表观遗传学
表观遗传学
表观遗传学
❖ 经典遗传学以研究基因序列影响生物学功能为核心相比, ❖ 表观遗传学主要研究这些“表观遗传现象”的建立和维持
的机制。
多少年来,基因一直被认为是生物有机体一代代相传的一个 并且仅有的一个遗传载体。越来越多的生物学家发现了一 个被称为表观遗传的现象------生物有机体后天获得的非遗 传变异有时可以被遗传下去。有详细记录的100个关于代 间表观遗传的例子,提示非基因遗传要比科学家们以前想 象的多得多。
其他例子 Rats whose agouti gene is unmethylated (i.e., expressed) have a yellow-ish coat color and are
表观遗传学
细胞中两条X染色体中的一条随机失活,这就是X染色 母猫身上有可能会是花花的,既有棕色又有黄色,而公猫只有一种颜色,棕色或者黄色。
表观遗传学是与遗传学相对应的概念。
体失活。而且,一旦这个细胞启动了对某一条X染色体 遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变和基因杂合丢失等;
性染色体,但是为了保证X染色体上的基因表达剂量在 在雌性哺乳动物的体细胞中,两条X染色体中的一条总是被异染色质化而失活,这个现象称为X染色体失活。
三色猫背后的生物学机制
对于只有一条X染色体的公猫,它的毛色要么是黄白要么是棕白。
一个合适的范围内,在胚胎发育到原肠胚的时期,体 在雌性体细胞内,虽然有两条X性染色体,但是为了保证X染色体上的基因表达剂量在一个合适的范围内,在胚胎发育到原肠胚的时期
对于只有一条X染色体的公猫,它的毛色要么是黄白 要么是棕白。对于虽然有两条X染色体,但是毛色基 因一致的雌猫,毛色也是黄白或者棕白。只有杂合体 的雌猫,拥有两条X染色体,但是一条上面带的是黄 色毛基因,另一条上面则是棕色毛基因。在胚胎发育 的早期,已经形成了多细胞的阶段,两条X染色体要 失活一条,失活的X染色体浓缩成染色较深的染色质 体。有些细胞保留黄色毛基因所在的X染色体的活性, 而有些细胞保留棕色毛基因所在的X染色体的活性。 而且,这些细胞再分裂出来的子代细胞,都保持一样 的失活程序。最后出生的小猫,身上的花斑就是这里 一块是黄色那里一块是棕色,这是因为同一色的斑块 实际上都来自于同一个前体细胞,并保留相同的X染 色体失活的选择(图1)。
有些细胞保留黄色毛基因所在的X染色体的活性,而有些细胞保留棕色毛基因所在的X染色体的活性。
条有活性的X染色体。在雌性体细胞内,虽然有两条X 在雌性哺乳动物的体细胞中,两条X染色体中的一条总是被异染色质化而失活,这个现象称为X染色体失活。
表观遗传学
磷酸化-- 发生与 Ser 残基,一般与基因活化相关。
泛素化-- 一般是C端Lys修饰,启动基因表达。 SUMO(一种类泛素蛋白)化-- 可稳定异染色质。
其他修饰
非编码的RNA
无论DNA修饰还是组蛋白修饰,都是基因活性调节的中 间参与者;而真正诱导基因活性改变的最大可能者是功能 性非编码RNA。 非编码RNA在调节基因表达、基因转录、调整染色质结构 、表观遗传记忆、RNA选择性剪接以及蛋白质翻译中都发 挥重要的作用。 不仅如此,RNA在保护机体免受外来核酸的侵扰中也扮演 着重要的作用,被认为是最古老的免疫体系。
非编码的RNA
包括: siRNA miRNA
(以上两种是序列特异性转录后基因表达的调节因子)
siRNA
siRNA结构:21-23nt的双链结构,序列与靶mRNA有同 源性,双链两端各有2个突出非配对的3’碱基。
siRNA功能:是RNAi 作用的重要组分,是RNAi发生的中 介分子。内源性siRNA使细胞能够抵御转座子、转基因和 病毒的侵略。
1942年定义为生物学的分支,研究基因与决定表型的基 因产物之间的因果关系。 1975年,Hollidy R 对表观遗传学进行了较为准确的描述 。
表观遗传学的特点
可遗传的,即这类改变是通过有丝分裂或减数分裂,能在 细胞或个体世代内遗传
可逆性的基因表达调节
没有DNA序列的改变,或不能用DNA序列变化来解释
至核小体以外,会受到不同的化学修饰,这种修饰往往与
基因的表达调控密切相关。 被组蛋白覆盖的基因如果要表达,首先要改变组蛋白的修 饰状态,使其与DNA的结合由紧变松,这样靶基因才能与 转录复合物相互作用。因此,组蛋白是重要的染色体结构
维持单元和基因表达的负控制因子。
表观遗传学
表观遗传学Epigenetics1.达尔文“自然选择”:过度繁殖、生存竞争、遗传和变异、适者生存2.表观遗传学:没有DNA序列的变化,可发生生物体表现型的可遗传的改变。
表观遗传学是在以孟德尔式遗传为理论基石的经典遗传学和分子遗传学母体中孕育的、专门研究基因功能实现的一种特殊机制的遗传学分支学科。
表观遗传研究进一步促进了遗传学和基因组学的研究。
3.染色质DNA或蛋白质的各种修饰(染色质水平的基因表达调控)DNA修饰;组蛋白修饰;RNA干扰;基因组印迹;X染色体失活。
4.DNA甲基化(DNA methylation)甲基化位点:CpG中胞嘧啶第5位碳原子。
DNA甲基转移酶。
甲基来源:一碳单位;S-腺苷蛋氨酸;环境和饮食因素:叶酸、B121)基因组DNA CpG:70%~80%甲基化状态,CpG甲基化与基因组稳定性相关。
2)CpG岛:CpG双核苷酸局部聚集,形成GC含量较高、CpG双核苷酸相对集中的区域。
CpG岛CpG多为非甲基化状态;CpG岛CpG甲基化与基因表达抑制相关。
3)CpG岛分类:转录起始点附近的CpG岛(TSS–CGIs),正常组织是非甲基化的,肿瘤组织发生甲基化,与转录抑制相关。
转录起始点外的CpG岛(non-TSS CpG),正常组织:通常呈高度的甲基化。
肿瘤组织:甲基化程度降低,程度与患病程度相关。
4)CpG岛的分析:长度大于200 bp、GC含量大于50%、CpG含量与期望含量之比大于0.6的区域。
5)DNA甲基化转移酶DNMT:DNMT1:催化子链DNA半甲基化位点甲基化,维持复制过程中甲基化位点的遗传稳定性.DNMT3a和DNMT3b:催化从头甲基化,以非甲基化的DNA为模板,催化新的甲基化位点形成.6)甲基来源:S-腺苷蛋氨酸(胞嘧啶甲基化供体、蛋氨酸是必需氨基酸),一碳单位叶酸:参与一碳单位代谢,间接提供甲基。
补充S-腺苷蛋氨酸。
叶酸摄入不足时可导致DNA低甲基化。
7)DNA甲基化抑制基因转录的机制①直接抑制基因表达:启动子区CpG序列甲基化,影响转录激活因子与启动子识别结合。
表观遗传学简介
表观遗传学简介 (Introduce to Epigenetics)
什么是表观遗传学
表观遗传学(epigenetics) 是指基于非基因序列改变所致基因表达水平变 化,如DNA甲基化、组蛋白乙酰化等。 在基因组中除了DNA和RNA序列以外,还有许多调控基因的信息,它 们虽然本身不改变基因的序列,但是可以通过基因修饰,蛋白质与蛋白 质、DNA和其它分子的相互作用,而影响和调节遗传的基因的功能和 特性,并且通过细胞分裂和增殖周期影响遗传的一门新兴学科。因此表 观遗传学又称为实验遗传学、化学遗传学、特异性遗传学、后遗传学、 表遗传学和基因外调节系统,它是生命科学中一个普遍而又十分重要的 新的研究领域。
真核生物基因组中存在着广泛的甲基化,DNA甲基化主要发生在CpG岛上, 其作用是导致基因的表达受到抑制而沉默。 CpG 岛DNA甲基化所致基因 沉默是表观遗传学(epigenetics) 的主要改变之一。
DNA甲基化研究方法
(一) 全基因组范围CpG岛DNA甲基化分析 采用甲基化敏感或/和甲基化不敏感的酶(同裂酶)进行全基因组DNA 范围内的酶切,在基因组消化产物的两端加上特异性的接头,然后以 PCR扩增来筛选甲基化和未甲基化的CpG岛片段。 (二) 位点特异性甲基化分析 目前多采用亚硫酸氢盐作前期的基因组DNA预处理。亚硫酸氢盐修饰是 众多序列特异性甲基化检测方法的基础。胞嘧啶(C)与亚硫酸氢钠的 反应可以迅速鉴别出以任何序列存在的5mC,修饰后单链DNA中的C通 过磺酸基作用脱氨基形成U,而CmG不变。 (三)新甲基化位点的寻找
第十一章-表观遗传学
雄性生殖系 雌性生殖系
父系染色体
母系染色体
合子
父系配子
母系配子
亲代基因组印迹在生殖系的重新编程
Key features of genomic imprinting in mammals
cis-Acting mechanism A consequence of inheritance Imprints are epigenetic modification acquired by one
Both syndromes can be caused by genetic or epigenetic defects
基因组改变:
微缺失的关键区域有成簇排列的,富含CpG岛的基因表 达调控元件——
印迹中心(imprinting centers, ICs)
父源 母源
染色体上的ICs呈现差异甲基化
parental gamete Imprinted genes are mostly clustered together with a
noncoding RNA Imprints can modify long-range regulatory elements that
act on multiple genes Imprinted genes play a role in mammalian development
组蛋白的化学修饰:乙酰化、甲基化 (1)组蛋白中不同氨基酸残基的乙酰化一般与活化的 染色质构型和有表达活性的基因相关联; (2)组蛋白中氨基酸残基的甲基化与浓缩的异染色质 核基因表达受抑有关。
也有例外: 组蛋白甲基化抑制或激活基因表达取决于 被修饰的赖氨酸的位置,
表观遗传学(研究生课件)
一、表观遗传学的基本概念表观遗传学(Epigenetics)一词最早由英国生物学家康韦·里德(ConradWaddington)于1942年提出,意为“基因表达调控的研究”。
表观遗传学关注的是基因表达的可遗传变化,这种变化不涉及DNA序列的改变,而是通过染色质重塑、DNA甲基化、组蛋白修饰等机制实现。
二、表观遗传学的调控机制1.染色质重塑:染色质重塑是指染色质结构发生变化,使DNA 暴露或隐藏于核小体中,从而影响基因表达。
染色质重塑主要通过ATP依赖的染色质重塑复合体实现。
2.DNA甲基化:DNA甲基化是指在DNA甲基转移酶的作用下,将甲基基团转移至DNA上的过程。
DNA甲基化通常发生在CpG岛上,高甲基化状态往往与基因沉默相关,而低甲基化状态与基因活化相关。
3.组蛋白修饰:组蛋白修饰是指组蛋白上的氨基酸残基发生甲基化、乙酰化、磷酸化等修饰。
这些修饰可以改变组蛋白与DNA的相互作用,进而影响基因表达。
4.非编码RNA:非编码RNA包括微小RNA(miRNA)、长链非编码RNA(lncRNA)等,它们在基因表达调控中发挥重要作用。
例如,miRNA可以通过与目标mRNA结合,抑制其翻译过程。
三、表观遗传学与疾病表观遗传学异常与多种疾病的发生密切相关。
例如,肿瘤的发生往往伴随着表观遗传学调控机制的紊乱,如DNA甲基化异常、组蛋白修饰异常等。
表观遗传学还与心血管疾病、神经系统疾病、代谢性疾病等密切相关。
四、表观遗传学的应用1.肿瘤诊断与治疗:表观遗传学在肿瘤诊断和治疗方面具有重要应用价值。
例如,通过检测肿瘤相关基因的DNA甲基化状态,可以早期发现肿瘤;同时,针对表观遗传学调控机制的药物研发,为肿瘤治疗提供了新策略。
2.农业育种:表观遗传学在农业育种领域也具有广泛应用。
通过改变植物表观遗传状态,可以提高作物产量、抗病性和适应环境能力。
3.神经科学与心理学:表观遗传学研究为揭示神经系统疾病和心理学问题的发生机制提供了新视角。
表观遗传学概论课件
03
表观遗传变异与疾病关系
肿瘤发生发展中表观遗传变异作用
DNA甲基化异常
抑癌基因高甲基化导致沉默,原癌基因低甲基化而活 化。
组蛋白修饰改变
组蛋白乙酰化、甲基化等修饰异常影响染色质结构和 基因表达。
非编码RNA调控
miRNA、lncRNA等通过调控靶基因表达参与肿瘤发 生发展。
神经系统疾病中表观遗传变异影响
脂肪代谢异常
表观遗传变异调控脂肪细胞分化和脂质代谢相 关基因表达,引发脂肪代谢异常。
糖尿病及其并发症
表观遗传变异在糖尿病及其并发症的发生发展中发挥重要作用。
其他类型疾病与表观遗传变异关系
自身免疫性疾病
表观遗传变异影响免疫细胞分化和功能,导 致自身免疫性疾病。
心血管疾病
表观遗传变异与高血压、动脉粥样硬化等心 血管疾病的发生发展有关。
表观遗传学特点
在不改变DNA序列的前提下,通 过DNA甲基化、组蛋白修饰等方 式调控基因表达。
表观遗传学与遗传学关系
表观遗传学与遗传学相互补充,共同揭示生物遗 传信息的传递和表达机制。
遗传学关注基因序列的遗传信息,而表观遗传学 关注基因表达的调控机制。
二者在生物发育、疾病发生发展等方面具有密切 联系。
组蛋白修饰
定义
组蛋白修饰是指对组蛋白 分子进行化学修饰的过程 ,包括乙酰化、甲基化、 磷酸化等。
机制
通过组蛋白修饰酶的催化 作用,对组蛋白的特定氨 基酸残基进行修饰,改变 组蛋白的电荷和构象。
功能
影响染色质的结构和功能 ,进而调控基因的表达。 与细胞分化、发育、记忆 等生物学过程密切相关。
非编码RNA调控
甲基化DNA免疫共沉淀技术
利用特异性抗体与甲基化DNA结合,通过免疫共 沉淀的方法富集甲基化DNA片段,再进行高通量 测序分析。
名词解释 表观遗传学
名词解释表观遗传学
表观遗传学是指在不改变DNA序列的情况下,通过化学修饰(如甲基化、乙酰化等)或染色体结构改变(如DNA 甲基化、组蛋白修饰、染色质重塑等)来影响基因的表达和功能。
这些修饰可以影响DNA双螺旋的结构,从而影响到DNA与转录因子等蛋白质的相互作用,进而影响基因的转录和表达。
表观遗传学的修饰可以在细胞分裂过程中传递给子细胞,因此可以对细胞的基因表达和功能产生长期的影响。
表观遗传学在许多生物学过程中都起着重要的作用,如细胞分化、胚胎发育、肿瘤发生等。
通过研究表观遗传学,我们可以更好地理解这些生物学过程,并为疾病的治疗和预防提供新的思路和方法。
表观遗传学 epigenetics
基因组印记的特点:
①基因组印记遍布基因组:例如在人基因组中有100
多个印记基因,成簇时形成染色体印记区,连锁时会有不同的 印记效应;
②基因组印记的内含子小:雄性印记基因重组频率高
多发性神经纤维瘤Ι 母源传递→症状加重。
例:Prader-Willi综合征 患者有缺失突变的15号染色体(15
q11)--来自父亲
Angelman综合征
患者同样有缺失突变的15号染色体
--来自母亲
产生基因组印记的机制主要涉及DNA甲基化和染色质结构变化。印
记失活的基因通常是高度甲基化,表达的等位基因则是低甲基化。
· Inactive chromatin is methylated on 9Lys of histone H3.
· Inactive chromatin is methylated on cytosines of CpG doublets.
4.DNA methylation is perpetuated by a maintenance methylase
1、表观遗传学(epigenetics)
• 表观遗传学是研究不涉及DNA序列改变的基因表达和调 控的可遗传修饰,即探索从基因演绎为表型的过程和机制的 一门新兴学科。 或:
是针对不涉及到DNA序列变化而表现为DNA甲基化谱、 染色质结构状态和基因表达谱在细胞代间传递的遗传现象的 一门学科。 或:
研究生物体或细胞表观遗传变异的遗传学分支学科。
现已证明Angelman综合征患者两组染色体15q13 等位基因 均由父亲遗传,即父亲单亲二体染色体(单亲二体性:指一个 个体具有正常的二倍体染色体,但是只继承了双亲一方的一对 同源染色体)
(2024年)表观遗传学完整版
表观遗传调控参与突触可塑性的形成和维持,影响学习记忆等认知 功能。
神经退行性疾病治疗
针对神经退行性疾病中的表观遗传调控异常,开发潜在的治疗策略 。
15
其他疾病中表观遗传影响
心血管疾病
表观遗传调控在心血管疾病如 动脉粥样硬化、高血压等的发
生发展中具有潜在作用。
2024/3/26
代谢性疾病
表观遗传变化与肥胖、糖尿病 等代谢性疾病的发生和发展密 切相关。
20
非编码RNA研究技术
2024/3/26
非编码RNA测序技术
通过对特定细胞或组织中的非编码RNA进行高通量测序,从而鉴定新的非编码RNA分子 并研究其表达模式和功能。
微小RNA(microRNA)靶基因预测和验证
利用生物信息学方法预测microRNA的靶基因,并通过实验手段验证其调控关系,从而揭 示microRNA在生物过程中的作用。
与疾病关联
非编码RNA异常表达与多种疾病相 关,如心血管疾病、代谢性疾病和 癌症等。
10
其他类型表观遗传变异
2024/3/26
染色质可及性
01
染色质结构的开放或关闭状态可以影响基因表达,这种变化可
以通过高通量测序技术进行检测和分析。
拷贝数变异
02
基因组中特定区域的拷贝数增加或减少也可以导致表观遗传变
DNA甲基化异常与多种疾 病的发生和发展密切相关 ,如癌症、神经退行性疾 病等。
8
组蛋白修饰与染色质重塑
组蛋白修饰类型
包括乙酰化、甲基化、磷 酸化等多种共价修饰方式 ,影响组蛋白与DNA的相 互作用。
2024/3/26
染色质重塑
通过改变核小体位置和组 蛋白修饰状态来调控染色 质结构和基因表达。
第4讲表观遗传学
传的变化。
(2)果蝇位置效应花斑(position effect variegation, PEV)
显然,果蝇眼睛 颜色的这种改变 并未涉及基因自 身的变化,只是 基因位置的改变, 而且基因整合的 位置与异染色质 的距离愈近,则 基因失活的可能 性愈高,并随异 染色质扩展使邻 近基因也失活
果蝇中染色质重排产生位置效应花斑。由于染色体区 段倒位而使野生型等位基因靠近异染色质,并随异染色质 的扩展而失活,导致产生红白小眼嵌合复眼
非编码RNA的调控作用:基因转录后的调控
组蛋白修饰:蛋白质的翻译后修饰
重点介绍:
DNA甲 基 化(DNA methylation) 染色质重塑(chromatin remodeling) 基因组印记(genomic imprinting) 组蛋白修饰(histon modification) 与组蛋白密码 ( histon code) RNA编辑(RNA editing) 重编程
记忆表观遗传学(memigenetics): “可遗传”的表观遗 传变异研究。
例 人体从一个受精卵分化后产生200多种细胞: 基因型相同,基因数相同:27000多个基因 不同:细胞的基因表达模式(gene expression pattern) 不相同,每种细胞只有数千个基因有活性。 因此,维持细胞正常功能是取决于一组基因表达而不是 全部基因。 在胚胎和个体发育过程中一个基因组可以衍生出许多不 同类型的表观基因组(epigenome),而且在各自后代中可稳 定遗传——子代细胞形态和功能的改变——细胞分化。已分 化的同一类细胞其表达模式是一致的,保留着相同的细胞记 忆(cellular memory),并通过细胞有丝分裂或减数分裂传 递。
② 不改变DNA序列,通过改变染色质的结构与活性改变基因的但并未强调是“可遗传”的。
表观遗传学简介
表观遗传学的重要性
表观遗传学在生物医学领域具有重要意义,因为它可以通过影响基因的 表达来影响生物体的表型,进而影响生物体的发育、疾病和进化等方面。
表观遗传学在生物医学领域的应用包括疾病诊断、药物研发和个性化医 疗等方面。例如,通过研究癌症的表观遗传学特征,可以开发出针对特 定癌症的个性化治疗方案。
去甲基化的意义
去甲基化在表观遗传学中具有重要意义,可以逆转甲基化引起的基因沉默,恢复基因的正 常表达。
组蛋白乙酰化与去乙酰化
组蛋白乙酰化
指组蛋白上的某些赖氨酸残基被乙酰 基修饰的过程。
组蛋白乙酰化的作用
组蛋白乙酰化可以调控基因的表达, 影响细胞的功能和发育。
组蛋白去乙酰化
指将乙酰基从组蛋白上移除的过程。
2
甲基化测序技术包括亚硫酸氢盐测序、酶解法、 质谱分析等,可对全基因组范围内的甲基化水平 进行高精度检测。
3
甲基化测序在研究肿瘤、发育生物学、神经科学 等领域具有重要应用价值,有助于深入了解表观 遗传学机制。
染色质免疫沉淀技术(ChIP)
ChIP是一种用于研究蛋白质与DNA相互作用的 实验技术。
通过ChIP实验,可以检测特定蛋白质与基因组 特定区域的结合情况,了解基因表达调控的机 制。
作用,共同调控基因的表达。
miRNA在表观遗传学中的作用
03
miRNA可以通过影响DNA甲基化和组蛋白修饰等表观遗传学过
程,调控基因的表达,影响细胞的功能和发育。
03
表观遗传学在生物体发育中的作用
胚胎发育过程中的表观遗传调控
基因表达的时空特异性
表观遗传学机制如DNA甲基化和组蛋 白修饰等,在胚胎发育过程中调控基 因的时空特异性表达,确保细胞分化 的正确进行。
表观遗传学
组蛋白修饰检测技术
染色质免疫沉淀技术
利用特异性抗体与组蛋白修饰结合,通过沉淀和洗脱步骤 富集特定修饰的组蛋白及其结合的DNA片段。
质谱分析技术
通过质谱仪对组蛋白修饰进行定性和定量分析,具有高灵 敏度和高分辨率的优点。
表观遗传学
目录
• 表观遗传学概述 • 表观遗传机制 • 表观遗传与基因表达调控 • 表观遗传在生物发育中作用 • 表观遗传在疾病发生发展中作用 • 表观遗传学技术应用与前景展望
01 表观遗传学概述
定义与发展历程
表观遗传学定义
研究基因表达或细胞表现型的变化, 这些变化在不改变基因序列的情况下, 可通过细胞分裂和增殖进行遗传。
03 表观遗传与基因 表达调控
基因转录水平调控
转录因子
通过与DNA特定序列结合,激活 或抑制基因转录。
染色质重塑
改变染色质结构,影响转录因子与 DNA的结合。
组蛋白修饰
通过乙酰化、甲基化等修饰,影响 基因转录活性。
mRNA稳定性及翻译水平调控
mRNA降解
通过特定酶降解mRNA,调节基因表达。
microRNA
利用特异性抗体或亲和层析等方法,分离和鉴定与非编码RNA结 合的蛋白质,揭示其调控机制。
未来发展趋势预测
多组学整合分析
将表观遗传学数据与基因组学、转录组学、蛋白质组学等多组学数据 进行整合分析,更全面地揭示生物过程的调控机制。
单细胞表观遗传学研究
利用单细胞测序等技术,研究单个细胞水平上的表观遗传学变异和动 态变化过程。
非编码RNA在发育、细胞分化、 代谢等过程中发挥重要作用,同 时也与疾病的发生和发展有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表观遗传学比较通俗的讲表观遗传学是研究在没有细胞核DNA序列改变的情况时,基因功能的可逆的、可遗传的改变。
也指生物发育过程中包含的程序的研究。
在这两种情况下,研究的对象都包括在DNA序列中未包含的基因调控信息如何传递到(细胞或生物体的)下一代这个问题。
表观遗传学是与遗传学(genetic)相对应的概念。
遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。
所谓DNA甲基化是指在DNA 甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。
正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。
人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。
由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。
几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年新的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅可以影响个体的发育,而且还可以遗传下去。
这种在基因组的水平上研究表观遗传修饰的领域被称为“表观基因组学(epigenomics)”。
表观基因组学使人们对基因组的认识又增加了一个新视点:对基因组而言,不仅仅是序列包含遗传信息,而且其修饰也可以记载遗传信息。
摘要表观遗传学是研究没有DNA 序列变化的可遗传的基因表达的改变。
遗传学和表观遗传学系统既相区别、彼此影响,又相辅相成,共同确保细胞的正常功能。
表观遗传学信息的改变,可导致基因转录抑制、基因组印记、细胞凋亡、染色体灭活以及肿瘤发生等。
关键词表观遗传学;甲基化;组蛋白修饰;染色质重塑;非编码RNA 调控;副突变表观遗传学( epigenetics) 是研究没有DNA序列变化的可遗传的基因表达的改变。
它最早是在1939 年由Waddington在《现代遗传学导论》一书中提出,当时认为表观遗传学是研究基因型产生表型的过程。
1996 年,国内学术界开始介绍epigenetics 研究,其中译名有表遗传学、表观遗传学、表型遗传修饰等10 余种,其中,表观遗传学、表遗传学在科技文献中出现的频率较高。
1 表观遗传学调控的分子机制基因表达正确与否,既受控于DNA 序列,又受制于表观遗传学信息。
表观遗传学主要通过DNA 的甲基化、组蛋白修饰、染色质重塑和非编码RNA 调控等方式控制基因表达。
近年发现,副突变也包含有表观遗传性质的变化。
1.1 DNA 甲基化DNA甲基化是由酶介导的一种化学修饰,即将甲基选择性地添加到蛋白质、DNA 或RNA上,虽未改变核苷酸顺序及组成,但基因表达却受影响。
其修饰有多种方式,即被修饰位点的碱基可以是腺嘌呤N!6 位、胞嘧啶的N!4 位、鸟嘌呤的N!7 位和胞嘧啶的C!5 位,分别由不同的DNA 甲基化酶催化。
在真核生物DNA 中,5- 甲基胞嘧啶是唯一存在的化学性修饰碱基,CG 二核苷酸是最主要的甲基化位点。
DNA 甲基化时,胞嘧啶从DNA 双螺旋突出,进入能与酶结合的裂隙中,在胞嘧啶甲基转移酶催化下,有活性的甲基从S- 腺苷甲硫氨酸转移至胞嘧啶5' 位上,形成5- 甲基胞嘧啶( 5mC)。
DNA 甲基化不仅可影响细胞基因的表达,而且这种影响还可随细胞分裂而遗传并持续下去。
因此,它是一类高于基因水平的基因调控机制,是将基因型与表型联系起来的一条纽带。
在哺乳动物细胞的基因组DNA中,约有3%~5%的胞嘧啶是以5- 甲基胞嘧啶形式存在的,同时70 %的5- 甲基胞嘧啶参与了CpG 序列的形成,而非甲基化的CpG 序列则与管家基因以及组织特异性表达基因有关。
因而CpG 的甲基化与否在基因的表达中起重要作用。
高度甲基化的基因,如女性两条X 染色体中的一条处于失活状态,而为细胞存活所需一直处于活性转录状态的持家基因则始终处于低水平的甲基化。
在生物发育的某一阶段或细胞分化的某种状态下,原先处于甲基化状态的基因,也可以被诱导去除甲基化,而出现转录活性。
哺乳动物有2 类DNA甲基化酶:一是DNMT3A和DNMT3B,负责无甲基化DNA 双链上进行甲基化和发育需要的重新DNA 甲基化,同时还参与异常甲基化的形成;二是DNMT1,主要参与复制后的半甲基化,即DNA 分子中未甲基化的一条子链甲基化,以保持子链与亲链有完全相同的甲基化形式,这就构成了表观遗传学信息在细胞和个体间世代传递的机制。
DNA 去甲基化是在去甲基化酶的催化下利用碱基切除和连接等步骤进行的核酸替代过程,受RNA 分子调节。
哺乳动物一生中DNA 甲基化水平经历了2 次显著变化: ①在受精卵最初几次卵裂中,去甲基化酶清除了DNA 分子上几乎所有从亲代遗传来的甲基化标志;②在胚胎植入子宫时,一种新的甲基化遍布整个基因组,构建性甲基化酶使DNA重新建立一个新的甲基化模式。
细胞内新的甲基化模式一旦建成,即可通过甲基化以“甲基化维持”的形式将新的DNA 甲基化传递给所有子细胞DNA 分子。
如: 有袋类X 染色体通常是来自父亲的那一条失活,但当女儿将父亲遗传给她的那一条失活的X 染色体传递给她的儿子时,这条染色体又被重新激活;亨廷顿病是一种常染色体显性遗传病,有近乎完全的外显率,患者发病年龄与致病基因HD 来自父亲还是母亲有关。
等位基因来自父亲则发病早;来自母亲则发病迟。
当一位男性患者的HD 基因来自母亲时,他是迟发病,可是他如果把HD 遗传给他的子女,则其子女是早发病。
这就解释了基因印记不是一种突变,印记是可逆的,它只维持于个体的一生中,在下一代个体的配子形成时,旧的基因印记被清除,新的基因印记又发生。
因此,遗传印记与DNA 甲基化有关,印记失活的基因通常是高度甲基化,表达的等位基因则是低甲基化。
1.2 组蛋白修饰组蛋白是真核生物染色体的基本结构蛋白,是一类小分子碱性蛋白质。
组蛋白有两个活性末端: 羧基端和氨基端。
羧基端与组蛋白分子间的相互作用和DNA缠绕有关,而氨基端则与其他调节蛋白和DNA 作用有关,且富含赖氨酸,具有极度精细的变化区,这类变化由乙酰化、磷酸化、甲基化等共价修饰引起。
这些修饰可作为一种标记或语言,是“组蛋白密码”的基本组成元素。
这种组蛋白密码可被一系列特定的蛋白质所识别,并将其转译成一种特定的染色质状态以实现对特定基因的调节,这显著地扩大了遗传密码的信息储存量。
1.3 染色质重塑真核生物染色质是一切遗传学过程的物质基础,染色质构型局部和整体的动态改变,是基因功能调控的关键因素。
染色体重塑是指染色质位置和结构的变化,主要涉及在能量驱动下核小体的置换或重新排列,它改变了核小体在基因启动子区的排列,增加了基因转录装置和启动子的可接近性。
染色质重塑的发生和组蛋白N 端尾巴修饰密切相关,尤其是对组蛋白H3 和H4 的修饰。
修饰直接影响核小体的结构,并为其他蛋白提供了和DNA 作用的结合位点。
染色质重塑主要包括 2 种类型: 一类是含有组蛋白乙酰转移酶和脱乙酰酶的化学修饰;另一类是依赖ATP 的物理修饰,利用ATP 水解释放的能量解开组蛋白和DNA 的结合,使转录得以进行。
通常,DNA 甲基化与染色体的压缩状态、DNA 的不可接近性以及与基因处于抑制和沉默状态相关;而DNA 去甲基化、组蛋白的乙酰化和染色质去压缩状态,则与转录的启动、基因活化和行使功能有关。
这意味着,不改变基因本身的结构,而改变基因转录的微环境条件就可以左右基因的活性,或令其沉默,或使其激活。
1.4 非编码RNA调控有多种功能性非编码RNA 可对基因表达水平进行干扰。
各种生物中双链RNA( dsRNA) 可通过不同途径被分割成小的干涉RNA( siRNA) 或RNAi。
RNA 干涉( RNAi) 属于转录后基因沉默,它可使转录后的同源mRNA 降解,使同系的DNA 序列发生修饰性变化( 甲基化) ,使rRNA 甲基化,从而使目的基因表达沉默。
1.5 副突变副突变是指一个等位基因可以使其同源基因的转录产生稳定可遗传变化,即一个等位基因被另外一个等位基因在转录水平上被沉默且这种能力可遗传。
这种现象是1956 年R.A.Brink 在研究玉米的R 基因座位时发现的。
此后在其他植物、真菌甚至小鼠中发现。
美国图森市亚利桑那大学的分子生物学家VickiChandler领导的一个研究小组研究发现: 玉米中,基因B!I 能够生成一种紫色素,但是如果B!I 的复制伴侣携带B' ,B!I 便会受到抑制,结果只产生很少量的紫色素,最终使玉米秆大部分呈现绿色。
这一结果是可以遗传的——即使B' 并不存在,B!I 在下一代也会受到抑制,尽管其DNA 并没有改变。
这种表现是不可逆转的,它会一直延续下去。
这种副突变效应的产生还需要另一种基因——RNA 依赖型RNA 聚合酶基因mop1。
mop1 基因与一种在水稻和十字花科植物中发现的基因非常类似。
在这些植物中,此类基因能够编码一种酶——RDRP,后者能够对RNA 分子进行转录。
拥有正常的mop1基因、B!I 等位基因和B' 等位基因的植物大多数呈现绿色,然而拥有mop1 基因的B!I/B' 的植物会呈现紫色。
这表明B' 等位基因在令B!I 隐性的过程中,mop1 基因是必不可少的。
这种由副突变所产生的基因沉默属于转录水平上的基因沉默。
2 遗传学和表观遗传学的关系传统遗传学认为遗传信息储存于DNA 的序列中,它主要研究基因序列改变所致的基因表达水平的变化,是基因质的变化;表观遗传学则认为遗传信息是DNA 甲基化形式和组蛋白密码、RNA 干涉等,它实际上是以基因表达水平为主的量变遗传学。
表观遗传变异也能遗传,并具重要的表型效应,但其不同于基因突变。
首先,表观遗传学是渐变的遗传过程而非突变的过程,而且表观遗传突变及其回复突变的频率也高于基因突变及其回复突变;第二,表观遗传变异常常是可逆的;第三,表观遗传改变多发生在启动子区,而遗传突变多发生在编码区等。
遗传学和表观遗传学也有共同的理论基础,即它们都主张遗传连续性和体质的不连续性。