自考数量方法(二)2008年考试及答案全集
数量方法(二)历年自考试题及部分答案
![数量方法(二)历年自考试题及部分答案](https://img.taocdn.com/s3/m/d28e733767ec102de2bd89d1.png)
全国2005年4月高等教育自学考试数量方法(二)试题课程代码:00994第一部分选择题(共30分)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.一组数据3,4,5,5,6,7,8,9,10中的中位数是()A.5 B.5.5C.6 D.6.52.某企业30岁以下职工占25%,月平均工资为800元;30—45岁职工占50%,月平均工资为1000元;45岁以上职工占25%,月平均工资1100元,该企业全部职工的月平均工资为()A.950元B.967元C.975元D.1000元3.某一事件出现的概率为1/4,试验4次,该事件出现的次数将是()A.1次B.大于1次C.小于1次D.上述结果均有可能4.设X、Y为两个随机变量D(X)=3,Y=2X+3,则D(Y)为()A.3 B.9C.12 D.155.某企业出厂产品200个装一盒,产品分为合格与不合格两类,合格率为99%,设每盒中的不合格产品数为X,则X通常服从()A.正态分布B.泊松分布C.均匀分布D.二项分布6.一个具有任意分布形式的总体,从中抽取容量为n的样本,随着样本容量的增大,样本均值X将逐渐趋向于()A.泊松分布B.2χ分布C.F分布D.正态分布7.估计量的无偏性是指()A.估计量的数学期望等于总体参数的真值B.估计量的数学期望小于总体参数的真值C.估计量的方差小于总体参数的真值D.估计量的方差等于总体参数的真值8.显著性水平α是指()A.原假设为假时,决策判定为假的概率B.原假设为假时,决策判定为真的概率C.原假设为真时,决策判定为假的概率D.原假设为真时,决策判定为真的概率9.如果相关系数r=-1,则表明两个随机变量之间存在着()A.完全反方向变动关系B.完全同方向变动关系C.互不影响关系D.接近同方向变动关系10.当所有观察点都落在回归直线y=a+bx上,则x与y之间的相关系数为()A.r=0 B.r2=1C.-1<r<1 D.0<r<111.某股票价格周一上涨8%,周二上涨6%,两天累计涨幅达()A.13% B.14%C.14.5% D.15%12.已知某地区2000年的居民存款余额比1990年增长了1倍,比1995年增长了0.5倍,1995年的存款额比1990年增长了( ) A .0.33倍 B .0.5倍 C .0.75倍 D .2倍 13.说明回归方程拟合程度的统计量是( ) A .置信区间 B .回归系数 C .判定系数 D .估计标准误差14.若采用有放回的等概率抽样,当样本容量为原来的9倍,样本均值的标准误差将( )A .为原来的91B .为原来的31C .为原来的9倍D .不受影响 15.设X 和Y 为两个随机变量,D(X)=10,D(Y)=1,X 与Y 的协方差为-3,则D(2X-Y)为( ) A .18 B .24 C .38 D .53第二部分 非选择题(共70分)三、填空题(本大题共5小题,每小题2分,共10分) 请在每小题的空格中填上正确答案。
数量方法自学考试复习提纲-2
![数量方法自学考试复习提纲-2](https://img.taocdn.com/s3/m/20e834e2581b6bd97f19eaeb.png)
《数量方法(二)》(代码00994)自学考试复习提纲-附件2(共36页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《数量方法(二)》自学考试复习题目(按照章节题型归类)第一章数据的整理和描述一、选择题一般用来描述和表现各成分占全体的百分比的图形是()A.条形图B.饼形图C.柱形图D.百分比图有一组数据99,97,98,101,100,98,100,它们的平均数是( )A.98 B.C.99 D.一组数据中最大值与最小值之差,称为( )A.方差B.标准差C.全距D.离差一个数列的平均数是8,变异系数是,则该数列的标准差是( )A. 2一般用来表现两个变量之间相互关系的图形是( )A.柱形图B.饼形图C.散点图D.曲线图对极端值最敏感的度量集中趋势的指标是()A.中位数B.众数C.标准差D.平均数某公司共有5名推销员。
在今年8月份这5名推销员的平均销售额为6600元,其中有3名推销员的平均销售额为7000元,则另外2名销售员的平均销售额为()8-某车间有2个生产小组负责生产某种零件,甲组有30名工人,乙组有20名工人。
在今年6月份,甲组平均每人生产70个零件,乙组平均每人生产80个零件。
则该车间50名工人在今年6月份平均每人生产的零件数是( )9-已知某班50名同学《数量方法》考试平均成绩是80分,该班20名男生的平均成绩是86分,则该班女生的平均成绩是( )个工人生产的零件数分别为53、48、65、50、59,则这5个数字的中位数是()A.48 B.53C.59 D.65一个数列的方差是4,变异系数是,则该数列的平均数是()A.B.C.10 D.20. 1.某公司上半年6个月的利润分别为80、85、75、70、82、78(单位:万元),则上半年的月平均利润为( )A. 78 B.C.79 D. 80一个数列的平均数是8,变异系数是,则该数列的方差是( )B.4C.16 D.32. 1.一个由7个工人组成的生产小组负责生产某种零件。
2008试题及答案
![2008试题及答案](https://img.taocdn.com/s3/m/9f2e3a22bcd126fff7050ba4.png)
2008试题及答案一、单项选择题(每小题3分,共15分) 1、已知随机变量X 服从参数2n =,13p =的二项分布,()F x 为X 的分布函数,则(1.5)F = 。
(A ) 19(B )49(C ) 59(D )892、下面四个随机变量的分布中,期望最大,方差最小的是 。
(A ) X 服从正态分布1(5,)2N(B ) Y 服从均匀分布(5,7)U(C ) Z 服从参数为16指数分布 (D ) T 服从参数为3的泊松分布 3、若二维随机变量),(Y X 的相关系数0XY ρ=,则以下结论正确的是 。
(A )X 与Y 相互独立 (B )()()()D X Y D X D Y +=+ (C )X 与Y 互不相容(D ))()()(Y D X D XY D ⋅=4、已知随机变量X 的数学期望5EX =,方差4D X =,则由契比雪夫不等式可知概率{}28P X << 。
(A ) 49≥(B ) 49≤(C ) 59≥(D ) 59≤5、对正态总体的数学期望μ进行假设检验,如果在显著水平05.0下接受=μ:0H 0μ,那么在显著水平01.0下,下列结论中正确的是 。
(A ) 必接受o H (B ) 可能接受,也可能拒绝o H (C ) 必拒绝o H(D ) 不接受,也不拒绝o H1、10把钥匙中有3把能打开门锁,今任取两把钥匙,则打不开门锁的概率为。
2、在区间()1,0之间随机地取两个数,则事件{两数的最大值大于23}发生的概率为 。
3、设随机变量X 服从参数为λ的指数分布,则}{DX X P >=。
4、设),,,(4321X X X X 是来自正态总体),0(2σN 的简单随机样本,若统计量()C X X Z +=t 分布,则常数C =________。
5、已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间 为 。
2008年7月份《数量方法二》试题及答案
![2008年7月份《数量方法二》试题及答案](https://img.taocdn.com/s3/m/192b4dbedd3383c4bb4cd25f.png)
2008年7月高等教育自学考试全国统一命题考试数量方法(二)试卷课程代码 0994一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.对极端值最敏感的集中趋势度量是()A.中位数 B.众数 C.标准差 D.平均数2.对于峰值偏向左边的单峰非对称直方图,一般来说()A.平均数>中位数>众数 B.众数>中位数>平均数C.平均数>众数>中位数 D.中位数>众数>平均数3.设A、B、C为任意三个事件,则“在这三个事件中只有A发生”可以表示为()A.ABC B.ABC C.ABC D.ABC4.设A、B为两个事件,P(A)=0.4,P(B)=0.3。
如果B?A,则P(AB)=()A.0.1 B.0.3 C.0.4 D.0.75.一次品牌调查中,有40%的被调查者喜欢甲品牌,有80%的被调查者喜欢乙品牌,有20%的被调查者既喜欢甲品牌又喜欢乙品牌,求在已知一个人喜欢甲品牌的条件下,他也喜欢乙品牌的概率是()A.0.3 B.0.4 C.0.5 D.0.66.事件A和B相互独立,且P(A)=0.7,P(B)=0.4,则P(AB)=()A.0.12 B.0.21 C.0.28 D.0.420.4ke?0.47.随机变量X分布律为P(x=k)=,k=0,1,2,3,?则x的方差D(x)=() k! A.0.4 B.2 C.2.5 D.3?21?x?1.58.设随机变量X的概率密度函数为P(x)=?则x的数学期望E(x)=() 0其它?A.1 B.1.25 C.1.5 D.29.设X与Y为随机变量,D(X)=3,D(Y)=2,Cov(X,Y)=0则D(5X-3Y)=()A.8 B.57 C.87 D.93110.随着抽样次数n的增大,样本均值X?n?Xi?1ni渐近服从()A.二项分布 B.正态分布 C.泊松分布 D.指数分布111.从总体X~N(?,?)中重复抽取容量为n的样本,则样本均值X?n2?Xi?1ni标准差为()2008年7月《数量方法(二)》试题及答案第 1 页共 7 页。
数量方法(二)
![数量方法(二)](https://img.taocdn.com/s3/m/2d343bae27284b73f24250f5.png)
12 .设A 、B 为两个事件, P (B ) =0.7,P()=0.3,则 P (习 + 菽)=()全国2009年4月高等教育自学考试数量方法(二)试题 课程代码:00994一、单项选择题(本大题共 20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号 内。
错选、多选或未选均无分。
1. 一个试验中所有基本事件的全体所组成的集合称为( A .集合B .单元C .样本空间D .子集2.对于峰值偏向右边的单峰非对称直方图, A .平均数〉中位数〉众数示为(5 .样本估计量的分布称为( A .总体分布B .抽样分布6 .估计量的一致性是指随着样本容量的增大,估计量( A .愈来愈接近总体参数值 B .等于总体参数值7.原假设为假时,根据样本推断其为真的概率称为( A .显著性水平 B .犯第一类错误的概率10 .在一次抛硬币的试验中,小王连续抛了3次,则全部是正面向上的概率为(一般来说( 'B .众数〉中位数〉平均数C .平均数>众数>中位数D .中位数〉众数〉平均数3.下列统计量中可能取负值的是(相关系数B .判定系数 A B 、C 为任意三个事件,则 4 •设 )C .估计标准误差在这三个事件中D .剩余平方和A 与B 不发生但是C 发生”可以表ABCC . AB£D . ABCC .子样分布D .经验分布C .小于总体参数值D •大于总体参数值 C .犯第二类错误的概率D .错误率& 一个实验的样本空间为Q ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10} , A={1 , 2, 3, 4},B ={2 , 3}, C={2 , 4, 6, 8, 10},则 A 云 C=(A . {2 , 3}B . {2 , 4}C . {4}9. 一个服从二项分布的随机变量,其方差与数字期望之比为 D . {1 , 2, 3, 4, 6, 8}3/4,则该分布的参数A . 1/4B . 2/4C . 3/4A . 1/9B . 1/8C . 1/6D . 1/311 .在一场篮球比赛中,人均得分为(A 队10名球员得分的方差是 9,变异系数是0.2,则这10球员A . 0.6B . 1.8C . 15D . 2016 •假设总体服从正态分布,在总体方差未知的情况下,检验2亠如的统计量为t=£/丽,其中n 为样本容量,S 为样本标准差,如果有简单随机样本 X1,X2,…,n, 与其相应的t < ta (n-1),则(A .肯定拒绝原假设 17 . 一元回归直线拟合优劣的评价标准是( )A .估计标准误差越小越好B .估计标准误差越大越好 18 .已知环比增长速度为 2%、5%、6.1%,则定基增长速度为( D . (102%X105%< 106.1%)-1 19 .按照指数所反映的内容不同,指数可分为( A .个体指数和总指数B .简单指数和加权指数C .数量指标指数和质量指标指数D .动态指数和静态指数 20 .某商店商品销售资料如下:B . 0.4C . 0.6D . 0.713 .已知某批水果的坏果率服从正态分布(0.04,0.09),则这批水果的坏果率的标准差为A . 0.04B . 0.09C . 0.2D . 0.314 .设总体X~N), 衣为该总体的样本均值,则(=< 1/4< "==1/4C . P (玄=> 1/215 .设总体X 服从正态分布已知,用来自该总体的简单随机样本X1,X2,…,Xn 建立总体未知参数 则®勺置信水平为1毎的置信区间,以L 表示置信区间的长度,( )A . I a 越大L 越B .庄越大L 越大C . I N 越小L 越小D . I a 与L 没有关系,H1B .肯定接受原假设C .有可能拒绝原假设D .有可能接受原假设 C .回归直线的斜率越小越好 D .回归直线的斜率越大越好 A . 2%< 5%< 6.1% B . (2%X5%< 6.1%)-1C . 102%< 105%< 106.1%0.6915)29.灯管厂生产出一批灯管,拿出5箱给收货方抽检。
2008年7月份《数量方法二》试题
![2008年7月份《数量方法二》试题](https://img.taocdn.com/s3/m/b042f475f01dc281e53af0c5.png)
度度度度
1997 51 75 87 54
1998 65 67 82 62
1999 76 77 89 73
试用按季平均法计算季节指数。
31.设有三种股票的价格和发行量资料如下:
股票 基期价格 本日收盘价
名称 (元)
(元)
A
10
15
B
20
18
C
18
25
以发行量为权数计算股票价格指数。
方次数应为_________。
三、计算题(本大题共6小题,每小题5分,共30分) 26.某班20名同学《数量方法》考试成绩如下:
97 86 89 60 82 67 74 76 88 89 93 64 54 82 77 79 68 78 85 73 请按照如下的分组界限进行组距式分组:60分以下、[60,70)、[70, 80)、[80,90)、[90,100],并编制频数分布表(仅给出每一组的频 数和频率)。 27.王某从外地来本市参加会议。他乘火车、轮船、汽车、飞机的概率 分别为0.3、0.2、0.1、0.4,而他乘火车、轮船、汽车、飞机准时到达的 概率分别为0.9、0.6、0.8、0.95。如果他准时到达了,则他乘汽车来的 概率是多少? 28.3名射手射击同一目标,各射手的命中率均为0.7,求在一次同时射 击中 (1)目标被击中的概率; (2)目标被击中的期望数。 29.在某城市一项针对某年龄段的调查中,询问了1000人关于他们获取 新闻的主要来源,其中350人表示他们获取新闻的主要来源是互联网。 试以95%的可靠性估计该年龄段人口主要通过互联网获取新闻的人数所 占比例p的置信区间。(Z0.05=1.645 , Z0.025=1.96) 30.某信托公司1997~1999年各季的投资收入资料如下(单位:万 元):
2008数二考研真题答案
![2008数二考研真题答案](https://img.taocdn.com/s3/m/906ad792cf2f0066f5335a8102d276a2002960e2.png)
2008数二考研真题答案2008年数学二考研真题共有5道大题,题目类型主要涵盖了概率论、线性代数、实变函数以及常微分方程等多个数学领域。
下面将分别对这些题目进行详细解答。
1. 题目一:概率论该题目要求计算一个概率值,并给出相应的证明过程。
解题思路如下:首先,根据所给条件,我们可以得到某事件A发生的概率P(A)以及事件B发生的概率P(B)。
因为事件A和事件B是相互独立的,所以我们可以得到它们同时发生的概率P(A∩B)等于它们各自概率的乘积,即P(A∩B) = P(A) * P(B)。
然后,根据已知条件,我们有P(A∩B') = 1/4,其中B'表示事件B不发生的情况。
利用概率的性质,我们可以得到P(A) - P(A∩B) =P(A∩B'),将已知条件带入可得P(A) - P(A) * P(B) = 1/4。
将上述等式整理可得P(A) = 1 / (1 + P(B))。
最后,代入已知条件P(B) = 1/2,可以得到P(A) = 2/3。
所以,事件A发生的概率为2/3。
2. 题目二:线性代数该题目要求计算线性方程组的解空间的维数。
解题思路如下:首先,根据线性方程组所给的矩阵形式,我们可以将其转化为增广矩阵形式,并通过初等行变换将其化为阶梯形矩阵。
然后,根据阶梯形矩阵的特点,我们可以得到该矩阵的秩。
在该题中,阶梯形矩阵中的非零行的个数即为矩阵的秩。
最后,根据秩-零度定理,解空间的维数等于矩阵的列数减去矩阵的秩。
在本题中,矩阵的列数为4,秩为2,因此解空间的维数为4-2=2。
所以,线性方程组的解空间的维数为2。
3. 题目三:实变函数该题目要求证明一个函数序列的连续性。
解题思路如下:首先,根据题目所给的条件,我们需要证明的是函数f(x) = n^2x / (1+n^4x^2)在区间(0,1)上是一致收敛的。
我们可以利用三角不等式证明该函数序列的一致收敛。
然后,根据极限的定义,我们可以假设函数f(x)是在区间(0,1)上的一致收敛函数序列的极限函数。
2008年4月自考《数量方法二》00994真题及答案
![2008年4月自考《数量方法二》00994真题及答案](https://img.taocdn.com/s3/m/ad16d8399ec3d5bbfc0a7417.png)
2008年4月自考《数量方法二》真题及答案课程代码00994单项选择题(本大题共20小题,每小题2分,共40分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、将一个数据集按升序排列,位于数列正中间的数值被称为该数据集的()A.中间数B.众数C.平均数D.中位数正确答案:D2、对于任意一个数据集来说()A.没有众数B.可能没有众数C.有唯一的众数D.有多个众数正确答案:B3、同时投掷三枚硬币,则事件“至少一枚硬币正面朝上”可以表示为()A.{(正,正,正),(正,正,反),(正,反,反)}B.{(正,反,反)}C.{(正,正,反),(正,反,反)}D.{(正,正,正)}正确答案:A4、一个实验的样本空间{1,2,3,4,5,6,7,8,9,10},A={1,2,3,4},B={2,3},C={2,4,6,8},则ABC=()A.{2,3}B.{2,4}C.{1,2,3,4,6,8}D.{2}正确答案:D5、设A、B为两个事件,P(A)=0.4,P(B)=0.8,则P(B│A)=()A.0.45B.0.55C.0.65D.0.75正确答案:D6、事件A和B相互独立,则()A.事件A和B互斥B.事件A和B互为对立事件C.P(AB)=P(A)P(B)D.A∩B是空集正确答案:C7、设随机变量X~B(20,0.8),则2X的方差D(2X)=()A.1.6B.3.2C.4D.12.8正确答案:D8、设随机变量x的概率密度函数为则x的方差D(x)=()A.1B.2C.3D.4正确答案:D9、将各种方案的最坏结果进行比较,从中选出收益最大的方案,称为()A.极大极小原则B.极小极大原则C.极小原则D.极大原则正确答案:A10、将总体单元按某种顺序排列,按照规则确定一个随机起点,然后每隔一定的间隔逐个抽取样本单元。
这种抽选方法称为()A.系统抽样B.简单随机抽样C.分层抽样D.整群抽样正确答案:A11、A.分布B.F分布C.t分布D.标准正态分布正确答案:C12、若置信水平保持不变,当增大样本容量时,置信区间()A.将变宽B.将变窄C.保持不变D.宽窄无法确定正确答案:B13、设为来自均值为μ,方差为的正态总体的简单随机样本,μ和未知,则的无偏估计量为()A.AB.BC.CD.D正确答案:A14、某超市为确定一批从厂家购入的商品不合格率P是否超过0.005而进行假设检验,超市提出的原假设应为()正确答案:B15、对方差已知的正态总体均值的假设检验,可采用的方法为()A.Z检验B.t检验C.F检验D.X2检验正确答案:A16、若两个变量之间完全相关,则以下结论中不正确的是()A.│r│=1B.B2=1C.估计标准误差Sy=0D.回归系数b=0正确答案:D17、已知某时间数列各期的环比增长速度分别为11%、13%、16%,该数列的定基增长速度为()A.11%×13%×16%B.11%×13%×16%+1C.111%×113%×116%-1D.111%×113%×116%正确答案:C18、变量x与y之间的负相关是指()A.当x值增大时y值也随之增大B.当x值减少时y值也随之减少C.当x值增大时y值也随之减少,或当x值减少时y值也随之增大D.y的取值几乎不受x取值的影响正确答案:C19、物价上涨后,同样多的人民币只能购买原有商品的96%,则物价上涨了()A.4.17%B.4.5%C.5.1%D.8%正确答案:A20、某企业今年与去年相比,产量增长了15%,单位产品成本增长了10%,则总生产费用增长了()A.4.5%B.15%C.18%D.26.5%正确答案:D二、填空题(每小题2分,共10分)1、一个数列的平均数是75,标准差是6,则该数列的变异系数是___________。
全国2008年10月高等教育自学考试(带答案)
![全国2008年10月高等教育自学考试(带答案)](https://img.taocdn.com/s3/m/151633a382d049649b6648d7c1c708a1284a0a7f.png)
全国2008年10月高等教育自学考试(带答案)第一篇:全国2008年10月高等教育自学考试(带答案)全国2008年10月高等教育自学考试(答案)毛泽东思想、邓小平理论和“三个代表”重要思想概论试题课程代码:03707一、单项选择题(本大题共30小题,每小题1分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.首次提出“马克思主义中国化”命题的中国共产党领导人是(A)A.毛泽东 B.邓小平C.江泽民 D.胡锦涛2.“三个代表”重要思想创造性回答的问题是(C)A.什么是社会主义改造、怎样进行社会主义改造B.什么是社会主义、怎样建设社会主义C.建设什么样的党、怎样建设党D.什么是发展、怎样发展3.我们今天讲一切从中国的实际出发,其中最大的实际就是(C)A.人口多,底子薄B.地区发展不平衡C.正处于并将长期处于社会主义初级阶段D.农业人口仍占很大比重4.毛泽东在《星星之火,可以燎原》中提出的重要思想是(B)A.枪杆子里面出政权 B.以乡村为中心C.没有调查,就没有发言权 D.一切为了群众,一切依靠群众5.毛泽东确定的人民军队建设的最根本原则是(D)A.坚持中国共产党对军队的绝对领导 B.全心全意为人民服务C.政治工作是人民军队的生命线 D.军民一致,官兵平等6.党在过渡时期总路线的主体是(D)A.对农业的社会主义改造 B.对手工业的社会主义改造C.对资本主义工商业的社会主义改造 D.实现社会主义工业化7.解决社会主义初级阶段主要矛盾的根本手段是(A)A.大力发展生产力 B.控制社会需求的过快增长C.维护社会稳定 D.巩固社会主义经济基础8.邓小平曾经指出,四个现代化的关键是(C)A.农业现代化 B.工业现代化C.科学技术现代化 D.国防现代化9.邓小平第一次提出“建设有中国特色的社会主义”概念的会议是(C)A.党的十一届三中全会 B.党的十一届六中全会C.党的十二大 D.党的十三大10.“一个中心,两个基本点”是对社会主义初级阶段基本路线的简明概括。
自考数量方法二计算题、应用题题目与答案汇总
![自考数量方法二计算题、应用题题目与答案汇总](https://img.taocdn.com/s3/m/1cedbf0aa8114431b90dd8f4.png)
27.灯管厂生产出一批灯管,拿出5箱给收货方抽检。
这5箱灯管被收货方抽检到的概率分别为0.2,0.3,0.1,0.1,0.3。
其中,第一箱的次品率为0.02,第二箱的次品率为0,第三箱的次品率为0.03,第四箱的次品率为0.01,第五箱的次品率为0.01。
收货方从所有灯管中任取一只,问抽得次品的概率是多少?28.某型号零件的寿命服从均值为1200小时,标准差为250小时的正态分布。
随机抽取一个零件,求它的寿命不低于1300小时的概率。
(已知000(0.3)0.6179,(0.4)0.6554,(0.5)0.6915Φ=Φ=Φ=)29.假设某单位员工每天用于阅读书籍的时间服从正态分布,现从该单位随机抽取了16名员工,己知他们用于阅读书籍的平均时间为50分钟,样本标准差为20分钟,试以95%的置信度估计该单位员工用于阅读书籍的平均时间的置信区间。
(已知t 0.025(15)=2.13, t 0.025(16)=2.12,t 0.05(15)=1.753, t 0.05(16)=1.746)30.某煤矿2005年煤炭产量为25万吨,“十一五”期间(2006-2010)每年平均增长4%,以后每年平均增长5%,问到2015年该煤矿的煤碳产量将达到什么水平?题31表要求:(1)计算销售额指数;(2)以基期销售额为权数计算销售量指数。
四、应用题(本大题共2小题,每小题10分,共20分)32.某农场种植的苹果优等品率为40%,为提高苹果的优等品率,该农场采用了一种新的种植技术,采用后对于500个苹果组成的随机样本的测试表明,其中有300个苹果为优等品。
(1)求该农场种植苹果的样本优等品率。
(2分)(2)该农场种植苹果的优等品率是否有显著提高(可靠性取95%)并说明理由?请给出相应假设检验的原假设和备择假设。
(8分)(z 0.05=1.645, z 0.025=l.96)33表所示:题33表要求:(1)计算人均月销售额与利润率之间的简单相关系数;(3分)(2)以利润率为因变量,人均月销售额为自变量,建立线性回归方程;(5分) (3)计算估计标准误差。
自考数量方法(二)考试附标准答案全集
![自考数量方法(二)考试附标准答案全集](https://img.taocdn.com/s3/m/f67a1844ac02de80d4d8d15abe23482fb4da0214.png)
⾃考数量⽅法(⼆)考试附标准答案全集全国2010年4⽉⾃学考试数量⽅法(⼆)试题1全国2008年4⽉⾃考数量⽅法(⼆)试卷⼀、单项选择题(本⼤题共20⼩题,每⼩题2分,共40分)1.将⼀个数据集按升序排列,位于数列正中间的数值被称为该数据集的() A .中间数 B .众数 C .平均数 D .中位数2.对于任意⼀个数据集来说()A .没有众数B .可能没有众数C .有唯⼀的众数D .有多个众数矚慫润厲钐瘗睞枥庑赖。
3.同时投掷三枚硬币,则事件“⾄少⼀枚硬币正⾯朝上”可以表⽰为() A .{(正,正,正),(正,正,反),(正,反,反)} B .{(正,反,反)} C .{(正,正,反),(正,反,反)} D .{(正,正,正)}聞創沟燴鐺險爱氇谴净。
4.⼀个实验的样本空间=Ω{1,2,3,4,5,6,7,8,9,10},A={1,2,3,4},B={2,3},C={2,4,6,8},则ABC=()残骛楼諍锩瀨濟溆塹籟。
A .{2,3}B .{2,4}C .{1,2,3,4,6,8}D .{2}酽锕极額閉镇桧猪訣锥。
5.设A 、B 为两个事件,P(A)=0.4,P(B)=0.8,P(B A )=0.5,则P(B │A)=()彈贸摄尔霁毙攬砖卤庑。
A .0.45B .0.55C .0.65D .0.75謀荞抟箧飆鐸怼类蒋薔。
6.事件A 和B 相互独⽴,则()A .事件A 和B 互斥 B .事件A 和B 互为对⽴事件C .P(AB)=P(A)P(B)D .A B 是空集厦礴恳蹒骈時盡继價骚。
7.设随机变量X~B(20,0.8),则2X 的⽅差D(2X)=() A .1.6 B .3.2 C .4 D .16 8.设随机变量x 的概率密度函数为? (x)=21/)--(-∞<<∞x )则x 的⽅差D(x)= A .1 B .2 C .3 D .49.将各种⽅案的最坏结果进⾏⽐较,从中选出收益最⼤的⽅案,称为()A .极⼤极⼩原则B .极⼩极⼤原则C .极⼩原则D .极⼤原则茕桢⼴鳓鯡选块⽹羈泪。
全国高等教育自学考试数量方法(二)历年试题-与答案
![全国高等教育自学考试数量方法(二)历年试题-与答案](https://img.taocdn.com/s3/m/863ce5df9b6648d7c0c746a2.png)
全国2012年4月高等教育自学考试数量方法(二)试题课程代码:00994一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.5个工人生产的零件数分别为53、48、65、50、59,则这5个数字的中位数是()A.48 B.53C.59 D.652.一个数列的方差是4,变异系数是0.2,则该数列的平均数是()A.0.4 B.0.8C.10 D.203.一个实验的样本空间为Ω=(1,2,3,4,5,6,7,8,9,10),A={1,2,3,4),B={2,3),C={2,4,6,8,10),则A B C⋂⋂=()A.{2,3} B.{2,4}C.{1,3,4} D.{1,2,3,4,6,8}4.对任意两个事件A、B,A B⋃表示()A.“A、B都不发生”B.“A、B都发生”C.“A不发生或者B不发生”D.“A发生或者B发生”5.用数字1,2,3,4,5可以组成的没有重复数字的两位数有()A.25个B.20个C.10个D.9个6.事件A、B互斥,P(A)=0.3,P(B|A)=0.6,则P(A-B)=()A.0 B.0.3C.0.9 D.17.设随机变量X~B(100,13),则E(X)=()A.2009B.1003C.2003D.1008.设随机变量X服从指数分布E(3),则E(X)=()A.1/6 B.1/5C.1/4 D.1/39.随机变量X~N(2,μσ),则随着σ的增大,P(|X-μ|<σ)将()A .单调增加B .单调减少C .保持不变D .增减不定10.若采用有放回的等概率抽样,当样本容量增加为原来样本容量的16倍时,样本均值的标准误差将变为原来的( ) A .116倍 B .14倍 C .4倍 D .16倍11.设X 1,X 2……X n 为来自总体2χ(10)的简单随机样本,则统计量nii 1X=∑服从的分布为( ) A .2χ(n) B .2χ(1/n) C .2χ(10n)D .2χ(1/10n)12.对于正态总体,以下正确的说法是( )A .样本中位数和样本均值都不是总体均值μ的无偏估计量B .样本中位数不是总体均值μ的无偏估计量,样本均值是μ的无偏估计量C .样本中位数是总体均值μ的无偏估计量,样本均值不是μ的无偏估计量D .样本中位数和样本均值都是总体均值μ的无偏估计量 13.利用t 分布构造总体均值置信区间的前提条件是( ) A .总体服从正态分布且方差已知 B .总体服从正态分布且方差未知C .总体不一定服从正态分布但样本容量要大D .总体不一定服从正态分布但方差已知14.假设χ~N(2,μσ),H 0:0μ≤μ,H 1:0μ>μ,且方差2σ已知,检验统计量为:X Z =,则H 0的拒绝域为( ) A .|Z|>z a B .Z>z a/2 C .Z<-z aD .Z>z a15.若H 0:0μ=μ,H 1:0μ≠μ,如果有简单随机样本X 1,X 2,……,X n ,其样本均值为0X =μ,则( )A .肯定拒绝原假设B .有1-α的可能接受原假设C .有可能拒绝原假设D .肯定不会拒绝原假设16.各实际观测值y i 与回归值i ˆy的离差平方和称为( ) A .总变差平方和 B .剩余平方和 C .回归平方和D .判定系数17.若产量每增加一个单位,单位成本平均下降3元,且产量为1个单位时,成本为150元,则回归方程应该为( )A.y=150+3x B.y=150-3xC.y=147-3x D.Y=153-3x18.报告期单位产品成本降低了0.8%,产量增长了12.6%,则生产费用将增长()A.11.7%B.12.8%C.14.2%D.15.4%19.按计入指数的项目多少不同,指数可分为()A.数量指标指数和质量指标指数B.拉氏指数和帕氏指数C.个体指数和综合指数D.时间指数、空间指数和计划完成指数20.一个企业产品销售收入计划增长8%,实际增长了20%,则计划超额完成程度为()A.11.11%B.12%C.111.11%D.150%二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案,错填、不填均无分。
2008—数二真题、标准答案及解析
![2008—数二真题、标准答案及解析](https://img.taocdn.com/s3/m/488445280066f5335a812166.png)
2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设2()(1)(2)f x x x x =--,则'()f x 的零点个数为( )()A 0 ()B 1. ()C 2 ()D 3(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分()at af x dx ⎰( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)在下列微分方程中,以123cos2sin 2xy C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A ''''''440y y y y +--= ()B ''''''440y y y y +++= ()C ''''''440y y y y --+=()D ''''''440y y y y -+-=(5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6)设函数f 连续,若2222(,)uvD F u v dxdy x y =+⎰⎰,其中区域uv D 为图中阴影部分,则F∂= ()A 2()vf u ()B 2()vf u u()C ()vf u()D ()vf u u(7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆. ()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 已知函数()f x 连续,且21cos[()]lim1(1)()x x xf x e f x →-=-,则(0)____f =.(10)微分方程2()0x y x e dx xdy -+-=的通解是____y =.(11)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (12)曲线23(5)y x x =-的拐点坐标为______. (13)设x yy z x ⎛⎫=⎪⎝⎭,则(1,2)____z x ∂=∂.(14)设3阶矩阵A 的特征值为2,3,λ.若行列式248A =-,则___λ=.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()40sin sin sin sin lim x x x x x→-⎡⎤⎣⎦. (16)(本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题0200x t dx te dt x --⎧-=⎪⎨⎪=⎩的解.求22y x ∂∂. (17)(本题满分9分)求积分1⎰.(18)(本题满分11分)求二重积分max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(19)(本题满分11分)设()f x 是区间[)0,+∞上具有连续导数的单调增加函数,且(0)1f =.对任意的[)0,t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成的曲边梯形绕x 轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数()f x 的表达式. (20)(本题满分11分)(1) 证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()baf x dx f b a η=-⎰(2)若函数()x ϕ具有二阶导数,且满足32(2)(1),(2)()x d x ϕϕϕϕ>>⎰,证明至少存在一点(1,3),()0ξϕξ''∈<使得 (21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大值与最小值. (22)(本题满分12分)设矩阵2221212n na a a A a a ⨯⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程A X B =,其中()1,,T n X x x = ,()1,0,,0B = ,(1)求证()1nA n a =+;(2)a 为何值,方程组有唯一解,并求1x ; (3)a 为何值,方程组有无穷多解,并求通解.(23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+, (1)证明123,,ααα线性无关; (2)令()123,,P ααα=,求1P AP -.2008年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】D【详解】因为(0)(1)(2)0f f f ===,由罗尔定理知至少有1(0,1)ξ∈,2(1,2)ξ∈使12()()0f f ξξ''==,所以()f x '至少有两个零点. 又()f x '中含有因子x ,故0x =也是()f x '的零点, D 正确. 本题的难度值为0.719. (2)【答案】C 【详解】00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.本题的难度值为0.829.(3)【答案】D【详解】由微分方程的通解中含有xe 、cos 2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是40y y y ''''''-+-= 本题的难度值为0.832. (4) 【答案】A【详解】0,1x x ==时()f x 无定义,故0,1x x ==是函数的间断点因为 000ln 11lim ()lim lim lim csc |1|csc cot x x x x x xf x x x x x++++→→→→=⋅=-- 200sin lim lim 0cos cos x x x xx x x++→→=-=-=同理 0lim ()0x f x -→= 又 1111ln 1lim ()lim lim sin lim sin1sin11x x x x x f x x x x ++++→→→→⎛⎫=⋅== ⎪-⎝⎭ 所以 0x =是可去间断点,1x =是跳跃间断点.本题的难度值为0.486.(5)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限.本题的难度值为0.537. (6)【答案】A【详解】用极坐标得 ()222()2011,()vu uf r r Df u v F u v dv rdr v f r dr +===⎰⎰⎰所以()2Fvf u u∂=∂ 本题的难度值为0.638. (7) 【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆. 本题的难度值为0.663. (8) 【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==---- 所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确. 本题的难度值为0.759. 二、填空题 (9)【答案】2【详解】222220001cos[()]2sin [()2]2sin [()2]()lim lim lim ()[()2]4(1)()x x x x xf x xf x xf x f x x f x xf x e f x →→→-⋅==⋅- 011lim ()(0)122x f x f →=== 所以 (0)2f = 本题的难度值为0.828. (10)【答案】()xx eC --+【详解】微分方程()20xy x e dx xdy -+-=可变形为x dy yxe dx x--= 所以 111()dx dx x x x x xy e xe e dx C x xe dx C x e C x ----⎡⎤⎛⎫⎰⎰=+=⋅+=-+⎢⎥ ⎪⎝⎭⎣⎦⎰⎰本题的难度值为0.617.(11)【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x y y xy F dy y x dx F x xy y x--'-=-=-'+-,将(0)1y =代入得1x dy dx==,所以切线方程为10y x -=-,即1y x =+本题的难度值为0.759. (12)【答案】(1,6)-- 【详解】5325y xx =-⇒23131351010(2)333x y x x x -+'=-= ⇒134343101010(1)999x y x x x--+''=+= 1x =-时,0y ''=;0x =时,y ''不存在在1x =-左右近旁y ''异号,在0x =左右近旁0y ''>,且(1)6y -=- 故曲线的拐点为(1,6)-- 本题的难度值为0.501. (13)221)- 【详解】设,y xu v x y==,则v z u = 所以121()ln v v z z u z v y vu u u x u x v x x y-∂∂∂∂∂=⋅+⋅=-+⋅∂∂∂∂∂ 2ln 11ln x yv vy u y y u uxy x y x ⎛⎫⎛⎫⎛⎫=-+=⋅-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 所以(1,2)21)2z x ∂=-∂本题的难度值为0.575.(14)【答案】-1【详解】||236A λλ =⨯⨯=3|2|2||A A =32648λ∴⨯=- 1λ⇒=- 本题的难度值为0.839.三、解答题 (15)【详解】 方法一:4300[sin sin(sin )]sin sin sin(sin )limlim x x x x x x x x x →→--=22220001sin cos cos(sin )cos 1cos(sin )12lim lim lim 3336x x x xx x x x x x x →→→--==== 方法二:331sin ()6x x x o x =-+ 331sin(sin )sin sin (sin )6x x x o x =-+4444400[sin sin(sin )]sin sin (sin )1lim lim 66x x x x xx o x x x x →→⎡⎤-∴ =+=⎢⎥⎣⎦本题的难度值为0.823. (16)【详解】方法一:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21dydy t tdt t t dxt dx dt t +⋅===+++222222[(1)ln(1)]2ln(1)221dt t d y d dy t t tdt dx t dx dx dx dt t ++++⎛⎫===⎪⎝⎭+ 22(1)[ln(1)1]t t =+++方法二:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21x dydy t tdt t t e x dxt dx dt t +⋅===++=+所以 22(1)x d ye x dx=+ 本题的难度值为0.742. (17)【详解】 方法一:由于21x -→=+∞,故21⎰是反常积分.令arcsin x t =,有sin x t =,[0,2)t π∈2212222000sin cos 2cos sin ()cos 22t t t t t tdt t tdt dt t πππ===-⎰⎰⎰⎰2222220001sin 21sin 2sin 2441644tt t td t tdt πππππ=-=-+⎰⎰ 222011cos 2168164t πππ=-=+ 方法二:2121dx x -⎰12201(arcsin )2x d x =⎰121122220001(arcsin )(arcsin )(arcsin )28x x x x dx x x dx π=-=-⎰⎰令arcsin x t =,有sin x t =,[0,2)t π∈1222200011(arcsin )sin 2cos 224x x dx tdt t d t ππ==-⎰⎰⎰ 222200111(cos 2)cos 242164t t t tdt πππ=-+=-⎰故,原式21164π=+ 本题的难度值为0.631.(18)【详解】 曲线1xy =将区域分成两个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++-19ln 24=+ 本题的难度值为0.524.(19)【详解】旋转体的体积2()tV f x dx π=⎰,侧面积02(tS f x π=⎰,由题设条件知2()(ttf x dx f x =⎰⎰上式两端对t 求导得2()(f t f t = 即y '=由分离变量法解得1l n ()y t C +=+, 即t y C e =将(0)1y =代入知1C =,故t y e +=,1()2tt y e e -=+ 于是所求函数为 1()()2x xy f x e e -==+ 本题的难度值为0.497.(20)【详解】(I) 设M 与m 是连续函数()f x 在[,]a b 上的最大值与最小值,即()m f x M ≤≤ [,]x a b ∈由定积分性质,有 ()()()bam b a f x dx M b a -≤≤-⎰,即 ()baf x dx m M b a≤≤-⎰由连续函数介值定理,至少存在一点[,]a b η∈,使得 ()()b af x dx f b aη=-⎰即()()()baf x dx f b a η=-⎰(II) 由(I)的结论可知至少存在一点[2,3]η∈,使 32()()(32)()x dx ϕϕηϕη=-=⎰又由32(2)()()x d x ϕϕϕη>=⎰,知 23η<≤对()x ϕ在[1,2][2,]η上分别应用拉格朗日中值定理,并注意到(1)(2)ϕϕ<,()(2)ϕηϕ<得1(2)(1)()021ϕϕϕξ-'=>- 112ξ<<2()(2)()02ϕηϕϕξη-'=<- 123ξη<<≤在12[,]ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有2121()()()0ϕξϕξϕξξξ''-''=<- 12(,)(1,3)ξξξ∈⊂本题的难度值为0.719. (21)【详解】方法一:作拉格朗日函数22222(,,,,)()(4)F x y z x y z x y z x y z λμλμ=++++-+++-令 2222022020040x y z F x x F y y F z F x y z F x y z λμλμλμλμ'=++=⎧⎪'=++=⎪⎪'=-+=⎨⎪'=+-=⎪'=++-=⎪⎩解方程组得111222(,,)(1,1,2),(,,)(2,2,8)x y z x y z ==-- 故所求的最大值为72,最小值为6.方法二:问题可转化为求2242242u x y x x y y =++++在224x y x y +++=条件下的最值 设44222222(,,)2(4)F x y u x y x y x y x y x y λλ==++++++++-令 323222442(12)0442(12)040x y F x xy x x F y x y y y F x y x y λλλ'⎧=++++=⎪'=++++=⎨⎪'=+++-=⎩解得1122(,)(1,1),(,)(2,2)x y x y ==--,代入22z x y =+,得122,8z z == 故所求的最大值为72,最小值为6. 本题的难度值为0.486. (22)【详解】(I)证法一:2222122212132101221221122aa a a a a a a a A r ar aaa a =-=121301240134(1)2(1)3231(1)0n n n a a an a a n a r ar a n a nnn a n--+-=⋅⋅⋅=++证法二:记||n D A =,下面用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立. 当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n a a a a D aD a a-=-21221222(1)(1)n n n n n aD a D ana a n a n a ---- =-=--=+故 ||(1)nA n a=+ 证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-, 所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+ 1(1)2(1)n n n n a a a n a -=-+⋅=+(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)nA n a =+,故0a ≠.由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102121221122n n n nn n a aa a a a a a D na a a a a --⨯-⨯-===所以 11(1)n n D nx D n a-==+ (III)方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为 ()()10000100,TTk k + 为任意常数.本题的难度值为0.270. (23)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3)因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭.本题的难度值为0.272.。
自考数量方法(二)历年试题及答案
![自考数量方法(二)历年试题及答案](https://img.taocdn.com/s3/m/886fc78883d049649b66588e.png)
全国2010年4月自考数量方法(二)试题1.有一组数据99,97,98,101,100,98,100,它们的平均数是( )A .98B .98.5C .99D .99.2 2.一组数据中最大值与最小值之差,称为( )A .方差B .标准差C .全距D .离差 3.袋中有红、黄、蓝球各一个,每一次从袋中任取一球,看过颜色后再放回袋中,共取球三次,颜色全相同的概率为( )A .1/9B .1/3C .5/9D .8/9 4.设A 、B 、C 为任意三事件,事件A 、B 、C 至少有一个发生被表示为( )A .A BB .C B A C .ABCD .A+B+C5.掷一枚骰子,观察出现的点数,记事件A={1,3,5},B={4,5,6},C={1,6}则C —A=( )A .{3,5,6}B .{3,5}C .{1}D .{6}6.已知100个产品中有2个废品,采用放回随机抽样,连续两次,两次都抽中废品的概率为( )A .10021002⨯ B .9911002⨯ C .1002 D .10021002+ 7.随机变量X 服从一般正态分布N(2,σμ),则随着σ的减小,概率P(|X —μ|<σ)将会( )A .增加B .减少C .不变D .增减不定 8.随机变量的取值一定是( )A .整数B .实数C .正数D .非负数 9.服从正态分布的随机变量X 的可能取值为( ) A .负数B .任意数C .正数D .整数 10.设X 1,……X n 为取自总体N(2,σμ)的样本,X 和S 2分别为样本均值和样本方差,则统计量1n SX-服从的分布为( )A .N(0,1)B .2χ (n-1)C .F(1,n-1)D .t(n-1) 11.将总体单元在抽样之前按某种顺序排列,并按照设计的规则确定一个随机起点,然后每隔一定的间隔逐个抽取样本单元的抽选方法被称为( )A .系统抽样B .随机抽样C .分层抽样D .整群抽样 12.估计量的无偏性是指估计量抽样分布的数学期望等于总体的( )A .样本B .总量C .参数D .误差 13.总体比例P 的90%置信区间的意义是( )A .这个区间平均含总体90%的值B .这个区间有90%的机会含P 的真值C .这个区间平均含样本90%的值D .这个区间有90%的机会含样本比例值14.在假设检验中,记H 0为待检验假设,则犯第二类错误是指( )A .H 0真,接受H 0B .H 0不真,拒绝H 0C .H 0真,拒绝H 0D .H 0不真,接受H 0 15.对正态总体N(μ,9)中的μ进行检验时,采用的统计量是( )A .t 统计量B .Z 统计量C .F 统计量D .2χ统计量 16.用相关系数来研究两个变量之间的紧密程度时,应当先进行( )A .定量分析B .定性分析C .回归分析D .相关分析 17.若变量Y 与变量X 有关系式Y=3X+2,则Y 与X 的相关系数等于( ) A .一1B .0C .1D .3 18.时间数列的最基本表现形式是( )A .时点数列B .绝对数时间数列C .相对数时间数列D .平均数时间数列 19.指数是一种反映现象变动的( )A .相对数B .绝对数C .平均数D .抽样数 20.某公司2007年与2006年相比,各种商品出厂价格综合指数为110%,这说明( )A .由于价格提高使销售量上涨10%B .由于价格提高使销售量下降10%C .商品销量平均上涨了10%D .商品价格平均上涨了10% 二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
2008年数二真题及标准答案及解析
![2008年数二真题及标准答案及解析](https://img.taocdn.com/s3/m/d6baa52c915f804d2b16c178.png)
2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设2()(1)(2)f x x x x =--,则'()f x 的零点个数为( )()A 0 ()B 1. ()C 2 ()D 3(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分()at af x dx ⎰( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)在下列微分方程中,以123cos2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A ''''''440y y y y +--= ()B ''''''440y y y y +++= ()C ''''''440y y y y --+=()D ''''''440y y y y -+-=(5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6)设函数f 连续,若22(,)uvD F u v =⎰⎰,其中区域uv D 为图中阴影部分,则F∂= ()A 2()vf u ()B 2()vf u u()C ()vf u()D ()vf u u(7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆. ()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( )()A 2112-⎛⎫ ⎪-⎝⎭.()B 2112-⎛⎫ ⎪-⎝⎭.()C 2112⎛⎫⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 已知函数()f x 连续,且21cos[()]lim1(1)()x x xf x e f x →-=-,则(0)____f =.(10)微分方程2()0x y x e dx xdy -+-=的通解是____y =.(11)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (12)曲线23(5)y x x =-的拐点坐标为______. (13)设x yy z x ⎛⎫=⎪⎝⎭,则(1,2)____z x ∂=∂.(14)设3阶矩阵A 的特征值为2,3,λ.若行列式248A =-,则___λ=.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()40sin sin sin sin limx x x x x →-⎡⎤⎣⎦. (16)(本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题0200x t dx te dt x --⎧-=⎪⎨⎪=⎩的解.求22y x ∂∂. (17)(本题满分9分)求积分1⎰.(18)(本题满分11分)求二重积分max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(19)(本题满分11分)设()f x 是区间[)0,+∞上具有连续导数的单调增加函数,且(0)1f =.对任意的[)0,t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成的曲边梯形绕x 轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数()f x 的表达式. (20)(本题满分11分)(1) 证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()baf x dx f b a η=-⎰(2)若函数()x ϕ具有二阶导数,且满足32(2)(1),(2)()x d x ϕϕϕϕ>>⎰,证明至少存在一点(1,3),()0ξϕξ''∈<使得 (21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大值与最小值. (22)(本题满分12分)设矩阵2221212n na a a A a a ⨯⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程A X B =,其中()1,,T n X x x = ,()1,0,,0B = ,(1)求证()1nA n a =+;(2)a 为何值,方程组有唯一解,并求1x ; (3)a 为何值,方程组有无穷多解,并求通解.(23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+, (1)证明123,,ααα线性无关; (2)令()123,,P ααα=,求1P AP -.2008年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】D【详解】因为(0)(1)(2)0f f f ===,由罗尔定理知至少有1(0,1)ξ∈,2(1,2)ξ∈使12()()0f f ξξ''==,所以()f x '至少有两个零点. 又()f x '中含有因子x ,故0x =也是()f x '的零点, D 正确. 本题的难度值为0.719. (2)【答案】C 【详解】00()()()()()()aa a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx '⎰为曲边三角形的面积.本题的难度值为0.829.(3)【答案】D【详解】由微分方程的通解中含有xe 、cos 2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是40y y y ''''''-+-= 本题的难度值为0.832. (4) 【答案】A【详解】0,1x x ==时()f x 无定义,故0,1x x ==是函数的间断点因为 000ln 11lim ()lim lim lim csc |1|csc cot x x x x x xf x x x x x++++→→→→=⋅=-- 200sin lim lim 0cos cos x x x xx x x++→→=-=-=同理 0lim ()0x f x -→= 又 1111ln 1lim ()lim lim sin lim sin1sin11x x x x x f x x x x ++++→→→→⎛⎫=⋅== ⎪-⎝⎭ 所以 0x =是可去间断点,1x =是跳跃间断点.本题的难度值为0.486.(5)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限.本题的难度值为0.537. (6)【答案】A【详解】用极坐标得 ()222()2011,()vu uf r r Df u v F u v dv rdr v f r dr +===⎰⎰⎰所以()2Fvf u u∂=∂ 本题的难度值为0.638. (7) 【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆. 本题的难度值为0.663. (8) 【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==---- 所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确. 本题的难度值为0.759. 二、填空题 (9)【答案】2【详解】222220001cos[()]2sin [()2]2sin [()2]()lim lim lim ()[()2]4(1)()x x x x xf x xf x xf x f x x f x xf x e f x →→→-⋅==⋅- 011lim ()(0)122x f x f →=== 所以 (0)2f = 本题的难度值为0.828. (10)【答案】()xx eC --+【详解】微分方程()20xy x e dx xdy -+-=可变形为x dy yxe dx x--= 所以 111()dx dx x x x x xy e xe e dx C x xe dx C x e C x ----⎡⎤⎛⎫⎰⎰=+=⋅+=-+⎢⎥ ⎪⎝⎭⎣⎦⎰⎰本题的难度值为0.617. (11)【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x yy xy F dy y x dx F x xy y x--'-=-=-'+-,将(0)1y =代入得1x dy dx==,所以切线方程为10y x -=-,即1y x =+本题的难度值为0.759. (12)【答案】(1,6)--【详解】53235y x x =-⇒23131351010(2)333x y x x x -+'=-= ⇒134343101010(1)999x y x x x --+''=+=1x =-时,0y ''=;0x =时,y ''不存在在1x =-左右近旁y ''异号,在0x =左右近旁0y ''>,且(1)6y -=- 故曲线的拐点为(1,6)-- 本题的难度值为0.501. (13)21)- 【详解】设,y xu v x y==,则v z u = 所以121()ln v v z z u z v y vu u u x u x v x x y-∂∂∂∂∂=⋅+⋅=-+⋅∂∂∂∂∂ 2ln 11ln x yvvy u y y u uxy x y x ⎛⎫⎛⎫⎛⎫=-+=⋅-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 所以(1,2)21)2z x ∂=-∂本题的难度值为0.575.(14)【答案】-1【详解】||236A λλ =⨯⨯=3|2|2||A A = 32648λ∴⨯=- 1λ⇒=- 本题的难度值为0.839.三、解答题 (15)【详解】 方法一:4300[sin sin(sin )]sin sin sin(sin )limlim x x x x x x x x x→→--= 22220001sin cos cos(sin )cos 1cos(sin )12lim lim lim 3336x x x xx x x x x x x →→→--==== 方法二:331sin ()6x x x o x =-+ 331sin(sin )sin sin (sin )6x x x o x =-+4444400[sin sin(sin )]sin sin (sin )1lim lim 66x x x x xx o x x x x →→⎡⎤-∴ =+=⎢⎥⎣⎦ 本题的难度值为0.823. (16)【详解】方法一:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21dydy t tdt t t dxt dx dt t +⋅===+++222222[(1)ln(1)]2ln(1)21dt t d y d dy t t tdt dx dx dx dt t ++++⎛⎫=== ⎪⎝⎭+ 22(1)[ln(1)1]t t =+++方法二:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+ 所以 2222ln(1)2(1)ln(1)21x dydy t tdt t t e x dxt dx dt t +⋅===++=+所以 22(1)x d y e x dx=+ 本题的难度值为0.742. (17)【详解】 方法一:由于21x -→=+∞,故21⎰是反常积分.令arcsin x t =,有sin x t =,[0,2)t π∈2212222000sin cos 2cos sin ()cos 22t t t t t tdt t tdt dt t πππ===-⎰⎰⎰⎰2222220001sin 21sin 2sin 2441644tt t td t tdt πππππ=-=-+⎰⎰ 222011cos 2168164t πππ=-=+方法二:21⎰1221(arcsin )2x d x =⎰ 121122220001(arcsin )(arcsin )(arcsin )28x x x x dx x x dx π=-=-⎰⎰令arcsin x t =,有sin x t =,[0,2)t π∈1222200011(arcsin )sin 2cos 224x x dx tdt t d t ππ==-⎰⎰⎰222200111(cos 2)cos 242164t t t tdt πππ=-+=-⎰故,原式21164π=+ 本题的难度值为0.631.(18)【详解】 曲线1xy =将区域分成两个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰123D D D xydxdy dxdy dxdy =++⎰⎰⎰⎰⎰⎰112222211102211x xdx dy dx dy dx xydy =++⎰⎰⎰⎰⎰⎰1512ln 2ln 24=++-19ln 24=+ 本题的难度值为0.524.(19)【详解】旋转体的体积20()tV f x dx π=⎰,侧面积02(tS f x π=⎰,由题设条件知2()(ttf x dx f x =⎰⎰上式两端对t 求导得2()(f t f t = 即y '=由分离变量法解得1l n ()y t C +=+, 即t y C e =将(0)1y =代入知1C =,故t y e +=,1()2tt y e e -=+ 于是所求函数为 1()()2x xy f x e e -==+ 本题的难度值为0.497.(20)【详解】(I) 设M 与m 是连续函数()f x 在[,]a b 上的最大值与最小值,即()m f x M ≤≤ [,]x a b ∈由定积分性质,有 ()()()bam b a f x dx M b a -≤≤-⎰,即 ()baf x dx m M b a≤≤-⎰由连续函数介值定理,至少存在一点[,]a b η∈,使得 ()()b af x dx f b aη=-⎰即()()()baf x dx f b a η=-⎰(II) 由(I)的结论可知至少存在一点[2,3]η∈,使 32()()(32)()x dx ϕϕηϕη=-=⎰又由32(2)()()x d x ϕϕϕη>=⎰,知 23η<≤对()x ϕ在[1,2][2,]η上分别应用拉格朗日中值定理,并注意到(1)(2)ϕϕ<,()(2)ϕηϕ<得1(2)(1)()021ϕϕϕξ-'=>- 112ξ<<2()(2)()02ϕηϕϕξη-'=<- 123ξη<<≤在12[,]ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有2121()()()0ϕξϕξϕξξξ''-''=<- 12(,)(1,3)ξξξ∈⊂本题的难度值为0.719. (21)【详解】方法一:作拉格朗日函数22222(,,,,)()(4)F x y z x y z x y z x y z λμλμ=++++-+++-令 2222022020040x y z F x x F y y F z F x y z F x y z λμλμλμλμ'=++=⎧⎪'=++=⎪⎪'=-+=⎨⎪'=+-=⎪'=++-=⎪⎩解方程组得111222(,,)(1,1,2),(,,)(2,2,8)x y z x y z ==-- 故所求的最大值为72,最小值为6.方法二:问题可转化为求2242242u x y x x y y =++++在224x y x y +++=条件下的最值 设44222222(,,)2(4)F x y u x y x y x y x y x y λλ==++++++++-令 323222442(12)0442(12)040x y F x xy x x F y x y y y F x y x y λλλ'⎧=++++=⎪'=++++=⎨⎪'=+++-=⎩解得1122(,)(1,1),(,)(2,2)x y x y ==--,代入22z x y =+,得122,8z z == 故所求的最大值为72,最小值为6. 本题的难度值为0.486. (22)【详解】(I)证法一:2222122212132101221221122aa a a a a a a a A r ar aaa a =-=121301240134(1)2(1)3231(1)0n n n a a an a a n a r ar a n a nnn a n--+-=⋅⋅⋅=++证法二:记||n D A =,下面用数学归纳法证明(1)nn D n a =+. 当1n =时,12D a =,结论成立.当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第1行展开得2212102121212n n a a a a D aD a a-=-21221222(1)(1)n n n n n aD a D ana a n a n a ---- =-=--=+故 ||(1)n A n a =+证法三:记||n D A =,将其按第一列展开得 2122n n n D aD a D --=-, 所以 211212()n n n n n n D aD aD a D a D aD ------=-=-222321()()n n n n a D aD a D aD a ---=-==-=即 12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++2121(2)(1)n n n n n a a D n a a D --==-+=-+ 1(1)2(1)n n n n a a a n a -=-+⋅=+(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)nA n a =+,故0a ≠.由克莱姆法则,将n D 的第1列换成b ,得行列式为2221122(1)(1)112102121221122n n n nn n a aa a a a a a D na a a a a --⨯-⨯-===所以 11(1)n n D nx D n a-==+(III)方程组有无穷多解,由0A =,有0a =,则方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为 ()()10000100,TTk k + 为任意常数.本题的难度值为0.270. (23)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)11,A αα=-22A αα=∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾. 所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++= (1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++= (2)(1)—(2)得 113220k k αα-= (3)因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II) 记123(,,)P ααα=,则P 可逆,123123(,,)(,,)AP A A A A αααααα==1223(,,)αααα=-+123100(,,)011001ααα-⎛⎫ ⎪= ⎪ ⎪⎝⎭100011001P -⎛⎫ ⎪= ⎪ ⎪⎝⎭所以 1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭.本题的难度值为0.272.。
全国7月高等教育自学考试数量方法(二)试题
![全国7月高等教育自学考试数量方法(二)试题](https://img.taocdn.com/s3/m/b89d0e106f1aff00bfd51e5f.png)
全国2005年7月高等教育自学考试数量方法(二)试题一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的, 请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.由数据直观反映两个变量之间相互关系的图形是()A.茎叶图B.散点图C.饼形图D.条形图2.反映数据离散程度的量是()A.平均数B.众数C.相关系数D.方差3.若A、B是两个互不相容的事件,P (A)>0, P(B)>0,则一定有()A. P (A I B) =0B. P (A) =1-P (B)C. P ( I B) =0D・ P ( I ) =14.某产品平均20件中有2件次品,则抽取30件产品中恰有5件次品的概率()A.大于0.2B.等于0.2C.小于0.2D.不能确定5.随机变量X服从一般正态分布N (),随着。
的增大,概率P (伙一山>。
)将会()A.单调增加B.单调减少C.保持不变D.增减不定6.为了对离散型随机变量的总体规律性进行描述,并反映随机变量取某一值时的概率,常选用的数学工具是()A.分布函数B.密度函数C.分布律D.方差7.评价估计量在总体参数附近波动状况的优劣标准为()A.无偏性B. 一致性C.准确性D.有效性8.设XI, X2, X30为来自正态总体N (100, 100)的样本,其样本均值服从()A. B・C・ D・9・一致性是衡量用抽样指标估计总体指标估计量准则之一, 一致性是指在大样本时抽样指标()A.充分靠近总体指标B.等于总体指标C.小于总体指标D.大于总体指标10.样本估计量的数学期望与待估的总体真实参数之间的离差称为()A.偏差B.方差C.标准差D.相关系数11.假设检验所依据的原则是()A.小概率事件B.大概率事件C.不可能事件D.必然事件12.对正态总体N ()中的进行检验时,采用的统计量是()A. Z统计量B. t统计量C.统计量D. F统计量13.相关系数r的数值()A. r>lB. r< —1C. |r|<lD. |r|>l14.报告期水平与某一固定时期水平之比,说明现象在整个观察期内总的发展变化的程度,称为()A.发展速度B.定基发展速度C.环比发展速度D.增长速度15.反映城乡商品零售价格变动趋势的一种经济指数被称为()A.数量指数B.零售价格指数C.质量指数D.总量指数二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
自考数量方法(二)历年试题及答案
![自考数量方法(二)历年试题及答案](https://img.taocdn.com/s3/m/4ea79d24af45b307e87197d0.png)
全国2011年7月高等教育自学考试数量方法(二)试题一、单项选择题(本大题共20小题,每小题2分,共40分)1.某车间有2个生产小组负责生产某种零件,甲组有30名工人,乙组有20名工人。
在今年6月份,甲组平均每人生产70个零件,乙组平均每人生产80个零件。
则该车间50名工人在今年6月份平均每人生产的零件数是( )A.70B.74C.75D.802.已知某班50名同学《数量方法》考试平均成绩是80分,该班20名男生的平均成绩是86分,则该班女生的平均成绩是( )A.76B.80C.85D.863.一个实验的样本空间为Ω={1,2,3,4,5,6,7,8,9,10},A={1,2,3,4),B={2,3},C={2,4,6,8,10},则=( )A.{2,3}B.{3}C.{1,2,3,4,6,8}D.{2,4}4.事件A、B相互独立,P(A)=0.2,P(B)=0.4,则P(A+B)=( )A.0.50B.0.51C.0.52D.0.535.从小王家到学校有2条地铁线,5条公交线路。
小王从家到学校的走法有( )A.10种B.7种C.5种D.2种6.设A、B为两个事件,则表示( )A.“A不发生且B发生”B.“A、B都不发生”C.“A、B都发生”D.“A发生且B不发生”7.随机变量的取值总是( )A.正数B.整数C.有限的数D.实数8.离散型随机变量X只取-1,0,2三个值,已知它取各个值的概率不相等,且三个概率值组成一个等差数列,设P(X=0)=α,则α=( )A.1/4B.1/3C.1/2D.19.设Y与X为两个独立的随机变量,已知X的均值为2,标准差为10;Y的均值为4,标准差为20,则Y-X 的均值和标准差应为( )A.2,10B.2,17.32C.2,22.36D.2,3010.某工厂在连续生产过程中,为检查产品质量,在24小时内每隔30分钟,对下一分钟的第一件产品进行检查,这是( )A.纯随机抽样B.系统抽样C.分层抽样D.整群抽样11.从容量N=1000000的总体家庭中等概率抽选n=1000个家庭作为样本,设Xi为第i个家庭的规模,表示总体家庭的平均规模,表示样本家庭的平均规模,则抽样分布的数学期望与的关系是( )A.一定相等B.在大多数情况下相等C.偶然相等D.决不相等12.设总体X服从正态分布N(μ,σ2),μ和σ2未知,(x1,x2,…,xn)是来自该总体的简单随机样本,其样本均值为,则总体方差σ2的无偏估计量是( )A. B. C. D.13.从某个大总体中抽取一个容量为10的样本,样本均值的抽样标准差为3,则原来总体的方差为( )A.9B.30C.60D.9014.在假设检验中,H0为原假设,第一类错误指的是( )A. H0成立时,经检验未拒绝H0B. H0成立时,经检验拒绝H0C. H0不成立时,经检验未拒绝H0D. H0不成立时,经检验拒绝H015.某超市为检验一批从厂家购入的商品不合格率P是否超过0.005而进行假设检验,超市提出的原假设应为( )A.H0∶P<0.005B.H0∶P≤0.005C.H0∶P>0.005D.H0∶P≥0.00516.如果相关系数r=0,则表明两个变量之间( )A.相关程度很低B.不存在任何关系C.不存在线性相关关系D.存在非线性相关关系17.产量X(千件)与单位成本Y(元)之间的回归方程为Y=77-3X,这表示产量每提高1000件,单位成本平均( )A.增加3元B.减少3元C.增加3000元D.减少3000元18.某种股票的价格周二上涨了10%,周三上涨了4%,两天累计涨幅达( )A.4%B.5%C.14%D.14.4%19.设p表示商品的价格,q表示商品的销售量,说明了( )A.在基期销售量条件下,价格综合变动的程度B.在报告期销售的条件下,价格综合变动的程度C.在基期价格水平下,销售量综合变动的程度D.在报告期价格水平下,销售量综合变动的程度20.若报告期同基期比较,产品实物量增长4%,价格降低4%,则产品产值( )A.增加4%B.减少4%C.减少0.16%D.没有变动二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案,错填、不填均无分。
最新自学考试数量方法(二)历年试题-与答案
![最新自学考试数量方法(二)历年试题-与答案](https://img.taocdn.com/s3/m/91e8e3c32af90242a995e5d1.png)
自学考试数量方法(二)历年试题-与答案全国2012年4月高等教育自学考试数量方法(二)试题 课程代码:00994一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.5个工人生产的零件数分别为53、48、65、50、59,则这5个数字的中位数是( ) A .48 B .53 C .59 D .65 2.一个数列的方差是4,变异系数是0.2,则该数列的平均数是( )A .0.4B .0.8C .10D .203.一个实验的样本空间为Ω=(1,2,3,4,5,6,7,8,9,10),A={1,2,3,4),B={2,3),C={2,4,6,8,10),则A B C ⋂⋂=( )A .{2,3}B .{2,4}C .{1,3,4}D .{1,2,3,4,6,8}4.对任意两个事件A 、B ,A B ⋃表示( ) A .“A 、B 都不发生” B .“A 、B 都发生” C .“A 不发生或者B 不发生” D .“A 发生或者B 发生” 5.用数字1,2,3,4,5可以组成的没有重复数字的两位数有( )A .25个B .20个C .10个D .9个 6.事件A 、B 互斥,P(A)=0.3,P(B|A )=0.6,则P(A-B)=( ) A .0 B .0.3 C .0.9D .17.设随机变量X ~B(100,13),则E(X)=( ) A .2009 B .1003C .2003D .1008.设随机变量X 服从指数分布E(3),则E(X)=( )A .1/6B .1/5C .1/4D .1/39.随机变量X ~N(2,μσ),则随着σ的增大,P (|X-μ|<σ)将( ) A .单调增加 B .单调减少 C .保持不变D .增减不定10.若采用有放回的等概率抽样,当样本容量增加为原来样本容量的16倍时,样本均值的标准误差将变为原来的( ) A .116倍 B .14倍C .4倍D .16倍11.设X 1,X 2……X n 为来自总体2χ(10)的简单随机样本,则统计量nii 1X=∑服从的分布为( ) A .2χ(n)B .2χ(1/n)C .2χ(10n)D .2χ(1/10n)12.对于正态总体,以下正确的说法是( )A .样本中位数和样本均值都不是总体均值μ的无偏估计量B .样本中位数不是总体均值μ的无偏估计量,样本均值是μ的无偏估计量C .样本中位数是总体均值μ的无偏估计量,样本均值不是μ的无偏估计量D .样本中位数和样本均值都是总体均值μ的无偏估计量 13.利用t 分布构造总体均值置信区间的前提条件是( ) A .总体服从正态分布且方差已知 B .总体服从正态分布且方差未知C .总体不一定服从正态分布但样本容量要大D .总体不一定服从正态分布但方差已知14.假设χ~N(2,μσ),H 0:0μ≤μ,H 1:0μ>μ,且方差2σ已知,检验统计量为:X Z =H 0的拒绝域为( )A .|Z|>z aB .Z>z a/2C .Z<-z aD .Z>z a15.若H 0:0μ=μ,H 1:0μ≠μ,如果有简单随机样本X 1,X 2,……,X n ,其样本均值为0X =μ,则( ) A .肯定拒绝原假设 B .有1-α的可能接受原假设 C .有可能拒绝原假设D .肯定不会拒绝原假设16.各实际观测值y i 与回归值i ˆy的离差平方和称为( ) A .总变差平方和 B .剩余平方和 C .回归平方和 D .判定系数 17.若产量每增加一个单位,单位成本平均下降3元,且产量为1个单位时,成本为150元,则回归方程应该为( )A .y=150+3xB .y=150-3xC .y=147-3xD .Y=153-3x 18.报告期单位产品成本降低了0.8%,产量增长了12.6%,则生产费用将增长( )A .11.7%B .12.8%C .14.2%D .15.4%19.按计入指数的项目多少不同,指数可分为( )A .数量指标指数和质量指标指数B .拉氏指数和帕氏指数C .个体指数和综合指数D .时间指数、空间指数和计划完成指数 20.一个企业产品销售收入计划增长8%,实际增长了20%,则计划超额完成程度为( )A .11.11%B .12%C .111.11%D .150%二、填空题(本大题共5小题,每小题2分,共10分) 请在每小题的空格中填上正确答案,错填、不填均无分。
自考数量方法(二)历年试题及部分答案集合
![自考数量方法(二)历年试题及部分答案集合](https://img.taocdn.com/s3/m/40582ac9d5bbfd0a795673ac.png)
一、单项选择题(本大题共20小题,每小题2分,共40分)1.一个数列的平均数是8,变异系数是0.25,则该数列的标准差是( )A.2B.4C.16D.322.一般用来表现两个变量之间相互关系的图形是( )A.柱形图B.饼形图C.散点图D.曲线图3.A与B为互斥事件,则A B为( )A.ABB.BC.AD.A+B4.从1到100这100个自然数中任意取一个,取到能被3整除的偶数的概率是( )A.0.16B.0.18C.0.2D.0.215.设A、B为两个事件,则A-B表示( )A.“A发生且B不发生”B.“A、B都不发生”C.“A、B都发生”D.“A不发生或者B发生”6.设A、B为两个事件,P(A)=0.5,P(A-B)=0.2,则P(AB)为( )A.0.2B.0.3C.0.7D.0.87.某工厂用送样品的方式推销产品,平均每送10份样品,就收到两份订单,假定用户间的决策互不影响。
当该工厂发出30份样品时,它将收到订单的数量是( )A.2B.4C.6D.无法确定8.已知离散型随机变量X概率函数为P{X=i}=p i+1,i=0,1。
则p的值为( )A.(-1-51/2)/2B.(-l+51/2)/2C.(-l±51/2)/2D.P=1/29.对随机变量离散..程度进行描述时,通常采用( )A.分布律B.分布函数C.概率密度函数D.方差10.对于一列数据来说,其众数( )A.一定存在B.可能不存在C.是唯一的D.是不唯一的11.在一次知识竞赛中,参赛同学的平均得分是80分,方差是16,则得分的变异系数是( )A.0.05B.0.2C.5D.2012.样本估计量的数学期望与待估总体的真实参数之间的离差..称为( )A.偏差B.方差C.标准差D.相关系数13.在评价总体真实参数的无偏估计量和有偏估计量的有效性时,衡量标准为( ) A.偏差 B.均方误 C.标准差D.抽样误差14.在假设检验中,如果仅仅关心总体均值与某个给定值是否有显著区别,应采用( ) A.单侧检验 B.单侧检验或双侧检验 C.双侧检验D.相关性检验15.某销售商声称其销售的某种商品次品率P 低于1%,则质检机构对其进行检验时设立的原假设应为 A.H 0:P<0.01 B.H 0:P ≤0.01 C.H 0:P=0.01D.H 0:P ≥0.0116.在直线回归方程i yˆ=a+bx 中,若回归系数b=0,则表示( ) A.y 对x 的影响显著 B.y 对x 的影响不显著 C.x 对y 的影响显著D.x 对y 的影响不显著17.如果回归平方和SSR 与剩余平方和SSE 的比值为4∶1,则判定系数为( ) A.0.2 B.0.4 C.0.6D.0.818.若平均工资提高了5%,职工人数减少5%,则工资总额( ) A.降低2.5% B.提高2.5% C.降低0.25%D.提高0.25%19.反映城乡商品零售价格变动趋势的一种经济指数被称为( ) A.数量指数 B.零售价格指数 C.质量指数D.总量指数20.设p 为价格,q 为销售量,则指数010q p q p ∑∑( )A.综合反映多种商品的销售量的变动程度B.综合反映商品价格和销售量的变动程度C.综合反映商品销售额的变动程度D.综合反映多种商品价格的变动程度二、填空题(本大题共5小题,每小题2分,共10分)21.数列2、3、3、4、1、5、3、2、4、3、6的众数是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国2008年4月自考数量方法(二)试卷
一、单项选择题(本大题共20小题,每小题2分,共40分)
1.将一个数据集按升序排列,位于数列正中间的数值被称为该数据集的( ) A .中间数 B .众数 C .平均数 D .中位数
2.对于任意一个数据集来说( )
A .没有众数
B .可能没有众数
C .有唯一的众数
D .有多个
众数
3.同时投掷三枚硬币,则事件“至少一枚硬币正面朝上”可以表示为( ) A .{(正,正,正),(正,正,反),(正,反,反)} B .{(正,反,反)} C .{(正,正,反),(正,反,反)} D .{(正,正,正)} 4.一个实验的样本空间=Ω{1,2,3,4,5,6,7,8,9,10},A={1,2,3,4},B={2,
3},C={2,4,6,8},则ABC=( )
A .{2,3}
B .{2,4}
C .{1,2,3,4,6,8}
D .{2}
5.设A 、B 为两个事件,P(A)=0.4,P(B)=0.8,P(B A )=0.5,则P(B │A)=( ) A .0.45 B .0.55 C .0.65 D .0.75 6.事件A 和B 相互独立,则( )
A .事件A 和
B 互斥 B .事件A 和B 互为对立事件
C .P(AB)=P(A)P(B)
D .A B 是空集
7.设随机变量X~B(20,0.8),则2X 的方差D(2X)=( ) A .1.6 B .3.2 C .4 D .16 8.设随机变量x 的概率密度函数为ϕ(x)=
82(x 2e 2π
21
/)--(-∞<<∞x )则x 的方差D(x)= A .1 B .2 C .3 D .4
9.将各种方案的最坏结果进行比较,从中选出收益最大的方案,称为( )
A .极大极小原则
B .极小极大原则
C .极小原则
D .极大原则
10.将总体单元按某种顺序排列,按照规则确定一个随机起点,然后每隔一定的间隔逐个抽取
样本单元。
这种抽选方法
A .系统抽样
B .简单随机抽样
C .分层抽样
D .整
群抽样
11.从总体X~N (2
σμ,)中抽取样本1X ,……n X ,计算样本均值∑==
n
1
i i
X
n
1
X ,样本方差
∑
=--=n
1i 2i 2
)X (X 1n 1
S ,当n<30时,随机变量
n /S X μ-服从( ) A .2χ分布 B .F 分布 C .t 分布 D .标准正态分布
2
12.若置信水平保持不变,当增大样本容量时,置信区间( )
A .将变宽
B .将变窄
C .保持不变
D .宽窄无法确
定
13.设21X ,X ,…n X 为来自均值为μ,方差为2σ的正态总体的简单随机样本,μ和2σ未知,
则2σ的无偏估计量为
A .∑
=--n
1i 2i )X (X 1n 1 B .
∑
=-n
1
i 2
i )X (X n
1 C .
∑
=--n
1i 2i )(X 1n 1μ D .∑=-n
1
i 2i
)(X
n 1
μ
14.某超市为确定一批从厂家购入的商品不合格率P 是否超过0.005而进行假设检验,超市提
出的原假设应为( )
A .0H :P<0.005
B .0H :P ≤0.005
15.对方差已知的正态总体均值的假设检验,可采用的方法为( ) A .Z 检验 B .t 检验 C .F 检验 D .2χ检验 16.若两个变量之间完全相关,则以下结论中不正确...
的是( ) A .│r │=1 B .2r =1 C .估计标准误差y s =0 D .回归系数
b=0
17.已知某时间数列各期的环比增长速度分别为11%、13%、16%,该数列的定基增长速度
为( )
A .11%×13%×16%
B .11%×13%×16%+1
C .111%×113%×116%-
1
D .111%×113%×116%
18.变量x 与y 之间的负相关是指( )
A .当x 值增大时y 值也随之增大
B .当x 值减少时
y 值也随之减少
C .当x 值增大时y 值也随之减少,或当x 值减少时y 值也随之增大
D .y 的取值几乎
不受x 取值的影响
19.物价上涨后,同样多的人民币只能购买原有商品的96%,则物价上涨了( ) A .4.17% B .4.5% C .5.1% D .8%
20.某企业今年与去年相比,产量增长了15%,单位产品成本增长了10%,则总生产费用增长了
( )
A .4.5%
B .15%
C .18%
D .26.5%
二、填空题(本大题共5小题,每小题2分,共10分)
21.一个数列的平均数是75,标准差是6,则该数列的变异系数是___________。
22.假设检验的基本原理是___________。
23.随着样本容量的增大,估计量的估计值愈来愈接近总体参数值,我们称此估计量具有
___________。
24.两个变量之间的简单相关系数r 的取值范围为___________。
25.某种股票的价格周二上涨了10%,周三上涨了4%,两天累计涨幅达___________。
三、计算题(本大题共6小题,每小题5分,共30分)
全国2010年4月自学考试数量方法(二)试题
3
26.某企业职工日产量的分组数据如下:
日产量 工人数 1-3 2 4-6 3 7-9 5 10-12 3 13-15
2
求平均产量、产量的方差。
27.四个士兵进行射击训练,他们的命中率分别为75%、80%、85%、90%。
已知在这次射
击训练中四个士兵在总的射击次数中所占比例分别为20%、24%、26%、30%。
则这次射击训练的总命中率是多少?
28.设X 、Y 为随机变量,D(X)=6,D(Y)=7,Cov(X,Y)=1,试计算D(2X -3Y).
29.某奶粉生产商为防止缺斤短两,质检人员从准备出厂的奶粉中随机抽取了10袋复秤。
已知10袋奶粉平均重量为499克,样本标准差为6.5克,假设袋装奶粉重量服从正态分布,求袋装奶粉平均重量的置信度为95%的置信区间。
( 1.796,(11)t 2.2622,(9)t 2.2281,(10)t 2.2010,(11)t 0.050.0250.0250.025====
(10)t 0.05=1.8125, 1.8331(9)t 0.05=)
30.设某种股票2005年各统计时点的收盘价如下表:
统计时点
1月1日 3月1日 7月1日 10月1日
12月31日
收盘价(元)
16.2 14.2
17.8
16.3
15.8
计算该股票2005年的年平均价格。
31.某百货公司三种商品的销售量和销售价格统计数据如下: 商品名称 计量单位 销售量
单价(元) 1997年 1998年 1997年 1998年 甲 件 1800 1300 30 40 乙 盒 2400 2600 15 20 丙
个
2000
2500
8
10
计算三种商品的销售额总量指数。
四、应用题(本大题共2小题,每小题10分,共20分)
32.某种药品生产商A 、B 生产同种类型的药品,生产商A 声称其药品(以下称A 药品)
比生产商B 生产的药品(以下称B 药品)更有效。
从服用过A 药品和B 药品的病人中分别随机抽取了10人,测得他们某指标下降(表明该药品有效)程序分别为10、15、8、13、18、20、17、12、12、15单位和10、15、7、8、6、13、14、15、12、10单位。
假设服用A 药品的病人总体和服用B 药品的病人总体该指标下降程度均服从正态分布,且方差相同。
(1)求服用A 药品和B 药品的病人该指标的平均下降程度及样本方差。
4
(2)为检验生产商A 的声明是否真实可信,请给出有关的原假设和备择假设。
(3)检验生产商A 声明的真实性(可靠性取95%)。
2.09,(19)t 2.1,(18)t 1.7247,(20)t 1.729,(19)t 1.734,(18)(t 0.0250.0250.050.050.05=====
0.025t (20)
=2.086)
33.5个同类企业的生产性固定资产年平均价值和工业总产值资料如下: 生产性固定资产年平均价值x(百万元)
2 3 5 6 7 工业总产值y (百万元)
3 5 7 8 9
(1)以生产性固定资产年平均价值为自变量,建立回归直线方程。
(2)指出回归系数的经济意义。
(3)估计生产性固定资产为8百万元时企业的总产值。
5全国2010年4月自学考试数量方法(二)试题
6。