AB与G,连PC,延长AP交EF与H,∵PE ⊥BC ,PF ⊥CD ,∠BCD=90°, ∴四边形PECF 为矩形,∴PF=CE , ∵GF ∥BC ,∴∠DPF=∠DBC ,∵四边形ABCD 是正方形, ∴∠DBC=45°∴∠DPF=∠DBC=45°, ∴∠PDF=∠DPF=45°, ∴PF=EC=DF ,∴在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,∴. 故①正确;②∵四边形PECF 为矩形,∴四边形PECF 的周长=2CE+2PE=2CE+2BE=2BC=8, 故②正确;③∵点P 是正方形ABCD 的对角线BD 上任意一点,∠ADP=45︒, ∴当∠PAD=45︒或67.5︒或90︒时,△APD 是等腰三角形, 除此之外,△APD 不是等腰三角形, 故③错误;④∵四边形PECF 为矩形, ∴PC=EF ,由正方形为轴对称图形, ∴AP=PC , ∴AP=EF , 故④正确;⑤=由EF=PC ,∴当PC 最小时,EF 最小,则当PC ⊥BD 时,即PC=12BD=12⨯=EF 的最小值等于故⑤正确;综上所述,①②④⑤正确,故选:A.【点评】本题考查了正方形的性质,等腰三角形的判定和性质,勾股定理的应用.本题难度较大,综合性较强,在解答时要认真审题.5.【答案】B【分析】①延长AE交DC的延长线于点H,由“AAS”可证△AME≌△HCE,可得AE=EH,由直角三角形的性质可得AE=EF=EH,即可判断;②由四边形内角和定理可求2∠ADE+2∠EDF=270°,可得∠ADF=135°,即可判断;③由连接AC,过点E作EP⊥AD于点P,过点F作FN⊥EP于N,交CD于G,连接CF,由梯形中位线定理可求PE=12(AM+CD),由“AAS”可证△APE≌△ENF,可得AP=NE=12AD,即可求AM=2DG=2,即可判断;④由垂线段最短,可得当CF⊥DF时,CF有最小值,由等腰直角三角形的性质可求CF的最小值,即可判断.【详解】①如图,延长AE交DC的延长线于点H,∵点E是CM的中点,∴ME=EC,∵AB∥CD,∴∠MAE=∠H,∠AME=∠HCE,∴△AME≌△HCE(AAS),∴AE=EH,又∵∠ADH=90°,∴DE=AE=EH,∵AE绕点E顺时针旋转90°得到EF,∴AE=EF,∠AEF=90°,∴AE=DE=EF,故①正确;②∵AE=DE=EF,∴∠DAE=∠ADE,∠EDF=∠EFD,∵∠AEF+∠DAE+∠ADE+∠EDF+∠EFD=360°,∴2∠ADE+2∠EDF=270°,∴∠ADF=135°,∴∠CDF=∠ADF−∠ADC=135°−90°=45°,故②正确;③∵EP⊥AD,AM⊥AD,CD⊥AD,∴AM∥PE∥CD,∴AP ME=PD EC=1,∴AP=PD,∴PE是梯形AMCD的中位线,∴PE=12(AM+CD),∵∠FDC=45°,FN⊥CD,∴∠DFG=∠FDC=45°,∴DG=GF,DF,∵∠AEP+∠FEN=90°,∠AEP+∠EAP=90°,∴∠FEN=∠EAP,又∵AE=EF,∠APE=∠ENF=90°,∴△APE≌△ENF(AAS),∴AP =NE =12AD , ∵PE =12(AM +CD )=NE +NP =12AD +NP , ∴12AM =NP =DG ,∴AM =2DG =2DF ,∴AMDF,故③错误; ④如图,连接AC ,过点E 作EP ⊥AD 于点P ,过点F 作FN ⊥EP 于N ,交CD 于G ,连接CF ,∵EP ⊥AD ,FN ⊥EP ,∠ADC =90°, ∴四边形PDGN 是矩形, ∴PN =DG ,∠DGN =90°, ∵∠CDF =45°, ∴点F 在DF 上运动,∴当CF ⊥DF 时,CF 有最小值, ∵CD =2,∠CDF =45°,∴CF故选:B .【点评】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定和性质,旋转的性质,平行线分线段成比例,梯形中位线的定理等知识,灵活运用这些性质解决问题是本题的关键. 6.【答案】C【分析】根据正方形性质得出AD BC DC ==;12EC DF BC ==;ADF DCE ∠=∠,证ADF ≌()DCE SAS ,推出AFD DEC ∠=∠,求出90DGF ∠=︒即可判断①;证明四边形GBED 为平行四边形,则可知②正确;由平行线的性质可得③正确;证明AGM ∽AFD ,可得出AGMS:1DECS=:5.则④不正确.【详解】解:∵正方形ABCD ,E ,F 均为中点 ∴AD =BC =DC ,EC =DF =12BC , ∵在△ADF 和△DCE 中,AD DC ADF DCE DF CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△DCE (SAS ), ∴∠AFD =∠DEC , ∵∠DEC +∠CDE =90°, ∴∠AFD +∠CDE =90°=∠DGF , ∴AF ⊥DE ,故①正确, ∵//BG DE ,//GD BE , ∴四边形GBED 为平行四边形, ∴GD =BE , ∵BE =12BC , ∴GD =12AD , 即G 是AD 的中点,故②正确, ∵//BG DE , ∴∠GBP =∠BPE , 故③正确.∵//BG DG ,AF ⊥DE , ∴AF ⊥BG ,∴∠ANG =∠ADF =90°, ∵∠GAM =∠FAD , ∴△AGM ∽△AFD ,设AG =a ,则AD =2a ,AF,∴21()5AGM AFDS AG SAF ==. ∵△ADF ≌△DCE , ∴S △AGM :S △DEC =1:5. 故④错误. 故选:C .【点评】本题主要考查了正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定,平行线的性质,平行四边形的判定与和性质等知识,熟练掌握正方形的性质是解题的关键. 7.【答案】B【分析】①先根据正方形的性质证得∠AOP 是直角,再利用三角形的外角的性质即可判定;②直接利用四点共圆可证∠AFP=∠ABP=45°;③设BE=a 则EC=2a ,然后利用勾股定理得到AE 和OA 的长,即可得出结论;④利用相似得到BP 与DP 的比导出BP 与OP 的比,同理求出OQ 与QC 的比,设△BEP 的面积为S ,再利用同高时面积比即为底的比求出△OPE 和△OQE 的面积,表示出四边形OPEQ 的面积,求出S 的值,再通过正方形面积是24S 即可求出结果;⑤如果当E 是BC 边中点时可得△FPE ∽DCE ,可得结论,因为已知中EC=2BE 时,所以△FPE 与△DCE 不相似,所以错误.【详解】解:如图,连接OE 、 AF , ∵ABCD 是正方形, ∴AC ⊥BD ,∴∠AOP=90°,∵∠AED+∠EDB=∠APO,∴∠AED+∠EAC+∠EDB=∠APO+∠EAC=90°,故①正确;∵PF⊥AE,∴∠APF=∠ABF=90°,即A、P、B、F四点共圆,∴∠AFP=∠ABP=45°,∴∠PAF=∠PFA=45°,∴PA=PF,故②正确;设BE=a,则EC=2a,则a,a,∴3AEAO,∴,故③错误;连接OE,∵CE=2BE,∴BE:EC:BC==1:2:3∵AD//BC∴△BEP∽△DAP,△EQC∽△DQA,∴BP:DP=1:3,CQ:AQ=2:3,∴BP:OP=1:1,OQ:CQ=1:4,∴设S△BEP=S,则S△OPE=S,则S△BEO=2S,S△ECO=4S,∴S△OEQ =45S,S△BCO=2S+4S=6S,∵四边形OPEQ的面积是2,∴S+45S=2,∴S=109,∴正方形ABCD的面积=4S△BCO =24S=803,故④错误;∵BE=2EC∴∠PEB≠∠CED,且PE EC PF CD∴△FPE不一定与△DCE相似,∴EF PEED EC≠,又∵EQ≠PE,∴CE·EF≠EQ·DE,故⑤错误;共有2个正确.故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,综合性强,难度大,灵活运用所学知识解决问题是解答本题的关键.8.【答案】C【点评】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的性质和判定、勾股定理等知识,解题的关键是学会利用全等三角形解决问题.二、填空题 9.【答案】32 5512【分析】根据正方形的性质证明MHN BCF △△,令HN x =,则3CN x =-,1FN BN x ==+,求得FGN MHN △△,得到2GN =,再证明MEO NCF △△,得到43EO =,即可得到结果;【详解】解:∵四边形CDMH 为正方形, ∴3MH HC ==, ∴1BH =, ∵MHN BCF △△,∴MH BCHN CF=, 令HN x =,则3CN x =-,1FN BN x ==+,∴CF ==∴3x =∴132x =,23x =(不符合题意,舍去), ∴12HN HC =,即N 为HC 的中点, ∴1322NC CH ==,∵13DF DC =,3AB CD ==,∴1DF =,2CF =,∴BF ===∴BG GF == ∵MHN BCF △△,∴MH BCHN CF=, ∴32HN =, ∴FGN MHN △△,∴GN =,∴52FN ===,∴32CN ===, ∴334122BH BC HN NC =--=--=,∵EMO CNF ∠=∠,90MEO NCF ∠=∠=︒, ∴MEO NCF △△, ∴ME NCEO CF=, ∴43EO =, ∴折叠后重叠部分的面积为:()1122MEO MEFN S S ME FN ME EO +=+-⨯△梯形,151455*********⎛⎫=+⨯-⨯⨯= ⎪⎝⎭. 故答案为:32;5512. 【点评】本题主要考查了正方形的性质,相似三角形的判定与性质,准确分析计算是解题的关键.10.【分析】过点M 作MH DE ⊥于点H ,利用正方形的性质和旋转的性质可证得△ADE 为等边三角形,由等腰三角形的判定可得△MDE 为等腰三角形,继而求得12DH EH ==,然后设MH x =,则2DM x =,根据勾股定理列方程求解可得MH =,进而由三角形面积公式即可求解. 【详解】如图,过点M 作MH DE ⊥于点H , ∵四边形ABCD 为正方形,∴1AB AD ==,90B BAD ADC ∠=∠=∠=︒,∵正方形ABCD 绕点A 逆时针旋转30°到正方形AEFG 的位置, ∴1AE AB ==,30BAE ∠=︒,90AEF B ∠=∠=° ∴60DAE ∠=︒∴△ADE 为等边三角形,∴60AED ADE ∠=∠=︒,1DE AD == ∴30MED MDE ∠=∠=︒, ∴△MDE 为等腰三角形, ∴12DH EH ==. 在Rt MDH 中,设MH x =,则2DM x =,∴221(2)4x x =+解得:16x =,26x =-(舍去),∴MH =, ∴1.2MDE S DE MH ∆=⨯⨯1126=⨯⨯12=.故答案为:12【点评】本题考查了旋转的性质,正方形的性质,等边三角形判定与性质,解直角三角形,利用等边三角形和等腰三角形的性质求出12DH EH ==,30MED MDE ∠=∠=︒是解题的关键.11.【答案】①②③⑤.【分析】通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE =∠DAF ,BE =DF ,∠AEB =75°;由正方形的性质就可以得出EC =FC ,得AC 垂直平分EF ,得EG =FG 且∠AGE =90°;设EC =x ,BE =y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和2S △ABE ,再通过比较大小就可以得出结论. 【详解】解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,AE AFAB AD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ), ∴BE =DF , 所以故①正确;∵∠BAE =∠DAF ,∠BAE +∠DAF =30°, ∴∠BAE =∠DAF =15°, ∴∠AEB =75°, 所以②正确; ∵BC =CD ,∴BC ﹣BE =CD ﹣DF ,即CE =CF , ∵AE =AF , ∴AC 垂直平分EF , ∴EG =FG 且∠AGE =90°, 所以③正确;设EC =x ,由勾股定理,得EF ,∴AE =EF ,∴FG =BG =CG =2x , ∵∠EAG =30°,AG ,∴AC =AG +CG +2x ,∴AB=2x ,∴BE =BC ﹣CE ﹣x =, ∴BE ≠FG , 所以④错误; ∵S △CEF =12CE 2=12x 2,S △ABE =12AB •BE =12•2x =14x 2,∴S △ABE =12×12x 2=12S △CEF , 所以⑤正确.综上所述,①②③⑤正确, 故答案为:①②③⑤.【点评】本题考查正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.12.【答案】72【分析】由直角三角形的中线,求出DE 的长度,利用三角形中位线定理和勾股定理,求出BE 的长度,即可求出答案.【详解】解:∵四边形ABCD 是正方形, ∴∠DCE=90°,OD=OB , ∵DF=FE , ∴CF=FE=FD ,∵EC+EF+CF=18,EC=5, ∴EF+FC=13, ∴DE=13,∴12=, ∴BC=CD=12, ∴BE=BC-EC=7, ∵OD=OB ,DF=FE ,∴OF=12BE=72;故答案为:72. 【点评】本题考查正方形的性质,三角形的中位线定理,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】2【分析】过E 作EM AB ⊥于M ,根据正方形性质得出AO BD ⊥,AO OB OC OD ===,由勾股定理求出AO OB ==Rt BME ∆中,由勾股定理得:222ME BE =,求出即可. 【详解】解:过E 作EM AB ⊥于M ,四边形ABCD 是正方形,AO BD ∴⊥,AO OB OC OD ===,则由勾股定理得:222AO BO AB +=, ∴AO OB ==EM AB ⊥,BO AO ⊥,AE 平分CAB ∠,∴,90OAE MOE AOE AME ∠=∠∠=∠=︒, ∵AE=AE,∴AOE AME ≅△△,EMEO ,AM AO ==四边形ABCD是正方形,∴∠=︒=∠,MBE MEB45∴==,BM ME OE在Rt BME∆中,由勾股定理得:22=,2ME BE即22=,2(2BEBE=,2故答案为:2.【点评】本题考查了角平分线性质和正方形性质,勾股定理的应用,注意:角平分线上的点到线段两个端点的距离相等.14.【答案】【分析】连接BE,DF,过E作EN⊥BF于点N,证明△DCE≌△BCE和△BEF为等腰三角形,设AF=x,用x表示DE与EF,由根据四边形ADEF的面积为4,列出x的方程求得x,进而求得四边形ADEF的周长.【详解】解:如图,连接BE,DF,过E作EN⊥BF于点N,∵四边形ABCD为正方形,∴CB=CD ,∠BCE=∠DCE=45°, 在△BEC 和△DEC 中,DC BC DCE BCE CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△DCE ≌△BCE (SAS ), ∴DE=BE ,∠CDE=∠CBE , ∴∠ADE=∠ABE ,∵∠DAB=90°,∠DEF=90°, ∴∠ADE+∠AFE=180°, ∵∠AFE+∠EFB=180°, ∴∠ADE=∠EFB , ∴∠ABE=∠EFB , ∴EF=BE , ∴DE=EF ,设AF=x ,则BF=3-x ,∴FN=BN=12BF=32x -,∴AN=AF+FN=32x+, ∵∠BAC=∠DAC=45°,∠ANF=90°,∴EN=AN=32x+,∴=∵四边形AFED 的面积为4, ∴S △ADF +S △DEF =4,∴12×3x+12×24=⎝⎭, 解得,x=-7(舍去),或x=1, ∴AF=1,DE=EF=2= ∴四边形AFED 的周长为:故答案为:4+【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理,等腰三角形的性质,解题的关键是由面积列出x 的方程,属于中考选择题中的压轴题. 15.【答案】①②③【分析】依据四边形AEGF 为平行四边形,以及AE GE =,即可得到平行四边形AEGF 是菱形;依据1AE =,即可得到HED 的面积)11111122DH AE =⨯=+=边形AEGF 是菱形,可得267.5135AFG GEA ∠=∠=⨯︒=︒;根据四边形AEGF 是菱形,可得1FG AE ==,进而得到11BC FG +=+=. 【详解】解:正方形ABCD 的边长为1,90BCD BAD ∴∠=∠=︒,45CBD ∠=︒,BD =,1AD CD ==.由旋转的性质可知:90HGD BCD ∠==︒,45H CBD ∠=∠=︒,BD HD =,GD CD =,1HA BG ∴==,45H EBG ∠=∠=︒,90HAE BGE ∠=∠=︒,HAE ∴和BGE 1的等腰直角三角形,AE GE ∴=.在Rt AED 和Rt GED 中, DE DEAD GD =⎧⎨=⎩, Rt AED ∴≌()Rt GED HL ,()118067.52AED GED BEG ∴∠=∠=︒-∠=︒,AE GE =, 1801804567.567.5AFE EAF AEF AEF ∴∠=︒-∠-∠=︒-︒-︒=︒=∠, AE AF ∴=.AE GE =,AF BD ⊥,EG BD ⊥, AF GE ∴=且//AF GE ,∴四边形AEGF 为平行四边形, AE GE =,∴平行四边形AEGF 是菱形,故①正确;21HA =,45H ∠=︒,1AE ∴=,HED ∴的面积)11111122DH AE =⨯=+=②正确; 四边形AEGF 是菱形,267.5135AFG GEA ∴∠=∠=⨯︒=︒,故③正确; 四边形AEGF 是菱形,1FG AE ∴==,11BC FG ∴+==④不正确. 故答案为:①②③.【点评】本题考查旋转的性质,正方形的性质,全等三角形的判定和性质,菱形的判定和性质,等腰直角三角形的性质等知识,解题的关键是掌握旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等. 16.【答案】8【分析】通过作辅助线使得△CAO ≌△GBO ,证明△COG 为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC 的长.【详解】如图,延长CB 到点G ,使BG=AC . ∵根据题意,四边形ABED 为正方形, ∴∠4=∠5=45°,∠EBA=90°, ∴∠1+∠2=90°又∵三角形BCA 为直角三角形,AB 为斜边, ∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO =∠GBO , 在△CAO 和△GBO 中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO , ∴CO =GO=7=∠6, ∵∠7+∠8=90°, ∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形, ∴,∵CG=CB+BG ,∴CB=CG -BG=12-4=8, 故答案为8.【点评】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键. 三、解答题17.【答案】(1)见解析;(2)见解析;(3 【分析】(1)作GM ⊥BC 于M .证△DAE ≌△GMF ,得AE =FM ,AG =BM .所以BF =AE+AG . (2)作EQ ∥CP 交BC 于Q .证EQ =2CP ,EQ可得BE .(3)作BM ∥GF 交AD 于M ,作BN ∥EH 交CD 于N ,得BM =GF ,BF =MG =1,BN =EH ,延长DC 到P ,使CP =AM =2,证△BAM ≌△BCP 得∠ABM =∠CBP ,BM =BP ,再证△MBN ≌△PBN 得MN =PN ,设CN =x ,则MN =PN =CN+PC =x+2,DN =4﹣x ,在Rt △DMN 中,由DM 2+DN 2=MN 2求得x =43,再在△BCN 中利用勾股定理求解可得.【详解】解:(1)如图1,过点G作GM⊥BC于M,则∠GMB=∠GMF=90°,∵四边形ABCD是正方形,∴AD=AB,∠A=∠B=90°,∴四边形ABMG是矩形,∴AG=BM,∵DE⊥GF,∴∠ADE+∠DGF=∠ADE+∠AED=90°,∴∠AED=∠DGF,又∠DGF=∠MFG,∴∠AED=∠MFG,∴△DAE≌△GMF(AAS),∴AE=MF,则BF=BM+MF=AG+AE;(2)如图2,过点E作EQ∥PC,交BC于点Q,∵P是EF的中点,∴PC是△EQF的中位线,则EQ=2PC,QC=CF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,又∵∠A=∠DCF=90°,AD=CD,∴△ADE≌△CDF(ASA),∴AE=CF=QC,∵AB=BC,∴BE=BQ,则∠BEQ=45°,∴EQ,则2PC BE,∴BE;(3)如图3所示,作BM∥GF交AD于M,作BN∥EH交CD于N,则四边形BFGM和四边形BEHN是平行四边形,∴BM=GF,BF=MG=1,BN=EH,∵DG=1,CD=AD=4,∴AM=2,延长DC到P,使CP=AM=2,∵BA=BC,∠A=∠BCP=90°,∴△BAM≌△BCP(SAS),∴∠ABM=∠CBP,BM=BP,∵∠GOH=45°,BN∥EH,BM∥GF,∴∠MBN=45°,∴∠ABM+∠CBN =45°,∴∠CBP+∠CBN =45°,即∠PBN =45°, ∴△MBN ≌△PBN (SAS ), ∴MN =PN ,设CN =x ,则MN =PN =CN+PC =x+2,DN =4﹣x ,在Rt △DMN 中,由DM 2+DN 2=MN 2可得22+(4﹣x )2=(x+2)2,解得x =43,则EH =BN =3,. 【点评】本题考查正方形背景中的线段和差,线段倍分,求线段长问题,掌握垂线的性质,平行线的性质,全等三角形的性质与判定,勾股定理等知识,引垂线构造全等,转化线段的相等关系,利用平行线,构造中位线与等腰直角三角形,确定倍数关系,利用勾股定理解决线段的长度问题.18.【答案】(1)见解析;(2)见解析;(3)8-.【分析】(1)先证明:ODN NAH ∠=∠, 再证明:DON AOM ≌,可得结论;(2)利用正方形的性质证明:AC BD ⊥, 45CDO ∠=︒, 结合:DON AOM ≌,利用全等三角形的性质证明:45NMO ∠=︒, 可得://,ED MN 结合://EN BD , DH AE ⊥, 从而可得结论;(3)利用正方形的性质先求解AC = 再利用菱形的性质可得:AH 是DN 的垂直平分线,证明4AN AD ==,求解4NC =, 再证明:,CN EN = 利用勾股定理可得答案. 【详解】(1)证明:∵DH ⊥AE , ∴∠DHA =90°, ∴∠NAH +∠ANH =90°,∵∠ODN +∠DNO =90°,∠ANH =∠DNO , ∴∠ODN =∠NAH , 在DON △和AOM 中,ODN HAN DON AOM OD OA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴DON AOM ≌(AAS ), ∴OM =ON ;(2)证明: 正方形ABCD ,AC BD ∴⊥, 45CDO ∠=︒,由(1)可知,DON AOM ≌, ∴OM =ON ,∴∠NMO =45°=∠CDO , ∴ED ∥NM , ∵EN ∥DM ,∴四边形DENM 是平行四边形, ∵DN ⊥AE ,∴平行四边形DENM 是菱形;(3)∵四边形ABCD 为正方形,AD =4, ∴AC= ∵四边形DENM 是菱形,∴AH 是DN 的垂直平分线, ∴AN =AD =4, ∴NC=4, ∵EN ∥DM ,∴∠ENC =∠DOC =90°, ∵∠ECN =45°,∴EC=8==-【点评】本题考查的是三角形全等的判定与性质,垂直平分线的性质,勾股定理的应用,平行四边形的判定,菱形的判定,正方形的性质,掌握以上知识是解题的关键. 19.【答案】(1)见解析;(2【分析】(1)直接利用旋转的性质得出△AQE ≌△AFE (SAS ),进而得出∠AEQ =∠AEF ,即可得出答案;(2)由全等三角形的性质可得QE =EF ,∠ADF =∠ABQ ,再结合勾股定理得出答案. 【详解】证明:(1)∵将△ADF 绕点A 顺时针旋转90°后,得到△ABQ , ∴QB =DF ,AQ =AF ,∠BAQ =∠DAF , ∵∠EAF =45°, ∴∠DAF +∠BAE =45°, ∴∠QAE =45°, ∴∠QAE =∠FAE , 在△AQE 和△AFE 中,AQ AF QAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩, ∴△AQE ≌△AFE (SAS ), ∴∠AEQ =∠AEF , ∴EA 是∠QED 的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,∠ADF=∠ABQ,∵四边形ABCD是正方形,∴∠ADB=∠ABD=45°,∴∠ABQ=45°,∴∠QBE=∠ABQ+∠ABD=90°,在Rt△QBE中,QB2+BE2=QE2,又∵QB=DF,∴EF2=BE2+DF2=1+9=10,∴EF.【点评】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,证明△AQE≌△AFE是解题关键.20.【答案】(1)见解析;(2)∠AEF=45°;(3)10﹣【分析】(1)过点B作BF∥MN交CD于点F,则四边形MBFN为平行四边形,得出MN=BF,BF ⊥AE,由ASA证得△ABE≌△BCF,得出AE=BF,即可得出结论;(2)连接AQ,过点Q作HI∥AB,分别交AD、BC于点H、I,则四边形ABIH为矩形,得出HI ⊥AD,HI⊥BC,HI=AB=AD,证△DHQ是等腰直角三角形,得HD=HQ,AH=QI,由HL证得Rt △AHQ≌Rt△QIE,得∠AQH=∠QEI,证∠AQE=90°,得△AQE是等腰直角三角形,即可得出结果;(3)延长AG交BC于E,则EG=AG=6,得AE=12,由勾股定理得BE=,则CE=BC﹣BE=10﹣,由折叠的性质即可得出结果.【详解】(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCD=90°,AB=BC,AB∥CD,过点B作BF∥MN交CD于点F,如图1所示:∴四边形MBFN 为平行四边形, ∴MN =BF ,BF ⊥AE , ∴∠ABF +∠BAE =90°, ∵∠ABF +∠CBF =90°, ∴∠BAE =∠CBF , 在△ABE 和△BCF 中,90BAE CBF AB BC ABE BCF ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△ABE ≌△BCF (ASA ), ∴AE =BF , ∴AE =MN ;(2)解:连接AQ ,过点Q 作HI ∥AB ,分别交AD 、BC 于点H 、I ,如图2所示:∵四边形ABCD 是正方形, ∴四边形ABIH 为矩形,∴HI ⊥AD ,HI ⊥BC ,HI =AB =AD ,∵BD 是正方形ABCD 的对角线, ∴∠BDA =45°,∴△DHQ 是等腰直角三角形, ∴HD =HQ ,AH =QI , ∵MN 是AE 的垂直平分线, ∴AQ =QE ,在Rt △AHQ 和Rt △QIE 中,AQ QEAH QI =⎧⎨=⎩, ∴Rt △AHQ ≌Rt △QIE (HL ), ∴∠AQH =∠QEI , ∴∠AQH +∠EQI =90°, ∴∠AQE =90°,∴△AQE 是等腰直角三角形,∴∠EAQ =∠AEQ =45°,即∠AEF =45°; (3)解:延长AG 交BC 于E ,如图3所示:则EG =AG =6, ∴AE =12,在Rt △ABE 中,BE ==∴CE=BC﹣BE=10﹣,由折叠的性质得:AC'=CE=10﹣,故答案为:10﹣.【点评】本题是四边形综合题,主要考查了正方形的性质、平行四边形的判定与性质、矩形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、折叠的性质、垂直平分线的性质、勾股定理、平行线的性质等知识;熟练掌握正方形的性质和折叠的性质是解题的关键.21.【答案】(1)(2,);(2)不变【详解】解:(1)如图1,过A作AD⊥y轴,交y轴于点Dθ=︒,正方形OABC的边长是4∵AD⊥y轴,30∴AD=2,∴A的坐标是(2,(2)P值无变化.证明:延长BA交y轴于E点.(如图2)在△OAE 与△OCN 中90?AOE CON OAE OCN OA OC =⎧⎪==⎨⎪=⎩∠∠∠∠∴△OAE ≌△OCN (AAS ) ∴OE=ON ,AE=CN .在△OME 与△OMN 中45?OE ON MOE MON OM OM =⎧⎪∠=∠=⎨⎪=⎩,∴△OME ≌△OMN (SAS ) ∴MN=ME=AM+AE , ∴MN=AM+CN ,∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=8.∴在旋转正方形OABC 的过程中,P 值无变化.【点评】此题主要考查了一次函数的综合应用、全等三角形的判定与性质等知识,利用图形旋转的变化规律得出对应边之间关系是解题关键.22.【答案】(1)①BC ⊥CF ;②BC =CF+CD ;(2)BC ⊥CF 成立;BC =CD+CF 不成立,CD =CF+BC ,见解析;(3.【分析】(1)①由题意易得∠BAC =∠DAF =90°,则有∠BAD =∠CAF ,进而可证△DAB ≌△FAC ,然后根据三角形全等的性质可求解;②由△DAB ≌△FAC 可得CF =BD ,然后根据线段的数量关系可求解;(2)由题意易证△DAB ≌△FAC ,则可得∠ACB =∠ABC =45°,进而可得BC ⊥CF ,然后根据线段的数量关系可求解;(3)过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N ,则有DH =CH+CD =3,进而可求四边形CMEN 是矩形,然后可得△ADH ≌△DEM ,则可证△BCG 是等腰直角三角形,最后根据勾股定理可求解.【详解】解:(1)①∵正方形ADEF 中,AD =AF ,∠DAF =90°, ∴∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,在△DAB 与△FAC 中,AD AFBAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△DAB ≌△FAC (SAS ),。
北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)
北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)北师大版九年级数学上册第一章特殊的平行四边形综合练习题1.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立平面直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是(D)A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)2.如图,菱形ABCD边长为6,∠BAD=120°,点E,F分别在AB,AD上且BE=AF,则EF的最小值为(A).A.B..D3.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C4.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A′B′D′,分别连接A′C,A′D,B′C,则A′C+B′C5.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),当EP+BP最短时,点P6.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA =5,OC =3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为(-95,125).7.如图,∠MON =90°,矩形ABCD 的顶点A ,B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =1,在运动过程中,点D 到点O8.如图,在矩形纸片ABCD 中,AB =8,BC =6,点E 是AD 的中点,点F 是AB 上一动点.将△AEF 沿直线EF 折叠,点A 落在点A ′处.在EF 上任取一点G ,连接GC ,GA ′,CA ′,则△CGA ′周长的最小值为9.如图,在△ABC 中,∠ABC =90°,BD 为AC 的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG ,DF.(1)求证:四边形BDFG 为菱形;(2)若AG =13,CF =6,则四边形BDFG 的周长为20.证明:∵∠ABC =90°,BD 为AC 的中线,∴BD =12AC.∵AG ∥BD ,BD =FG ,∴四边形BDFG 是平行四边形.∵CF ⊥BD ,∴CF ⊥AG.又∵点D 是AC 中点,∴DF =12AC.∴BD =DF.∴四边形BDFG 是菱形.10.如图,E ,F 分别是矩形ABCD 的边AD ,AB 上的点,EF =EC ,且EF ⊥EC. (1)求证:AE =DC ; (2)若DC =2,则BE =2.证明:在矩形ABCD 中,∠A =∠D =90°,∴∠EFA +∠AEF =90°. ∵EF ⊥EC ,∴∠FEC =90°. ∴∠AEF +∠CED =90°. ∴∠EFA =∠CED. 在△AEF 和△DCE 中,∠A =∠D ,∠EFA =∠CED ,EF =CE ,∴△AEF ≌△DCE(AAS).∴AE =DC.11.已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F. (1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF ,CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.解:(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,AD ∥BC. ∴∠ABE =∠CDF. ∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°.在△ABE 和△CDF 中,∠ABE =∠CDF ,∠AEB =∠CFD ,AB =CD ,∴△ABE ≌△CDF(AAS).∴AE =CF. (2)S △ABE =S △CDF =S △BCE =S △ADF =18S 矩形ABCD .12.如图,在四边形ABCD 中,BC ∥AD ,BC =12AD ,点E 为AD 的中点,点F 为AE 的中点,AC⊥CD ,连接BE ,CE ,CF.(1)判断四边形ABCE 的形状,并说明理由;(2)如果AB =4,∠D =30°,点P 为BE 上的动点,求△PAF 周长的最小值.解:(1)四边形ABCE 是菱形,理由如下:∵点E 是AD 的中点,∴AE =12AD.∵BC =12AD ,∴AE =BC.∵BC ∥AD ,∴四边形ABCE 是平行四边形.∵AC ⊥CD ,点E 是AD 的中点,∴CE =AE =DE. ∴四边形ABCE 是菱形.(2)∵四边形ABCE 是菱形.∴AE =EC =AB =4,点A ,C 关于BE 对称.2AE=2.∴当PA+PF最小时,△PAF的周长最小,即点P为CF与BE的交点时,△PAF的周长最小.此时△PAF的周长为PA+PF+AF=CF+AF.∵CE=DE,∴∠ECD=∠D=30°,∠ACE=90°-30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,∴CF⊥AE.∴CF=AC2-AF2=2 3.△PAF周长的最小值为CF+AF=23+2.13.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,垂足为F,交直线MN于点E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB的中点时,四边形CDBE是什么特殊四边形?说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形CDBE是正方形?请说明你的理由.解:(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB.∴AC∥DE.∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形.∴CE=AD.(2)四边形CDBE是菱形.理由:∵CE=AD,∴BD=CE.∵BD∥CE,∴四边形CDBE是平行四边形.∵∠ACB=90°,D为AB的中点,∴CD=BD.∴四边形CDBE是菱形.(3)当∠A=45°时,四边形CDBE是正方形.理由:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°.∴AC=BC.∵D为AB的中点,∴CD⊥AB.∴∠CDB=90°.又∵四边形CDBE是菱形,∴四边形CDBE是正方形.14.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连接AP并延长交CD于点F,连接BP,交CE于点H.(1)若∠PBA∶∠PBC=1∶2,判断△PBC的形状,并说明理由;(2)求证:四边形AECF为平行四边形.解:(1)△PBC是等边三角形,理由如下:在矩形ABCD中,∠ABC=90°,∵∠PBA∶∠PBC=1∶2,∴∠PBC=60°.由折叠的性质,得PC=BC.∴△PBC是等边三角形.(2)证明:由折叠的性质,得△EBC≌△EPC.∴BE=PE.∴∠EBP=∠EPB.∵E为AB的中点,∴BE=AE.∴AE=PE.∴∠EPA=∠EAP.∵∠EBP +∠EPB +∠EPA +∠EAP =180°,∴∠EPB +∠EPA =90°. ∴∠BPA =90°,即BP ⊥AF.由折叠的性质,得BP ⊥CE ,∴AF ∥CE. ∵四边形ABCD 是矩形,∴AE ∥CF. ∴四边形AECF 为平行四边形.15.如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N.(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3∶1,求MNDN的值.解:(1)证明:由折叠的性质,得∠ENM =∠DNM ,又∵∠ANE =∠CND ,∴∠ANM =∠CNM. ∵四边形ABCD 是矩形,∴AD ∥BC. ∴∠ANM =∠CMN. ∴∠CMN =∠CNM. ∴CM =CN.(2)过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形,∴HC =DN ,NH =DC. ∵S △CMN S △CDN =12MC ·NH12ND ·NH =MC ND=3,∴MC =3ND =3HC.∴MH =2HC.设DN =x ,则HC =x ,MH =2x. ∴CM =CN =3x.在Rt △CDN 中,DC =CN 2-DN 2=22x. 在Rt △MNH 中,MN =MH 2+HN 2=23x. ∴MN DN =23x x=2 3. 16.在正方形ABCD 中,点E ,F 分别在边BC ,AD 上,DE =EF ,过点D 作DG ⊥EF 于点H ,交AB 边于点G.(1)如图1,求证:DE =DG ;(2)如图2,将EF 绕点E 逆时针旋转90°得到EK ,点F 对应点K ,连接KG ,EG.若H 为DG 的中点,在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG 长度相等的线段(不包括EG).解:(1)证明:∵四边形ABCD 是正方形,∴AD =DC ,AD ∥BC ,∠DAG =∠DCE =90°. ∴∠DEC =∠EDF.∵DE =EF ,∴∠EFD =∠EDF. ∴∠EFD =∠DEC.∵DG ⊥EF ,∴∠GHF =90°. ∴∠DGA +∠AFH =180°. ∵∠AFH +∠EFD =180°,∴∠DGA =∠EFD =∠DEC. 在△DAG 和△DCE 中,∠DGA =∠DEC ,∠DAG =∠DCE ,DA =DC ,∴△DAG ≌△DCE(AAS).∴DG =DE.(2)与线段EG 相等的线段有:DE ,DG ,GK ,KE ,EF.17.如图,BD 是正方形ABCD 的对角线,线段BC 在其所在的直线上平移,将平移得到的线段记为PQ ,连接PA ,过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP.(1)如图1所示,求证:AP =2OA ;(2)如图2所示,PQ 在BC 的延长线上,如图3所示,PQ 在BC 的反向延长线上,猜想线段AP ,OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABD =∠CBD =45°. ∵QO ⊥BD ,∴∠BOQ =90°. ∴∠BQO =∠CBD =45°.∴OB =OQ. ∵PQ =BC ,∴AB =PQ.在△ABO 和△PQO 中,OB =OQ ,∠ABO =∠PQO ,AB =PQ ,∴△ABO ≌△PQO(SAS).∴OA =OP ,∠AOB =∠POQ. ∵∠BOP +∠POQ =90°,∴∠BOP +∠AOB =90,即∠AOP =90°. ∴△AOP 是等腰直角三角形.∴AP =2OA.(2)当PQ 在BC 的延长线上时,线段AP ,OA 之间的数量关系为AP =2OA ;当PQ 在BC 的反向延长线上时,线段AP ,OA 之间的数量关系为AP =2OA.。
中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)
中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 在平行四边形ABCD 中 AB AD ≠ ()0180A αα∠=︒<<︒ 点E F G H 分别是AB BC CD DA 的中点 连接EF FG GH HE 当α从锐角逐渐增大到钝角的过程中 四边形EFGH 的形状的变化依次为( )A .平行四边形→菱形→平行四边形B .平行四边形→菱形→矩形→平行四边形C .平行四边形→矩形→平行四边形D .平行四边形→菱形→正方形→平行四边形 2.如图 平行四边形ABCD 中 16AB = 12AD = 60A ∠=︒E 是边AD 上一点 且8AE =F 是边AB 上的一个动点 将线段EF 绕点E 逆时针旋转60︒ 得到EG 连接BG CG 则BG CG +的最小值是( ).A .4B .415C .421D 373.图1是一张菱形纸片ABCD 点,EF 是边,AB CD 上的点.将该菱形纸片沿EF 折叠得到图2 BC 的对应边B C ''恰好落在直线AD 上.已知60,6B AB ∠=︒= 则四边形AEFC '的周长为( )A .24B .21C .15D .124.如图 在矩形ABCD 中 8AB = 6BC = 点H 是AC 的中点 沿对角线AC 把矩形剪开得到两个三角形 固定ABC 不动 将ACD 沿AC 方向平移 (A '始终在线段AC 上)得到A C D '''△ 连接HD ' 设平移的距离为x 当HD '长度最小时 平移的距离x 的值为( )A .710B .185C .75D .2455.如图 Rt ABC △中 90C ∠=︒ 30A ∠=︒ 9AC = D 为AB 中点 以DB 为对角线长作边长为3的菱形DFBE 现将菱形DFBE 绕点D 顺时针旋转一周 旋转过程中当BF 所在直线经过点A 时 点A 到菱形对角线交点O 之间的距离为( )A B C D 6.中国结寓意团圆 美满 以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴 小陶家有一个菱形中国结装饰.测得8cm,6cm BD AC ==.则该菱形的面积为( )A .224cmB .248cmC .210cmD .212cm7.如图 在矩形ABCD 中 点O M 分别是,AC AD 的中点 3,5OM OB == 则AD 的长为( )A .12B .10C .9D .88.如图 已知正方形ABCD 和正方形BEFG 且A B E 三点在一条直线上 连接CE 以CE 为边构造正方形CPQE PQ ,交AB 于点M 连接CM 设APM BCM αβ∠=∠=,.若点Q B F 三点共线 tan tan n αβ= 则n 的值为( )A .12 B .23 C .35 D .67二 填空题9.如图 矩形ABCD 中 BE BF 将ABC ∠三等分 连接EF .若90BEF ∠=︒ 则:AB BC 的比值为 .10.如图 四边形ABCD 是边长为6的正方形 点E 在直线BC 上 若2BE = 连接AE 过点A 作AF AE ⊥ 交直线CD 于点F 连接EF 点H 是EF 的中点 连接BH 则BH = .11.如图 在平行四边形ABCD 中 对角线AC BD 、相交于点O 在不添加任何辅助线的情况下 请你添加一个条件 使平行四边形ABCD 是菱形.12.如图 在矩形ABCD 中 2AB = 对角线AC 与BD 交于点O 且120AOD ∠=︒ DE OC ∥ CE OD ∥ 则四边形OCED 的周长为 .13.如图 在菱形ABCD 中 2BD BC == 点E 是BC 的中点 点P 是对角线AC 上的动点 连接PB PE 则PB PE +的最小值是 .三 解答题14.如图 在菱形ABCD 中 连接AC 过B 作BE BA ⊥交AC 于点E 过D 作DF DC ⊥交AC 于点F .(1)求证:ADF CBE △≌△(2)若12AD = 60DAB ∠=︒ 求EF 的长.15.已知:在梯形ABCD 中 AD BC ∥ 90ABC ∠=︒ 6AB = :1:3BC AD = O 是AC 的中点 过点O 作OE OB ⊥ 交BC 的延长线于点E .(1)当BC EC =时 求证:AB OE =(2)设BC a = 用含a 的代数式表示线段BE 的长 并写出a 的取值范围(3)连结OD DE 当DOE 是以DE 为直角边的直角三角形时 求BC 的长.16.如图 平行四边形ABCD 中 点E 是对角线AC 上一点 连接BE DE , 且BE DE =.(1)求证:四边形ABCD 是菱形(2)若5AB = tan 2BAC ∠= 求四边形ABCD 的面积.17.已知:矩形ABCD 中 动点M 在BC 边上(不与点B C 、重合) MN AM ⊥交CD 于点N 连接DM .(1)如图1 若DM 平分ADC ∠ 求证:BM CN =(2)如图2 若2,3AB BC == 动点M 在移动过程中 设BM 的长为,x CN 的长为y ①则y 与x 之间的函数关系式为______①线段CN 的最大值为______.18.如图1 正方形ABCD 和正方形QMNP M 是正方形ABCD 的对称中心 MN 交AB 于F QM 交AD 于E .(1)猜想:ME 与MF 的数量关系为______(2)如图2 若将原题中的“正方形”改为“菱形” 且NMQ ABC 其它条件不变 探索线段ME 与线段MF 的数量关系 并说明理由(3)如图3 若将原题中的“正方形”改为“矩形” 且:1:2AB BC = 其它条件不变 直接写出:线段ME 与线段MF 的数量关系为______.参考答案:1.A2.C3.C4.C5.D6.A7.D8.B93:10.24211.AC BD ⊥12.8133①点E 是BC 的中点14.(1)解:①菱形ABCD①ADC CBA ∠=∠ AD BC = DAC BCA ∠=∠①BE BA ⊥ DF DC ⊥①90CDF ABE ∠=∠=︒①ADC CDF CBA ABE ∠-∠=∠-∠ 即:ADF CBE ∠=∠①()ASA ADF CBE ≌(2)解:①60DAB ∠=︒ 12AD = ①11603022BAE BAD ∠=∠=⨯︒=︒ 12AB CD AD === 33123AC AB ===①cos30ABAE===︒同理FC=BE CE==AC AE CE∴=+=①EF AE FC AC=+-==故答案为:15.(1)证明:90ABC∠=︒O是AC的中点OB OC∴=OBC OCB∴∠=∠OE BC⊥90BOEBC EC=CO BC∴=BC BO∴=90ABC BOE∠=∠=︒()ASAABC EOB∴≌AB EO∴=(2)解:OBC OCB∠=∠ABC BOE∠=∠ABC EOB∴∽∴BC ACOB BE=BC a=6AB=AC∴∴1a=236(06)2aBE aa+∴=<<(3)解:设BC a=则3AD a=①当90OED∠=︒时延长BO交AD于点G90BOE =︒∠BOE OED ∴∠=∠∴BG ED ∥//BE AD∴四边形BGDE 是平行四边形 BE DG ∴=BC AD ∥ ∴BCCOAG AO =BC AG a ∴== ∴23632a a a a +=-23a ∴= ①当90ODE ∠=︒时 分别过点O E 作OM AD ⊥ EN AD ⊥ 垂足分别为MNOMD DNE ∴∠=∠ MOD EDN ∠=∠OMD DNE ∴∽ ∴OMMDDN EN = 1122AM CB a ==52MD a ∴=2236365322a a DN AN AD a a a +-=-=-=∴253236562aa a=-a ∴=.综上所述BC 的长为 16.(1)证明:如图 连接BD 交AC 于O①平行四边形ABCD①BO DO =①BO DO = OE OE = BE DE = ①()SSS BOE DOE ≌①BEO DEO ∠=∠①AE AE = BEA DEA ∠=∠ BE DE = ①()SAS BEA DEA ≌①AB AD =①四边形ABCD 是菱形(2)解:①tan 2BAC ∠= ①2BO AO= 即2BO AO = ①四边形ABCD 是菱形①AC BD ⊥ 22AC AO BD BO ==,由勾股定理得 AB =解得 2AO =①48AC BD ==, ①1162ABCD S AC BD =⨯=四边形 ①四边形ABCD 的面积为16. 17.(1)解:在矩形ABCD 中 ,90AB CD B C ADC =∠=∠=∠=︒ DM 平分ADC ∠1452CDM ADC ∴∠=∠=︒ 45CDM CMD ∴∠=∠=︒CM CD AB ∴==90,BAM AMB MN AM ∠+∠=︒⊥90AMB CMN ∴∠+∠=︒BAM CMN ∴∠=∠()ABM MCN ASA ∴≌BM CN ∴=(2)解:①设BM 的长为,x CN 的长为y 则3MC x =- 由(1)得 ,,90BAM CMN AB CD B C ∠=∠=∠=∠=︒ ABM MCN ∴∽AB BM MC CN∴= 23x x y∴=- 213(03)22y x x x ∴=-+<< 故答案为:213(03)22y x x x =-+<< ①当32x =时 y 有最大值 最大值为98. 即线段CN 的最大值为98. 故答案为:98. 18.(1)解:①正方形ABCD 和正方形QMNP①90AMD EMF ∠=∠=︒ ,45DM AM ADM FAM =∠=∠=︒ DME AMF ∴∠=∠()ASA MDE MAF ∴≌ME MF ∴=.故答案为:相等.(2)解:过点M 作MH AD ⊥于H MG AB ⊥于G .①M 是菱形ABCD 的对称中心 ①M 是菱形ABCD 对角线的交点 ①AM 平分BAD ∠①MH MG =.①QMN B ∠=∠①180EMF BAD ∠+∠=︒. 又90MHA MGF ∠=∠=︒ ①180HMG BAD ∠+∠=︒ ①EMF HMG ∠=∠①EMH FMG ∠=∠. ①MHE MGF ∠=∠①()ASA MHE MGF ≌ ①ME MF =.(3)解:过点M 作MH AD ⊥于HMG AB ⊥于G .①QMN ABC ∠=∠①90BAD EMF ∠=∠=︒. 又①90MHA MGA ∠=∠=︒ ①90HMG ∠=︒.①EMF HMG ∠=∠①EMH FMG ∠=∠.①MHE MGF ∠=∠①MHE MGF △△∽①ME MH MF MG=.又①M是矩形ABCD的对称中心①M是矩形ABCD对角线的交点.又①MG AB⊥①MG BC∥且12MG BC=.同理可得12 MH AB=①2ME MF=.。
中考数学复习《平行四边形》专项综合练习含答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.(1)、动手操作:如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 .(2)、观察发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(3)、实践与运用:将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC 边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F 重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.【答案】(1)125°;(2)同意;(3)60°【解析】试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°;(2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形;(3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°,∴∠AEB=70°,∴∠BED=110°,根据折叠重合的角相等,得∠BEF=∠DEF=55°.∵AD∥BC,∴∠EFC=125°,再根据折叠的性质得到∠EFC′=∠EFC=125°.;(2)、同意,如图,设AD与EF交于点G由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.由折叠知,∠AGE=∠DGE=90°,所以∠AGE=∠AGF=90°,所以∠AEF=∠AFE.所以AE=AF,即△AEF为等腰三角形.(3)、由题意得出:∠NMF=∠AMN=∠MNF,∴MF=NF,由折叠可知,MF=PF,∴NF=PF,而由题意得出:MP=MN,又∵MF=MF,∴△MNF≌△MPF,∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,即3∠MNF=180°,∴∠MNF=60°.考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定2.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题3.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵22AD AB +13 ∴OB=1213 ∵BD ⊥EF ,∴EO=22BE OB=2133,∴EF=2EO=4133.点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题5.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.(1)求证:四边形ABDF 是菱形.(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.【答案】(1)证明见解析;(2)图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .【解析】【分析】(1)先求证BD ∥AF ,证明四边形ABDF 是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD 平分∠ABC ,得到BD 垂直平分线段AC ,进而证明△DAC 是等腰三角形,根据BD ⊥AC,AF ⊥AC ,找到角度之间的关系,证明△DAE 是等腰三角形,进而得到BC =BD =BA =AF =DF ,即可解题,见详解.【详解】(1)如图1中,∵∠BCD =∠BDC ,∴BC =BD ,∵△ABC 是等边三角形,∴AB =BC ,∵AB =AF ,∴BD =AF ,∵∠BDC =∠AEC ,∴BD ∥AF ,∴四边形ABDF 是平行四边形,∵AB =AF ,∴四边形ABDF是菱形.(2)解:如图2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分线段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【点睛】本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.6.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF 与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.考点:四边形综合题.7.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.8.(1)问题发现如图1,点E. F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC 满足的等量关系,并写出推理过程。
2021年中考九年级数学压轴题专题复习:四边形 综合练习(无答案)
2021年中考九年级数学压轴题专题复习:四边形综合练习1、如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.2、如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E作EF ⊥AC交AD于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求BE2的值.3、已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.4、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。
已知∠BAC=30º,EF⊥AB,垂足为F,连结DF。
(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形。
5、如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.6、如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处。
(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积。
7、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)求证:△ABC≌△EAF;(2)试判断四边形EFDA的形状,并证明你的结论.8、如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF 绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.9、已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.10、在矩形ABCD中,=a,点G,H分别在边AB,DC上,且HA=HG,点E为AB 边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.(1)如图1,当DH=DA时,①填空:∠HGA= 度;②若EF∥HG,求∠AHE的度数,并求此时的最小值;(2)如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG ⊥AB,G为垂足,求a的值.11、已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF。
2021年九年级中考数学考前强化练习:《四边形综合》(三)
2021年九年级中考数学考前强化练习:《四边形综合》(三)1.在平面直角坐标系中(单位长度为1cm),已知点A(0,m),N(n,0),且+|m+n ﹣10|=0.(1)m=,n=.(2)如图,若点E是第一象限内的一点,且EN⊥x轴,过点E作x轴的平行线a,与y 轴交于点A,点P从点E处出发,以每秒2cm的速度沿直线a向左移动,点Q从原点O 同时出发,以每秒1cm的速度沿x轴向右移动.①经过几秒PQ∥y轴?②若某一时刻以A、O、Q、P为顶点的四边形的面积是10cm2,求此时点P的坐标.2.如图,在▱ABCD,点E为AD的中点,延长BE、CD交于点F,连接AF,BD,CE.(1)求证:四边形ABDF为平行四边形.(2)若BE为∠ABC的角平分线,AB=5,CE=6,求△AEF的面积.3.已知正方形ABCD,点E,F分别在射线BC,射线CD上,BE=CF,AE与BF交于点H.(1)如图1,当点E,F分别在线段BC,CD上时,求证:AE=BF,且AE⊥BF;(2)如图2,当点E在线段BC延长线上时,将线段BE沿BF平移至FG,连接AG.①依题意将图2补全;②用等式表示线段AG,FG和AD之间的数量关系,并证明.4.如图,正方形ABCD中,点E在AB上,点F在BC的延长线上,DF⊥DE,EG平分∠BEF 交BD于点G.(1)求证:DE=DF;(2)请写出线段DG和DF的数量关系并证明;(3)作GH⊥EF于点H,请直接写出线段AB、GH与EF的数量关系.5.在菱形ABCD中,∠ABC=60°,点K是线段AB延长线上一点,点E是∠CBK的平分线上一点,连接DE,取DE的中点F,连接BF.(1)依照题意补全图形.(2)求证:∠FDA=∠FBA.(3)若点G是线段BE延长线上任意一点,连接CG,点H为CG中点,连接FH,用等式表达EG,DA,FH的数量关系,并证明.6.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF=AE,连接DE、DF.(1)求证:DE⊥DF;(2)连接EF,取EF中点G,连接DG并延长交BC于H,连接BG.①依题意,补全图形;②求证:BG=DG;③若∠EGB=45°,用等式表示线段BG、HG与AE之间的数量关系,并证明.7.在△ABC中,BC=AC,∠C=90°,D是BC边上一个动点(不与点B,C重合),连接AD,以AD为边作正方形ADEF(点E,F都在直线BC的上方),连接BE.(1)根据题意补全图形,并证明∠CAD=∠BDE;(2)用等式表示线段CD与BE的数量关系,并证明;(3)用等式表示线段AD,AB,BE之间的数量关系(直接写出).8.如图,平行四边形ABCD中,BC=BD.点F是线段AB的中点.过点C作CG⊥DB交BD于点G,CG延长线交DF于点H.且CH=DB.(1)如图1,若DH=1.求FH的值;(2)如图2,连接FG.求证:DB=FG+HG.9.如图,在正方形ABCD中,E为边CD上一点(不与点C,D重合),垂直于BE的一条直线MN分别交BC,BE,AD于点M,P,N,正方形ABCD的边长为6.(1)如图1,当点M和点C重合时,若AN=4,求△CDN的面积为.(2)在(1)的条件下求线段PM的长度;(3)如图2,当点M在BC边上时,判断线段AN,MB,EC之间的数量关系,并说明理由.10.如图,在边长为6的正方形ABCD中,点M为对角线BD上任意一点(可与B,D重合),连接AM,将线段AM绕点A逆时针旋转90°得到线段AN,连接MN,DN,设BM=x.(1)求证:△ABM≌△ADN;(2)当时,求MN的长;(3)嘉淇同学在完成(1)后有个想法:“△ABM与△MND也会存在全等的情况”,请判断嘉淇的想法是否正确,若正确,请直接写出△ABM与△MND全等时x的值;若不正确,请说明理由.11.在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴、y轴上,点B的坐标为,将矩形OABC 绕点A 顺时针旋转α,得到矩形O 1AB 1C 1,点O ,B ,C 的对应点分别为O 1,B 1,C 1.(Ⅰ)如图①,当α=45°时,O 1C 1与AB 相交于点E ,求点E 的坐标;(Ⅱ)如图②,当点O 1落在对角线OB 上时,连接BC 1,四边形OAC 1B 是何特殊的四边形?并说明理由;(Ⅲ)连接BC 1,当BC 1取得最小值和最大值时,分别求出点B 1的坐标(直接写出结果即可).12.如图,在平面直角坐标系中,已知菱形ABCD ,A (﹣3,0),B (2,0),D 在y 轴上.直线l 从BC 出发,以每秒1个单位长度的速度沿CD 向左平移,分别与CD 、BD 交于E 、F .设△DEF 的面积为S ,直线l 平移时间为t (s )(0<t <5). (1)求点C 的坐标; (2)求S 与t 的函数表达式;(3)过点B 作BG ⊥l ,垂足为G ,连接AF 、AG ,设△AFG 的面积为S 1,△BFG 的面积为S 2,当S 1+S 2=S 时,若点P (1﹣a ,a +3)在△DEF 内部(不包括边),求a 的取值范围.13.如图,A (0,3)是直角坐标系y 轴上一点,动点P 从原点O 出发,沿x 轴正半轴运动,速度为每秒2个单位长度,以P 为直角顶点在第一象限内作等腰Rt △APB .设P 点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)如图2,当t=2时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.14.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:给出下列图形:①平行四边形;②矩形;③菱形;④正方形.其中一定是“垂美四边形”的是(填序号);(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.求证:AB2+CD2=AD2+BC2;(3)解决问题:如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE.已知AC=,AB=3.①请问四边形CGEB是垂美四边形吗?并说明理由;②求GE的长.15.如图,四边形ABCD为正方形,点E为正方形ABCD外一点,且AD=AE,连接BE,∠DAE 的角平分线交BE于点P,连接CP,设∠DAE=α.(1)当α=60°,求∠APB的大小;(2)在(1)的条件下,当PE=2时,求AB的长;(3)当0°<α<60°时,求PA,PB,PC三条线段满足的等量关系.参考答案1.解:(1)依题意,得,解得;故答案为:4,6;(2)①设经过x秒PQ平行于y轴,依题意,得6﹣2x=x,解得x=2,∴经过2秒PQ∥y轴;②当点P在y轴右侧时,依题意,得,解得x=1,此时点P的坐标为(4,4),当点P在y轴左侧时,依题意,得,解得x=,此时点P的坐标为(﹣,4).综合以上可得点P的坐标为(4,4)或(﹣,4).2.解:(1)证明:由题意得,AB∥CF,∴∠ABE=∠DFE,又∵点E为AD的中点,∴AE=DE,在△ABE和△DFE中,,∴△ABE≌△DFE(AAS)∴AB =DF , 又∵AB ∥DF ,∴四边形ABDF 为平行四边形(一组对边平行且相等的四边形是平行四边形); (2)过点F 作AD 的垂线交AD 延长线于点K ,过点D 作DH ⊥EC ,过点E 作EG ⊥CD ,∵S △AEF =;,∴S △AEF =S △EDF ,又∵BE 为∠ABC 的角平分线, ∴∠ABE =∠EBC , 又∵AD ∥BC , ∴∠EBC =∠FED , 而∠ABE =∠DFE , ∴∠FED =∠DFE , ∴ED =FD ,由(1)可知AB =DC =FD =5, ∴ED =FD =DC =5, 又∵S △EFD =,S △EDC =,∴S △AEF =S △EDF =S △ECD ,在等腰△EDC 中,ED =CD =5,EC =6, ∵DH ⊥EC , ∴EH ===3,在Rt △EHD 中,ED =5,EH =3, ∴DH ===4,∴S △ECD ==12,∴S△AEF =S△EDF=S△ECD=12,故S△AEF=12.3.解:(1)如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵∠CBF+∠ABH=90°,∴∠BAE+∠ABH=90°,∴∠AHB=90°,∴AE⊥BF,故AE=BF,且AE⊥BF;(2)①补全图如图2所示;②AG2=2AD2+2FG2.理由如下:如图3,连接EG,∵线段BE沿BF平移至FG,∴四边形BEGF是平行四边形,∴EG=BF,EG∥BF,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BFC=∠AEB,∴EG=BF=AE,∵∠BFC+∠CBF=90°,∴∠AEB+∠CBF=90°,∴∠BHE=90°,∵EG∥BF,∴∠AEG=∠BHE=90°,∴AG2=AE2+EG2=2AE2,∵AE2=AB2+BE2=AD2+FG2,∴AG2=2AD2+2FG2.4.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠BAD=∠BCD=90°,∴∠CDE+∠EDA=90°,∠FCD=∠EAD=90°,∵DE⊥DF,∴∠FDC+∠CDE=90°,∴∠FDC=∠EDA,∴△EDA≌△FDC(ASA),∴DE=DF;(2)解:DG=DF,证明如下:由(1)得:DE=DF,∵∠FDE=90°,∴∠DEF是等腰直角三角形,∴∠DFE=∠DEF=45°,∴∠DEG=45°+∠FEG,∵四边形ABCD是正方形,∴∠ABG=45°,∴∠DGE=∠ABG+∠BEG=45°+∠BEG,∵EG平分∠BEF,∴∠FEG=∠BEG,∴∠DEG=∠DGE,∴DE=DG,∴DG=DF;(3)解:AB﹣GH=EF,理由如下:过点G作GM⊥AB于M,如图所示:∵EG平分∠BEF,GM⊥AB,GH⊥EF,∴GM=GH,∵∠ABG=45°,∴△BGM、△ABD是等腰直角三角形,∴BG=GM=GH,BD=AB,由(2)可知,DG=DE,△DEF是等腰直角三角形,∴EF=DE,∵DE=DG,∴DG=EF,∵BD﹣BG=DG,∴AB﹣GH=EF,∴AB﹣GH=EF.5.解(1)如图所示.(2)如图所示,连接DB,∵四边形ABCD是菱形,∴BD平分∠ABC,∴∠DBC=∠ABC=30°,同理∠CBE=∠CBK=60°,∴∠DBE=∠DBC+∠CBE=90°,在Rt△DBE中,F为BE中点,∴BF=DE=DF,∴∠FDB=∠FBD,∵DA=AB,∴∠ADB=∠ABD,∴∠FDA=∠FBA.(3)4FH2=EG2+DA2+EG•DA.如图1所示,连接CE,取CE中点为点M,连接FM,HM,延长HM交AB于点N,不妨设EG=a,DA=b,FH=c,∵H,M分别为CG,CE的中点,∴HM∥GE,且HM=EG=a,同理FM∥DC,且FM=DC=DA=b.∴∠HMF=∠MNA=∠ABG=120°;如图2所示,过点H作HP⊥FP交FM延长线于点P,在Rt△HMP中,∠HMP=60°,HM=a,∴MP=a,HP=a.∴FP=b+a.在Rt△HMP中,∠HPM=90°,∴HP2+MP2=HM2,即(a)2+(b+a)2=c2,化简得:4c2=a2+b2+ab.即4FH2=EG2+DA2+EG•DA.6.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DE⊥DF;(2)①解:依题意,补全图形如图所示:②证明:由(1)可知,△DEF和△BEF都是直角三角形,∵G是EF的中点,∴DG=EF,BG=EF,∴BG=DG;③解:BG2+HG2=4AE2,证明如下:由(1)可知,△ADE≌△CDF,DE⊥DF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DEG=45°,∵G为EF的中点,∴DG⊥EF,DG=EF=EG,BG=EF=EG=FG,∴∠EGD=∠HGF=∠DGF=90°,∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,∵∠EGB=45°,∴∠GBF=∠GFB=22.5°,∵∠DHF+∠HFG=∠DHF+∠CDH=90°,∴∠HFG=∠CDH=22.5°,∴∠CDF=∠GDF﹣∠HDC=22.5°=∠CDH,又∵∠DCH=∠DCF=90°,CD=CD,∴△CDH≌△CDF(ASA),∴CH=CF,在Rt△GHF中,由勾股定理得:GF2+HG2=HF2,∵HF=2CF=2AE,GF=BG,∴BG2+HG2=(2AE)2,∴BG2+HG2=4AE2.7.解:(1)补全图形如下:∵正方形ADEF,∴∠ADE=90°,∴∠BDE=180°﹣∠ADE﹣∠ADC=90°﹣∠ADC,∵∠C=90°,∴∠CAD=90°﹣∠ADC,∴∠CAD=∠BDE;(2)CD与BE的数量关系为:BE=CD,证明如下:过E作EG⊥CB于G,如图:∵四边形ADEF是正方形,∴AD=DE,∵EG⊥CB,∴∠G=90°=∠C,在△ACD和△DGE中,,∴△ACD≌△DGE(AAS),∴CD=EG,AC=DG,∵AC=BC,∴DG=BC,∴DG﹣DB=BC﹣DB,即BG=CD,∴BG=EG,∴△BGE是等腰直角三角形,∴BE=BG,∴BE=CD;(3)AD,AB,BE之间的数量关系为:AB2=2AD2﹣BE2,理由如下:∵∠C=90°,AC=BC,∴AB2=AC2+BC2=2AC2,AC2=AD2﹣CD2,∴AB2=2(AD2﹣CD2),而BE=CD,∴CD2=BE2,∴AB2=2(AD2﹣BE2),即AB2=2AD2﹣BE2.8.(1)证明:如图1中,∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AB∥CD,∵BD=BC,∴AD=BD,∵AF=FB,∴DF⊥AB,∴DF⊥DC,∵CG⊥BD,∴∠CDH=∠CGD=∠DFB=90°,∴∠BDF+∠CDG=90°,∠CDG+∠DCH=90°,∴∠BDF=∠DCH,∵CH=DB,∴△DFB≌△CDH(AAS),∴DH=BF,CD=DF,∴AB=DF,∵AB=2BF,∴DF=2DH=2,∴FH=DH=1;(2)解:如图1中,过点F作FJ⊥BD于J,FK⊥CH交CH的延长线于K.过点D作DT⊥DF交FG的延长线于T,连接CT,设FT交CD于N.∵∠K=∠FJG=∠KGJ=90°,∴四边形FKGJ是矩形,∴∠FKJ=90°,∵∠DFB=90°,∴∠KFH=∠BFJ,∵∠K=∠FJB=90°,FH=FB,∴△FKH≌△FJB(AAS),∴FK=FJ,∵FK⊥GK,FJ⊥GJ,∴FG平分∠KGJ,∴∠FGH=∠FGJ=45°,∵∠DGT=∠FGJ=45°,∠GDT=90°,∴DG=DT,∵∠FDC=∠GDT=90°,∴∠FDG=∠CDT,∵DF=DC,∴△FDG≌△CDT(SAS),∴FG=CT,∠DFN=∠TCN,∵∠DNF=∠CNF,∴∠FDN=∠CTN=90°,∵∠TGC=∠FGK=45°,∴TG=TC,CG=CT=FG,∴BD=CH=GH+CG=GH+FG,∴DB=FG+HG.9.解:(1)∵四边形ABD是正方形,∴AD=CD=6,∠D=90°,∵AN=4,∴DN=AD﹣AN=2,∴△CDN的面积=CD×DN=×6×2=6,故答案为:6;(2)∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∠D=∠BCE=90°,∵BE⊥MN,点M和点C重合,∴MD=BC=6,∠DMN+∠BCP=90°,∠CBE+∠BCP=90°,∴∠DMN=∠CBE,在△DMN和△CBE中,,∴△DMN≌△CBE(AAS),∴MN=BE,DN=CE,∵AN=4,∴CE=DN=AD﹣AN=6﹣4=2,由勾股定理得:MN===2,∴BE=2,∵MN⊥BE,∴△BME的面积=BE×PM=BC×CE,∴PM===;(3)线段AN、MB、EC之间的数量关系为:AN+EC=MB,理由如下:过点N作NF⊥BC于N,如图2所示:则四边形ANFB为矩形,∴AN=BF,NF=AB=BC,∵MN⊥BE,∴∠EBC+∠PMB=90°,∠MNF+∠NMF=90°,∴∠EBC=∠MNF,在△EBC和△MNF中,,∴△EBC≌△MNF(ASA),∴FM=EC,∴MB=BF+FM=AN+EC,即AN+EC=MB.10.(1)证明:在正方形ABCD中,AB=AD,由旋转的性质知:AM=AN,∵∠BAD=∠MAN=90°,∴∠BAM=∠DAN,在△ABM和△ADN中,,∴△ABM≌△ADN(SAS).解:(2)∵BD是正方形ABCD的对角线,且AB=6,∴,∠ADB=45°,∴,由△ABM≌△AND得:,∠ADN=∠ABM=45°,∴∠MDN=∠ADB+∠AND=45°+45°=90°,在Rt△MDN中,.(3)正确;.理由如下:如图:当AM⊥BD,易得△ABM和△ADN是全等的等腰直角三角形,∴∠NDA=∠ABM=45°,AN=AM,∵正方形ABCD中,∠ADB=∠ABD=45°,∴∠NDM =90°,∵∠NAM =∠AMD =∠∠NDM =90°,∴四边形AMDN 为矩形,又∵AN =AM ,∴矩形AMDN 为正方形,∴△NMD ≌△DAN (SAS ),∴△NMD ≌△ABM (全等传递性),此时AM ===3.当△ABM 与△MND 全等时x =3.11.解:(Ⅰ)∵矩形OABC ,∴∠OAB =90°.∵∠OAO 1=45°,∴∠O 1AE =45°,∵∠AO 1E =90°,O 1A =OA =2, ∴, ∴E ;(Ⅱ)四边形OAC 1B 是平行四边形,在Rt△AOB中,,∴∠BOA=60°,同理,∠O1AC1=60°.∵OA=O1A,∴△OAO1是等边三角形,∴∠OAO1=60°,∴AC1与x轴的夹角=180﹣∠O1AO﹣∠C1AO1=180﹣60﹣60=60°,∴BO∥AC1,又BO=AC1,∴四边形OAC1B为平行四边形;(Ⅲ)点C1的运动路径是以A为圆心,AC1为半径的圆,当点C1在AB延长线上时,BC1为最小值,过点B1为作B1G⊥x轴A于点G,在Rt△B1AG中,∠B1AG=180﹣90﹣30=60°,∴,,当BC1取得最小值时点B1的坐标为;当点C1在A延A长线上时,BC1为最大值,过点B1为作B1H⊥x轴A于点H,在Rt△B1AH中,∠B1AH=180﹣90﹣30=60°,∴,,当BC1取得最大值时点B1的坐标为(,﹣3),综上所述当BC1取得最小值和最大值时点B1的坐标分别为,.12.解:(1)∵AB=2﹣(﹣3)=5=AD=CD,则OD==4,故点C的坐标为(5,4);=CD×OD=5×4=10,(2)S△DBC∵l∥BC,∴△DEF∽△DCB,则S:S△DBC=(DE:CD)2=(5﹣t)2:52,∴S=10×=t2﹣4t+10;(3)设直线l与x轴交于点K,则BK=CE=t,∵l∥AD,故∠GKB=∠ADO,则tan∠GKB=tan∠ADO=,则sin∠GKB=,则sin∠GBK=,则KG=BK sin∠GBK=t,则GF=5﹣(5﹣t)﹣t=t,则EF=DE=5﹣t,设点B到AD的距离为h,则S△ABD=×AB×OD=AD×h,则h=OD=4,∴S1+S2=GF×h=t××4=t=S,而S=10×=t2﹣4t+10;故点E(2.5,4);由点A、D的坐标得,直线AD表达式为y=x+4,故设直线l的表达式为y=x+t,将点E的坐标代入上式得:4=×+t,解得t=,故直线l的表达式为y=x+①,令y=x+=0,解得x=﹣,故点K的坐标为(﹣,0),由点P的坐标知,点P在直线y=﹣x+4②上,联立①②并解得,两个函数的交点坐标为(,),则0<x P<,则0<1﹣a<,解得﹣<a<1.13.解:(1)过点B作BC⊥x轴于点C,如图所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为矩形,∴AO=BC=3,∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°﹣∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=3,∴t=3÷2=1.5(秒),故t的值为1.5;(2)当t=2时,M、P、B为顶点的三角形和△ABP全等,①如图3,若△ABP≌△MBP,则AP=PM,过点M作MD⊥OP于点D,∵∠AOP=∠PDM,∠APO=∠DPM,∴△AOP≌△MDP(AAS),∴OA=DM=3,OP=PD=4,∴M(8,﹣3).②如图4,若△ABP≌△MPB,同理可求得M(3,7),③如图5,若△ABP≌△MPB,同理可求得M(7,﹣1).综合以上可得点M的坐标为(3,7),(8,﹣3),(11,﹣1).14.解:(1)∵菱形、正方形的对角线垂直,∴菱形、正方形都是垂美四边形.故答案为:③④.(2)证明:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理,得AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AB2+CD2=AD2+BC2;(3)①连接CG、BE,AB与CE交于点O,BG与CE交于点N,如图2,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AOE=90°,∴∠ABG+∠AOE=90°,即CE⊥BG,∴四边形CGEB是垂美四边形;②由(2)得,CG2+BE2=CB2+GE2,∵AC=,AB=3,∴BC===2,CG=AC=,BE=AB=3,∴GE2=CG2+BE2﹣CB2==24,∴GE=2.15.解:(1)∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AD=AE,∠DAE=60°,∴AB=AE,∠BAE=∠BAD+∠DAE=150°,∴∠ABE=AEB=(180°﹣∠BAE)=×(180°﹣∠BAE)=15°,∵AP平分∠DAE,∴∠PAE=∠DAE=30°,∴∠APB=∠PAE+∠AEP=30°+15°=45°;(2)连接PD,∵AD=AE,∠DAE=60°,∴△ADE为等边三角形,∴∠AED=∠ADE=60°,DE=AD,∵∠DAP=∠EAP,AP=AP,∴△DAP≌△EAP(SAS),∴PD=PE,∴∠PED=∠PDE,∵∠AEP=15°,∴∠PED=45°,∴∠DPE=90°,∵PE=2,∴DE=PE=2,∴AB=AD=DE=2;(3)PC+PA=PB.如图2,过点B作BH⊥BE交PA延长线于点H,∴∠HBE=90°,∵∠APB=45°,∴∠BHP=180°﹣∠HBE﹣∠APB=45°,∴∠BHP=∠APB,∴BH=BP,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠HBE=∠ABC,∴∠HBE﹣∠ABE=∠ABC﹣∠ABE,即∠HBA=∠EBC,在△PBC与△HBA中,,∴△PBC≌△HBA(SAS),∴∠BPC=∠BHP=45°,BP=BH,CP=AH,∴∠HBE=90°,∴PH2=BH2+BP2=2BP2,即PH=BP,∴PC+PA=AH+AP=PH=BP.。
中考数学压轴题专项训练:四边形的综合(含答案)
2020年数学中考压轴题专项训练:四边形的综合1.如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=BC.(2)解:当F运动到AF=AD时,FD∥BG.理由:由(1)知DG=BC,∵AB=AD+BC,AF=AD,∴BF=BC=DG,∴AB=AG,∵∠BAG=90°,∴∠AFD=∠ABG=45°,∴FD∥BG.(3)解:结论:FH=HD.理由:由(1)知GE=BG,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,∵FD∥BG,∴AE⊥FD,∵△AFD为等腰直角三角形,∴FH=HD.2.如图,在矩形ABCD中,过BD的中点O作EF⊥BD,分别与AB、CD交于点E、F.连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若M是AD中点,联结OM与DE交于点N,AD=OM=4,则ON的长是多少?(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,∵∠DOF=∠EOB,OD=OB,∴△DOF≌△BOE(AAS),∴DF=BE,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.(2)解:∵DM=AM,DO=OB,∴OM∥AB,AB=2OM=8,∴DN=EN,ON=BE,设DE=EB=x,在Rt△ADE中,则有x2=42+(8﹣x)2,解得x=5,∴ON=.3.(1)如图1,四边形EFGH中,FE=EH,∠EFG+∠EHG=180°,点A,B分别在边FG,GH 上,且∠AEB=∠FEH,求证:AB=AF+BH.(2)如图2,四边形EFGH中,FE=EH,点M在边EH上,连接FM,EN平分∠FEH交FM 于点N,∠ENM=α,∠FGH=180°﹣2α,连接GN,HN.①找出图中与NH相等的线段,并加以证明;②求∠NGH的度数(用含α的式子表示).(1)证明:如图1中,延长BH到M,使得HM=FA,连接EM.∵∠F+∠EHG=180°,∠EHG+∠EHM=180°,∴∠F=∠EHM,∵AE=HE,FA=HM,∴△EFA≌△EHM(SAS),∴EA=EM,∠FEA=∠HEM,∵∠EAB=∠FEH,∴∠FEA+∠BEH=∠HEM+∠BEH=∠BEM=∠FEH,∴∠AEB=∠BEM,∵BE=BE,EA=EM,∴△AEB≌△MEB(SAS),∴AB=BM,∵BM=BH+HM=BH+AF,∴AB=AF+BH.(2)解:①如图2中,结论:NH=FN.理由:∵NE平分∠FEH,∴∠FEN=∠HEN,∵EF=EH,EN=EN,∴△ENF≌△ENH(SAS),∴NH=FN.②∵△ENF≌△ENH,∴∠ENF=∠ENH,∵∠ENM=α,∴∠ENF=∠ENH=180°﹣α,∴∠MNH=180°﹣α﹣α=180°﹣2α,∵∠FGH=180°﹣2α,∴∠MNH=∠FGH,∵∠MNH+∠FNH=180°,∴∠FGH+∠FNH=180°,∴F,G,H,N四点共圆,∵NH=NF,∴=,∴∠NGH=∠NGF=∠FGH=90°﹣α.4.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB===5,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠NMA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴=,∴=,解得x=,∴AM=,∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴=,∴=,∴PC=1.5.如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.解:(1)如图1中,∵四边形ABCD是平行四边形,∴AB∥CB,∠ADC+∠DAB=180°,∵∠DAB=60°,∴∠ADC=120°.(2)如图1中,作AH⊥CD交CD的延长线于H.在Rt△ADH中,∵∠H=90°,∠ADH=60°,AD=2,∴AH=AD•sin60°=,DH=AD•cos60°=,∵DE=EC=,∴EH=DH+DE=2,∴AE===,∵CF⊥AF,∴∠F=∠H=90°,∵∠AEH=∠CEF,∴△AEH∽△CEF,∴=,∴=,∴EF=.(3)如图2中,作△AFC的外接圆⊙O,作AH⊥CD交CD的郯城县于H,作OK⊥CD于K,交⊙O于M,作FP∥CD交AD的延长线于P,作MN∥CD交AD的延长线于M,作NQ⊥CD于Q.∵DE∥PF,∴=,∵AD是定值,∴PA定值最大时,定值最大,观察图象可知,当点F与点M重合时,PA定值最大,最大值=AN的长,由(2)可知,AH=,CH=,∠H=90°,∴AC===,∴OM=AC=,∵OK∥AH,AO=OC,∴KH=KC,∴OK==,∴MK=NQ=﹣,在Rt△NDQ中,DN===﹣,∴AN=AD+DN=+,∴的最大值==+.6.如图,在边长为2的正方形ABCD中,点P是射线BC上一动点(点P不与点B重合),连接AP、DP,点E是线段AP上一点,且∠ADE=∠APD,连接BE.(1)求证:AD2=AE•AP;(2)求证BE⊥AP;(3)直接写出的最小值.(1)证明:∵∠DAE=∠PAD,∠ADE=∠APD,∴△ADE∽△APD,∴=,∴AD2=AE•AP(2)证明:∵四边形ABCD是正方形,∴AD=AB,∠ABC=90°,∴AB2=AE•AP,∴=,∵∠BAE=∠PAB,∴△ABE∽△APB,∴∠AEB=∠ABP=90°,∴BE⊥AP.(3)∵△ADE∽△APD,∴=,∴=,∵AD=2,∴DE最小时,的值最小,如图,作△ABE的外接圆⊙O,连接OD,OE,易知OE=1,OD=,∴DE≥OD﹣OE=﹣1,∴DE的最小值为﹣1,∴的最小值=.7.在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC 的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.8.阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,试在垂美四边形ABCD中探究AB2,CD2,AD2,BC2之间的关系,并说明理由;(3)解决问题:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE、CE交BG于点N,交AB于点M.已知AC=,AB=2,求GE的长.解:(1)如图2,四边形ABCD是垂美四边形;理由如下:连接AC、BD交于点E,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:AB2+CD2=AD2+BC2,证明:如图1,在四边形ABCD中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AB2+CD2=AO2+BO2+OD2+OC2AD2+BC2=AO2+BO2+OD2+OC2∴AB2+CD2=AD2+BC2,(3)如图3,连接CG,BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,FMNG图 3EDCAB∴△GAB≌△CAE(SSS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠BMN=90°,∴∠BNC=90°,即BG⊥CE,∴四边形CGEB是垂美四边形,由(2)得:EG2+BC2=CG2+BE2∵,AB=2,∴BC=1,,,∴EG2=CG2+BE2﹣BC2=6+8﹣2=13,∴.9.已知:如图,长方形ABCD中,∠A=∠B=∠B=∠D=90°,AB=CD=4米,AD=BC=8米,点M是BC边的中点,点P从点A出发,以1米/秒的速度沿AB方向运动再过点B沿BM方向运动,到点M停止运动,点O以同样的速度同时从点D出发沿着DA方向运动,到点A停止运动,设点P运动的时间为x秒.(1)当x=2秒时,线段AQ的长是 6 米;(2)当点P在线段AB上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=DQ?若存在,求出点P 的运动时间x的值;若不存在,请说明理由.解:(1)∵四边形ABCD是矩形,∴AD=BC=8,∵DQ=2,∴AQ=AD﹣DQ=8﹣2=6,故答案为6.(2)结论:阴影部分的面积不会发生改变.理由:连结AM,作MH⊥AD于H.则四边形ABMH是矩形,MH=AB=4.∵S阴=S△APM+S△AQM=×x×4+(8﹣x)×4=16,∴阴影面积不变;(3)当点P在线段AB上时,BP=4﹣x,DQ=x.∵BP=DQ,∴4﹣x=x,∴x=3.当点P在线段BM上时,BP=x﹣4,DQ=x.∵BP=DQ,∴x﹣4=x,∴x=6.所以当x=3或6时,BP=DQ.10.A,B,C,D是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片ABCD按图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为90°;(2)将长方形纸片ABCD按图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长方形纸片ABCD按图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH=m°,求∠B'FC'的度数为180°﹣2m°.解:(1)∵沿EF,FH折叠,∴∠BFE=∠B'FE,∠CFH=∠C'FH,∵点B′在FC′上,∴∠EFH=(∠BFB'+∠CFC')=×180°=90°,故答案为:90°;(2)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∵2x+18°+2y=180°,∴x+y=81°,∴∠EFH=x+18°+y=99°;(3)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∴∠EFH=180°﹣∠BFE﹣∠CFH=180°﹣(x+y),即x+y=180°﹣m°,又∵∠EFH=∠EFB'﹣∠B'FC'+∠C'FH=x﹣∠B'FC'+y,∴∠B'FC'=(x+y)﹣∠EFH=180°﹣m°﹣m°=180°﹣2m°,故答案为:180°﹣2m°.11.勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.(1)连接BI、CE,求证:△ABI≌△AEC;(2)过点B作AC的垂线,交AC于点M,交IH于点N.①试说明四边形AMNI与正方形ABDE的面积相等;②请直接写出图中与正方形BCFG的面积相等的四边形.(3)由第(2)题可得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,即在Rt△ABC中,AB2+BC2=AC2.(1)证明:∵四边形ABDE、四边形ACHI是正方形,∴AB=AE,AC=AI,∠BAE=∠CAI=90°,∴∠EAC=∠BAI,在△ABI和△AEC中,,∴△ABI≌△AEC(SAS);(2)①证明:∵BM⊥AC,AI⊥AC,∴BM∥AI,∴四边形AMNI的面积=2△ABI的面积,同理:正方形ABDE的面积=2△AEC的面积,又∵△ABI≌△AEC,∴四边形AMNI与正方形ABDE的面积相等.②解:四边形CMNH与正方形BCFG的面积相等,理由如下:∵Rt△ABC中,AB2+BC2=AC2,∴正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,由①得:四边形AMNI与正方形ABDE的面积相等,∴四边形CMNH与正方形BCFG的面积相等;(3)解:由(2)得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积;即在Rt△ABC中,AB2+BC2=AC2;故答案为:正方形ACHI,AC2.12.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D 落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18 °.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG 的长.解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠FAE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠的性质得:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在Rt△CEG和△FEG中,,∴Rt△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.13.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=7 时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24.当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=•(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤7时,S=(t﹣6)•(2t﹣8)=t2﹣10t+24=(t﹣5)2﹣1,t=7时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为9.14.综合实践:问题情境数学活动课上,老师和同学们在正方形中利用旋转变换探究线段之间的关系探究过程如下所示:如图1,在正方形ABCD中,点E为边BC的中点.将△DCE以点D为旋转中心,顺时针方向旋转,当点E的对应点E'落在边AB上时,连接CE'.“兴趣小组”发现的结论是:①AE'=C'E';“卓越小组”发现的结论是:②DE=CE',DE⊥CE'.解决问题(1)请你证明“兴趣小组”和“卓越小组”发现的结论;拓展探究证明完“兴趣小组”和“卓越小组”发现的结论后,“智慧小组”提出如下问题:如图2,连接CC',若正方形ABCD的边长为2,求出CC'的长度.(2)请你帮助智慧小组写出线段CC'的长度.(直接写出结论即可)(1)证明:①∵△DE'C'由△DEC旋转得到,∴DC'=DC,∠C'=∠DCE=90°.又∵四边形ABCD是正方形,∴DA=DC,∠A=90°,∴DA=DC',∵DE'=DE',∴Rt△DAE≌Rt△DC'E′(HL),∴AE'=C'E'.②∵点E为BC中点,C'E'=AE'=CE,∴点E'为AB的中点.∴BE′=CE,又∵DC=BC,∠DCE=∠CBE'=90°,∴△DCE≌△CBE'(SAS),∴DE=CE',∠CDE=∠E'CB,∵∠CDE+∠DEC=90°,∴∠E'CB+∠CED=90°,∴DE⊥CE'.(2)解:如图2中,作C′M⊥CD于M,交AB于N.∵AB∥CD,C′M⊥CD,∴C′M⊥AB,∴∠DMC′=∠C′NE′=∠DC′E′=90°,∴∠MDC′+∠DC′M=90°,∠DC′M+∠E′CN=90°,∴∠MDC′=∠E′C′N,∴△DMC′∽△C′NE′,∴===2,设NE′=x,则AM=AN=1+x,C′M=2x,C′N=(1+x),∵MN=AD=2,∴2x+(1+x)=2,解得x=,∴CM=2﹣(1+)=,MC=,∴CC′===.15.在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,且DM=DN.(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.①写出∠MDA=90 °,AB的长是18 .②求四边形AMDN的周长.(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.解:(1)①∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC=30°,∵ND∥AB,∴∠NDA=∠BAD=30°,∴∠MDA=∠MDN﹣∠NDA=120°﹣30°=90°,∵∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AC=AB,∴AB=2AC=18,故答案为:90,18;②∵∠ABC=30°,ND∥AB,∴∠NDC=30°,又∵∠MDN=120°,∴∠MDB=30°,∴∠MAD=∠NAD=∠ADN=∠MBD=30°,∴BM=MD,DN=AN,∵DM=DN,∴BM=MD=DN=AN,在Rt△ADM中,设MD=x,则AM=2x,BM=MD=DN=AN=x,∵AB=18,∴3x=18,∴x=6,∴AM=12,MD=DN=AN=6,∴四边形AMDN的周长=AM+MD+DN+AN=12+6+6+6=30;(2)补全图如图乙所示:证明:过点D作DE⊥AB于E,如图丙所示:∵DE⊥AB,DF⊥AC,AD平分∠BAC,∴∠DEM=∠DFN=90°,DE=DF,在Rt△DEA和Rt△DFA中,,∴Rt△DEA≌Rt△DFA(HL),∴AE=AF,在Rt△DEM和Rt△DFN中,,∴Rt△DEM≌Rt△DFN(HL),∴EM=FN,∴AM+AN=AE+EM+AF﹣NF=2AF.。
中考数学一轮复习《四边形》综合复习练习题(含答案)
中考数学一轮复习《四边形》综合复习练习题(含答案)一、单选题1.一个多边形的内角和为900°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形 2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED ′等于( )A .50°B .55°C .60°D .65°4.若一个正多边形的一个外角是60°,则这个正多边形的边数是( )A .10B .9C .8D .65.如图,四边形ABCD 是平行四边形,下列结论中正确的是( )A .当ABCD 是矩形时,90BAC ∠=︒B .当ABCD 是菱形时,AB BC ⊥ C .当ABCD 是正方形时,AC BD = D .当ABCD 是菱形时,AB AC =6.如图,在正方形ABCD 中,AE 平分BAC ∠交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE AF =,则CDF ∠的度数为( )A .45︒B .60︒C .67.5︒D .775︒.7.如图,要拧开一个边长为()=6mm a a 的正六边形,扳手张开的开口b 至少为( )A .43mmB .63mmC . 42mmD . 12mm8.如图,菱形ABCD 中,∠BAD = 60°,AB = 6,点E ,F 分别在边AB ,AD 上,将△AEF 沿EF 翻折得到△GEF ,若点G 恰好为CD 边的中点,则AE 的长为( )A .34B .214C 3154D .39.以下说法不正确的是( )A .平行四边形是抽对称图形B .矩形对角线相等C .正方形对角线互相垂直平分D .菱形四条边相等10.陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A.B.C.D.11.如图,AB是半圆O的直径,以弦AC为折痕折叠AC后,恰好经过点O,则AOC∠等于()A.120°B.125°C.130°D.145°12.如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数kyx=(k≠0,x>0)的图像上,点D的坐标为(﹣3,1),则k的值为()A.53B.3-C.3D.53-二、填空题13.如果一个多边形的每一个外角都是60︒,那么这个多边形的边数是_______.14.如图,在矩形ABCD中,E是AD边上一点,且2AE DE=,BD与CE相交于点F,若DEF 的面积是3,则BCF △的面积是______.15.如果正多边形的一个外角是45︒,则这个正多边形的内角和是________︒.16.巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成.如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _____.17.如图,四边形ABCD 是菱形,42BD =,26AD =,点E 是CD 边上的一动点,过点E 作EF ⊥OC 于点F ,EG ⊥OD 于点G ,连接FG ,则FG 的最小值为_________.18.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE AC ⊥交AD 于点E ,若4AB =,8BC =,则DE 的长为______.19.已知ABC 中,65A ∠=︒,将B C ∠∠、按照如图所示折叠,若35ADB '∠=︒,则123∠+∠+∠=_____︒.CE ,F 20.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5为DE的中点.若CEF△的周长为18,则OF的长为______.三、解答题21.如图,一组正多边形,观察每个正多边形中a的变化情况,解答下列问题.(1)将表格补充完整.正多边形的边数 3 4 5 6α的度数(2)观察上面表格中α的变化规律,角α与边数n的关系为.(3)根据规律,当α=18°时,多边形边数n=.22.如图,在ABCD中,AC=BC,M、N分别是AB和CD的中点.(1)求证:四边形AMCN是矩形;(2)若∠B=60°,BC=8,求ABCD的面积.23.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.24.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.25.如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE26.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:①CE与CG有怎样的位置关系?请说明理由.②CE+CG的值为.27.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【现察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则DECF的值为______.(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则CEBD的值______.【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE 的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD.28.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN⊥DM,且MN=32DM,连接DN.(1)如图1,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM.(2)如图2,当AM=4BM时,求证:A,C,N三点在同一条直线上.参考答案1.A2.A3.A4.D5.C6.C7.B8.B9.A10.C11.A12.B13.614.2715.108016.381718.319.265︒20.7221.(1)正多边形每个内角的度数为180(2)n n -. 1803,603n α===; 904,452n α===; 正五边形的内角180(52)1085-=,1801085,362n α-===; 正五边形的内角180(62)1206-=,1801206,302n α-===.(2)观察(1)中结论,1803,603n == 1804,454n == 1805,365n == 1806,306n == 总结规律,则有180n α=. (3)借助(2)中公式,有180n α=,即18018n= 解得10n =.22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD ,∵M 、N 分别是AB 和CD 的中点, ∴AM =BM ,AM ∥CN ,AM =CN , ∴四边形AMCN 是平行四边形,又∵AC =BC ,AM =BM ,∴CM ⊥AB ,∴∠CMA =90°,∴四边形AMCN 是矩形;(2)解:∵∠B =60°,BC =8,∠BMC =90°, ∴∠BCM =30°,∴Rt △BCM 中,BM =12BC =4,CM∵AC =BC ,CM ⊥AB ,∴AB =2BM =8,∴ABCD 的面积为AB ×CM23.(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,OB =OD ,OA =OC , ∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴BE =12OB ,DF =12OD ,∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CDF (SAS ) .(2)当AB =12AC 时,四边形EGCF 是矩形;理由如下: 当AB =12AC 时,∵AC =2OA ,AC =2AB ,∴AB =OA ,∵E 是OB 的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.24.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)解:∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10,∴AF =8,∴DF =2,设EF =x ,则CE =x ,DE =6-x ,∵∠FDE =90°,∴22+(6-x )2=x 2,解得,x =103, ∴CE =103, ∴四边形CEFG 的面积是:CE •DF =103×2=203. 25.解:四边形ABCD 是矩形,AB DC ∴=,90BAD CDA ∠=∠=︒,AE DE =,EAD EDA ∴∠=∠,EAB BAD EAD CDA EDA EDC ∴∠=∠+∠=∠+=∠, 在ABE ∆和DCE ∆中,AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩()ABE DCE SAS ∴∆∆≌.26.(1)如图,作EM ⊥BC 于M ,EN ⊥CD 于N ,又∠BCD =90°,∴∠MEN =90°,∵点E 是正方形ABCD 对角线上的点,∴EM =EN ,∵∠DEF =90°,∴∠DEN =∠MEF =90°﹣∠FEN ,∵∠DNE =∠FME =90°,在△DEN 和△FEM 中,DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DEN ≌△FEM (ASA ),∴EF =DE ,∵四边形DEFG 是矩形,∴矩形DEFG 是正方形;(2)①CE ⊥CG ,理由如下:∵正方形DEFG 和正方形ABCD ,∴DE =DG ,AD =DC ,∵∠CDG +∠CDE =∠ADE +∠CDE =90°,∴∠CDG =∠ADE ,在△ADE 和△CDG 中,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDG (SAS ),∴∠DAE =∠DCG ,∵∠ACD +∠CAD +∠ADC =180°,∠ADC =90°,∴∠ACG =∠ACD +∠DCG =∠ACD +∠CAD =90°, ∴CE ⊥CG ;②由①知,△ADE ≌△CDG ,∴AE =CG ,∴CE +CG =CE +AE =ACAB=2,故答案为:2.27.(1)解:设DE与CF的交点为G,∵四边形ABCD是正方形,∴∠A=∠FDC=90°,AD=CD,∵DE⊥CF,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,在△AED与△DFC中,A FDCCFD AEDAD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AED≌△DFC(AAS),∴DE=CF,∴DECF=1,故答案为:1;(2)解:如图,设DB与CE交于点G,∵四边形ABCD是矩形,∴∠A=∠EDC=90°,∵CE⊥BD,∴∠DGC=90°,∴∠CDG +∠ECD =90°,∠ADB +∠CDG =90°,∴∠ECD =∠ADB ,∵∠CDE =∠A ,∴△DEC ∽△ABD , ∴47CE DC BD AD ==, 故答案为:47; (3)证明:如图,过点C 作CH ⊥AF 交AF 的延长线于点H ,∵CG ⊥EG ,∴∠G =∠H =∠A =∠B =90°,∴四边形ABCH 为矩形,∴AB =CH ,∠FCH +∠CFH =∠DFG +∠FDG =90°,∴∠FCH =∠FDG =∠ADE ,∠A =∠H =90°,∴△AED ∽△HFC ,∴DE AD CF CH =, ∴DE AD CF AB=, ∴DE •AB =CF •AD .28.(1)①证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠A =∠DMN =90°∵AB =6,AD =4,MN =32DM ∴23AD DM AB MN == ∴△ABD ∽△MND .②证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠ABC =∠DMN =90°∴∠ABD +∠CBD =90°由①得△ABD ∽△MND∴∠ABD =∠DNM又∵∠MEB =∠DEN∴△MBE ∽△DNE ∴ME BE DE NE = ∴ME DE BE NE= 又∠MED =∠BEN∴△DME ∽△NBE∴∠NBE =∠DME =90°∴∠CBN +∠CBD =90°又∠ABD +∠CBD =90°,∠ABD =∠DNM ∴∠CBN =∠DNM .(2) 如图②,过点N 作NF ⊥AB 于点F ,连接AC ,AN ∴∠NF A =90°∵四边形ABCD 是矩形,AD =4,AB =6 ∴∠A =∠ABC =90°,BC =AD =4∴23BC AB =,∠ADM +∠AMD =90° ∵AM =4BM ,AB =6∴42455AM AB ==又DM ⊥MN∴∠AMD +∠FMN =90° ∴∠ADM =∠FMN∴△ADM ∽△FMN ∴AD AM DM MF FN MN== 又MN =32DM ∴24425=3DM MF FN MN == ∴MF =6,FN =365∴AF =AM +MF =2454655+= ∴23NF AF = ∴NF BC AF AB = ∵∠ABC =∠AFN =90° ∴△ABC ∽△AFN∴∠BAC =∠F AN∴A ,C ,N 三点在同一条直线.。
2023届中考数学专项练习 四边形综合训练(A)
四边形综合训练(A )1.两个矩形的位置如图所示,若1α∠=,则2∠=( )A.90α-︒B.45α-︒C.180α︒-D.270α︒-2.在四边形ABCD 中,AB CD =,AD BC =,80B ∠=︒,则C ∠的度数为( )A.10°B.40°C.80°D.100°3.下列说法正确的是( )A.有一个角是直角的平行四边形是正方形B.对角线相等的四边形是正方形C.四边都相等的四边形是菱形D.对角线互相垂直的四边形是矩形4.如图,在Rt ABC 中,90ACB ∠=︒,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使12CF BC =.若10AB =,则EF 的长是( )A.6B.5C.3D.525.如图,在矩形ABCD 中,对角线AC 与BD 相交于点,O CE BD ⊥,垂足为点,5E CE =,且2EO DE =,则AD 的长为( )A. B. C.10 D.6.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH AB⊥于点H,连接OH,OH=,若菱形ABCD的面积为,则CD的长为( )4A.4B.C.8D.7.如图,在ABC△中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是( )A.B F= C.AC CF∠=∠ B.DE EF= D.AD CF=8.如图,在正方形ABCD中,3DM=,AEM与ADM关AB=,点M在CD边上,且1于AM所在的直线对称.将ADM按顺时针方向绕点A旋转90°得到ABF,连接EF,则线段EF的长为( )A.3B.9.如图,在ABC△和ABC△关于直线BC对称,连接AD,与BC=,DBC△中,AB AC相交于点O,过点C作CE CDBC=,则AD=,6⊥,垂足为C,与AD相交于点E.若8 +的值为( )2OE AEBDA.43B.34C.53D.5410.如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF BC⊥,垂足为F,则DF的长为( )A.2+ B.5- C.3111.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为________2cm.12.如图,点A的坐标为(1,3),点B在x轴上,把OAB△沿x轴向右平移得到ECD△,若四边形ABDC的面积为9,则点C的坐标为___________________.13.菱形ABCD的边长为2,45ABC∠=︒,点P、Q分别是BC、BD上的动点,CQ PQ+的最小值为_____________.14.如图,长方形纸片ABCD中,E为BC上一点,将纸片沿AE对折,点B落在AC上F处,若F恰好为AC中点,则ACB=∠_______.15.如图,将矩形纸片ABCD折叠,使点B与点D重台,点A落在点P处,折痕为EF,(1)求证:PDE CDF△△;≅(2)若4EF=cm,求BC的长.CD=cm,5答案以及解析1.答案:C解析:如图.1903∠=︒+∠,3902∠=︒-∠,190902∴∠=︒+︒-∠,21801180α∴∠=︒-∠=︒-.2.答案:D解析:如图,AB CD=,AD BC=,∴四边形ABCD是平行四边形,//AB CD∴,180B C∴∠+∠=︒,180********C B∴∠=︒-∠=︒-︒=︒,故选:D.3.答案:C解析:A.有一个角是直角的平行四边形是矩形,故本选项不正确,不符合题意;B.两条对角线相等的菱形才是正方形,故本选项不正确,不符合题意;C.四边都相等的四边形是菱形,故本选项正确,符合题意;D.两条对角线互相垂直的四边形不一定是矩形,故本选项不正确,不符合题意;故选:C.4.答案:B解析:由题意知,DE是ABC的中位线,//DE BC∴,12DE BC=,又12CF BC=,DE CF ∴=.又AE EC =,90AED ECF ∠=∠=︒,ADE EFC ∴≌,EF AD ∴=,152AD AB ==,5EF ∴=.故选B. 5.答案:A解析:∵四边形ABCD 是矩形,90,.2ADC OC OD EO DE ∴∠===,∴设DE x =,则2,3,6.EO x OD OC x AC x CE BD =∴===⊥,90DEC OEC ∴∠=∠=︒.在Rt OCE △中,222EO CE OC +=,222(2)5(3)x x ∴+=,解得xx =(舍去).DE AC ∴==CD AD ∴==6.答案:C解析:DH AB ⊥,90BHD ∴∠=︒,四边形ABCD 是菱形,OB OD ∴=,12OC OA AC ==,AC BD ⊥,12OH OB OD BD ∴===(直角三角形斜边上中线等于斜边的一半),4OD ∴=,8BD =,由12AC BD ⋅=得,182AC ⨯⋅=AC ∴=12OC AC ∴==,28CD OD ∴=,故答案为:C. 7.答案:B解析:D ,E 分别是AB ,BC 的中点,∴DE 是ABC △的中位线,//DE AC ∴,12DE AC =, A 、当B F ∠=∠,不能判定//AD CF ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意; B 、DE EF =,12DE DF ∴=,AC DF ∴=,//AC DF ,∴四边形ADFC 为平行四边形,故本选项符合题意;C 、根据AC CF =,不能判定AC DF =,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;D 、AD CF =,AD BD =,BD CF ∴=,由BD CF =,BED CEF ∠=∠,BE CE =,不能判定BED CEF ≅△△,不能判定//CF AB ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;故选:B.8.答案:C解析:如图,连接BM .由题意可知,AE AD =,MAD MAE ∠=∠,AF AM =,FAB MAD ∠=∠.FAB MAE ∴∠=∠.FAB BAE BAE MAE ∴∠+∠=∠+∠.即FAE MAB ∠=∠.FAE MAB ∴≌.EF BM ∴=.四边形ABCD 是正方形,3BC CD AB ∴===.1DM =,2CM ∴=.∴在Rt BCM 中,BM =EF ∴=故选C.9.答案:D解析:DBC △和ABC △关于直线BC 对称,AC CD ∴=,AB BD =,AB AC =,AC CD AB BD ∴===,∴四边形ABDC 是菱形,AD BC ∴⊥,4AO DO ==,3BO CO ==,ACO DCO ∠=∠,5BD ∴==,CE CD ⊥,90DCO ECO CAO ACO DCO CAO ∴∠+∠=︒=∠+∠=∠+∠,CAO ECO ∴∠=∠,tan EO CO ECO CO AO∠∴==, 334EO ∴=, 94EO ∴=, 74AE ∴=,972254454OE AE BD ⨯++∴==, 故选D.10.答案:D解析:如图,过点E 作EG DF ⊥于点G ,作EH BC ⊥于点H ,则90BHE DGE ∠=∠=︒,ABC △是边长为2的等边三角形,2AB ∴=,60ABC ∠=︒,四边形ABED 是正方形,2BE DE ∴==,90ABE BED ∠=∠=︒,180180609030EBH ABC ABE ∴∠=︒-∠-∠=︒-︒-︒=︒,1sin 2sin30212EH BE EBH ∴=⋅∠=⋅︒=⨯=,cos 2cos30BH BE EBH =⋅∠=︒,EG DF ⊥,EH BC ⊥,DF BC ⊥,90EGF EHB DFH ∴∠=∠=∠=︒,∴四边形EGFH 是矩形,1FG EH ∴==,90BEH BEG GEH ∠+∠=∠=︒,90DEG BEG ∠+∠=︒,BEH DEG ∴∠=∠,在BEH △和DEG △中,BHE DGEBEH DEG BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BEH DEG ∴≅△△,DG BH ∴=,1DF DG FG ∴=+=,故选:D.11.答案:8 解析:图中阴影部分的面积之和正好等于正方形面积的一半,且正方形的边长为4cm ,∴图中阴影部分的面积为:()22148cm 2S =⨯=. 故答案为:8.12.答案:(4,3)解析:由平移的性质易得//AC BD 且AC BD =,∴四边形ABDC 是平行四边形.过点A 作AH x ⊥轴于点H ,则3AH =.ABDC 的面积为9,9BD AH ∴⋅=,3BD AC ∴==.(1,3)A ,(4,3)C ∴.13.解析:连接AQ ,作AH BC ⊥于H ,四边形ABCD 是菱形,AB CB ∴=,ABQ CBQ ∠=∠,BQ BQ =,(SAS)ABQ CBQ ∴≅△△,AQ CQ ∴=,∴当点A 、Q 、P 共线,AQ PQ +的最小值为AH 的长,2AB =,45ABC ∠=︒,AH ∴=CQ PQ ∴+.14.答案:30° 解析:在长方形纸片ABCD 中,90B ∴∠=︒,将纸片沿AE 对折,点B 落在AC 上F 处, BAE FAE ∴∠=∠,90AFE B ∠=∠=︒,即EF AC ⊥, F 恰好为AC 中点,∴EF 是AC 的中垂线,AE CE ∴=,EAF ECA ∴∠=∠,90BAC ACB ∠+∠=︒,30EAF ECA BAE ∴∠=∠=∠=︒,即:30ACB ︒=∠. 故答案是:30°.15.答案:(1)证明见解析(2)163BC = 解析:(1)四边形ABCD 是矩形,AB CD ∴=,90A B ADC C ∠=∠=∠=∠=︒, 由折叠知,AB PD =,A P ∠=∠,90B PDF ∠=∠=︒,PD CD ∴=,P C ∠=∠,PDF ADC ∠=∠, PDF EDF ADC EDF ∴∠-∠=∠-∠, PDE CDF ∴∠=∠,在PDE △和CDF △中,P C PD CD PDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, (ASA)PDE CDF ∴≅△△;(2)如图,过点E 作EG BC ⊥交于点G ,四边形ABCD 是矩形,4AB CD EG ∴===cm ,又5EF =cm,3GF ==∴, 设AE x =,EP x ∴=,由PDE CDF ≅△△知,EP CF x ==, 3DE GC GF FC x ∴==+=+, 在Rt PED △中,222PE PD DE +=, 即()22243x x +=+, 解得,76x =,77163663BC BG GC ∴=+=++=cm.。
四川省渠县第四中学2021年中考九年级数学专题复习《四边形》综合练习题
四川省渠县第四中学2021年中考九年级数学专题复习《四边形》综合练习题1、已知:如图,在□ABCD中,G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:四边形GEHF是平行四边形;(2)已知AB=5,AD=8.求四边形GEHF是矩形时BD的长.2、如图,在△ABC中,动点O在边AB上,点D在CB的延长线上,过点O作直线EF∥BC,分别交∠ABC,∠ABD的平分线于点F,E.(1)若BE=5,BF=12,求OB的长;(2)连接AE,AF.问:当动点O在边AB的什么位置时,四边形AEBF是矩形?并说明理由.3、在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处,折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)求∠PAQ的大小;(2)当四边形APCD是平行四边形时,求ABQR的值.4、如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP AB⊥交边CD于点P,连接NM,NP.(1)若60B∠=︒,这时点P与点C重合,则NMP∠=_______度;(2)求证:NM NP=;(3)当NPC△为等腰三角形时,求B的度数.ADM BP NC5、如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF =90°,点E、F分别在边AD、AB上.(1)如图①,正方形的边长为23,BP=BO,∠DOE=15°.①求证:△AOF≌△DOE;②求线段EF的长;(2)如图②,当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD =m·BP(m>1)时,请求出PE与PF的数量关系.6、如图,四边形ABCD 中,AD ∥BC ,∠ABC=90°,已知AD=AB=3,BC=,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 作匀速运动.过Q 点垂直于AD 的射线交AC 于点M ,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设点Q 运动的时间为t 秒.(1)求NC ,MC 的长(用t 的代数式表示);(2)当t 为何值时,四边形PCDQ 构成平行四边形?(3)当t 为何值时,射线QN 恰好将△ABC 的面积平分?并判断此时△ABC 的周长是否也被射线QN 平分.7、在菱形ABCD 中,∠MDN 的两边分别与AB ,BC 交于点E ,F ,与对角线AC 交于点G ,H ,已知∠MDN =∠BAD =60°,AC =6.(1)如图①,当DE ⊥AB ,DF ⊥BC 时,①求证:△ADE ≌△CDF ;②求线段GH 的长;(2)如图②,当∠MDN 绕点D 旋转时,线段AG ,GH ,HC 的长度都在变化,设线段AG =m ,GH =p ,HC =n ,试探究p 与mn 的等量关系,并说明理由.338、在菱形ABCD中,60∠=︒,E是对角线AC上一点,F是线段BC延长线上ABC一点,且CF AE=,连接BE、EF.(1)若E是线段AC的中点,如图1,证明:BE EF=;(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE、EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.9、定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.①求BE的长;②若M、N分别是AB、AD边上的动点,求△MNC周长的最小值.10、如图,在四边形ABCD中,AD//BC,∠C=90°,BC=16,DC=12,AD=21。
中考数学总复习《四边形的综合题》练习题附带答案
中考数学总复习《四边形的综合题》练习题附带答案一、单选题1.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b (a>b),则(a−b)等于()A.3B.4C.5D.6 2.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ABD=60°,则∠BOC的大小为()A.30°B.60°C.90°D.120°3.若一个多边形的内角和是外角和的2.5倍,则该多边形为()A.五边形B.六边形C.七边形D.八边形4.如图,矩形ABCD对角线相交于点O,∠AOB=60°,AB=4,则矩形的对角线AC 为()A.4 B.8 C.4√3D.10 5.一个长方形的周长为28厘米,长的2倍比宽的3倍多3厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米6.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=√3cm,则OD=()A.1cm B.1.5cm C.2cm D.3cm 7.如图,矩形纸片ABCD中,AB=4,AD=8 ,将纸片沿EF折叠使点B与点D 重合,折痕EF与BD相交于点O,则DF的长为()A.3B.4C.5D.6 8.如图,⊙O的半径为4,点P是⊙O外的一点PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时PA的长度为()A.10B.212C.11D.434 9.已知平行四边形一边长为8,一条对角线长为6,则另一条对角线α满足()A.10<α<22B.4<α<20C.4<α<28D.2<α<1410.如图,两张等宽的纸条交又重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.a2B.5cm C.2√7cm D.6cm 11.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将∠BCE绕着正方形的中心O按逆时针方向旋转到∠CDF的位置,则旋转角是( )A .45°B .60°C .90°D .120°12.Rt∠ABC 两直角边的长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cmB .3cmC .4cmD .5cm二、填空题13.如图,点E 在边长为2的正方形ABCD 内,满足∠AEB =90°,若∠DAE =30°,则图中阴影部分的面积为 .14.把一把直尺和一块三角板如图放置,若∠1=42°,则∠2的度数为 °.15.已知 ▱ABCD 中一条对角线分 ∠A 为35°和45°,则 ∠B = 度. 16.如图,在一块长AB =26m ,宽BC =18m 的长方形草地上,修建三条宽均为3m 的长方形小路,则这块草地的绿地面积(图中空白部分)为 m 217.如图,在∠ABC 中,∠ABC =90°,E 为AC 的中点,AD∠BE 交BC 于D ,若AD=152,BE =5,则BD = .18.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的最大值是.三、综合题19.如果抛物线C1:y=ax2+bx+c与抛物线C2:y=−ax2+dx+e的开口方向相反,顶点相同,我们称抛物线C2是C1的“对顶”抛物线.(1)求抛物线y=x2−4x+7的“对顶”抛物线的表达式;(2)将抛物线y=x2−4x+7的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线y=x2−4x+7形成两个交点M、N,记平移前后两抛物线的顶点分别为A、B,当四边形AMBN是正方形时求正方形AMBN的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C1与C2的顶点位于x轴上,那么系数b与d,c与e之间的关系是确定的,请写出它们之间的关系.20.解答题(1)如图1,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE=CF .求证:DE=BF ;(2)如图2,AB 是∠O 的直径,点C 在AB 的延长线上,CD 与∠O 相切于点D ,若∠C=20°,求∠CDA 的度数.21.如图,▱ABCD 放置在平面直角坐标系申,已知点A (-2,0)、B (-6,0)、D(0,3).点C 在反比例函数y=k x的图象上。
2020年中考数学复习专题练:《四边形综合 》(包含答案)
2020年中考数学复习专题练:《四边形综合 》1.如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示.①线段DG 与BE 之间的数量关系是 ;②直线DG 与直线BE 之间的位置关系是 ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).2.如图1,在正方形ABCD 中,点E 是CD 上一点(不与C ,D 两点重合),连接BE ,过点C 作CH ⊥BE 于点F ,交对角线BD 于点G ,交AD 边于点H ,连接GE ,(1)求证:△DHC ≌△CEB ;(2)如图2,若点E 是CD 的中点,当BE =8时,求线段GH 的长;(3)设正方形ABCD 的面积为S 1,四边形DEGH 的面积为S 2,当的值为时,的值为 .3.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(I)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).4.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.5.(1)【探索发现】如图1,在正方形ABCD中,点M,N分别是边BC,CD上的点,∠MAN=45°,若将△DAN 绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为8,则正方形ABCD的边长为.(2)【类比延伸】如图2,在四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M,N分别在边BC,CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,在四边形ABCD中,AB=AD=2,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,AN,△ABM是等边三角形,AM⊥AD于点A,∠DAN=15°,请直接写出△CMN 的周长.6.(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE 和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.7.如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.(1)当D′点落在AB边上时,∠DAE=°;(2)如图2,当E点与C点重合时,D′C与AB交点F,①求证:AF=FC;②求AF长.(3)连接D′B,当∠AD′B=90°时,求DE的长.8.在平面直角坐标系中,点O是坐标原点,A(0,m),B(n,O),AC∥OB,且AC=OB,连接BC交x轴于点F,其中m、n满足方程+n2+8n+16=0.(1)求A、B两点坐标;(2)过A做AE⊥BC于E,延长AE交x轴于点D,动点P从点B出发以每秒2个单位的速度向x轴正半轴方向运动,设△PFD的面积为S,请用含t的式子表示S,并直接写出t的取值范围;(3)在(2)的条件下,连接PE,将△PED沿PE翻折到△PEG的位置(点D与点G对应),当四边形PDEG为菱形时,求点P和点G的坐标.9.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD.①求∠BDE的度数;②若正方形ABCD的边长是,请求出△BCG的面积.10.【综合与实践】如图①,在正方形ABCD中,点E、F分别在射线CD、BC上,且BF=CE,将线段FA绕点F顺时针旋转90°得到线段FG,连接EG,试探究线段EG和BF的数量关系和位置关系.【观察与猜想】任务一:“智慧小组”首先考虑点E、F的特殊位置如图②,当点E与点D重合,点F与点C重合时,易知:EG与BF的数量关系是,EG与BF的位置关系是.【探究与证明】任务二:“博学小组”同学认为E、F不一定必须在特殊位置,他们分两种情况,一种是点E、F分别在CD、BC边上任意位置时(如图③);一种是点E、F在CD、BC边的延长线上的任意位置时(如图④),线段EG与BF的数量关系与位置关系仍然成立.请你选择其中一种情况给出证明.【拓展与延伸】“创新小组”同学认为,若将“正方形ABCD”改为“矩形ABCD,且=k(k≠1)”,点E、F分别在射线CD、BC上任意位置时,仍将线段FA绕点F顺时针旋转90°,并适当延长得到线段FG,连接EG(如图⑤),则当线段BF、CE、AF、FG满足一个条件时,线段EG与BF的数量关系与位置关系仍然成立.(请你在横线上直接写出这个条件,无需证明)11.在平面直角坐标系xOy中,四边形OADC为正方形,点D的坐标为(4,4),动点E沿边AO从A向O以每秒1cm的速度运动,同时动点F沿边OC从O向C以同样的速度运动,连接AF、DE交于点G.(1)试探索线段AF、DE的关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图①中补全图形,并说明理由.(3)如图②当点E运动到AO中点时,点M是直线EC上任意一点,点N是平面内任意一点,是否存在点N使以O,C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.12.综合与实践动手操作:第一步:在矩形纸片ABCD的边BC,AD上分别取两点E,F,使CE=AF;第二步:分别以DE,BF为对称轴将△CDE与△ABF翻折得到△C'DE与△A'BF,且边C'E 与A'B交于点G,边A'F与C'D交于一点H.问题解决:(1)求证:△BEG≌△DFH;(2)请判断四边形A'HC'G的形状,并证明你发现的结论;(3)已知tan∠EBG=,A'G=6,C'G=1,求矩形纸片ABCD的面积.13.如图1,矩形ABCD中,∠ACB=30°,将△ACD绕C点顺时针旋转α(0°<α<360°)至△A'CD'位置.(1)如图2,若AB=2,α=30°,求S△BCD′.(2)如图3,取AA′中点O,连OB、OD′、BD′.若△OBD′存在,试判定△OBD′的形状.(3)当α=α1时,OB=OD′,则α1=°;当α=α2时,△OBD′不存在,则α2=°.14.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE .(1)沿AE 翻折△ABE 使点B 落在点F 处,①连接CF ,若CF ∥AE ,求m 的值;②连接DF ,若≤DF ≤,求m 的取值范围.(2)△ABE 绕点A 顺时针旋转得△AB 1E 1,点E 1落在边AD 上时旋转停止.若点B 1落在矩形对角线AC 上,且点B 1到AD 的距离小于时,求m 的取值范围.15.如图1,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE 、DG .(1)BE 和DG 的数量关系是 ,BE 和DG 的位置关系是 ;(2)把正方形ECGF 绕点C 旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD 的边长为4,正方形ECGF 的边长为3,正方形ECGF 绕点C 旋转过程中,若A 、C 、E 三点共线,直接写出DG 的长.16.如图,正方形ABCD的边长为a,射线AM是∠BAD外角的平分线,点E在边AB上运动(不与点A、B重合),点F在射线AM上,且AF=BE,CF与AD相交于点G,连结EC、EF、EG.(1)求证:CE=EF;(2)求△AEG的周长(用含a的代数式表示);(3)试探索:点E在边AB上运动至什么位置时,△EAF的面积最大.17.问题情境:矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别与边AB、BC所在的直线相交,交点为E、F.探究1:如图1,当PE⊥AB,PF⊥BC时,则=.探究2:如图2,在(1)的基础上,将三角板绕点P逆时针旋转,旋转角为α,(0°<α<60°),试求的值.探究3:在(2)的基础上继续旋转,当60°<α<90°时,将顶点P在AC上移动且使=时,如图3,试求的值.18.在Rt△ABC中,∠B=90°,AB=6,BC=8,点D从点B出发,以每秒3个单位的速度沿B→A→C运动,到点C停止.在点D运动的过程中,过点D作DE⊥BC,垂足为E,以DE为一边在右侧作矩形DEFG,点F在BC边上,且EF:DE=4:3,连结AG,CG,设运动时间为t(秒),矩形DEFG与△ABC重叠部分面积为S.(1)当AG=CG时,求t的值.(2)当点D在边AB上运动时,求S与t的函数关系式.(3)当△ACG的面积为6时,直接写出t的值.19.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=32,DC=24,AD=42,动点P从点D出发,沿射线DA的方向以每秒4个单位长的速度运动,动点Q从点C出发,在线段CB 上以每秒2个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.20.(1)【发现证明】如图1,在正方形ABCD中,点E,F分别是BC,CD边上的动点,且∠EAF=45°,求证:EF=DF+BE.小明发现,当把△ABE绕点A顺时针旋转90°至△ADG,使AB与AD重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=3,求AF的长.参考答案1.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.2.证明(1)∵四边形ABCD是正方形,∴CD=BC,∠HDC=∠BCE=90°,∴∠DHC+∠DCH=90°,∵CH⊥BE,∴∠EFC=90°,∴∠ECF+∠BEC=90°,∴∠CHD=∠BEC,∴△DHC≌△CEB(AAS).(2)解:∵△DHC≌△CEB,∴CH=BE,DH=CE,∵CE=DE=CD,CD=CB,∴DH=BC,∵DH∥BC,∴.∴GC=2GH,设GH=x,则,则CG=2x,∴3x=8,∴x=.即GH=.(3)解:∵,∴,∵DH=CE,DC=BC,∴,∵DH∥BC,∴,∴,,设S△DGH =9a,则S△BCG=49a,S△DCG=21a,∴S△BCD=49a+21a=70a,∴S1=2S△BCD=140a,∵S△DEG :S△CEG=4:3,∴S△DEG=12a,∴S2=12a+9a=21a.∴.故答案为:.3.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠OAC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).4.证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,且BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS)∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,且GE=GH,∴DG=EG=GH;(2)如图1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴∴DE×DE=4×(2+4)=24,∴DE=2,∴EO===2,∵AB∥CD,∴, ∴HO =2EO =4, ∴EH =6,且EG =GH , ∴EG =3,GO =EG ﹣EO =, ∴GB ===,∴BC =2=AD , ∴AD =DE ,∴点E 与点A 重合,如图2:∵S 四边形ABCD =2S △ABD ,∴S 四边形ABCD =2××BD ×AO =6×2=12;(3)如图3,过点O 作OF ⊥BC ,∵旋转△GDO ,得到△G ′D 'O ,∴OG =OG ',且OF ⊥BC ,∴GF =G 'F ,∵OF ∥AB ,∴==,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'==,=.5.解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=8,∴BM+CM+CN+DN=8,∴BC+CD=8,∴BC=CD=4,故答案为4;(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE(SAS),∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)如图3,延长BA,CD交于G,∵∠BAM=60°,∠MAD=90°,∴∠BAD=150°,∴∠GAD=30°,∵AD=2,∴DG=1,AG=,∵∠DAN=15°,∴∠GAN=45°,∴AG=GN=,∴BG=2+,∴BC=2BG=4+2,CG=BG=2+3,∴CD=CG﹣DG=2+2,由(2)得,MN=BM+DN,∴△CMN的周长=CM+CN+MN=CN+DN+CM+BM=BC+CD=4+2+2+2=6+4.6.解:(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)在AB上截取AM=AD=3,过M作MN∥BC交AC于N,把△AMN绕A逆时针旋转得△ADE,连接CE,如图所示:则MN⊥AC,DE=MN,∠DAE=∠BAC,∴∠AED=∠ANM=90°,∵AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ==,∴BC:AC:AB=3:4:5,同(2)得:△ABD∽△ACE,∴==,∵MN∥BC,∴△AMN∽△ABC,∴=,∴MN=×AM=×3=,∵∠BAC=∠ADC=θ,∴∠DAE=∠ADC=θ,∴AE∥CD,∴∠CDE+∠AED=180°,∴∠CDE=90°,∴CE===,∴BD=CE=×=.7.解:(1)由题意知△ADE≌△AD′E,∴∠DAE=∠D′AE,∵D′点落在AB边上时,∠DAE+∠D′AE=90°,∴∠DAE=∠D′AE=45°,故答案为:45;(2)①如图2,由题意知∠ACD=∠ACD′,∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠BAC,∴∠ACD′=∠BAC,∴AF=FC;②设AF=FC=x,则BF=10﹣x,在Rt△BCF中,由BF2+BC2=CF2得(10﹣x)2+62=x2,解得x=6.8,即AF=6.8;(3)如图3,∵△AD′E≌△ADE,∴∠AD′E=∠D=90°,∵∠AD′B=90°,∴B、D′、E三点共线,又∵△ABD′∽△BEC,AD′=BC,∴△ABD′≌△BEC,∴BE=AB=10,∵BD′===8,∴DE=D′E=10﹣8=2;如图4,∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,在△ABD″和△BEC中,∵,∴△ABD″≌△BEC,∴BE=AB=10,∴DE=D″E=8+10=18.综上所知,DE=2或18.8.解:(1)∵,,(n+4)2≥0,∴m﹣4=0,n+4=0,∴m=4,n=﹣4,∴A(0,4),B(﹣4,0);(2)∵AC∥OB,∴∠C=∠CBO,∠CAF=∠BOF,∵AC=OB,∴△ACF≌△OBF(ASA),∴AF=OF=2,∵OA=OB,∠OAD=∠OBF,∠BOF=∠AOD,∴△BOF≌△AOD(ASA),∴OF=OD=2,∴BD=6,①当0≤t<3时,S=PD•OF=(6﹣2t)×2=6﹣2t;②当t>3时,S=PD•OF=(2t﹣6)×2=2t﹣6;(3)①当0≤t<3,如图2,∵AO=4,OD=2,∴AD=,∵BD×OA=AD×BE,∴BE=,∴DE=,∵四边形PDEG为菱形,∴DP=DE=EG=,∵D(2,0),∴P(2﹣,0),作EH⊥BD于H,∵BE×DE=BD×EH,∴EH=,∴HD=,∴OH=,∴E(,),∵EG∥OB,∴G与E的纵坐标相同,∴G(﹣,)②当t>3时,如图3,同理求得P(2+,0),G(+,).9.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°.∴∠BCD+∠DCG=∠GCE+∠DCG,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS).∴BG=DE;(2)解:①连接BE,如图2所示:由(1)可知:BG=DE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°,∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE,在△BCG和△BCE中,,∴△BCG≌△BCE(SAS),∴BG=BE,∵BG=BD=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°;②延长EC交BD于点H,过点G作GN⊥BC于N,如图3所示:在△BCE和△DCE中,,∴△BCE≌△BCG(SSS),∴∠BEC=∠DEC,∴EH⊥BD,BH=BD,∵BC=CD=,∴BD=BC=2,∴BE=2,BH=1,∴CH=1,在Rt△BHE中,由勾股定理得:EH===,∴CE=﹣1,∵∠BCG=135°,∴∠GCN=45°,∴△GCN是等腰直角三角形,∴GN=CG=(﹣1),=BC•GN=××(﹣1)=.∴S△BCG10.【观察与猜想】解:∵四边形ABCD是正方形,∴∠B=∠BCD=∠ADC=90°,AB=BC=CD=AD,∠ACB=∠ACD=45°,由旋转的性质得:GC=AC,∠ACG=90°,∴∠ACB=∠GCD=45°,在△ABC和△GDC中,,∴△ABC≌△GDC(SAS),∴AB=GD,∠GDC=∠B=90°,∴DG∥BC,△CDG是等腰直角三角形,∴DG=CD=BC,∵点E与点D重合,点F与点C重合,∴EG=BF,EG∥BF;故答案为:EG=BF,EG∥BF;【探究与证明】证明:点E、F分别在CD、BC边上任意位置时,如图③所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;点E、F在CD、BC边的延长线上的任意位置时,如图④所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;【拓展与延伸】解:==k(k≠1)时,线段EG与BF的数量关系与位置关系仍然成立;理由如下:作GM⊥BC,交BC延长线于M,如图⑤所示:则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,∠B=∠GMF,由旋转的性质得:∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,∴△ABF∽△FMG,∴==,∵==k,∴==k,==k,∴FM=BC,GM=CE,∴BF=CM,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;故答案为:==k(k≠1).11.解:(1)AF=DE.理由如下:∵四边形OADC是正方形,∴OA=AD,∠DAE=∠AOF=90°,由题意得:AE=OF,在△AOF和△DAE中,,∴△AOF≌△DAE(SAS),∴AF=DE.(2)四边形HIJK是正方形.理由如下:如图①所示:∵H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,HI∥AF,HK∥ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△AOF≌△DAE,∴∠ADE=∠OAF,∵∠ADE+∠AED=90°,∴∠OAF+∠AED=90°,∴∠AGE=90°,∴AF⊥ED,∵HI∥AF,HK∥ED,∴HI⊥HK,∴∠KHI=90°,∴四边形HIJK是正方形.(3)存在,理由如下:∵四边形OADC为正方形,点D的坐标为(4,4),∴OA=AD=OC=4,∴C(4,0),∵点E为AO的中点,∴OE=2,E(0,2);分情况讨论:如图②所示,①当OC是以O,C、M、N为顶点的菱形的对角线时,OC与MN互相垂直平分,则M为CE 的中点,∴点M的坐标为(2,1),∵点M和N关于OC对称,∴N(2,﹣1);②当OC是以O,C、M、N为顶点的菱形的边时,若M在y轴的左侧时,∵四边形OCM'N'是菱形,∴OM'=OC=4,M'N'∥OC,∴△M'FE∽△COE,∴==2,设EF=x,则M'F=2x,OF=x+2,在Rt△OM'F中,由勾股定理得:(2x)2+(x+2)2=42,解得:x=,或x=﹣2(舍去),∴M'F=,FN=4﹣M'F=,OF=2+=,∴N'(,);若M在y轴的右侧时,作N''P⊥OC于P,∵ON''∥CM'',∴∠PON''=∠OCE,∴tan∠PON''==tan∠OCE==,设PN''=y,则OP=2y,在Rt△OPN''中,由勾股定理得:y2+(2y)2=42,解得:y=,∴PN''=,OP=,∴N''(,﹣);综上所述,存在点N使以O,C、M、N为顶点的四边形是菱形,点N的坐标为(2,﹣1)或(,)或(,﹣).12.(1)证明:∵四边形ABCD为矩形,∴BC=AD,CD=AB,∠C=∠ABC=∠A=∠ADC=90°,∵CE=AF,∴BC﹣CE=AD﹣AF,即BE=DF,在△DCE和△BAF中,,∴△DCE≌△BAF(SAS),∴∠CDE=∠ABF,∠CED=∠AFB,由折叠的性质得:∠CDE=∠C′DE,∠ABF=∠A′BF,∠CED=∠C′ED,∠AFB=∠A′FB,∵∠CDE+∠C′DE+∠HDF=90°,∠ABF+∠A′BF+∠GBE=90°,∠CED+∠C′ED+∠GEB=180°,∠AFB+∠A′FB+∠HFD=180°,∴∠HDF=∠GBE,∠GEB=∠HFD,在△BEG和△DFH中,,∴△BEG≌△DFH(ASA);(2)解:四边形A'HC'G的形状是矩形;理由如下:由折叠的性质得:∠C=∠DC′E=∠A=∠BA′F=90°,由(1)得:△BEG≌△DFH,∴∠BGE=∠DHF,∵∠BGE=∠A′GC′,∠DHF=∠A′HC′,∴∠A′GC′=∠A′HC′,∵∠DC′E+∠BA′F+∠A′GC′+∠A′HC′=90°+90°+∠A′GC′+∠A′HC′=360°,∴∠A′GC′+∠A′HC′=180°,∴∠A′GC′=∠A′HC′=90°,∴∠DC′E=∠BA′F=∠A′GC′=∠A′HC′=90°,∴四边形A'HC'G是矩形;(3)解:由(2)知:∠BGE=∠A′GC′=90°,∵tan∠EBG=,∴设EG=3x,则BG=4x,BE==5x,由折叠的性质得:CE=C′E=EG+C′G=3x+1,CD=AB=A′B=BG+A′G=4x+6,∴BC=CE+BE=3x+1+5x=8x+1,S矩形ABCD=CD•BC=4×CD•CE+2×EG•BG﹣A'G•C'G,即(4x+6)(8x+1)=4×(3x+1)(4x+6)+2×3x•4x﹣6×1,整理得:x2﹣2x=0,解得:x1=2,x2=0(不合题意舍去),∴CD=4×2+6=14,CB=8×2+1=17,∴S矩形ABCD=CD•BC=14×17=238.13.解:(1)作D'E⊥BC交BC的延长线于E,如图2所示:则∠E=90°,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,AD∥BC,CD=AB=2,∴∠ACD=∠BAC,∠DAC=∠ACB=30°,∵∠ACB=30°,∴BC=AB=2,∠ACD=∠BAC=60°,由旋转的性质得:CD'=CD=2,∠ACA'=30°,∴∠D'CE=180°﹣30°﹣30°﹣60°=60°,∴∠CD'E=30°,∴CE=CD'=1,D'E=CE=,∴S=BC×D'E=×2×=3;△BCD′(2)△OBD′是直角三角形,理由如下:连接OC,如图3所示:由旋转的性质得:CA'=CA,∠AD'C=∠ADC=90°,∠D'A'C=∠DAC=30°,∵O是AA′的中点,∴OC⊥AA',∴∠AOC=∠AOC=90°=∠ABC=∠AD'C,∴∠ABC+∠AOC=180°,∴A、B、C、O四点共圆,∴∠BOC=∠BAC=60°,同理;A、D'、C、O四点共圆,∴∠D'OC=∠D'A'C=30°,∴∠BOD'=90°,∴△BOD'是直角三角形;(3)若B、C、D'三点不共线,如图3所示:由(2)得:∠OBC=∠OAC,∠OD'C=∠OA'C,∠OAC=∠OA'C,∴∠OBC=∠OD'C,∵OB=OD,∴∠OBD'=∠OD'B,∴∠CBD'=∠CD'B,∴CB=CD',∵CD'=CD,∴BC=CD,这与已知相矛盾,∴B、C、D'三点共线;分两种情况:当点D'在BC的延长线上时,如图4所示:=90°;α=α1当点D'在边BC上时,如图5所示:=360°﹣90°=270°;α=α1故答案为:90°或270;时,△OBD′不存在时,分两种情况:当α=α2当O与D'重合时,如图6所示:∵CA'=CA,∠CAD'=∠CA'D'=30°,∴∠ACA'=120°,=360°﹣120°=240°;∴α=α2当O与B重合时,如图7所示:则AA'=2AB=4,∵CA=CA'=2AB=4=AA',∴△ACA'是等边三角形,∴∠A'CA=60°,=360°﹣60°=300°;∴α=α2故答案为:240°或300.14.解:(1)①如图1,∵CF∥AE ∴∠FCE=∠AEB,∠CFE=∠AEF∵△ABE翻折得到△AFE∴EF=BE=1,∠AEF=∠AEB∴∠FCE=∠CFE∴CE=EF=1∴m=BC=BE+CE=2∴m的值是2.②如图2,过点F作GH⊥AD于点G,交BC于点H ∴GH⊥BC∴∠AGF=∠FHE=90°∵四边形ABCD是矩形∴∠BAD=∠B=90°∴四边形ABHG是矩形∴GH=AB=2,AG=BH∵△ABE翻折得到△AFE∴EF=BE=1,AF=AB=2,∠AFE=∠B=90°∴∠AFG+∠EFH=∠AFG+∠FAG=90°∴∠EFH=∠FAG∴△EFH∽△FAG∴设EH=x,则AG=BH=x+1∴FG=2EH=2x∴FH=GH﹣FG=2﹣2x∴解得:x=∴AG=,FG=∵AD=BC=m∴DG=|AD﹣AG|=|m﹣|∴DF 2=DG 2+FG 2=(m ﹣)2+2≥,即可把DF 2看作关于m 的二次函数,抛物线开口向上,最小值为∵∴∵(m ﹣)2+2= 解得:m 1=,m 2=1 ∴根据二次函数图象可知,1≤m(2)如图3,过点B 1作MN ⊥AD 于点M ,交BC 于点N ∴MN ∥AB ,MN =AB =2∵AC = ∴sin ∠ACB =∵AD ∥BC ,点B 1在AC 上∴∠MAB 1=∠ACB∴sin ∠MAB 1= ∴∵点B 1到AD 的距离小于∴MB 1= 解得:∵m>0 ∴m>如图4,当E1落在边AD上,且B1在AC上时,m最大,此时,∠ACB=∠B1AE1=∠BAE∴tan∠ACB=tan∠BAE∴∴m=BC=2AB=4∴m的取值范围是<m≤415.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE=CE+OC=2+3=5,在Rt△BOE中,由勾股定理得:DG=BE==;综上所述,若A、C、E三点共线,DG的长为或.16.(1)证明:过点F作FH⊥AB于H,如图1所示:则∠AHF=90°,∵AM平分∠DAH,∴∠FAH=45°,∴△AFH是等腰直角三角形,∴FH=AH,AF=AH=FH,∵AF=BE,∴FH=AH=BE,∴AH+AE=BE+AE,∴HE=AB=BC,在△FEH和△ECB中,,∴△FEH≌△ECB(SAS),∴CE=EF;(2)解:∵△FEH≌△ECB,∴∠FEH=∠ECB,∵在Rt△BCE中,∠ECB+∠CEB=90°,∴∠FEH+∠CEB=90°,∴∠CEF=90°,由(1)知,CE=EF,∴△CEF是等腰直角三角形,∠ECF=∠EFC=45°,把Rt△CDG绕点C逆时针旋转90°至Rt△CBN位置,如图2所示:则∠GCN=90°,CG=CN,DG=BN,∴∠NCE=∠GCN﹣∠GCE=45°,∴∠NCE=∠GCE,在△CEG和△CEN中,,∴△CEG≌△CEN(SAS),∴GE=NE=EB+BN=EB+DG,∴△AEG的周长=AE+GE+AG=AE+EB+DG+AG=AB+AD=2a;(3)解:设AE=x,由(1)得:FH=BE=a﹣x,则△EAF的面积=AE×FH=x(a﹣x)=﹣(x﹣)2+,∴当x=,即点E在AB边中点时,△EAF的面积最大,最大值为.17.解:(1)∵矩形ABCD,∴AB⊥BC,PA=PC;∵PE⊥AB,BC⊥AB,∴PE∥BC,∴∠APE=∠PCF;∵PF⊥BC,AB⊥BC,∴PF∥AB,∴∠PAE=∠CPF.∵在△APE与△PCF中,,∴△APE≌△PCF(ASA),∴PE=CF.在Rt△PCF中,=tan30°=,∴=,故答案为:.(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.0°~30°时∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴=,由(1)知,=,∴=.同理30°~60°时,=;(3)当60°<α<90°时,将顶点P在AC上移动且使=时,如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.∵PM∥BC,PN∥AB,∴∠APM=∠PCN,∠PAM=∠CPN,∴△APM∽△PCN,∴==,得CN=2PM.在Rt△PCN中,==tan30°=,∴=.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴==.18.解:(1)∵四边形DEFG是矩形,∴DG=BF,GF=BD,∠BDG=∠BFG=90°,∴∠ADG=∠CFG=90°,由题意得:BD=3t,则AD=6﹣3t,DG=4t,CF=8﹣4t,FG=BD=3t,当AG=CG时,由勾股定理得:AG2=AD2+DG2,CG2=FG2+FC2,∴AD2+DG2=FG2+FC2,即(6﹣3t)2+(4t)2=(3t)2+(8﹣4t)2,解得:t=1,即当AG=CG时,t=1秒;(2)分两种情况:①当0<t≤1时,如图1所示:S=矩形DEFG的面积=3t×4t=12t2;即S=12t2(0<t≤1);②当1<t≤2时,如图2所示:∵∠ADH=∠B=90°,∠A=∠A,∴△ADH∽△ABC,∴=,即=,解得:DH=8﹣4t,同理得:FM=6﹣3t,∴S=×6×8﹣×2×(6﹣3t)(8﹣4t)=﹣12t2+48t﹣24;即S=﹣12t2+48t﹣24(1<t≤2);(3)分三种情况:①如图1所示:由题意得:×6×8﹣12t2﹣×4t×(6﹣3t)﹣×3t×(8﹣4t)=6,解得:t=;②如图3所示:由题意得:×4t×(6﹣3t)+×3t×(8﹣4t)+3t×4t﹣×6×8=6,解得:t=;③如图4所示:由勾股定理得:AC===10,∴CD=6+10﹣3t=16﹣3t,同(2)得:△CDE∽△CAB,∴==,即==,解得:DE=(16﹣3t),CE=(16﹣3t),由题意得EF=(16﹣3t),∴C与F重合,∴×8×(16﹣3t)=6,解得:t=;综上所述,当△ACG的面积为6时,t的值为秒或秒或秒.19.解:(1)如图1,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形.∴PM=DC=24.∵QB=32﹣t,∴S=×24×(32﹣2t)=384﹣24t(0≤t<16);(2)由图可知:CM=PD=4t,CQ=2t.以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ.在Rt△PMQ中,PQ2=4t2+242,由PQ2=BQ2得4t2+242=(32﹣2t)2,解得t=;②若BP=BQ.在Rt△PMB中,BP2=(32﹣4t)2+242.由BP2=BQ2得:(32﹣4t)2+242=(32﹣2t)2即3t2﹣32t+144=0.由于△=﹣704<0,∴3t2﹣32t+144=0无解,∴PB≠BQ.③若PB=PQ.由PB2=PQ2,得4t2+242=(32﹣4t)2+242整理,得3t 2﹣64t +256=0.解得t 1=,t 2=16(舍去)综合上面的讨论可知:当t =秒或t =秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形.(3)设存在时刻t ,使得PQ ⊥BD .如图2,过点Q 作QE ⊥AD 于E ,垂足为E .∵AD ∥BC∴∠BQF =∠EPQ ,又∵在△BFQ 和△BCD 中∠BFQ =∠C =90°,∴∠BQF =∠BDC ,∴∠BDC =∠EPQ ,又∵∠C =∠PEQ =90°,∴Rt △BDC ∽Rt △QPE , ∴=,即=,解得t =9.所以,当t =9秒时,PQ ⊥BD .20.(1)【发现证明】证明:把△ABE 绕点A 顺时针旋转90°至△ADG ,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)【类比引申】①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),。
2023年中考数学(人教版)总复习训练:四边形综合问题
2023年中考数学(人教版)总复习训练:四边形综合问题一、选择题(本大题共10道小题)1. [2021·无锡]下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直2. (2020•丹东)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形B.矩形C.菱形D.梯形3. (2021·无锡中考)如图,D,E,F分别是△ABC各边中点,则以下说法错误的是( )A.△BDE和△DCF的面积相等B.四边形AEDF是平行四边形C.若AB=BC,则四边形AEDF是菱形D.若∠A=90°,则四边形AEDF是矩形4. (2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②5. (2022·湖北襄阳)如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形6. (2021•安徽模拟)如图,Rt△ABC≌Rt△DCB,其中∠ABC=90°,AB=3,BC=4,M为BC中点,EF 过点M交AC、BD于点E、F,连接BE、CF,则下列结论错误的是()A.四边形BECF为平行四边形B.当BF=3.5时,四边形BECF为矩形C.当BF=2.5时,四边形BECF为菱形D.四边形BECF不可能为正方形7. (2020秋•魏县月考)如图,在任意四边形ABCD中,AC,BD是对角线,E,F,G,H分别是线段AB,BC,CD,AD上的点,对于四边形EFGH的形状,某班的学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各条线段的中点时,四边形EFGH为平行四边形B.当E,F,G,H不是各条线段的中点时,四边形EFGH可以为平行四边形C.当E,F,G,H是各条线段的中点时,且AC=BD,四边形EFGH为菱形D.当E,F,G,H不是各条线段的中点时,四边形EFGH不可能为菱形8. (2020•盐田区二模)如图,在正方形ABCD中,点M是AB上一动点,点E是CM的中点,AE 绕点E顺时针旋转90o得到EF,连接DE,DF.给出结论:①DE=EF;②∠CDF=45o;③=;④若正方形的边长为2,则点M在射线AB上运动时,CF有最小值2.其中结论正确的是( )A.①②③B.①②④C.①③④D.②③④9. (2020•庆云县一模)如图,Rt△ABE中,∠B=90o,AB=BE,将△ABE绕点A逆时针旋转45o,得到△AHD,过D作DC⊥BE交BE的延长线于点C,连接BH并延长交DC于点F,连接DE交BF 于点O.下列结论:①DE平分∠HDC;②DO=OE;③H是BF的中点;④BC-CF=2CE;⑤CD=HF,其中正确的有( )A.5个B.4个C.3个D.2个10. (2020·四川眉山中考)如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG.以下四个结论:①∠EAB=∠GAD;②△AFC∽△AGD;③2AE2=AH•AC;④DG⊥AC其中正确的个数为( )A.1个B.2个C.3个D.4个二、填空题(本大题共8道小题)11. (2021•济南)如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE=.12. (2020•道里区二模)在平行四边形ABCD中,∠A=30o,AD=2,BD=,则平行四边形ABCD的面积为___.13. (2022春•西城区校级期中)如图,已知四边形ABCD满足AB=CD=1,AB⊥CD,E、F分别为AD和BC的中点,则EF=.14. (2020·四川中考真题)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=_____.15. (2020•温州模拟)如图,四边形ABCD,CEFG均为菱形,A F∠=∠,连结BE,EG,EG//BC,EB⊥BC,若sin∠EGD=,菱形ABCD的周长为12,则菱形CEFG的周长为__________.16. (2020•顺德区三模)如图,分别以△ABC的边AB、AC为一边向外做正方形ABDE和正方形ACFG,连结CE、BG交于点P,连结AP和EG.在不添加任何辅助线和字母的前提下,写出四个不同类型的结论__________.17. (2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A 的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.18. (2020·江苏连云港·中考真题)如图,正六边形A1A2A3A4A5A6内部有一个正五形B1B2B3B4B5,且A3A4//B3B4,直线l经过B2、B3,则直线l与A1A2的夹角a=________ .三、解答题(本大题共6道小题)19. (2020秋•肇源县期末)如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH.求证:四边形EFGH是平行四边形.20. (2020春•秦淮区期末)如图,四边形ABCD是菱形,E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE.求证:四边形EFGH是矩形.21. (2022·贵州铜仁)如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=150°,∠BDC=2∠1,求∠DBC的度数.22. (2020春•阳西县期末)如图,在矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H 分别在矩形ABCD的边AB,CD,DA上,AH=2,DG=2.求证:四边形EFGH为正方形.23. (2020春•海陵区)如图,O为∠BAC内一点,E、F、G、H分别为AB,AC,OC,OB的中点.(1)求证:四边形EFGH为平行四边形;(2)当AB=AC,AO平分∠BAC时,求证:四边形EFGH为矩形.24. (2020年湖北省中考数学模拟题)如图1,AD∥BC,AB ⊥BC于B,∠DCB=75°,以CD为边的等边△DCE的另一顶点E在线段AB上.(1)填空:∠ADE=____;(2)求证:AB=BC;的值.(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求AEEC。
中考数学第一轮复习四边形专项练习
中考数学第一轮复习四边形专项练习一、单选题1.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC⊥AB,AC=6,BD=8,则AB的长为()A.10B.2√7C.5D.√72.如图,在直角坐标系xOy中,菱形ABCD的周长为16,点M是边AB的中点,⊥BCD=60°,则点M的坐标为()A.(- √3,-2)B.(- √3,-1)C.(-1,- √3)D.(- √3,2)3.如图网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是()A.√5B.√6C.√7D.√84.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若⊥CEF的周长为18,则OF的长为()A.3.2B.3.5C.3.6D.3.75.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.26.一个多边形的内角和等于1080°,这个多边形的边数为()A.6B.7C.8D.97.如图1,四边形ABCD是菱形,对角线AC,BD相交于点O,P,Q两点同时从点O 出发,以厘米/秒的速度在菱形的对角线及边上运动.P,Q的运动路线:点P为O−A−D−O,点Q为O−C−B−O.设运动的时间为x秒,P,Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,则菱形ABCD的面积为()图1 图2A.2√3cm2B.2cm2C.√3cm2D.√2cm28.如图,▱ABCD中,E,F分别是AB,CD的中点,则图中有()个平行四边形.A.7个B.8个C.9个D.10个9.顺次连接菱形四边中点得到的四边形是()A.矩形B.菱形C.正方形D.等腰梯形10.如图,在矩形ABCD中,AB=4,BC=8,点E为CD中点,P、Q为BC边上两个动点,且PQ=2,当四边形APQE周长最小时,BP的长为()A.2B.3C.4D.511.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定12.已知等边ΔABC中,在射线BA上有一点D,连接CD,以CD为边向上作等边ΔCDE,连接BE和AE,下列结论:①AE=BD;②AE与AB的所夹锐角为60°;③当D在线段AB或BA延长线上时,总有∠BED−∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的结论序号有()A.①②B.①②③C.①②④D.①②③④二、填空题13.若一个正多边形的外角与其相邻的内角之比为1:5,则该正多边形的内角和的度数为.14.一个n边形的内角和是1080°,那么n=.15.如图,在⊥ABC中,AB=AC,延长CB至点E,点D在AC边上,以CE,CD为边作▱DCEF.若⊥F=70°,则⊥A的度数为度.16.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 √5cm,且tan⊥EFC= 34,那么矩形ABCD的周长为cm.17.用正多边形镶嵌,设在一个顶点周围有m个正方形,n个正八边形,则m+n=.18.如图,对折矩形纸片ABCD,使AD与BC重合得到折痕EF,将纸片展平,再一次折叠,使点A落到EF上的点G处,并使折痕经过点B,交EF于点H,交AD于点M.已知AB=2,则线段HG的长度为.三、综合题19.如图,在矩形ABCD中,点O为对角线AC的中点,点E是CD上一点,连接EO并延长交AB于点F,连接AE、CF.(1)求证:ΔCOE≅ΔAOF;(2)当∠DEA=2∠CAB时,试判断四边形AECF的形状,并说明理由.20.如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H.(1)求证:HE=HG;(2)如图2,当BE=AB时,过点A作AP⊥DE于点P,连接BP,求PQ与PB的数量关系,并说明理由.21.如图,以BC为底的等腰△ABC的三个顶点都在⊙O上,过点A作AD//BC交BO的反向延长线于点D.(1)求证:AD是⊙O的切线;(2)若四边形ADBC是平行四边形,且BC=12,求⊙O的半径.22.已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,﹣3),B(4,0),反比例函数图象经过点C,直线AC交双曲线另一支于点E,连接DE,CD,设反比例函数解析式为y1= k x,直线AC解析式为y2=ax+b.(1)求反比例函数解析式;(2)当y1<y2时,求x的取值范围;(3)求⊥CDE的面积.23.已知:如图所示,在△ABC中,D是AC的中点,E是线段BC的延长线上一点,过点A作AF平行BE,交线段ED的延长线于点F,连接AE、CF .(1)求证:AF=CE;(2)若AF=CF=4,∠AFD=30°,求EF的长.24.在Rt△ABC中,∠ACB=90°点D是边AB上的一个动点,连接CD.作AE∥DC,CE∥AB,连接ED.(1)如图1,当CD⊥AB时,求证:AC=ED;(2)如图2,当D是AB的中点时,①四边形ADCE的形状是;请说明理由.②若AB=5,ED=4,则四边形ADCE的面积为.答案解析部分1.【答案】D2.【答案】B3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】A8.【答案】B9.【答案】A10.【答案】C11.【答案】C12.【答案】C13.【答案】1800°14.【答案】815.【答案】4016.【答案】3617.【答案】318.【答案】2√3319.【答案】(1)证明:∵四边形ABCD是矩形∴AB//CD,∠D=90°∴∠OCE=∠OAF,∠OEC=∠OFA ∵点O是对角线AC的中点∴OC=OA在△COE和△AOF中,{∠OCE=∠OAF ∠OEC=∠OFA OC=OA∴△COE≅△AOF(AAS);(2)解:四边形AECF是菱形,理由如下:由(1)已证:△COE≅△AOF∴OE=OF,CE=AF又∵AB//CD,即CE//AF∴四边形AECF是平行四边形∵AB//CD∴∠DEA=∠BAE=∠CAB+∠CAE∵∠DEA=2∠CAB∴∠CAE=∠CAB,即OA是∠EAF的角平分线∴OA⊥EF(等腰三角形的三线合一)∴平行四边形AECF是菱形∵点E是CD上一点,∠D=90°∴∠DEA≠90°,即∠CEA≠90°∴菱形AECF不是正方形综上,四边形AECF是菱形.20.【答案】(1)证明:连接AG,并延长AG交DC的延长线于M,连接EM,∵G为BC的中点,∴BG=CG,∵四边形ABCD是矩形,∴⊥ABG=⊥DCB=90°,∴⊥ABG=⊥MCG=90°,在⊥ABG和⊥MCG中,{∠ABG=∠MCGBG=CG∠AGB=∠MGC,∴⊥ABG⊥⊥MCG(ASA),∴GA=GM,∵F为AE的中点,∴FA=FE,∴FG是⊥AEM的中位线,∴FG⊥EM,∴⊥HGE=⊥MEC,在⊥DCE和⊥MCE中,{CD=CM∠DCE=∠MCECE=CE,∴⊥DEC⊥⊥MEC(SAS),∴⊥DEC=⊥MEC,∵⊥HGE=⊥MEC,∴⊥HEG=⊥HGE,∴HE=HG(2)答:PQ =√2PB理由:过点B作BQ⊥BP交DE于Q,则⊥QBP=90°,∵AP⊥DE,四边形ABCD是矩形,∴⊥APE=⊥ABE=90°,∵⊥APO+⊥AOP+⊥BAP=180°,⊥EOB+⊥ABE+⊥BEP=180°,⊥AOP=⊥EOB,∴⊥BEQ=⊥BAP,∵⊥QBP=⊥ABE=90°,∴⊥EBQ=⊥ABP=90°﹣⊥ABQ,在⊥ABP和⊥EBQ中,{∠BAP=∠BEQAB=EB∠ABP=∠EBQ,∴⊥BEQ⊥⊥BAP(ASA),∴BQ=BP,PA=QE,∴⊥PBQ是等腰直角三角形,∴PQ =√2PB.21.【答案】(1)证明:如图,连接OA,∵ΔABC是以BC为底的等腰三角形;∴AB=AC,∴BC⊥OA,∵AD//BC,∴AD⊥OA,∵OA是⊙O的半径,∴AD是⊙O的切线(2)解:如图,设OA与BC交于E,∵四边形ADBC是平行四边形,∴AC//OD,∴∠C=∠CBO,∵AB=AC,∴∠ABC=∠C,∴∠ABC=∠CBO,∵OA⊥BC,∴BA=BO,∵AO=BO,∴ΔABO是等边三角形,∵BC=12,∴BE=12BC=6,,∴OB=BEsin60°=4√3∴⊙O的半径为4√322.【答案】(1)解:∵A(0,﹣3),B(4,0),∴AB= √32+42 =5=BC ,∴C (4,5),∵反比例函数y 1= k x图象经过点C , ∴k=4×5=20,∴反比例函数解析式为y 1= 20x(2)解:把A (0,﹣3),C (4,5)代入y 2=ax+b 得, {b =−34a +b =5 ,解得 {a =2b =−3直线AC 解析式为y 2=2x ﹣3,解 {y =2x −3y =20x 得 {x 1=4y 1=5 , {x 2=−52y 2=−8, ∴E (﹣ 52,﹣8) 当y 1<y 2时,x >4或﹣ 52<x <0 (3)解:S ⊥CDE =S ⊥ADE +S ⊥ADC = 12 ×× 5×52+ 12 ×5×4= 654 23.【答案】(1)证明: ∵D 点为 AC 的中点, ∴AD =CD ,∵AF//BE ,∴∠FAD =∠ECD ,在 △ADF 和 △CDE 中,{∠FAD =∠ECD ∠ADF =∠CDE AD =CD,∴△ADF ≌△CDE(AAS) ,∴AF =CE(2)解: ∵AF//BE ,AF =CE , ∴四边形 AFCE 为平行四边形, ∵AF =CF =4 ,∴四边形 AFCE 为菱形,∴AD ⊥EF ,EF =2FD ,∵∠AFD=30°,∴AD=12AF=2,∴FD=√AF2−AD2=√42−22=2√3,∴EF=2FD=4√3 24.【答案】(1)证明:∵AE//DC,CE//AB,∴四边形AECD是平行四边形,又∵CD⊥AB,⊥⊥ADC=90°,⊥四边形AECD是矩形,⊥AC=ED;(2)菱形;6。
中考数学专题复习——与四边形有关的综合题集(含压轴题)带答案
中考专题复习——与四边形有关的综合题集(含压轴题)带答案一.选择题(共9小题)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF;④CG与BD 一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.12.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个 B.3个 C.4个 D.5个3.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH 与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•D G,其中正确结论的个数为()A .2B .3C .4D .54.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .15.如图,在矩形ABCD 中,BC=AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O ,给出下列命题:(1)∠AEB=∠AEH (2)DH=2EH (3)OH=AE (4)BC ﹣BF=EH其中正确命题的序号( )A .(1)(2)(3)B .(2)(3)(4)C .(2)(4)D .(1)(3)6.如图,在边长为1的正方形ABCD 中,动点F ,E 分别以相同的速度从D ,C 两点同时出发向C 和B 运动(任何一个点到达即停止),过点P 作PM ∥CD 交BC 于M 点,PN ∥BC 交CD 于N 点,连接MN ,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个7.如图,正方形ABCD中,以AD为底边作等腰△ADE,将△ADE沿DE折叠,点A落到点F处,连接EF刚好经过点C,再连接AF,分别交DE于G,交CD于H.在下列结论中:①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤S△HCF=S△ADH,其中正确的结论有()A.2个 B.3个 C.4个 D.5个8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF =S△AEF,其中正确的结论有()个.A .①②B .①②③C .①②④D .①②③④9.如图,正方形ABCD 的边CD 与正方形CGFE 的边CE 重合,O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于H ,连接OH 、FH 、EG 与FH 交于M ,对于下面四个结论:①GH ⊥BE ;②HO BG ;③点H 不在正方形CGFE 的外接圆上;④△GBE ∽△GMF . 其中正确的结论有( )A .1个B .2个C .3个D .4个评卷人 得 分二.填空题(共7小题)10.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③点B 到直线AE 的距离为;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 .11.如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE=BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是 .(把你认为正确的说法的序号都填上)12.如图,在菱形ABCD 中,AB=6,∠DAB=60°,AE 分别交BC 、BD 于点E 、F ,CE=2,连接CF ,以下结论:①△ABF ≌△CBF ;②点E 到AB 的距离是2;③tan ∠DCF=;④△ABF 的面积为.其中一定成立的是 (把所有正确结论的序号都填在横线上).13.如图,在矩形ABCD 中,AB=2,AD=,在边CD 上有一点E ,使EB 平分∠AEC .若P 为BC 边上一点,且BP=2CP ,连接EP 并延长交AB 的延长线于F .给出以下五个结论:①点B 平分线段AF ;②PF=DE ;③∠BEF=∠FEC ;④S 矩形ABCD =4S △BPF ;⑤△AEB是正三角形.其中正确结论的序号是 .14.如图,在矩形ABCD 中,AD=AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论: ①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有 .15.如图所示,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连结AE,CE.延长CE到F,连结BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F 到BC的距离为;③BE+EC=EF;④;⑤.其中正确的是.16.如图,Rt△ABC中,∠C=90°,BC=3cm,AB=5cm.点P从点A出发沿AC以1.5cm/s的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回;点Q 从点B出发沿BA以1cm/s的速度向点A匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线PC﹣CB﹣BQ于点E.点P、Q同时出发,当点Q到达点A时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0),则当t=秒时,四边形BQDE为直角梯形.评卷人得分三.解答题(共34小题)17.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.18.如图,在△ABC中,∠C=90°,AC=BC=6.点P在边AC上运动,过点P作PD ⊥AB于点D,以AP、AD为邻边作▱PADE.设□PADE与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x≤6).(1)求线段PE的长(用含x的代数式表示).(2)当点E落在边BC上时,求x的值.(3)求y与x之间的函数关系式.(4)直接写出点E到△ABC任意两边所在直线距离相等时x的值.19.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N 分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM 和BN,交于点P.求△APB周长的最大值.20.如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N 分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由.并求其面积最小值;(2)求点P到直线CD距离的最大值;(3)如图2,已知MB=NC=1,点E、F分别是边AM、边AN上的动点,连接EF、PF,EF+PF是否存在最小值?若存在,求出最小值及此时AE、AF的长;若不存在,请说明理由.21.如图①,正方形ABCD边长为1,将正方形ABCD绕点A逆时针旋转α度后得到正方形AB'C'D'(0°<α<90°),C'D'与直线CD相交于点E,C'B'与直线CD相交于点F.问题发现:(1)试猜想∠EAF=;三角形EC'F的周长.问题探究:如图②,连接B'D'分别交AE,AF于P,Q两点.(2)在旋转过程中,若D'P=a,QB'=b,试用a,b来表示PQ,并说明理由.(3)在旋转过程中△APQ的面积是否存在最小值,若存在,请求出这个值;若不存在,请说明理由.22.如图,在矩形ABCD中,AB=CD=4cm,AD=BC=6cm,AE=DE=3cm,点P从点E出发,沿EB方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CD方向匀速运动,速度为2cm/s,连接PQ,设运动时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ⊥CD?(2)设四边形PBCQ的面积为y(cm2),求y与t的函数关系式;(3)是否存在某一时刻t,使S四边形PBCQ :S四边形PQDE=22:5?若存在,求出t的值;若不存在,说明理由.(4)是否存在某一时刻t,使A,P,Q三点在同一直线上?若存在,求出t的值;若不存在,说明理由.23.已知,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,在射线BC任取一点M,联结DM,作∠MDN=∠BDC,∠MDN的另一边DN交直线BC 于点N(点N在点M的左侧).(1)当BM的长为10时,求证:BD⊥DM;(2)如图(1),当点N在线段BC上时,设BN=x,BM=y,求y关于x的函数关系式,并写出它的定义域;(3)如果△DMN是等腰三角形,求BN的长.24.如图,在边长为2的正方形ABCD中,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB、PQ,且∠PBC=∠BPQ.(1)当QD=QC时,求∠ABP的正切值;(2)设AP=x,CQ=y,求y关于x的函数解析式;(3)联结BQ,在△PBQ中是否存在度数不变的角?若存在,指出这个角,并求出它的度数;若不存在,请说明理由.25.已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.26.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.27.已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE :S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.28.如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.(1)当t=时,△PQR的边QR经过点B;(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.29.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C 重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.30.已知:四边形ABCD中,对角线的交点为O,E是OC上的一点,过点A作AG⊥BE于点G,AG、BD交于点F.(1)如图1,若四边形ABCD是正方形,求证:OE=OF;(2)如图2,若四边形ABCD是菱形,∠ABC=120°.探究线段OE与OF的数量关系,并说明理由;(3)如图3,若四边形ABCD是等腰梯形,∠ABC=α,且AC⊥BD.结合上面的活动经验,探究线段OE与OF的数量关系为(直接写出答案).31.如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD 上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M 作MG⊥EM,交直线BC于点G.(1)若M为边AD中点,求证△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.32.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC 的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC 的长度.33.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF :S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t 的值;若不存在,请说明理由.34.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.35.给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.36.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=,AP=.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=.37.已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.38.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B 点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?39.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M 作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.40.如图(1),E是正方形ABCD的边BC上的一个点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)连接CF,如图(2),求证:CF平分∠DCG;(3)当=时,求sin∠CFE的值.41.如图,已知在矩形ABCD中,AD=10,CD=5,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,当B、E、F三点共线时,两点同时停止运动,此时BF⊥CE.设点E移动的时间为t(秒).(1)求当t为何值时,两点同时停止运动;(2)求当t为何值时,EC是∠BED的平分线;(3)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;(4)求当t为何值时,△EFC是等腰三角形.(直接写出答案)42.如图1,将矩形ABCD绕点A顺时针旋转至矩形B点正好落在CD上的点E 处,连结BE.(1)求证:∠BAE=2∠CBE;(2)如图2,连BG交AE于M,点N为BE的中点,连MN、AF,试探究AF与MN的数量关系,并证明你的结论;(3)若AB=5,BC=3,直接写出BG的长.43.将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.(1)如图(1),在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;(2)如图(2),在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上D′点,过D′作D′G∥AO交E′F于T点,交OC于G点,求证:TG=AE′;(3)在(2)的条件下,设T(x,y).①探求:y与x之间的函数关系式.②指出变量x的取值范围.44.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A 出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形.(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形(不考虑QD=PD)?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.45.如图,在平面直角坐标系中,四边形OABC是矩形,其中点A在x轴的正半轴上,点B的坐标为(4,2),点D为对角线OB上一个动点(不包括端点),∠BCD的平分线交OB于点E.(1)求线段OB所在直线的函数表达式,并写出CD的取值范围.(2)当∠BCD的平分线经过点A时,求点D的坐标.(3)点P是线段BC上的一个动点,求CD十DP的最小值.46.如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.(1)求证:CE=BD;(2)若AB=4,求AF的长度;(3)求sin∠EFC的值.47.如图①,在长方形ABCD中,AB=DC=3cm,BC=5cm,点P从点B出发,以1cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=cm.(用含t的代数式表示);(2)当t为何值时,△ABP≌△DCP,请说明理由;(3)如图②,当点P从点B开始运动时,点Q从点C出发,以acm/s的速度沿CD向点D运动,是否存在这样a的值,使得△ABP与△PCQ全等?若存在,请求出a的值,若不存在,请说明理由.48.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S=,试判断△AOE与△AOD是否相似?并△AOE说明理由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.49.如图,已知四边形ABCD中,AB∥DC,AB=DC,且AB=6cm,BC=8cm,对角线AC=l0cm.(1)求证:四边形ABCD是矩形;(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向点A匀速运动,同时动点P从点B出发,在BC边上以每秒4cm的速度向点C匀速运动,运动时间为t秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t 秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.50.如图,点E为正方形ABCD的边BC所在直线上的一点,连接AE,过点C作CF⊥AE于F,连接BF.(1)如图1,当点E在CB的延长线上,且AC=EC时,求证:BF=;(2)如图2,当点E在线段BC上,且AE平分∠BAC时,求证:AB+BE=AC;(3)如图3,当点E继续往右运动到BC中点时,过点D作DH⊥AE于H,连接BH.求证:∠BHF=45°.四边形综合题集参考答案与试题解析一.选择题(共9小题)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:=CG2;③若AF=2DF,则BG=6GF;④CG与BD ①△AED≌△DFB;②S四边形BCDG一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.1【分析】①先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S=S四边形BCDG,易求后者的面积;四边形CMGN③过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF;④因为点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,当点E,F分别是AB,AD中点时,CG⊥BD;⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°.【解答】解:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED ≌△DFB ,故本选项正确;②∵∠BGE=∠BDG +∠DBF=∠BDG +∠GDF=60°=∠BCD ,即∠BGD +∠BCD=180°,∴点B 、C 、D 、G 四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C 作CM ⊥GB 于M ,CN ⊥GD 于N (如图1),则△CBM ≌△CDN (AAS ),∴S 四边形BCDG =S 四边形CMGN ,S 四边形CMGN =2S △CMG ,∵∠CGM=60°,∴GM=CG ,CM=CG ,∴S 四边形CMGN =2S △CMG =2××CG ×CG=CG 2,故本选项错误;③过点F 作FP ∥AE 交DE 于P 点(如图2),∵AF=2FD ,∴FP :AE=DF :DA=1:3,∵AE=DF ,AB=AD ,∴BE=2AE ,∴FP :BE=FP :2AE=1:6,∵FP ∥AE ,∴PF ∥BE ,∴FG :BG=FP :BE=1:6,即BG=6GF ,故本选项正确;④当点E ,F 分别是AB ,AD 中点时(如图3),由(1)知,△ABD ,△BDC 为等边三角形,∵点E ,F 分别是AB ,AD 中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选:B.【点评】此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.2.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个 B.3个 C.4个 D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,得到CE=CF;由正方形的性质就可以得出∠AEB=75°;设EC=x,由勾股定理得到EF,表示出BE,利用三角形的面积公式分别表示出S△CEF 和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,故①正确;∵∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°,∴∠AEB=75°,故②正确;设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AG≠2GC,③错误;∵CG=x,AG=x,∴AC=x∴AB=AC•=x,∴BE=x﹣x=x,∴BE+DF=(﹣1)x,∴BE+DF≠EF,故④错误;∵S△CEF=x2,S△ABE=×BE×AB=x×x=x2,∴2S△ABE ═S△CEF,故⑤正确.综上所述,正确的有3个,故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.3.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH 与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的个数为()A.2 B.3 C.4 D.5【分析】①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;≠1,错误;③可以直接求出FC的长,计算S△ACF④根据正方形边长为2,分别计算CE和AF的长得结论正确;还可以利用图2证明△ADF≌△CDN得:CN=AF,由CE=CN=AF;⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,所以⑤也正确.【解答】解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=∠FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,S△AFC=CF•AD≠1,所以选项③不正确;④AF===2,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤延长CE和AD交于N,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴EG2=FG•CG,∴EG2=FG•DG,故选项⑤正确;本题正确的结论有4个,故选:C.【点评】本题是四边形的综合题,综合考查了正方形、相似三角形、全等三角形的性质和判定;求边时可以利用三角形相似列比例式,也可以直接利用同角三角函数列式计算;同时运用了勾股定理求线段的长,勾股定理在正方形中运用得比较多.4.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .1【分析】首先证明△ABE ≌△BCF ,再利用角的关系求得∠BGE=90°,即可得到①AE=BF ;②AE ⊥BF ;△BCF 沿BF 对折,得到△BPF ,利用角的关系求出QF=QB ,解出BP ,QB ,根据正弦的定义即可求解;根据AA 可证△BGE 与△BCF 相似,进一步得到相似比,再根据相似三角形的性质即可求解.【解答】解:∵E ,F 分别是正方形ABCD 边BC ,CD 的中点,∴CF=BE ,在△ABE 和△BCF 中,,∴Rt △ABE ≌Rt △BCF (SAS ),∴∠BAE=∠CBF ,AE=BF ,故①正确;又∵∠BAE +∠BEA=90°,∴∠CBF +∠BEA=90°,∴∠BGE=90°,∴AE ⊥BF ,故②正确;根据题意得,FP=FC ,∠PFB=∠BFC ,∠FPB=90°∵CD ∥AB ,∴∠CFB=∠ABF ,∴∠ABF=∠PFB ,∴QF=QB ,令PF=k (k >0),则PB=2k在Rt △BPQ 中,设QB=x ,∴x 2=(x ﹣k )2+4k 2,∴x=,∴sin=∠BQP==,故③正确; ∵∠BGE=∠BCF ,∠GBE=∠CBF ,∴△BGE ∽△BCF ,∵BE=BC ,BF=BC , ∴BE :BF=1:,∴△BGE 的面积:△BCF 的面积=1:5,∴S 四边形ECFG =4S △BGE ,故④错误.故选:B.【点评】本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.5.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE 于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,给出下列命题:(1)∠AEB=∠AEH (2)DH=2EH(3)OH=AE (4)BC﹣BF=EH其中正确命题的序号()A.(1)(2)(3)B.(2)(3)(4)C.(2)(4)D.(1)(3)【分析】(1)根据矩形的性质得到AD=BC=AB=CD,由DE平分∠ADC,得到△ADH是等腰直角三角形,△DEC是等腰直角三角形,得到DE=CD,得到等腰三角形求出∠AED=67.5°,∠AEB=67.5°,得到(1)正确;(2)设DH=1,则AH=DH=1,AD=DE=,求出HE=﹣1,得到2HE≠1,所以(2)不正确;(3)通过角的度数求出△AOH和△OEH是等腰三角形,从而得到(3)正确;(4)由△AFH≌△CHE,到AF=EH,由△ABE≌△AHE,得到BE=EH,于是得到BC﹣BF=(BE+CE)﹣(AB﹣AF)=(CD+EH)﹣(CD﹣EH)=2EH,从而得到(4)不正确.【解答】解:(1)在矩形ABCD中,AD=BC=AB=CD,∠ADC=∠BCD=90°,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AH,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AED=67.5°,∴∠AEB=180°﹣45°﹣67.5°=67.5°,∴∠AEH=∠AEB,所以(1)结论正确;(2)设DH=1,则AH=DH=1,AD=DE=,∴HE=DE﹣DH=﹣1,∴2HE=2(﹣1)=4﹣2≠1,所以(2)结论不正确;(3)∵∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=180°﹣90°﹣67.5°=22.5°,∴∠OAH=∠OHA=22.5°,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE=OA,∴OH=AE,所以(3)正确;(4)∵AH=DH,CD=CE,在△AFH与△CHE中,,∴△AFH≌△CHE,∴AF=EH,在Rt△ABE与Rt△AHE中,,∴△ABE≌△AHE,∴BE=EH,∴BC﹣BF=(BE+CE)﹣(AB﹣AF)=(CD+EH)﹣(CD﹣EH)=2EH,所以(2)不正确,故选:D.【点评】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.6.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C 两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC 于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个。
初中数学 四边形综合
一、四边形综合【例1】 (2009湖北十堰)如图1,四边形ABCD 是正方形,点G 是BC 上任意一点,DE AG ⊥于点E ,BF AG ⊥于点F .⑴ 求证:DE BF EF -=.⑵ 当点G 为BC 边中点时,试探究线段EF 与GF 之间的数量关系, 并说明理由.⑶ 若点G 为CB 延长线上一点,其余条件不变.请你在图2中画出图形,写出此时DE 、BF 、EF 之间的数量关系(不需要证明). 图2图1ABCDG G F EDCB A ABCDE FG【例2】 (2009大兴二模)如图,在梯形ABCD 中,AB CD ∥,90BCD ∠=︒,且1AB =,2BC =,tan 2ADC ∠=.⑴ 求证:DC BC =;⑵ E 是梯形内一点,F 是梯形外一点,且EDC FBC ∠=∠,DE BF =, 当:1:2BE CE =,135BEC ∠=︒时,求sin BFE ∠的值.FEDCBA例题精讲四边形综合【例3】 已知:如图,在梯形ABCD 中,//AD BC ,DC AB =,点,,E F G 分别在,,AB BC CD 上, 且GC GF AE ==.(1)求证:四边形AEFG 是平行四边形;(2)当EFB FGC ∠=∠2时,求证:四边形AEFG 是矩形.G CFE D BA【补充】(2008上海)正方形ABCD 的边长为2,E 是射线CD 上的动点(不与点D 重合),直线AE 交直线BC于点G ,BAE ∠的平分线交射线BC 于点O .⑴ 如图,当23CE =时,求线段BG 的长;⑵ 当点O 在线段BC 上时,设CEx ED=,BO y =,求y 关于x 的函数解析式;⑶ 当2CE ED =时,求线段BO 的长.GOED CB A【例4】 (2008威海)如图,在梯形ABCD 中,AB CD ∥,7AB =,1CD =,5AD BC ==.点M N ,分别在边AD BC ,上运动,并保持MN AB ∥,ME AB ⊥,NF AB ⊥,垂足分别为E F ,.(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形.若能,求出正方形MEFN 的面积;若不能,请说明理由.NMFE D C BA【例5】 (2008辽宁)如图,在Rt ABC ∆中,90A ∠=,AB AC =,BC =另有一等腰梯形DEFG (GF DE ∥)的底边DE 与BC 重合,两腰分别落在AB AC ,上,且G F ,分别是AB AC ,的中点. ⑴ 求等腰梯形DEFG 的面积;⑵ 操作:固定ABC ∆,将等腰梯形DEFG 以每秒1个单位的速度沿BC 方向向右运动,直到点D 与点C 重合时停止.设运动时间为x 秒,运动后的等腰梯形为DEF G ''(如图). 探究1:在运动过程中,四边形BDG G '能否是菱形?若能,请求出此时x 的值;若不能,请说明理由. 探究2:设在运动过程中ABC ∆与等腰梯形DEFG 重叠部分的面积为y ,求y 与的函数关系式.FGC(E)(D)B A二、向外作正多边形问题【例6】 如图,以ABC ∆的边AC 、AB 为一边,分别向三角形的外侧作正方形ACFG 和正方形ABDE ,连结EC 交AB 于点H ,连结BG 交CE 于点M ,求证:BG CE ⊥.H MF EDGCBA【变式】 如图,以ABC ∆的边AB 、AC 向三角形外分别作正方形ABDE 和正方形ACFG ,设1O 、2O 是两个正方形对角线的交点,点M 为BC 的中点,则能推得1O M 与2O M 在数量以及位置方面的关系如何?MFDCB【例7】 如图,以ABC ∆的边AC 、AB 为一边,分别向三角形的外侧作正方形ACFG 和正方形ABDE ,ABC∆的边BC 的中点为M ,连结EG ,则MA 与EG 的位置关系如何?MFDC B【变式】 在例题中再以EA 、AG 为边向外作平行四边形AEHG ,并使AD BE 、交于点O ,则CO 与OH 的位置会如何?【例8】 (07年北达资源期中试题)分别以ABC ∆的三边长为边长,在形外作正方形ABMN ,ACHK ,BCFE ,连接NK ,ME ,FH .⑴若ABC ∆为任意三角形时,以NK ,ME ,FH 为边能否构成三角形?为什么? ⑵如果能,试探究以NK ,ME ,FH 为边构成的三角形的面积与ABC ∆的面积关系.HMFE K NCBA【变式】 例题中已知条件不变,分别取三个正方形ABMN ,ACHK ,BCFE 的中心1O 、2O 、3O . 证明:123O O AO ⊥,123O O AO =.HMF E【例9】 (2009河北)在图1至图3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .⑴ 如图1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM MH =,FM MH ⊥;⑵ 将图1中的CE 绕点C 顺时针旋转一个锐角,得到图2,求证:FMH ∆是等腰直角三角形; ⑶ 将图2中的CE 缩短到图3的情况,FMH ∆还是等腰直角三角形吗? (第⑶问基础、提高班直接写出结论,精英班需要证明)ABCDEFG HM NABC DEFG HM NHG (N )FEDC (M )BA图3图2图1【例10】 (2004年全国联赛试题)如图,梯形ABCD 中,//AD BC ,分别以两腰AB 、CD 为边向两边作正方形ABGE 和正方形DCHF . 设线段AD 的垂直平分线l 交线段EF 于点M . 求证:点M 为EF 的中点.M Gl FEDCBA【变式1】如图,向ABC ∆的外侧作正方形ABDE 、ACFG .过A 作AH BC ⊥于H ,AH 与EG 交于P . 求证:2BC AP =.GABCDEFH P【变式2】【变式1】中已知条件不变,证明:PE PG =.【变式3】例题中已知条件不变,取AB 中点P ,连接CP ,求证:12CP FH =.【变式4】【例5】中已知条件不变,连接AF 、BH ,证明:AF BH ⊥,AF BH =.【变式5】例题中已知条件不变,分别取三个正方形ABMN ,ACHK ,BCFE 的中心1O 、2O 、3O .证明:123O O AO ⊥,123O O AO =.【补充】在ABC ∆的边AB 、AC 向形外作正方形ABEF 、ACGH ,BG 、CE 相交于O .求证:AO BC ⊥.DN O M GHEFCBA【例11】 (山东省数学竞赛试题) 如图所示,分别以ABC ∆的边AC 、BC 为一边,在ABC ∆外作正方形ACDE和CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离是AB 的一半.【补充】在ABC ∆的两边AB 、AC 向形外作正方形ABDE 和ACFG ,取BE 、BC 、CG 的中点M 、Q 、N ,则MQ QN ⊥.NMQGFCBDEA【例12】 (2004年全国数学联合竞赛C 卷试题) 如图所示,梯形ABCD 中,//AD BC ,分别以两腰AB 、CD为边向两边作正方形ABGE 和正方形DCHF ,连接EF ,设线段EF 的中点为M ,求证MA MD =.M HGFEDBA【例13】 如图所示,在ABC ∆每一条边上分别向形外作正方形AGFC ,正方形BCED 和正方形ABKH .连接EF 、HG 、DK ,CM 是ABC ∆的中线.求证:2EF CM =.KM HC BAEFD G【例14】 如图,在三角形ABC 的三边向外作正方形,三个正方形的中心分别是1O ,2O ,3O ,求证:13O O 和2O B 相等且垂直.O 3O 2O 1CBA【补充】在凸四边形ABCD 的边上向形外分别作正方形,四个正方形的中心依次是1O ,2O ,3O ,4O .求证:13O O 与24O O 垂直且相等.【备选1】 (2009年湘西自治州)在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相平分的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形【备选2】 (“五羊杯”初三竞赛题)如图,正方形ABCD 的边长为2,从各边分别向外作等边三角形ABE 、BCF 、CDG 、DAH ,则四边形AFGD 的周长为 ( )A. 42622+B. 22622+课后作业EC. 42342++D. 22342++【备选3】 (2008年佛山市改编)如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件. ⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.FEDCB A【备选4】 (2009山东淄博)如图,在矩形ABCD 中,20cm BC =,P ,Q ,M ,N 分别从A 、B 、C 、D 出发沿AD BC CB DA ,,,方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若()cm 0BQ x x =≠,2cm AP x =,3cm CM x =,2cm DN x =.⑴ 当x 为何值时,以PQ MN ,为两边,以矩形的边(AD 或BC )的一部分为第三边构成一个三角形⑵ 当x 为何值时,以P 、Q 、M 、N 为顶点的四边形是平行四边形;⑶ 以P 、Q 、M 、N 为顶点的四边形能否为等腰梯形?如果能,求x 的值;如果不能,请说明理由.ABDCPQMN月测备选。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章四边形综合练习
【考点一】平行四边形的性质与判定
如图,在平行四边形ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线相交于点F 。
( 1 )求证:△ABE ≌△DFE ;
(2)试连接BD,AF,判断四边形ABCD 的形状,并证明你的结论。
【考点二】矩形的性质与判定
如图,在矩形ABCD 中,E 是AD 上一点,F 是AB 上一点,EF CE =,且,2EF CE DE cm ⊥=,矩形ABCD 的周长为16cm ,求AE 与CF 的长.
【考点三】菱形的性质与判定
如图,菱形ABCD 的边长为2,BD =2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE +CF =2.
(1) 求证:△BDE ≌△BCF ;
(2) 判断△BEF 的形状,并说明理由;
(3) 设△BEF 的面积为S ,求S 的取值范围.
【考点四】正方形的性质与判定
如图,已知平行四边形中,对角线
交于点
,是
延长线上的点,且
是等边三角形.
(1)求证:四边形是菱
形;
(2)若,求证:四边形
是正方形.
【考点五】梯形的性质与判定
1、如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.
(1)求证:AD=AE(2)若AD=8,DC=4,求AB的长
2、如图,在直角梯形ABCD 中,AD ∥BC ,BC ⊥CD ,∠B =60º,BC =2AD ,E 、F 分别为AB 、BC 的中点.(1)求证:四边形AFCD 是矩形;(2)求证:DE ⊥EF .
【综合提高】一、填空题
1.如图,在平行四边形ABCD 中,DB=DC ,∠C=70°,AE ⊥BD 于点E ,则∠DAE= .
2.如图,BD 是平行四边形ABCD 的对角线,点E ,F 在BD 上,要使四边形AECF 是平行四边形,还需要增加的一个条件是 (填上你认为正确的一个即可,不必考虑所有可能情形).
3.如图,一个平行四边形被分成面积分别为1S ,2S ,3S ,4S 的四个小平行四边形.当CD 沿AB 自左向右在平行四边形内平行行滑动时,1S 4S 与2S 3S 的大小关系是 .
4.工人师傅做铝合金窗框分下面三个步骤进行:
(1)先截出两对符合规格的铝合金窗料,如图(1),使AB=CD ,EF=GH ;
(2)摆放成如图(2)的四边形,这时窗框的形状是 ,根据的数学道理是: ;
(3)将直角尺靠紧窗框的一个角,如图(3).调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,如图(4),说明窗框合格.这时窗框是 ,根据的数学道理是 。
5.如图,菱形ABCD 的对角线的长分别为2的5,点P 是对角线AC 上的
任意一点(点P 不与点A ,C 重合),且PE ∥BC 交AB 于点E ,PF ∥CD 交 AD 于点F ,则阴影部分的面积是 。
二、选择题
6.下列命题中正确的是( )
A.对角线互相平分的四边形是菱形.
B.对角线互相平分且相等的四边形是菱形.
C.对角线互相垂直的四边形是菱形.
D.对角线互相垂直平分的四边形是菱形.
7.如图,某花木场有一块等腰梯形ABCD 的空地,其各边的中点分别是点E ,F ,G ,H ,测量得对角线AC=10米.现想用篱笆围成四边形场地EFGH ,需要篱笆总长度是( )
A.40米
B.30米
C.20米
D.10米
8.如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC=12,BD=9.则梯形ABCD 的E D C B A F E D C B A S 4
S 3S 2S 1D C B A H G F E D C B A P F E C
面积是( )
A.30
B.15
C.54
D.60
9.如图,已知矩形ABCD ,点R ,P 分别是DC ,BC 边上的点,点E ,F 分别是AP ,RP 的中点.当点P 在BC 上从B 向C 移动而点R 不动时,下列结论成立的是( )
A.线段EF 的长逐渐增大.
B. 线段EF 的长逐渐减小.
C. 线段EF 的长不变.
D. 线段EF 的长不能确定.
三、解答题
10.如图,在平行四边形ABCD 中,点E ,F 是对角线AC 上的两点,且AE=CF.求证:DE=BF.
11.在△ABC 中,点D 是边BC 的中点,DE ⊥AC ,DF ⊥AB ,垂足分别是点E ,F ,且BF=CE.
(1)求证:△ABC 是等腰三角形;
(2)当∠A=90°时,试判断四边形AFDE 的形状,并证明你的结论.
12.探究规律
如图,已知直线m ∥n ,点A ,B 为直线n 上的两点,点C ,P 为直线m 上的两点.
(1)写出图中面积相等的各对三角形: .
(2)如果A ,B ,C 为三个定点,点P 在m 上移动,那么无论点P 移动到任何位置,总有 与△ABC 的面积相等,理由是: .
H G F
E D C B A D C B A P
F E D C B A F E D C B A n m O P C 7题图 8题图 9题图
13.解决问题
如图甲,五边形ABCD 是张大爷十年前承包的一块土地的示意图.经过多年开垦荒地,现已变成如图乙所示的形状,但承包土地与开垦荒地的分界小路(图乙中折线CDE )还保留着.张大爷想修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多.请你用有关的几何知识,按张大爷的要求设计修路方案(不计分界小路与直路的占地面积).
(1)写出设计方案,并在图乙中画出相应的图形;
(2)说明方案设计理由.
N M E
D C B A
E D C B A 甲 乙。