2020年高考理科数学一轮复习:两点分布、超几何分布、正态分布

合集下载

高三第一轮复习 两点分布,二项分布及超几何分布

高三第一轮复习  两点分布,二项分布及超几何分布

两点分布,二项分布及超几何分布【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳1.两点分布:若随机变量X 的分布列是其中0<p <1,q =1-p ,则离散型随机变量X 服从两点分布,且称p =P (X =1)为成功概率.2.超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有ξ件次品,则事件{ξ=k}发生的概率为P(ξ=k)=C k M C n -kN -M C n N,k =0,1,2,…,m ,其中m =min {M ,n},且m ≤N ,M ≤N ,n ,M ,N ∈N *.称分布列为超几何分布.如果随机变量ξ的分布列为超几何分布列,则称随机变量ξ服从超几何分布. 3.二项分布(1)进行n 次试验,如果满足下列条件:①每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”; ② 每次试 验“成功”的 概 率 均为p ,“失败”的概率为1-p ; ③各次试验是相互独立的.用X 表示这n 次试验中成功的次数,则P (X =k )= .若一个随机变量X 的分布列如上所述,则称X 服从参数为n ,p 的二项分布,简记为 . (2)二项分布的期望与方差.若随机变量X ~B (n ,p ),则EX = ,DX = . 方法规律总结1.求超几何分布的分布列、期望的步骤:第一步,验证随机变量服从超几何分布,并确定参数N ,M ,n 的值;第二步,根据超几何分布的概率计算公式计算出随机变量取每一个值时的概率; 第三步,用表格的形式列出分布列; 第四步,根据定义求出期望2.二项分布的分布列问题一般遵循以下三个步骤: 第一步,先判断随机变量是否服从二项分布;第二步,若服从二项分布,一般是通过古典概型或相互独立事件的概率公式计算出试验中“成功”“不成功”的概率分别是多少;第三步,根据二项分布的分布列P(X =k)=C k n p k(1-p)n -k(k =0,1,2,…,n)列出相应的分布列.【指点迷津】【类型一】两点分布【例1】:某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 的分布列和数学期望.【解析】:(1)由题意知,参加集训的男、女生各有6名.参赛学生全部从B 中学中抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100. 因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100. (2)根据题意得,X 的可能取值为1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 33C 13C 46=15.所以X 的分布列为因此,X 的数学期望E (X )=1×P (X =1)+2×P (X =2)+3×P (X =3)= 1×15+2×35+3×15=2.答案:(1)99100. (2) 2. 【例2】:据IEC(国际电工委员会)调查显示,小型风力发电项目投资较少,且开发前景广阔,但受风力自然资源影响,项目投资存在一定风险.根据测算,风能风区分类标准如下:假设投资A 位于一类风区的A 项目获利30%的可能性为0.6,亏损20%的可能性为0.4;位于二类风区的B 项目获利35%的可能性为0.6,亏损10%的可能性是0.1,不赔不赚的可能性是0.3.(1)记投资A ,B 项目的利润分别为ξ和η,试写出随机变量ξ与η的分布列和期望E (ξ),E (η); (2)某公司计划用不超过100万元的资金投资A ,B 项目,且公司要求对A 项目的投资不得低于B 项目,根据(1)的条件和市场调研,试估计一年后两个项目的平均利润之和z =E (ξ)+E (η)的最大值. 【解析】: (1)投资A 项目的利润ξ则E (ξ)=0.18x -0.08x =0.1x . 投资B 项目的利润η则E (η)=0.21y -0.01y =0.2y (2)由题意可知x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +y ≤100,x ≥y ,x ,y ≥0,其表示的可行域如图中阴影部分所示.由(1)可知,z =E (ξ)+E (η)=0.1x +0.2y ,当直线y =-0.5x +5z 过点(50,50)时,z 取得最大值,即当x =50,y =50时,z 取得最大值15. 故对A ,B 项目各投资50万元,可使公司获得最大利润,最大利润是15万元 答案:(1) ξ的分布列为E (ξ)=0.18x -0.08x =0.1x . η的分布列为E (η)=0.21y -0.01y =0.2y .(2) 对A ,B 项目各投资50万元,可使公司获得最大利润,最大利润是15万元【类型二】超几何分布【例1】:(2015·重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.【解析】: (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为故EX =0×715+1×715+2×115=35(个).答案:(1) 14. (2) 35.【例2】:某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 的分布列和数学期望.【解析】: (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100.因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100. (2)根据题意,X 的可能取值为1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35, P (X =3)=C 33C 13C 46=15,所以X 的分布列为因此,X 的数学期望为EX =1×15+2×35+3×15=2.答案:(1) 99100. (2) 2.【类型三】两项分布【例1】:某厂用鲜牛奶在某台设备上生产A ,B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产A ,B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列分别为 该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率. 【解析】:(1)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为z ,则有⎩⎪⎨⎪⎧2x +1.5y ≤W ,x +1.5y ≤12,2x -y ≥0,x ≥0,y ≥0.① 目标函数z =1000x +1200y .当W =12时,①表示的平面区域如图(1),三个顶点分别为A (0,0),B (2.4,4.8),C (6,0).将z =1000x +1200y 变形为y =-56x +z 1200,当x =2.4,y =4.8时,直线l :y =-56x +z 1200在y 轴上的截距最大,最大获利Z =z max =2.4×1000+4.8×1200=8160.当W =15时,①表示的平面区域如图(2),三个顶点分别为A (0,0),B (3,6),C (7.5,0).将z =1000x +1200y 变形为y =-56x +z 1200,当x =3,y =6时,直线l :y =-56x +z1200在y 轴上的截距最大,最大获利Z =z max =3×1000+6×1200=10 200.当W =18时,①表示的平面区域如图(3),四个顶点分别为A (0,0),B (3,6),C (6,4),D (9,0).将z =1000x +1200y 变形为y =-56x +z 1200,当x =6,y =4时,直线l :y =-56x +z1200在y 轴上的截距最大,最大获利Z =z max =6×1000+4×1200=10 800.故最大获利Z 的分布列为因此,E (Z )=8160×0.3+10 200×0.5+10 800×0.2=9708.(2)由(1)知,一天最大获利超过10 000元的概率P 1=P (Z >10 000)=0.5+0.2=0.7, 由二项分布,3天中至少有1天最大获利超过10 000元的概率为 P =1-(1-P 1)3=1-0.33=0.973. 答案:(1)最大获利Z 的分布列为E (Z )=8160×0.3+10 200×0.5+10 800×0.2=9708.(2) 0.973. 【例2】:在一次数学考试中,第22,23,24题为选做题,规定每位考生必须且只须在其中选一题,设5名同学选做这三题中任意一题的可能性均为13,每位同学对每题的选择是相互独立的,各学生的选择相互之间没有影响.(1)求其中甲、乙两人选做同一题的概率;(2)设选做第23题的人数为ξ,求ξ的分布列及数学期望.【解析】:(1)设事件A 1表示“甲选22题”,A 2表示“甲选23题”,A 3表示“甲选24题”,B 1表示“乙选22题”,B 2表示“乙选23题”,B 3表示“乙选24题”,由甲、乙选做同一题的事件为A 1B 1+A 2B 2+A 3B 3,且A 1与B 1,A 2与B 2,A 3与B 3相互独立, 所以P(A 1B 1+A 2B 2+A 3B 3)=P(A 1)P(B 1)+P(A 2)P(B 2)+P(A 3)P(B 3)=3×19=13.(2)ξ的可能取值为0,1,2,3,4,5,则ξ~B(5,13),所以P(ξ=k)=C k 5(13)k (23)5-k =C k 525-k35,k =0,1,2,3,4,5.所以ξ的分布列为所以E ξ=np =5×13=53.答案:(1) 13. (2) 53.【同步训练】【一级目标】基础巩固组一.选择题1.已知离散型随机变量X 的分布列为则X 的数学期望EX =( )A.32 B .2 C.52 D .3 【解析】:EX =1×35+2×310+3×110=32.答案:A.2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A .C 1012⎝⎛⎭⎫3810⎝⎛⎭⎫582 B .C 912⎝⎛⎭⎫389⎝⎛⎭⎫582 C .C 911⎝⎛⎭⎫589⎝⎛⎭⎫382 D .C 911⎝⎛⎭⎫3810⎝⎛⎭⎫582【解析】:“X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P (X =12)=38×C 911⎝⎛⎭⎫389⎝⎛⎭⎫582=C 911⎝⎛⎭⎫3810⎝⎛⎭⎫582.答案:D .3.在四次独立重复试验中,随机事件A 恰好发生一次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1]B .(0,0.4]C .(0,0.6]D .[0.6,1]【解析】:由题知C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,故选A . 答案:A .4.随机变量X 的分布列为则E (5X +4)等于( )A .15B .11C .2.2D .2.3 【解析】:∵E(X)=1×0.4+2×0.3+4×0.3=2.2,∴E(5X +4)=5E(X)+4=11+4=15. 答案:A .5.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧,其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量X 为“|a -b |的取值”,则X 的数学期望E (X )为( )A.89B.35C.25D.13【解析】:对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126(条),X 的可能取值有0,1,2.P(X =0)=6×7126=13,P(X =1)=8×7126=49,P(X =2)=4×7126=29,故E(X)=0×13+1×49+2×29=89.答案:A. 二.填空题6.设随机变量X ~B(6,12),则P(X =3)的值为 (用最简的分数作答)【解析】:P(X =3)=C 36(12)3(12)3=516. 答案:516. 7.10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是________.【解析】:由超几何分布的概率公式可得P (恰好取到一件次品)=C 13C 37C 410=12.答案:12.8.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.【解析】:∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927.答案:1927.三.解答题9.某校对参加“社会实践活动”的全体志愿者进行学分考核,因该批志愿者表现良好,学校决定考核只有合格和优秀两个等次.若考核为合格,则授予1个学分;若考核为优秀,则授予2个学分.假设该校志愿者甲、乙、丙考核为优秀的概率分别为45,23,23,且他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一人考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X ,求随机变量X 的分布列及数学期望. 【解析】:(1)记“甲考核为优秀”为事件A ,“乙考核为优秀”为事件B ,“丙考核为优秀”为事件C ,“甲、乙、丙三人中至少有一人考核为优秀”为事件D ,则P (D )=1-P (A B C )=1-P (A )P (B )P (C )=1-15×13×13=4445.(2)由题意,得X 所有可能的取值是3,4,5,6,P (X =3)=P (A B C )=P (A )P (B )P (C )=145,P (X =4)=P (A B C )+P (ABC )+P (A B C )=845,P (X =5)=P (ABC )+P (ABC )+P (ABC )=49,P (X =6)=P (ABC )=P (A )P (B )P (C )=1645,所以故E (X )=3×145+4×845+5×49+6×1645=7715.答案:(1) 4445.(2) X E (X )=3×145+4×845+5×49+6×1645=7715.10.某中学校本课程共开设了A ,B ,C ,D 共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生.(1)求这3名学生选修课所有选法的总数;(2)求恰有2门选修课没有被这3名学生选择的概率;(3)求这3名学生中选择A 选修课的人数X 的分布列和数学期望. 【解析】:(1)每个学生有4个不同的选择,根据分步计数原理,选法总数N =4×4×4=64.(2)设“恰有2门选修课没有被这3名学生选择”为事件E ,则P (E )=C 24C 23A 2243=916,即恰有2门选修课没有被这3名学生选择的概率为916. (3)方法一:X 所有可能的取值为0,1,2,3,P (X =0)=3343=2764,P (X =1)=C 13×3243=2764, P (X =2)=C 23×343=964,P (X =3)=C 3343=164,所以X 的分布列为所以X 的数学期望E (X )=0×2764+1×2764+2×964+3×164=34.方法二:因为A 选修课被每位学生选中的概率均为14,没被选中的概率均为34,所以X 的所有可能取值为0,1,2,3,且X ~B 3,14,P (X =0)=343=2764,P (X =1)=C 13×14×342=2764, P (X =2)=C 23×142×34=964,P (X =3)=143=164, 所以X故X 的数学期望E (X )=3×14=34.答案:(1) 64. (2) 916.(3) X 的分布列为E (X )=0×2764+1×2764+2×964+3×164=34.【二级目标】能力提升题组一.选择题1.已知集合A ={x |2x 2-x -3<0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪y =lg1-x x +3,在区间(-3,3)上任取一实数x ,则x ∈A ∩B 的概率为( )A.14B.18C.13D.112【解析】:由2x 2-x -3<0,得-1<x<32.由1-xx +3>0,得x -1x +3<0,∴-3<x<1.∴A ∩B ={x|-1<x<1},故所求概率P =26=13.答案:C.2.某同学做了10道选择题,每道题四个选项中有且只有一项是正确的,他每道题都随意地从中选了一个答案,记该同学至少答对9道题的概率为P ,则下列数据中与P 的值最接近的是( )A .3×10-4B .3×10-5C .3×10-6D .3×10-7【解析】:P =C 910·149×34+C 1010·1410=30×1410+1410=31×1410=31×12102=31×110242≈31×(10-3)2=31×10-6=3×10-5. 答案:B . 二.填空题3.[2014·浙江卷] 随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.【解析】:设P (ξ=1)=x ,P (ξ=2)=y ,则⎩⎨⎧x +y =45,x +2y =1⇒⎩⎪⎨⎪⎧x =35,y =15,所以D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.答案:25.三.解答题(1)求在未来连续三天里,有连续两天的日车流量都不低于10万辆且另一天的日车流量低于5万辆的概率;(2)用X 表示在未来三天时间里日车流量不低于10万辆的天数,求X 的分布列和数学期望. 【解析】:(1)设A 1表示事件“日车流量不低于10万辆”,A 2表示事件“日车流量低于5万辆”,B 表示事件“在未来连续三天里,有连续两天的日车流量都不低于10万辆且另一天的日车流量低于5万辆”,则P (A 1)=0.35+0.25+0.10=0.70,P (A 2)=0.05, 所以P (B )=0.70×0.70×0.05×2=0.049. (2)X 所有可能的取值为0,1,2,3,P (X =0)=C 03×(1-0.7)3=0.027,P (X =1)=C 13×0.7×(1-0.7)2=0.189,P (X =2)=C 23×0.72×(1-0.7)=0.441,P (X =3)=C 33×0.73=0.343, 所以X 的分布列为因为X ~B (3,0.7)答案:(1) 0.049.(2) X 的分布列为E (X )=3×0.7=【高考链接】1.[2015·福建卷] 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和数学期望. 【解析】:(1)设“当天小王的该银行卡被锁定”的事件为A ,则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3.又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23,所以X 的分布列为所以E (X )=1×16+2×16+3×23=52.答案:(1) 12.(2) X 的分布列为E (X )=1×16+2×16+3×23=52.2.[2014·北京卷] 李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x -为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数,比较EX 与x -的大小.(只需写出结论)【解析】: (1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中,李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中,李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=AB∪AB,A,B相互独立.根据投篮统计数据,P(A)=35,P(B)=25.故P(C)=P(AB)+P(AB)=35×35+25×25=1325.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)EX=x-.答案:(1) 0.5. (2)1325. (3)EX=x-.3.[2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.【解析】:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1)因为P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以EX=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.答案:(1) 0.31.(2)2.。

两点分布、超几何分布、正态分布

两点分布、超几何分布、正态分布

两点分布、超几何分布、正态分布1.两点分布如果随机变量X 的分布列为其中0<p <1,则称离散型随机变量E (X )=p ,D (X )=p (1-p ). 2.超几何分布一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =k )=C k M C n -k N -MC n N(k =0,1,2,…,m ).即其中m =min{M ,n }如果一个随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布. 3.正态分布(1)正态曲线:函数φμ,σ(x )=12πσ,x ∈(-∞,+∞),其中实数μ和σ为参数(σ>0,μ∈R ).我们称函数φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π; ④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示bφμ,σ(x)d x,则称随机变量X 如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=⎠⎛a服从正态分布,记作X~N(μ,σ2).正态总体在三个特殊区间内取值的概率值①P(μ-σ<X≤μ+σ)=0.682_6;②P(μ-2σ<X≤μ+2σ)=0.954_4;③P(μ-3σ<X≤μ+3σ)=0.997_4.4.判断下列结论的正误(正确的打“√”错误的打“×”)(1)抛掷均匀硬币一次,出现正面的次数是随机变量.服从两点分布.(×)(2)某人射击时命中的概率为0.5,此人射击三次命中的次数X服从两点分布.(×)(3)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.(√)(4)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.(√)(5)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.(√)(6)正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等.(√)(7)对于正态分布X~N(μ,σ2),总有P(x<μ-a)=P(x≥μ+a).(√)(8)X~N(μ,σ2),发生在(μ-3σ,μ+3σ),之外的概率为0,称之不可能事件.(×)(9)正态总体(1,9)在区间(0,1)和(-1,0)上的概率相等.(×)(10)随机变量分布列为是两点分布.(×)考点一两点分布、超几何分布[例1](1)设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于()A.0 B.12 C.13 D.23解析:设X的分布列为即“X=0”表示试验失败,“X=1”p,则成功率为2p.由p+2p=1,则p=13,故应选C.答案:C(2)一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是7 9.①求白球的个数;②从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列及期望.解:①记“从袋中任意摸出2个球,至少得到1个白球”为事件A,设袋中白球的个数为x,则P(A)=1-C210-xC210=79,得到x=5.故白球有5个.②X服从超几何分布,P(X=k)=C k5C3-k5C310,k=0,1,2,3.于是可得其分布列为∴E(X)=0×112+1×512+2×512+3×112=1812=32.[方法引航](1)两点分布列的随机变量X取值为1和0,不能取其它整数,X=1表示“成功”.(2)对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.1.若将本例(1)改为,求X 的成功率.解:p +p 2=1,(p >0),∴p =5-12∴X 的成功率P (x =1)=2)215(=3-52.2.将本例(2)改为:随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了了解公众对“延迟退休”的态度,某校课外研究性学习小组从某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:年龄在各随机选取2人,进行跟踪调查.①求从年龄在[25,30)的被调查者中选取的2人都赞成的概率; ②求选中的4人中,至少有3人赞成的概率;③若选中的4人中,不赞成的人数为X ,求随机变量X 的分布列和数学期望. 解:①设“年龄在[25,30)的被调查者中选取的2人都赞成”为事件A ,所以P (A )=C 23C 25=310.②设“选中的4人中,至少有3人赞成”为事件B ,所以P (B )=C 23C 12C 11C 25C 23+C 13C 12C 22C 25C 23+C 23C 22C 25C 23=12.③X 的可能取值为0,1,2,3,所以P (X =0)=C 23C 22C 25C 23=110, P (X =1)=C 13C 12C 22+C 23C 12C 11C 25C 23=25, P (X =2)=C 22C 22+C 13C 12C 12C 11C 25C 23=1330, P (X =3)=C 22C 12C 11C 25C 23=115.所以E(X)=0×110+1×25+2×1330+3×115=2215.考点二正态分布[例2](1)(2017·山西四校联考)设随机变量X~N(3,σ2),若P(X>m)=0.3,则P(X>6-m)=__________.解析:因为P(X>m)=0.3,X~N(3,σ2)所以m>3,P(X<6-m)=P(X<3-(m-3))=P(X>m)=0.3所以P(X>6-m)=1-P(X<6-m)=0.7.答案:0.7(2)云南省2016年全省高中男生身高统计调查数据显示:全省100 000名高中男生的身高服从正态分布N(170.5,16).现从云南省某校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5 cm和187.5 cm之间,将测量结果按如下方式分成6组:第1组[157.5,162.5),第2组[162.5,167.5),…,第6组[182.5,187.5],如图是按上述分组方式得到的频率分布直方图.①试评估该校高三年级男生在全省高中男生中的平均身高状况;②求这50名男生身高在177.5 cm以上(含177.5 cm)的人数;③身高排名(从高到低)在全省130名之内,其身高最低为多少?参考数据:若ξ~N(μ,σ2),则P(μ~σ<ξ≤μ+σ)=0.682 6,P(μ-2σ<ξ≤μ+2σ)=0.954 4,P(μ-3σ<ξ≤μ+3σ)=0.997 4.解:①由频率分布直方图知,该校高三年级男生平均身高为160×0.1+165×0.2+170×0.3+175×0.2+180×0.1+185×0.1=171.5(cm),∵171.5 cm>170.5 cm,故该校高三年级男生的平均身高高于全省高中男生身高的平均值.②由频率分布直方图知,后两组频率和为0.2,∴人数和为0.2×50=10,即这50名男生中身高在177.5 cm以上(含177.5 cm)的人数为10.③∵P(170.5-3×4<ξ<170.5+3×4)=0.997 4,∴P(ξ≥182.5)=1-0.997 42=0.001 3,又0.001 3×100 000=130.∴身高在182.5 cm以上(含182.5 cm)的高中男生可排进全省前130名.[方法引航]在高考中主要考查正态分布的概率计算问题,其解决方法如下:第一步,先弄清正态分布的均值是多少;第二步:若均值为μ,则根据正态曲线的对称性可得P(X≥μ)=0.5,P(X≤μ)=0.5,P(X≤μ+c)=P(X≥μ-c)(c>0)等结论;第三步,根据这些结论、题目中所给条件及对称性,对目标概率进行转化求解即可.,说明:关于正态总体在某个区间内取值的概率问题,要熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值,充分利用正态曲线的对称性和曲线与x轴之间的面积为1来解题.1.(2017·江西八校联考)在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为()A.0.05B.0.1 C.0.15 D.0.2解析:选B.由题意得,P(80<ξ<100)=P(100<ξ<120)=0.4,P(0<ξ<100)=0.5,∴P(0<ξ<80)=0.1.2.在某次大型考试中,某班同学的成绩服从正态分布N(80,52),现已知该班同学中成绩在80~85分的有17人.试计算该班成绩在90分以上的同学有多少人.解:依题意,由80~85分的同学的人数和所占百分比求出该班同学的总数,再求90分以上同学的人数.∵成绩服从正态分布N(80,52),∴μ=80,σ=5,μ-σ=75,μ+σ=85.于是成绩在(75,85]内的同学占全班同学的68.26%.由正态曲线的对称性知,成绩在(80,85]内的同学占全班同学的12×68.26%=34.13%.设该班有x名同学,则x×34.13%=17,解得x≈50.又μ-2σ=80-10=70,μ+2σ=80+10=90,∴成绩在(70,90]内的同学占全班同学的95.44%.∴成绩在(80,90]内的同学占全班同学的47.72%.∴成绩在90分以上的同学占全班同学的50%-47.72%=2.28%.即有50×2.28%≈1(人),即成绩在90分以上的同学仅有1人.[易错警示]不能正确理解正态曲线的对称性[典例]已知随机变量ξ满足正态分布N(μ,σ2),且P(ξ<1)=12,P(ξ>2)=0.4,则P(0<ξ<1)=________.[错解]由P(ξ>2)=0.4,∴P(ξ<2)=1-0.4=0.6,∴P(0<ξ<1)=12P(ξ<2)=0.3.[错因]P(0<ξ<1)是P(ξ<2)的一半.[正解]由P(ξ<1)=12得μ=1,∴随机变量ξ服从正态分布N(1,σ2),∴曲线关于x=1对称.∵P(ξ<2)=0.6,∴P(0<ξ<1)=0.6-0.5=0.1.[答案]0.1[警示]①正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相同.②P(X<a)=1-P(X≥a),P(X≤μ-a)=P(X≥μ+a).[高考真题体验]1.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为()A.2 386B.2 718 C.3 413 D.4 772附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.解析:选C.由P(-1<X≤1)=0.682 6,得P(0<X≤1)=0.341 3,则阴影部分的面积为0.341 3,故估计落入阴影部分的点的个数为10 000×0.341 31×1=3 413,故选C.2.(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56% B.13.59% C.27.18% D.31.74%解析:选B.由正态分布的概率公式知P(-3<ξ<3)=0.682 6,P(-6<ξ<6)=0.954 4,故P(3<ξ<6)=P(-6<ξ<6)-P(-3<ξ<3)2=0.954 4-0.682 62=0.135 9=13.59%,故选B.3.(2014·高考课标全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.解:(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以E(X)=100×0.682 6=68.26.4.(2016·高考天津卷)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.解:(1)由已知,得P(A)=C13C14+C23C210=13.所以,事件A发生的概率为13.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C23+C23+C24C210=415,P(X=1)=C13C13+C13C14C210=715,P(X=2)=C13C14C210=415.所以,随机变量X的分布列为随机变量X的数学期望E(X)=0×415+1×715+2×415=1.课时规范训练A组基础演练1.设随机变量X服从正态分布N(2,9),若P(X>c+1)=P(X<c-1),则c等于() A.1B.2 C.3 D.4解析:选B.∵μ=2,由正态分布的定义知其图象关于直线x=2对称,于是c+1+c-12=2,∴c=2.2.正态总体N(1,9)在区间(2,3)和(-1,0)上取值的概率分别为m,n,则()A.m>n B.m<n C.m=n D.不确定解析:选C.正态总体N(1,9)的曲线关于x=1对称,区间(2,3)与(-1,0)到对称轴距离相等,故m=n.3.一批产品共50件,次品率为4%,从中任取10件,则抽到1件次品的概率是()A.C12C948C1050 B.C12C950C1050 C.C12C1050 D.C948C1050解析:选A.50件产品中,次品有50×4%=2件,设抽到的次品数为X ,则抽到1件次品的概率是P (X =1)=C 12C 948C 1050.4.设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t ) 解析:选D.由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12, P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错; 因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错; 对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错; 对任意正数t ,P (X ≤t )≥P (Y ≤t )是正确的,故选D.5.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a =( )A.37B.73C.78D.87解析:选B.因为ξ服从正态分布N (3,4),且P (ξ<2a -3)=P (ξ>a +2),所以2a -3+a +2=6,∴a =73.6.若随机变量X 的概率分布密度函数是φμ,σ(x )=122π·e -(x +2)28(x ∈R ),则E (2X -1)=________.解析:σ=2,μ=-2,E (2X -1)=2E (X )-1=2×(-2)-1=-5. 答案:-57.从装有3个红球、2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的分布列为解析:P (X =0)=C 22C 25=0.1,P (X =1)=C 3·C 2C 25=610=0.6,P (X =2)=C 23C 25=0.3.答案:0.1 0.6 0.38.已知某次英语考试的成绩X 服从正态分布N (116,64),则10 000名考生中成绩在140分以上的人数为________. 解析:由已知得μ=116,σ=8.∴P (92<X ≤140)=P (μ-3σ<X ≤μ+3σ)=0.997 4,∴P (X >140)=12(1-0.997 4)=0.001 3,∴成绩在140分以上的人数为13. 答案:139.甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是23. (1)求甲、乙至少有一人闯关成功的概率; (2)设甲答对题目的个数为ξ,求ξ的分布列.解:(1)设甲、乙闯关成功分别为事件A ,B ,则P (A )=C 14C 22C 36=420=15,P (B )=3)321(-+C 2312)32()321(-=127+29=727, 则甲、乙至少有一人闯关成功的概率是1-P (A -B -)=1-P (A -)P (B -)=1-15×727=128135.(2)由题意知ξ的可能取值是1,2.P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12+C 34C 36=45,则ξ的分布列为10.盒内有大小相同的9个球,其中24个黑色球.规定取出1个红色球得1分,取出一个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球. (1)求取出的3个球中至少有一个红球的概率; (2)求取出的3个球得分之和恰好为1分的概率; (3)设ξ为取出的3个球中白色球的个数,求ξ的分布列.解:(1)P =1-C 37C 39=712.(2)记“取出1个红色球,2个白色球”为事件B ,“取出2个红色球,1个黑色球”为事件C ,则P (B +C )=P (B )+P (C )=C 12C 23C 39+C 22C 14C 39=542.(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布,P (ξ=k )=C k 3C 3-k 6C 39,k =0,1,2,3.故P (ξ=0)=C 36C 39=521,P (ξ=1)=C 13C 26C 39=1528;P (ξ=2)=C 23C 16C 39=314,P (ξ=3)=C 33C 39=184.ξ的分布列为:1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为φμ,σ(x )=12π·10(x ∈R ),则下列命题中不正确的是( )A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为10解析:选B.由密度函数知,均值(期望)μ=80,标准差σ=10,又正态曲线关于直线x =80对称,故分数在100分以上的人数与分数在60分以下的人数相同,所以B 是错误的. 2.已知X ~N (μ,σ2)时,P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4,则dx x 2)1(432e 21--⎰π=( )A .0.043B .0.021 5C .0.341 3D .0.477 2解析:选B.由题意知,μ=1,σ=1,P (3<X ≤4)=12×[P (-2<X ≤4)-P (-1<X ≤3)]=12×(0.997 4-0.954 4)=0.021 5.故选B.3.已知随机变量ξ服从正态分布N (2,9),若P (ξ>3)=a ,P (1<ξ≤3)=b ,则函数f (a )=a 2+a -1a +1的值域是________.解析:易知正态曲线关于直线x =2对称,所以P (ξ>3)=P (ξ<1)=a ,则有⎩⎨⎧2a +b =1,a >0,b >0⇒0<a <12.f (a )=a -1a +1=(a +1)-1a +1-1,令t =a +1∈)23,1(,函数f (a )=g (t )=t -1t -1在t∈)23,1(上是增函数,所以g (t )∈)61,1())23(),1((--=g g答案:)61,1(--4.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.解:(1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且P (X =0)=C 38C 310=715, P (X =1)=C 12C 28C 310=715, P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为故E (X )=0×715+1×715+2×115=35.5.某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予9.6折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取两人.(1)求这两人都享受折扣优惠或都不享受折扣优惠的概率;(2)设这两人中享受折扣优惠的人数为ξ,求ξ的分布列和数学期望. 解:(1)设“两人都享受折扣优惠”为事件A , “两人都不享受折扣优惠”为事件B ,则P(A)=C212C236=11105,P(B)=C224C236=46105.因为事件A,B互斥,则P(A+B)=P(A)+P(B)=11105+46105=57105=1935.故这两人都享受折扣优惠或都不享受折扣优惠的概率是19 35.(2)据题意,得ξ的可能取值0,1,2.其中P(ξ=0)=P(B)=46105,P(ξ=1)=C112C124C236=48105,P(ξ=2)=P(A)=11 105.所以ξ的分布列为所以,E(ξ)=0×46105+1×48105+2×11105=23.。

2025数学大一轮复习讲义苏教版 第十章 二项分布、超几何分布与正态分布

2025数学大一轮复习讲义苏教版  第十章  二项分布、超几何分布与正态分布

跟踪训练2 (2024·安庆模拟)乡村民宿立足农村,契合了现代人远离喧嚣、 亲近自然、寻味乡愁的美好追求.某镇在旅游旺季前夕,为了解各乡村的 普通型民宿和品质型民宿的品质,随机抽取了8家规模较大的乡村民宿, 统计得到各家的房间数如下表:
民宿点
甲乙丙丁戊己庚辛
普通型民宿
16 8 12 14 13 18 9 20
对于方案一:“机器发生故障时不能及时维修”等价于“甲、乙、丙
三人中,至少有一人负责的2台机器同时发生故障”,考查反面处理
这个问题. 其概率为 P1=1-[1-P(X=2)]3=1-1-1163=4702916. 对于方案二:机器发生故障时不能及时维修的概率为 P2=1-346- C16·14×345-C26·142×344=1-36+6×43059+615×34=2304478,
第十章
§10.6 二项分布、超 几何分布与正态分布
课标要求
1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题. 2.借助正态曲线了解正态分布的概念,并进行简单应用.
内容索引
第一部分 落实主干知识 第二部分 探究核心题型
课时精练
第一部分
落实主干知识
知识梳理
1.二项分布 (1)伯努利试验 只包含 两个 可能结果的试验叫作伯努利试验;将一个伯努利试验独立 地重复进行n次所组成的随机试验称为 n重伯努利试验 . (2)二项分布 若随机变量X的概率分布为P(X=k)=Cknpkqn-k ,其中0<p<1,p+q=1, k=0,1,2,…,n,则称X服从参数为n,p的二项分布,记作X~B(n,p).
设甲3次点球射进的次数为Y, 则 Y~B3,23, Y的可能取值为0,1,2,3,且X=50Y, 则X的所有可能的取值为0,50,100,150. P(X=0)=P(Y=0)=1-233=217, P(X=50)=P(Y=1)=C132311-232=29,

高考数学复习知识点讲解教案第65讲 二项分布与超几何分布、正态分布

高考数学复习知识点讲解教案第65讲 二项分布与超几何分布、正态分布

正态曲线: =
1


⋅e
− 2
22
, ∈ ,其中 ∈ , > 0为参数,称
正态密度曲线
为正态密度函数,函数 的图象为_________________,简称正态曲线.
(2)
正态曲线的特点
=
①曲线是单峰的,它关于直线________对称.

=
1
曲线在________处达到峰值
3
[思路点拨](1)由题可求出一次试验成功的概率,设试验成功的次数为,可
知服从二项分布,再利用方差的性质即可求解.
[解析] 由题意得,启动一次出现的数字为 = 1010的概率 =
设试验成功的次数为,则~
所以的方差 = 54 ×
2
27
×
25
27
2
54,
27
=
2
1
3
2
3
× =
2
.
记选出女生的人数为,则服从超几何分布,③满足题意;
盒中有4个白球和3个黑球,每次从中随机摸出1个球且不放回,
记第一次摸出黑球时摸取的次数为,
则不服从超几何分布,④不满足题意.故填③.
5.已知随机变量 ∼
2
2,
0.35
, ≤ 0 = 0.15,则 2 ≤ ≤ 4 =______.
0 < < 1 ,用表示事件发生的次数,则的分布列为( = ) =


C 1 −
_________________________,
= 0,1,2,⋯ ,,称随机变量服从二项分布,记作
∼ , .
(2)
1 −

高考数学知识点精讲常见随机变量的分布类型

高考数学知识点精讲常见随机变量的分布类型

高考数学知识点精讲常见随机变量的分布类型高考数学知识点精讲:常见随机变量的分布类型在高考数学中,随机变量的分布类型是一个重要的知识点,理解和掌握这些分布类型对于解决概率相关的问题至关重要。

下面我们就来详细讲解一下常见的随机变量分布类型。

首先,我们来认识一下什么是随机变量。

简单来说,随机变量就是把随机试验的结果用数字表示出来。

比如说掷骰子,我们可以定义随机变量 X 为骰子掷出的点数,那么 X 可能取值 1、2、3、4、5、6。

常见的随机变量分布类型主要有以下几种:一、离散型随机变量的分布1、两点分布两点分布是最简单的一种离散型随机变量分布。

比如抛一枚硬币,正面朝上记为1,反面朝上记为0,那么这个随机变量就服从两点分布。

其概率分布为 P(X = 1) = p,P(X = 0) = 1 p ,其中 0 < p < 1 。

2、二项分布二项分布在实际生活中有很多应用。

比如进行n 次独立重复的试验,每次试验只有两种结果(成功或失败),成功的概率为 p ,失败的概率为 1 p 。

那么成功的次数 X 就服从二项分布,记为 X ~ B(n, p) 。

二项分布的概率公式为:P(X = k) = C(n, k) p^k (1 p)^(n k) ,其中 C(n, k) 表示从 n 个元素中选出 k 个元素的组合数。

举个例子,假设一批产品的次品率为 02,从这批产品中随机抽取10 个,那么抽到次品个数 X 就服从二项分布 B(10, 02) 。

3、超几何分布超几何分布与二项分布有点类似,但适用的场景略有不同。

超几何分布是从有限 N 个物件(其中包含 M 个指定种类的物件)中抽出 n 个物件,成功抽出指定种类物件的次数 X 就是超几何分布。

超几何分布的概率公式为:P(X = k) = C(M, k) C(N M, n k) /C(N, n) 。

比如说在一个有 50 个球,其中 20 个红球,30 个白球的盒子中,随机抽取 10 个球,红球的个数 X 就服从超几何分布。

高考数学总复习 基础知识 第十章 第十节二项分布、超几何分布、正态分布 理

高考数学总复习 基础知识 第十章 第十节二项分布、超几何分布、正态分布 理

高考数学总复习基础知识第十章第十节二项分布、超几何分布、正态分布理1、理解超几何分布及其导出过程,并能进行简单的应用、2、理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题、3、利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义、知识梳理一、独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验、二、二项分布如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(ξ=k)=Cpkqn-k,其中k=0,1,…,n,q=1-p、于是得到随机变量ξ的概率分布列为ξ01…k…nPCp0qnCp1qn-1…Cpkqn-k…Cpnq0我们称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,p叫成功概率、令k=0得,在n次独立重复试验中,事件A没有发生的概率为P(ξ=0)=Cp0(1-p)n=(1-p)n、令k=n得,在n次独立重复试验中,事件A全部发生的概率为P(ξ=n)=Cpn(1-p)0=pn、,三、超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品数,则事件“X=k”发生的概率为P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称分布列X012…mP…为超几何分布列,如果随机变量X的分布列为超几何分布列,则称离散型随机变量X服从超几何分布、四、正态分布密度函数φμ,σ(x)=e-,σ>0,x∈(-∞,+∞)其中π是圆周率,e是自然对数的底,x是随机变量的取值,μ为正态分布的均值,σ是正态分布的标准差、正态分布一般记为N(μ,σ2)、五、正态曲线函数φμ,σ(x)=e-,x∈(-∞,+∞),实数μ和σ(σ>0)为参数,其图象为正态分布密度曲线,简称正态曲线、标准正态曲线:当μ=0,σ=1时,正态总体称为标准正态总体,其相应的函数表示式是f(x)=e-,x∈(-∞,+∞)其相应的曲线称为标准正态曲线、六、正态分布如果对于任何实数a<b,随机变量X满足P(a<X≤b)=φμ,σ(x)dx,则称X的分布为正态分布,参数μ表示随机变量X的均值,参数σ表示随机变量X的标准差,记作X~N(μ,σ2),其中N(0,1)称为标准正态分布、正态分布N(μ,σ2)是由均值μ和标准差σ唯一决定的分布、标准正态总体N(0,1)在正态总体的研究中占有重要的地位、七、正态总体在三个特殊区间内取值的概率值(简称三个基本概率值)P(μ-σ<X≤μ+σ)=0、6826,P(μ-2σ<X≤μ+2σ)=0、9544,P(μ-3σ<X≤μ+3σ)=0、9974、八、3σ原则在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取(μ-3σ,μ+3σ)之间的值,并简称之为3σ原则、正态总体几乎总取值于区间(μ-3σ,μ+3σ)之内,而在此区间以外取值的概率只有0、0026,通常认为这种情况在一次试验中几乎不可能发生,这是统计中常用的假设检验方法的基本思想、九、几个重要分布的期望和方差1、若X服从两点分布,则E(X)=p,D(X)=p(1- p)、2、若X~B(n, p), 则E(X)=np,D(X)=np(1-p)、3、若X服从超几何分布P(X=k)=,则E(X)=n, D(X)=、基础自测1、(xx惠州一模)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则a的值为()A、B、C、5D、3解析:因为随机变量ξ服从正态分布N(3,4),且P(ξ<2a-3)=P(ξ>a+2),所以2a-3与a+2关于x=3对称,所以2a-3+a+2=6,所以3a=7,所以a=,故选A、答案:A2、正态总体N(0,1)在区间(-2,-1)和(1,2)上取值的概率为P1,P2,则()A、P1>P2B、P1<P2C、P1=P2D、不确定解析:根据正态曲线的特点知,关于x=0对称,即在区间(-2,-1)和(1,2)上取值的概率相等、故选C、答案:C3、在含有5件次品的100件产品中,任取3件,则取到的次品数X的分布列为________________、解析:X服从超几何分布、答案:P(X=k)=(k=0,1,2,3)4、从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为:ξ012P__________________解析:由题意可知:P(ξ=0)==,P(ξ=1)==,P(ξ=2)==、答案:1、(xx新课标全国卷)某一部件由三个电子元件按如图所示的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作、设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________、解析:(法一)设该部件的使用寿命超过1 000 小时的概率为P(A)、因为三个元件的使用寿命均服从正态分布N(1 000,502),所以元件1,2,3的使用寿命超过1 000小时的概率分别为P1=,P2=,P3=、因为P()=12P3+3=+=,所以P(A)=1-P()=、(法二)设该部件的使用寿命超过1 000小时的概率为P(A)、因为三个元件的使用寿命均服从正态分布N(1 000,502),所以元件1,2,3的使用寿命超过1 000小时的概率分别为P1=,P2=,P3=、故P(A)=P12P3+1P2P3+P1P2P3=++=、答案:2、(xx辽宁卷)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答、(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题、设张同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立、用X表示张同学答对题的个数,求X的分布列和数学期望、解析:(1)设事件A=“张同学所取的3道题至少有1道乙类题”,则有=“张同学所取的3道题都是甲类题”、因为P()==,所以P(A)=1-P()=、(2)X所有的可能取值为0,1,2,3、P(X=0)=C02=;P(X=1)=C11+C02=;P(X=2)=C20+C11=;P(X=3)=C20=、所以X的分布列为:X0123P所以E(X)=0+1+2+3=2、1、若ξ~B(n,p)且E(ξ)=6,D(ξ)=3,则P(ξ=1)的值为 ( )A、32-2B、32-10C、2-4D、2-8解析:因ξ服从二项分布,所以E(ξ)=np=6,D(ξ)=n p(1-p)=3,解得p=,n=12、∴P(ξ=1)=C12=32-10、故选B、答案:B2、(xx江门一模)春节期间,某商场决定从3种服装、2种家电、3种日用品中,选出3种商品进行促销活动、(1)试求选出的3种商品中至少有一种是家电的概率;(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高100元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为m元的奖金;若中两次奖,则共获得数额为3m元的奖金;若中3次奖,则共获得数额为6m元的奖金、假设顾客每次抽奖中获得的概率都是,请问:商场将奖金数额m最高定为多少元,才能使促销方案对商场有利?解析:(1)设选出的3种商品中至少有一种是家电为事件A,从3种服装、2种家电、3种日用品中,选出3种商品,一共有C种不同的选法,选出的3种商品中,没有家电的选法有C种、所以,选出的3种商品中至少有一种是家电的概率为P(A)=1-=、(2)设顾客三次抽奖所获得的奖金总额为随机变量ξ,其所有可能的取值为0,m,3m,6m、(单元:元)ξ=0表示顾客在三次抽奖都没有获奖,所以P(ξ=0)=3=,同理,P(ξ=m)=C2=,P(ξ=3m)=C12=,P(ξ=6m)=C3=,顾客在三次抽奖中所获得的奖金总额的期望值是E(ξ)=0+m+3m+6m=m、由m≤100,解得m≤75,所以故m最高定为75元,才能使促销方案对商场有利、。

新高考一轮复习人教A版9.5 二项分布与超几何分布正态分布课件(50张)

新高考一轮复习人教A版9.5 二项分布与超几何分布正态分布课件(50张)
第九章 概率与统计
9. 5 二项分布与超几何分布、正态分布
1. 通过具体实例,了解伯努利试验,掌握二项分布及其数字特征,并能解决简单的实 际问题. 2. 通过具体实例,了解超几何分布及其均值,并能解决简单的实际问题. 3. 通过误差模型,了解服从正态分布的随机变量. 通过具体实例,借助频率直方图的 几何直观,了解正态分布的特征. 4. 了解正态分布的均值、方差及其含义.
Z0 2 4
P
8 27
40 81
17 81
所以 E(Z)=0×287+2×8410+4×1871=18418.
【点拨】 在求 n 重伯努利试验中事件恰好发生 k 次的概率时,首先要确定好 n 和 k 的值,再准确利用
公式求概率.
(2020 辽宁调兵山一中高三月考)某检疫部门对可能遭受污染的某海产品在进入 餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售. 已知该海 产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格 相互没有影响. (1)求该海产品不能销售的概率; (2)如果该海产品可以销售,则每件产品可获利 40 元;如果该海产品不能销售,则每件 产品亏损 80 元(即获利-80 元). 已知一箱中有该海产品 4 件,记一箱该海产品获利 X 元,求 X 的分布列.
考点一 二项分布
命题角度 1 n 重伯努利试验 (2021 届湖南师大附中第二次月考)现有 4 个人去参加某项娱乐活动,该活动有甲、乙两个游戏可
供参加者选择. 为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷 出点数为 1 或 2 的人去参加甲游戏,掷出点数大于 2 的人去参加乙游戏. (1)求这 4 个人中恰有 2 人去参加甲游戏的概率; (2)求这 4 个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用 X,Y 分别表示这 4 个人中去参加甲、乙游戏的人数,记 Z=|X-Y|,求随机变量 Z 的分布列与数 学期望 E(Z).

2023年新高考数学大一轮复习讲义专题49 两点分布、二项分布与超几何分布(原卷版)

2023年新高考数学大一轮复习讲义专题49 两点分布、二项分布与超几何分布(原卷版)

专题49 两点分布、二项分布与超几何分布【考点预测】 知识点一.两点分布1、若随机变量X 服从两点分布,即其分布列为其中01p <<(1)P X =称为成功概率. 注意:(1)两点分布的试验结果只有两个可能性,且其概率之和为1; (2)两点分布又称01-分布、伯努利分布,其应用十分广泛.2、两点分布的均值与方差:若随机变量X 服从参数为p 的两点分布,则()10(1)p p E X =⨯+⨯-=p ,()(1)p D X p =-.知识点二.n 次独立重复试验 1、定义一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.注意:独立重复试验的条件:①每次试验在同样条件下进行;②各次试验是相互独立的;③每次试验都只有两种结果,即事件要么发生,要么不发生.2、特点(1)每次试验中,事件发生的概率是相同的;(2)每次试验中的事件是相互独立的,其实质是相互独立事件的特例. 知识点三.二项分布 1、定义一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,不发生的概率1q p =-,那么事件A 恰好发生k 次的概率是()C k k n kn P X k p q-==(0k =,1,2,…,n )于是得到X 的分布列()001110C C C C nn n kk n k nn n n n n q p p q p q p q p q --+=+++++各对应项的值,称这样的离散型随机变量X服从参数为n ,p 的二项分布,记作()X B n p ~,,并称p 为成功概率.注意:由二项分布的定义可以发现,两点分布是一种特殊的二项分布,即1n =时的二项分布,所以二项分布可以看成是两点分布的一般形式.2、二项分布的适用范围及本质 (1)适用范围:①各次试验中的事件是相互独立的;②每次试验只有两种结果:事件要么发生,要么不发生; ③随机变量是这n 次独立重复试验中事件发生的次数.(2)本质:二项分布是放回抽样问题,在每次试验中某一事件发生的概率是相同的. 3、二项分布的期望、方差若()X B n p ~,,则()E X np =,)(1)(np p D X =-. 知识点四.超几何分布 1、定义在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件}{X k =发生的概率为()k n k M N MnNC C P X k C --==,0k =,1,2,…,m ,其中}{min m M n =,,且n N ≤,M N ≤,n ,M ,*N N ∈,称分布列为超几何分布列.如果随机变量X 的分布列为超几何分布列,则称随机变量服从超几何分布.2(1)适用范围: ①考察对象分两类; ②已知各类对象的个数;③从中抽取若干个个体,考察某类个体个数Y 的概率分布.(2)本质:超几何分布是不放回抽样问题,在每次试验中某一事件发生的概率是不相同的. 【方法技巧与总结】 超几何分布和二项分布的区别(1)超几何分布需要知道总体的容量,而二项分布不需要;(2)超几何分布是“不放回”抽取,在每次试验中某一事件发生的概率是不相同的; 而二项分布是“有放回”抽取(独立重复),在每次试验中某一事件发生的概率是相同的. 【题型归纳目录】 题型一:两点分布 题型二:n 次独立重复试验 题型三:二项分布 题型四:超几何分布X题型五:二项分布与超几何分布的综合应用 【典例例题】 题型一:两点分布例1.(2022·全国·高三专题练习).若随机变量ξ的分布列为,其中()0,1m ∈,则下列结果中正确的是A .()()3,E m D n ξξ==B .()()2,E m D n ξξ==C .()()21,E m D m m ξξ=-=-D .()()21,E m D m ξξ=-=例2.(2022·河北·高三阶段练习)新型冠状病毒肺炎(CoronaVirusDisease 2019,COVID -19),简称“新冠肺炎”,是指2019新型冠状病毒感染导致的肺炎.2019年12月以来,部分医院陆续发现了多例不明原因肺炎病例,证实为2019新型冠状病毒感染引起的急性呼吸道传染病,为防止该病症的扩散与传染,某检测机构在某地区进行新冠病毒疾病调查,需要对其居民血液进行抽样化验,若结果呈阳性,则患有该疾病;若结果为阴性,则未患有该疾病.现有(),2n n n +∈≥N 个人,每人一份血液待检验,有如下两种方案:方案一:逐份检验,需要检验n 次;方案二:混合检验,将n 份血液分别取样,混合在一起检验,若检验结果呈阴性,则n 个人都未患有该疾病;若检验结果呈阳性,再对n 份血液逐份检验,此时共需要检验+1n 次. (1)若10n =,且其中两人患有该疾病,①采用方案一,求恰好检验3次就能确定患病两人的概率; ②将这10人平均分成两组,则这两患者分在同一组的概率; (2)已知每个人患该疾病的概率为()01p p <<.(i )采用方案二,记检验次数为X ,求检验次数X 的期望()E X ;(ii )若5n =,判断方案一与方案二哪种方案检查的次数更少?并说明理由.例3.(2022·全国·高三专题练习)2022年3月,全国大部分省份出现了新冠疫情,对于出现确诊病例的社区,受到了全社会的关注.为了把被感染的人筛查出来,防疫部门决定对全体社区人员筛查核酸检测,为了减少检验的工作量,我们把受检验者分组,假设每组有k 个人,把这k 个人的血液混合在一起检验,若检验结果为阴性,这k 个人的血液全为阴性,因而这k 个人只要检验一次就够了;如果为阳性,为了明确这k个人中究竟是哪几个人为阳性,就要对这k个人再逐个进行检验.假设在接受检验的人群中,随机抽P=,每个人的检验结果是阳性还是阴性是相互独立的.核酸检测通常有一人核酸检测呈阳性概率为0.003两种分组方式可以选择:方案一:10人一组;方案二:8人一组.(1)分别求出采用方案一和方案二中每组的化验次数的分布列和数学期望;(2)若该社区约有2000人,请你为防疫部门选择一种方案,并说明理由.(参考数据:8=)0.9970.970=,100.9970.976变式1.(2022·全国·高三专题练习)某保险公司针对一个拥有20000人的企业推出一款意外险产品,每位职工每年只要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位分为A、B、C三类工种,从事三类工种的人数分布比例如图所示,根据历史数据统计出三类工种的赔付频率如下表所示(并以此估计赔付概率).A、B、C工种职工每人每年的保费分别为a元,a元,b元,出险后获得的赔偿金额分别为100万元,200万元,50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.(1)若保险公司要求利润的期望不低于保费的20%,试确定保费a,b所要满足的条件.(2)现有如下两个方案供企业选择:方案一、企业不与保险公司合作,企业自行拿出与保险公司赔付金额相同的赔偿金付给出险职工;方案二、企业与保险公司合作,企业负责职工保费的60%,职工个人负责保费的40%,出险后赔偿金由保险公司赔付.若企业选择方案二的支出期望(不包括职工支出)低于选择方案一的,求a,b所要满足的条件,并判断企业是否与保险公司合作(若企业选择方案二的支出期望低于方案一,且与(1)中保险公司所提条件不矛盾,则企业与保险公司合作).变式2.(2022·黑龙江实验中学模拟预测(理))为考察本科生基本学术规范和基本学术素养,某大学决定对各学院本科毕业论文进行抽检,初步方案是本科毕业论文抽检每年进行一次,抽检对象为上一学年度授予学士学位的论文,初评阶段,每篇论文送3位同行专家进行评审,3位专家中有2位以上(含2位)专家评议意见为“不合格”的毕业论文,将认定为“存在问题毕业论文”.3位专家中有1位专家评议意见为“不合格”,将再送2位同行专家(不同于前3位)进行复评.复评阶段,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”,将认定为“存在问题毕业论文”.每位专家,判定每篇论文“不合格”的概率均为()01p p <<,且各篇毕业论文是否被判定为“不合格”相互独立.(1)若12p =,求每篇毕业论文被认定为“存在问题毕业论文”的概率是多少; (2)学校拟定每篇论文需要复评的评审费用为180元,不需要复评的评审费用为90元,则每篇论文平均评审费用的最大值是多少?变式3.(2022·安徽·二模(理))某工厂生产某种电子产品,每件产品不合格的概率均为p ,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验5件该产品,且每 件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检 验方案:将产品每k 个()5k ≤一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验1次或1k +次.设该工厂生产1000件该产品,记每件产品的平均检验次 数为X . (1)求X 的分布列及其期望;(2)(i )试说明,当p 越小时,该方案越合理,即所需平均检验次数越少; (ii )当0.1p =时,求使该方案最合理时k 的值及1000件该产品的平均检验次数.题型二:n 次独立重复试验例4.(2022·河北衡水·高三阶段练习)进入2021年以来,国家提倡大学生毕业自主创业,根据已知的调查可知,大学生创业成功与失败的概率分别为a ,b ,且2a b =,则某高校四名大学生毕业后自主创业,其中至少有两名大学生创业成功的概率为( ) A .881B .89C .724D .523例5.(2022·全国·模拟预测)某同学随机掷一枚骰子4次,则该同学得到1点或5点的次数超过2次的概率为()A.19B.727C.827D.829例6.(2022·全国·高三专题练习)体育课上进行投篮测试,每人投篮3次,至少投中1次则通过测试.某同学每次投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.064B.0.600C.0.784D.0.936变式4.(2022·全国·清华附中朝阳学校模拟预测)有甲、乙两个盒子,甲盒子中装有2个小球,乙盒子中装有4个小球,每次随机取一个盒子并从中取一个球.(1)求甲盒子中的球被取完时,乙盒子中恰剩下2个球的概率:(2)当其中一个盒子中的球被取完时,记另一个盒子恰剩下ξ个球,则求ξ的分布列与数学期望()Eξ.变式5.(2022·江苏南通·模拟预测)某校组织围棋比赛,每场比赛采用五局三胜制(一方先胜三局即获胜,比赛结束),比赛采用积分制,积分规则如下:每场比赛中,如果四局及四局以内结束比赛,取胜的一方积3分,负者积0分;五局结束比赛,取胜的一方积2分,负者积1分.已知甲、乙两人比赛,甲每局获胜的概率为12.(1)在一场比赛中,甲的积分为X,求X的概率分布列;(2)求甲在参加三场比赛后,积分之和为5分的概率.变式6.(2022·河北衡水·高三阶段练习)我国出现了新冠疫情后,医护人员一直在探索治疗新冠的有效药,并对确诊患者进行积极救治.现有6位症状相同的确诊患者,分成,A B两组,A组3人,服用甲种中药,B组3人,服用乙种中药.服药一个疗程后,A组中每人康复的概率都为45,B组3人康复的概率分别为933,, 1044.(1)设事件M表示A组中恰好有1人康复,事件N表示B组中恰好有1人康复,求()P MN;(2)求A组康复人数比B组康复人数多的概率.变式7.(2022·江苏·南京市金陵中学河西分校高三阶段练习)甲、乙两名运动员进行羽毛球单打比赛,根据以往比赛的胜负情况知道,每一局甲胜的概率为23,乙胜的概率为13.比赛采用“三局两胜”制,先胜二局者获胜.商定每局比赛(决胜局第三局除外)胜者得3分,败者得1分;决胜局胜者得2分,败者得0分.已知各局比赛相互独立.(1)求比赛结束,甲得6分的概率;(2)设比赛结束,乙得X分,求随机变量X的概率分布列与数学期望.变式8.(2022·全国·高三专题练习)“民族要复兴,乡村必振兴”,为了加强乡村振兴宣传工作,让更多的人关注乡村发展,某校举办了有关城乡融合发展、人与自然和谐共生的知识竞赛.比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行,每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为35,且相互间没有影响.(1)求选手甲被淘汰的概率;(2)设选手甲在初赛中答题的个数为X,试求X的分布列和数学期望.【方法技巧与总结】(1)在解复杂的题目时,可利用“正难则反”的思想,通过考查原事件的对立事件来求其概率.(2)运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n次独立重复试验,若不符合条件,则不能应用公式求解;在求n次独立重复试验中事件恰好发生k次的概率时,首先要确定好n和k的值,再准确利用公式求概率.(3)解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验.题型三:二项分布例7.(2022·全国·高三专题练习)高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形小木块(如图所示),并且每一排小木块数目都比上一排多一个,一排中各个小木块正好对准上面一排两个相邻小木块的正中央,从入口处放入一个直径略小于两个小木块间隔的小球,当小球从之间的间隙下落时,于是碰到下一排小木块,它将以相等的可能性向左或向右落下,若小球再通过间隙,又碰到下一排小木块.如此继续下去,小球最后落入下方条状的格子内,则小球落到第⑤个格子的概率是()A.532B.516C.316D.332例8.(2022·全国·高三专题练习)从一个装有4个白球和3个红球的袋子中有放回地取球5次,每次取球1个,记X为取得红球的次数,则()D X ()A.157B.207C.2521D.6049例9.(2022·全国·高三专题练习(理))某综艺节目中,有一个盲拧魔方游戏,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方.为了解某市盲拧魔方爱好者的水平状况,某兴趣小组在全市范围内随机抽取了100名盲拧魔方爱好者进行调查,得到的情况如表所示:10秒的概率,每位盲拧魔方爱好者用时是否超过10秒相互独立.若该兴趣小组在全市范围内再随机抽取20名盲拧魔方爱好者进行测试,其中用时不超过10秒的人数最有可能(即概率最大)是()A.2B.3C.4D.5变式9.(2022·全国·高三专题练习(理))为了防止受到核污染的产品影响我国民众的身体健康,有关部门要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响,若产品可以销售,则每件产品获利40元;若产品不能销售,则每件产品亏损80元.已知一箱中有4件产品,记一箱产品获利X 元,则()80P X ≥-=( ) A .27128B .243256C .43256D .83128变式10.(2022·全国·高三专题练习)某工厂产品合格的概率均为p ,各产品合格与否相互独立.设X 为该工厂生产的5件商品中合格的数量,其中() 1.2D X =,(2)(3)P X P X =<=,则p =( ) A .0.7 B .0.6 C .0.4 D .0.3变式11.(2022·广东·深圳外国语学校高三阶段练习)某种植户对一块地上的n (*n ∈N )个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为12,且每粒种子是否发芽相互独立.如果每个坑内至少有两粒种子发芽,则不需要进行补种,否则需要补种.(1)当n 取何值时,有3个坑要补种的概率最大?最大概率为多少? (2)当4n =时,用X 表示要补种的坑的个数,求X 的分布列.变式12.(2022·江苏常州·高三阶段练习)金坛区主城区全新投放一批共享电动自行车.本次投放的电动自行车分红、绿两种,投放比例是3∶1.监管部门为了了解这两种颜色电动自行车的性能,决定从中随机抽取4辆电动自行车进行骑行体验,假设每辆电动自行车被抽取的可能性相等. (1)求抽取的4辆电动自行车中至少有3辆是绿色的概率;(2)在骑行体验中,发现红色电动自行车的综合评分较高,监管部门决定从该次投放的这批电动自行车中随机地抽取一辆绿色电动自行车,送技术部门做进一步性能检测,并规定,若抽到的是绿色电动自行车,则抽样结束:若抽取的是红色电动自行车,则将其放回后,继续从中随机地抽取下一辆电动自行车,且规定抽取的次数最多不超过()n n *∈N 次在抽样结束时,设已抽到的红色电动自行车的数量用ξ表示,问:ξ的数学期望能否超过3?变式13.(2022·广东·金山中学高三阶段练习)某中学课外实践活动小组在某区域内通过一定的有效调查方式对“北京冬奥会开幕式”当晚的收看情况进行了随机抽样调查.统计发现,通过手机收看的约占12,通过电视收看的约占13,其他为未收看者:(1)从被调查对象中随机选取3人,其中至少有1人通过手机收看的概率;(2)从被调查对象中随机选取3人,用X表示通过电视收看的人数,求X的分布列和期望.变式14.(2022·江苏·新淮高中三模)高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.(Ⅰ)理论上,小球落入4号容器的概率是多少?(Ⅰ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为X,求X的分布列与数学期望.【方法技巧与总结】1、二项分布求解随机变量涉及“至少”“至多”问题的取值概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.2、二项分布的简单应用是求n次独立重复试验中事件A恰好发生k次的概率.解题的一般思路是:(1)根据题意设出随机变量;(2)分析出随机变量服从二项分布;(3)找到参数n,p;(4)写出二项分布的分布列;(5)将k值代入求解概率.题型四:超几何分布例10.(2022·全国·高三专题练习)一批产品共有20件,其中2件次品,18件合格品,从这批产品中任意抽取2件,则至少有1件是次品的概率是( ) A .1190B .1895C .37190D .189190例11.(2022·全国·高三专题练习)从一批含有13件正品,2件次品的产品中不放回地抽3次,每次抽取1件,设抽取的次品数为ξ,则E (5ξ+1)=( ) A .2 B .1C .3D .4例12.(2022·北京·高三专题练习)为了解顺义区某中学高一年级学生身体素质情况,对高一年级的(1)班-(8)班进行了抽测,采取如下方式抽样:每班随机各抽10名学生进行身体素质监测.经统计,每班10名学生中身体素质监测成绩达到优秀的人数散点图如下:(x 轴表示对应的班号,y 轴表示对应的优秀人数)(1)若用散点图预测高一年级学生身体素质情况,从高一年级学生中任意抽测1人,求该生身体素质监测成绩达到优秀的概率;(2)若从以上统计的高一(4)班的10名学生中抽出2人,设X 表示2人中身体素质监测成绩达到优秀的人数,求X 的分布列及其数学期望;(3)假设每个班学生身体素质优秀的概率与该班随机抽到的10名学生的身体素质优秀率相等.现在从每班中分别随机抽取1名同学,用“1k ξ=”表示第k 班抽到的这名同学身体素质优秀,“0k ξ=”表示第k 班抽到的这名同学身体素质不是优秀()1,2,,8k =⋅⋅⋅.写出方差()()()()1234,,,D D D D ξξξξ的大小关系(不必写出证明过程).变式15.(2022·上海·高三开学考试)研究表明,过量的碳排放会导致全球气候变暖等环境问题,减少碳排放具有深远的意义.中国明确提出节能减排的目标与各项措施,在公路交通运输领域,新能源汽车逐步取代燃油车是措施之一.中国某地区从2015年至2021年每年汽车总销量如图,每年新能源汽车销量占比如表.(注:汽车总销量指新能源汽车销量与非新能源汽车销量之和)(1)从2015年至2021年中随机选取一年,求这一年该地区汽车总销量不小于5.5万辆的概率;(2)从2015年至2021年中随机选取两年,设X 表示新能源汽车销量超过0.5万辆的年份的个数,求X 的分布列和数学期望.变式16.(2022·全国·高三专题练习)为发展业务,某调研组对A ,B 两个公司的扫码支付情况进行调查,准备从国内(),0n n n ∈>N 个人口超过1000万的超大城市和8个人口低于100万的小城市中随机抽取若干个进行统计.若一次抽取2个城市,全是小城市的概率为415. (1)求n 的值;(2)若一次抽取4个城市,①假设抽取出的小城市的个数为X ,求X 的可能值及相应的概率; ②若抽取的4个城市是同一类城市,求全为超大城市的概率.变式17.(2022·全国·高三专题练习)北京某高校有20名志愿者报名参加2022年北京冬奥会服务工作,其中有2名老师,18名学生.若从中随机抽取()*,20n n n ∈≤N 名志愿者,用X 表示所抽取的n 名志愿者中老师的人数.(1)若2n=,求X的分布列与数学期望;(2)当n为何值时,1X=的概率取得最大值?最大值是多少?变式18.(2022·山西大附中高三阶段练习)北京时间2022年7月25日3时13分,问天实验舱成功对接于天和核心舱前向端口,2022年7月25日10时03分,神舟十四号航天员乘组成功开启问天实验舱舱门,顺利进入问天实验舱.8月,中国空间站第2个实验舱段——梦天实验舱已运抵文昌航天发射场,计划10月发射.中国空间站“天宫”即将正式完成在轨建造任务,成为长期有人照料的国家级太空实验室,支持开展大规模、多学科交叉的空间科学实验.为普及空间站相关知识,某部门门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.变式19.(2022·全国·高三专题练习)某市移动公司为了提高服务质量,决定对使用A,B两种套餐的集团用户进行调查,准备从本市n(n*∈N)个人数超过1000人的大集团和4个人数低于200人的小集团中随机抽取若干个集团进行调查,若一次抽取2个集团,全是小集团的概率为1 6 .(1)在取出的2个集团是同一类集团的情况下,求全为大集团的概率;(2)若一次抽取3个集团,假设取出小集团的个数为X,求X的分布列和期望.变式20.(2022·全国·高三专题练习)中国科研团队在研发“新冠疫苗”的过程中,为了测试疫苗的效果,科研人员以小白鼠为实验对象,进行了一些实验.(1)实验一:选取10只健康小白鼠,编号1至10号,注射一次新冠疫苗后,再让它们暴露在含有新冠病毒的环境中.实验结果发现,除2号、3号和7号小白鼠仍然感染了新冠病毒,其他小白鼠未被感染.现从。

2023年高考数学一轮总复习第51讲:二项分布超几何分布正态分布

2023年高考数学一轮总复习第51讲:二项分布超几何分布正态分布

第1页共13页2023年高考数学一轮总复习第51讲:二项分布、超几何分布、正态分布【教材回扣】1.二项分布:(1)概念:一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=________________,k =0,1,2,…,n .如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从____________________,记作______________.(2)均值与方差:如果X ~B (n ,p ),那么E (X )=________,D (X )=________.2.超几何分布(1)概念:一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=____________,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.(2)均值:E (X )=np .3.正态分布:(1)有关概念:对任意的x ∈R ,f (x )=1σ2πe -(x -μ)22σ2>0(μ∈R ,σ>0为参数),我们称f (x )为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,若随机变量X 的概率分布密度函数为f (x ),则称随机变量X 服从正态分布,记作__________________.特别地,当μ=__________,σ=________时称随机变量X 服从标准正态分布.(2)正态曲线的特点:①它的图象在□10________上方;②x 轴和曲线之间的区域的面积为□11________;③曲线是单峰的,它关于直线□12________对称;④曲线在x =μ处,达到峰值1σ2π;⑤当|x |无限增大时,曲线无限接近□13________.(3)均值与方差:若x ~N (μ,σ2),则E (X )=□14________,D (X )=□15________.【题组练透】题组一判断正误(正确的打“√”,错误的打“×”)1.二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.()2.二项分布和超几何分布都是放回抽样.()3.正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.()4.一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.()题组二教材改编。

二项分布、超几何分布与正态分布2023高考数学一轮复习【导与练】高中总复习第1轮教学课件(北师大版)

二项分布、超几何分布与正态分布2023高考数学一轮复习【导与练】高中总复习第1轮教学课件(北师大版)

)
2
解析:因为随机变量ξ服从正态分布 N(2,σ ),
所以正态曲线关于直线 x=2 对称,
又 P(ξ>4)=0.2,所以 P(ξ<0)=0.2,
-(>)
所以所求概率 P(0<ξ<2)=

=0.3.故选 A.
数学
3.箱中有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出2个球,记下
数学
第7节
二项分布、超几何分布与正态分布
数学
课程标准要求
1.通过具体实例,了解伯努利试验,掌握二项分布及其数字特征,并能解决简单的
实际问题.
2.了解超几何分布,理解超几何分布与二项分布的区别与联系,并能解决简单的
实际问题.
3.通过误差模型,了解正态分布的意义,理解正态曲线的性质,会用正态分布解决
实际问题.

N 件产品中,不放回地随机抽取 n 件产品中的次品数.令 p= ,则 p 是 N 件产品的



次品率 ,而 是抽取的 n 件产品的 次品率 ,则 E( )=p,即 EX== np .



数学
释疑
超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超
几何分布的特征:
(1)考察对象分两类.
ξ
P
所以Eξ=0·(1-m)+1·m=m,
0
1-m
所以Dξ=(0-m)2·(1-m)+(1-m)2·m=m(1-m).故选D.
1
m
数学
2.若随机变量ξ服从正态分布N(2,σ2),ξ在区间(4,+∞)上取值的概率是0.2,
则ξ在区间(0,2)上取值的概率为( A

北师版高考总复习一轮数学精品课件 第十一章 第七节 二项分布、超几何分布、正态分布

北师版高考总复习一轮数学精品课件 第十一章 第七节 二项分布、超几何分布、正态分布
④当x<μ时,曲线上升;当x>μ时,曲线下降;并且当曲线向左、右两边无限延
伸时,以x轴为渐近线(如图).
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移.
⑥当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越
分散;σ越小,曲线越“高瘦”,表示总体的分布越集中.
(3)正态分布的定义及表示
4.理解正态分布的均值、方差及其含义.
强基础 固本增分
1.n重伯努利试验与二项分布
(1)n重伯努利试验
把只包含两个可能结果的试验叫作伯努利试验.
在研究随机现象时,经常要在相同条件下重复做大量试验来发现规律.一般
地,在相同条件下重复做n次伯努利试验,且每次试验的结果都不受其他试
验结果的影响,称这样的n次独立重复试验为n重伯努利试验.
研考点 精准突破
考点一
二项分布及其应用
例题(2022·北京海淀一模)《黄帝内经》中十二时辰养生法认为:子时的睡
眠对一天至关重要(子时是指23点到次日凌晨1点).相关数据表明,入睡时
间越晚,沉睡时间越少,睡眠指数也就越低.根据某次的抽样数据,对早睡群
体和晚睡群体睡眠指数的统计如下表:
组别
睡眠指数
早睡人群占比
68.3%,95.4%,99.7%.
微点拨 1.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线的关于直线
x=μ对称和曲线与x轴之间的面积为1.
2.在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取(μ3σ,μ+3σ]中的值,这在统计学中称为3σ原则.
微思考 正态分布函数中的μ,σ的含义是什么?
正态分布,对应的图象为正态分布密度曲线,简称为正态曲线.

第29讲 两点分布、超几何分布、二项分布、正态分布

第29讲 两点分布、超几何分布、二项分布、正态分布

两点分布、超几何分布、二项分布、正态分布1.(2020秋•工农区校级期末)已知随机变量X 的分布列为()X 01Pp1p-若()(01)3pD X p =<<,则p 的值为()A .23B .14C .13D .12【解析】解:由随机变量X 的分布列,知:()1E X p =-,22()(1)(1)3p D X p p p p ∴=-⨯+⨯-=,解得23p =.故选:A .2.(2020秋•新余期末)已知X 分布列如图,设21Y X =+,则Y 的数学期望()E Y 的值是()X 1-01P1216aA .16-B .23C .1D .2936【解析】解:由已知得11126a ++=13a ∴=,111()236E X ∴=-+=-,()2()1E Y E X =+ ,2()3E Y ∴=.故选:B .3.(2020春•淮安月考)设ξ是一个离散型随机变量,其分布列为如表,则(q =)ξ1-01P1421q -qA .112B .712C .12D .13【解析】解:根据题意可得12114q q +-+=,解得712q =,故选:B .4.(2020春•福建月考)已知X 服从二项分布:1~(4,)4X B ,则(3)(P X ==)A .164B .364C .1256D .3256【解析】解:因为X 服从二项分布:1~(4,)4X B ,则334113(3)()(1)4464P X C ==-=,故选:B .5.(2020春•河南月考)若随机变量X 的分布列如表:X 3-2-0123P0.10.20.20.30.10.1则当()0.5P X m <=时,m 的取值范围是()A .2m B .01m < C .02m < D .12m <<【解析】解:由题意可得(2)0.1P X <-=,(0)0.3P X <=,(1)0.5P X <=,则(0m ∈,1].故选:B .6.(2020秋•沈阳期末)韩德君罚篮一次的得分X 服从参数为0.85的两点分布,则(0)P X ==0.15.【解析】解: 韩德君罚篮一次的得分X 服从参数为0.85的两点分布,(0)10.850.15P X ∴==-=.故答案为:0.15.7.(2020秋•雁峰区校级期末)已知随机变量X 的分布列如表:X 013P1312a若随机变量Y 满足31Y X =-,则Y 的方差()D Y =9.【解析】解:由分布列的性质可知,11132a ++=,所以16a =,所以数学期望111()0131326E X =⨯+⨯+⨯=,方差222111()(01)(11)(31)1326D X =-⨯+-⨯+-⨯=,因为31Y X =-,所以2()3()9D Y D X ==,故答案为:9.8.(2020秋•海淀区校级期末)某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除了颜色外均相同.(1)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记取到红球的次数为ξ,求ξ的分布列;(3)每次从纸箱中摸取一个小球,记录颜色后放回纸箱,这样摸取20次,取得几次红球的概率最大?(只需写出结论).【解析】解:(1)设“一次从纸箱中摸出两个小球,恰好摸出2个红球”为事件A ,则从4个球中摸出2个,有24C 种取法,都是红球的取法有23C 种,则P (A )232412C C ==.(2)ξ可能取0,1,2,3,4,0044331(0)()(1)44256P C ξ==-=,1134333(1)()(1)4464P C ξ==-=,22243327(2)()(1)44128P C ξ==-=,33143327(3)()(1)4464P C ξ==-=,44043381(4)()(1)44256P C ξ==-=.所以ξ的分布列为ξ01234P125636427128276481256(3)根据题意,纸箱中共有4个小球,其中1个白球,3个红球,每次从纸箱中摸出一个小球,取出红球的概率为34,若连续摸取20次,摸到红球次数的期望为3 20154⨯=,则摸到15次红球的概率最大.9.(2020秋•石景山区期末)在学期末,为了解学生对食堂用餐满意度情况,某兴趣小组按性别采用分层抽样的方法,从全校学生中抽取容量为200的样本进行调查.被抽中的同学分别对食堂进行评分,满分为100分.调查结果显示:最低分为51分,最高分为100分.随后,兴趣小组将男、女生的评分结果按照相同的分组方式分别整理成了频数分布表和频率分布直方图,图表如下:分数区间频数[50,60)3[60,70)3[70,80)16[80,90)38[90,100]20男生评分结果的频数分布表为了便于研究,兴趣小组将学生对食堂的评分转换成了“满意度情况”,二者的对应关系如下:分数[50,60)[60,70)[70,80)[80,90)[90,100]满意度情况不满意一般比较满意满意非常满意(Ⅰ)求a的值;(Ⅱ)为进一步改善食堂状况,从评分在[50,70)的男生中随机抽取3人进行座谈,记这3人中对食堂“不满意”的人数为X,求X的分布列;(Ⅲ)以调查结果的频率估计概率,从该校所有学生中随机抽取一名学生,求其对食堂“比较满意”的概率.【解析】解:(Ⅰ)因为(0.0050.0200.0400.020)101a ++++⨯=,所以0.015a =.(Ⅱ)依题意,随机变量X 的所有可能取值为0,1,2,3.0333361(0)20C C P X C ⋅===,1233369(1)20C C P X C ⋅===,2133369(2)20C C P X C ⋅===,3033361(3)20C C P X C ⋅===.所以随机变量X 的分布列为:X 0123P120920920120(Ⅲ)设事件A =“随机抽取一名学生,对食堂‘比较满意’”.因为样本人数200人,其中男生共有80人,所以样本中女生共有120人.由频率分布直方图可知,女生对食堂“比较满意”的人数共有:1200.0201024⨯⨯=人.由频数分布表,可知男生对食堂“比较满意”的共有16人,241612005+=.所以随机抽取一名学生,对食堂“比较满意”的概率为1()5P A =.10.(2021•全国模拟)一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立.(1)求设备在一天的运转中,部件1,2中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X ,求X 的分布列及数学期望.【解析】解:(1)设部件1,2,3需要调整分别为事件A ,B ,C ,由题意可知P (A )0.1=,P (B )0.2=,P (C )0.3=,各部件的状态相互独立,所以部件1,2都不需要调整的概率(()(0.90.80.72P A B P A P B ⋅=⋅=⨯=,故部件1,2中至少有1个需要调整的概率为1(0.28P A B -⋅=.(2)X 的所有可能取值为0,1,2,3,(0)(()()()0.90.80.70.504P X P A B C P A P B P C ==⋅⋅=⋅⋅=⨯⨯=,(1)()()()0.10.80.70.90.20.70.90.80.30.398P X P A B C P A B C P A B C ==⋅⋅+⋅⋅+⋅⋅=⨯⨯+⨯⨯+⨯⨯=,(3)()0.10.20.30.006P X P A B C ==⋅⋅=⨯⨯=,(2)1(0)(1)(3)0.092P X P X P X P X ==-=-=-==,所以X 的分布列为X 0123P0.5040.3980.0920.006()00.50410.3920.09230.0060.6E X =⨯+⨯+⨯+⨯=.11.(2020秋•营口期末)某医院已知5名病人中有一人患有一种血液疾病,需要通过化验血液来确定患者,血液化验结果呈阳性的即为患病,呈阴性即没患病.院方设计了两种化验方案:方案甲:对患者逐个化验,直到能确定患者为止;方案乙:先将3人的血液混在一起化验,若结果呈阳性则表明患者在此三人中,然后再逐个化验,直到能确定患者为止;若结果呈阴性则在另外2人中选取1人化验.(1)求方案甲化验次数X 的分布列;(2)求甲方案所需化验次数不少于乙方案所需化验次数的概率.【解析】解:(1)依题知X 的可能取值为1,2,3,4,1(1)(2)(3)5P X P X P X ======,4444552(4)5A A P X A +===,故方案甲化验次数X 的分布列为:X 1234P15151525(2)若乙验两次时,有两种可能:①验3人结果为阳性,再从中逐个验时,恰好一次验中23433153115C A A A ⨯=,②先验3人结果为阴性,再从其他两人中验出阳性3142325225A A A A ⋅=,故乙用两次的概率为123555+=,若乙验三次时,只有一种可能:先验3人结果为阳性,再从中逐个验时,第一次为阴性,第二次为阴性或阳性,其概率为25,故甲方案的次数不少于乙次数的概率为3121118(1)(1)5555525⨯-+⨯--=.12.(2017春•成安县期中)某班组织知识竞赛,已知题目共有10道,随机抽取3道让某人回答,规定至少要答对其中2道才能通过初试,他只能答对其中6道,试求:(1)抽到他能答对题目数的分布列;(2)他能通过初试的概率.【解析】解:(1)设随机抽出的三道题目某人能答对的道数为X ,且0X =、1、2、3,X 服从超几何分布,分布列如下:X 0123P34310C C 1264310C C C 2164310C C C 36310C C 即X 0123P1303101216(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,这两种情况是互斥的,根据上一问的计算可以得到112(2)(2)(3)263P X P X P X ==+==+=。

人教版高三数学(理)一轮总复习PPT课件:9-9 两点分布、超几何分布、正态分布

人教版高三数学(理)一轮总复习PPT课件:9-9 两点分布、超几何分布、正态分布

所以,随机变量 X 的分布列为 X 0 P 随机变量 X 的数学期望 4 7 4 E(X)=0×15+1×15+2×15=1.
第11页
1
2
4 7 4 15 15 15
返回导航
数学
考点一 两点分布、超几何分布 命题点 元素的分类与取法 两点分布与超几何分步 (1)两点分布:若随机变量 X 服从两点分布,其分布列为,其 中 p=P(X=1)称为成功概率.E(X)=p,D(X)=P(1-p). X P
年龄 [45,50) [50,55) [55,60) [60,65) [65,70] 人数 6 7 3 5 4
第16页
返回导航
数学
年龄在[25,30),[55,60)的被调查者中赞成人数分别是 3 人 和 2 人,现从这两组的被调查者中各随机选取 2 人,进行跟踪调 查. ①求从年龄在[25,30)的被调查者中选取的 2 人都赞成的概 率; ②求选中的 4 人中,至少有 3 人赞成的概率; ③若选中的 4 人中,不赞成的人数为 X,求随机变量 X 的分 布列和数学期望.
2.(2015· 高考山东卷)已知某批零件的长度误差(单位:毫米) 服从正态分布 N(0,32),从中随机取一件,其长度误差落在区间 (3,6)内的概率为( )
(附:若随机变量 ξ 服从正态分布 N(μ,σ2),则 P(μ-σ<ξ <μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.) A.4.56% C.27.18% B.13.59% D.31.74%
M≤N,n,M,N∈N*.此时称随机变量 X 服从超几何分布. X 0 1 „ m
n-0 1 n -1 m n-m C0 C C C C M N-M M N-M MCN-M „ P n n n CN CN CN

2020高考人教数学(理)大一轮复习检测:第十章 第八节 两点分布、超几何分布、正态分布 含解析

2020高考人教数学(理)大一轮复习检测:第十章 第八节 两点分布、超几何分布、正态分布 含解析

限时规范训练(限时练·夯基练·提能练)A级基础夯实练1.(2018·河南正阳模拟)已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.158 7,则P(2<X<4)=()A.0.682 6B.0.341 3C.0.460 3 D.0.920 7解析:选A.∵随机变量X服从正态分布N(3,1),∴正态曲线的对称轴是直线x=3,∵P(X≥4)=0.158 7,∴P(2<X<4)=1-2P(X≥4)=1-0.317 4=0.682 6.故选A.2.(2018·广西两校联考)甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ21),N(μ2,σ22),其正态分布密度曲线如图所示,则下列说法错误的是() A.甲类水果的平均质量为0.4 kgB.甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右C.甲类水果的平均质量比乙类水果的平均质量小D.σ2=1.99解析:选D.由题中图象可知甲的正态曲线关于直线x=0.4对称,乙的正态曲线关于直线x=0.8对称,所以μ1=0.4,μ2=0.8,故A正确,C正确.由图可知甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右,故B正确.因为乙的正态曲线的峰值为1.99,即12πσ2=1.99,所以σ2≠1.99,故D错误,于是选D.3.(2018·孝感模拟)已知袋中有3个白球,2个红球,现从中随机取出3个球,其中取出1个白球计1分,取出1个红球计2分,记X为取出3个球的总分值,则E(X )=( )A.185 B .215C .4D .245解析:选B.由题意知,X 的所有可能取值为3,4,5,且P (X =3)=C 33C 35=110,P (X =4)=C 23·C 12C 35=35,P (X =5)=C 13·C 22C 35=310,所以E(X )=3×110+4×35+5×310=215. 4.甲、乙、丙三位同学上课后独立完成5道自我检测题,甲的及格概率为45,乙的及格概率为25,丙的及格概率为23,则三人中至少有一人及格的概率为( )A.1675 B .5975C.125D .2425解析:选D.设“甲及格”为事件A ,“乙及格”为事件B ,“丙及格”为事件C ,则P (A )=45,P (B )=25,P (C)=23,∴P (A )=15,P (B )=35,P (C )=13,则P (A B C )=P (A )P (B )P (C )=15×35×13=125,∴三人中至少有一人及格的概率P =1-P (A B C )=2425.故选D.5.已知随机变量X ,Y 满足X +Y =8,若X ~B (10,0.6),则E(Y ),D (Y )分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6解析:选B.∵随机变量X ,Y 满足X +Y =8,X ~B (10,0.6),∴E(X )=10×0.6=6,D (X )=10×0.6×0.4=2.4,则E(Y )=E(8-X )=8-E(X )=8-6=2,D (Y )=D (8-X )=D (X )=2.4.故选B.6.如图是总体的正态曲线,下列说法正确的是( )A .组距越大,频率分布直方图的形状越接近于它B .样本容量越小,频率分布直方图的形状越接近于它C .阴影部分的面积代表总体在(a ,b )内取值的百分比D .阴影部分的平均高度代表总体在(a ,b )内取值的百分比解析:选C.总体的正态曲线与频率分布直方图的形状关系如下:当样本容量越大,组距越小时,频率分布直方图的形状越接近总体的正态曲线,故A ,B 不正确.在总体的正态曲线中,阴影部分的面积代表总体在(a ,b )内取值的百分比,故选C.7.设随机变量ξ~B (2,p ),η~B (3,p ),若P (ξ≥1)=59,则P (η≥2)的值为( )A.2027 B .827C.727D .127解析:选C.∵ξ~B (2,p ),P (ξ≥1)=59,∴P (ξ≥1)=1-P (ξ<1)=1-C 02p 0(1-p )2=59,∴p =13,∴P (η≥2)=1-P (η=0)-P (η=1)=1-C 03×⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫233-C 13×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫232=1-827-1227=727,故选C.8.已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为0.683,0.955和0.997.某校为高一年级1 000名新生每人定制一套校服,经统计,学生的身高(单位:c m )服从正态分布N (165,52),则适合身高在155~175 c m 范围内学生的校服大约要定制( )A .683套B .955套C .972套D .997套解析:选B.设学生的身高为随机变量ξ,则P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=0.955.因此适合身高在155~175 c m 范围内学生的校服大约要定制1 000×0.955=955(套).故选B.9.2018年1月某校高三年级1 600名学生参加了教育局组织的期末统考,已知数学考试成绩X ~N (100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次统考中成绩不低于120分的学生人数约为( )A .80B .100C .120D .200解析:选D.∵X ~N (100,σ2),∴其正态曲线关于直线X =100对称,又成绩在80分到120分之间的人数约为总人数的34,由对称性知成绩不低于120分的学生人数约为总人数的12×⎝ ⎛⎭⎪⎫1-34=18,∴此次考试成绩不低于120分的学生人数约为18×1 600=200.故选D.10.经检测,有一批产品的合格率为34,现从这批产品中任取5件,记其中合格产品的件数为ξ,则P (ξ=k)取得最大值时,k 的值为( )A .5B .4C .3D .2解析:选B.根据题意得,P (ξ=k)=C k 5⎝ ⎛⎭⎪⎫34k ⎝⎛⎭⎪⎫1-345-k ,k =0,1,2,3,4,5,则P (ξ=0)=C 05⎝ ⎛⎭⎪⎫340×⎝ ⎛⎭⎪⎫145=145,P (ξ=1)=C 15⎝ ⎛⎭⎪⎫341×⎝ ⎛⎭⎪⎫144=1545,P (ξ=2)=C 25⎝ ⎛⎭⎪⎫342×⎝ ⎛⎭⎪⎫143=9045,P (ξ=3)=C 35⎝ ⎛⎭⎪⎫343×⎝ ⎛⎭⎪⎫142=27045,P (ξ=4)=C 45⎝ ⎛⎭⎪⎫344×⎝ ⎛⎭⎪⎫141=40545,P (ξ=5)=C 55⎝ ⎛⎭⎪⎫345×⎝ ⎛⎭⎪⎫140=24345,故当k =4时,P (ξ=k)最大. B 级 能力提升练11.(2018·福建福州质检)从某技术公司开发的某种产品中随机抽取200件,测量这些产品的一项质量指标值(记为Z),由测量结果得如下频率分布直方图:(1)公司规定:当Z ≥95时,产品为正品;当Z <95时,产品为次品.公司每生产一件这种产品,若是正品,则盈利90元;若是次品,则亏损30元.记ξ为生产一件这种产品的利润,求随机变量ξ的分布列和数学期望;(2)由频率分布直方图可以认为,Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2(同一组中的数据用该区间的中点值作代表).①利用该正态分布,求P (87.8<Z <112.2);②某客户从该公司购买了500件这种产品,记X 表示这500件产品中该项质量指标值位于区间(87.8,112.2)内的产品件数,利用①的结果,求E(X ).附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 7,P (μ-2σ<Z <μ+2σ)=0.954 5.解:(1)由频率估计概率,产品为正品的概率为(0.033+0.024+0.008+0.002)×10=0.67,所以随机变量ξ的分布列为所以E(ξ)=90×0.67+((2)由频率分布直方图知,抽取产品的该项质量指标值的样本平均数x和样本方差s2分别为x=70×0.02+80×0.09+90×0.22+100×0.33+110×0.24+120×0.08+130×0.02=100,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+02×0.33+102×0.24+202×0.08+302×0.02=150.①因为Z~N(100,150),从而P(87.8<Z<112.2)=P(100-12.2<Z<100+12.2)=0.682 7.②由①知,一件产品中该项质量指标值位于区间(87.8,112.2)内的概率为0.682 7,依题意知X~B(500,0.682 7),所以E(X)=500×0.682 7=341.35.12.(2018·广西南宁测试)某食品店为了了解气温对销售量的影响,随机记录了该店1月份其中5天的日销售量y(单位:千克)与该地当日最低气温x(单位:℃)的数据,如下表:(1)求出y与x的回归方程y=b x+a;(2)判断y 与x 之间是正相关还是负相关,若该地1月份某天的最低气温为6 ℃,请用所求回归方程预测该店当日的销售量;(3)设该地1月份的日最低气温X ~N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2,求P (3.8<X <13.4).附:①回归方程y ^=b ^x +a ^中,b ^=∑i =1nx i y i -n y∑i =1nx 2i -n x 2,a ^=y -b ^x .②10≈3.2,3.2≈1.8.若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ)=0.954 5.解:(1)x =15∑i =15x i =355=7,y =15∑i =15y i =455=9,∑i =15x i y i -5x y =2×12+5×10+8×8+9×8+11×7-5×7×9=-28,∑i =15x 2i -5x 2=22+52+82+92+112-5×72=50,∴b ^=-2850=-0.56.∴a ^=y -b ^x =9-(-0.56)×7=12.92. ∴所求的回归方程是y ^=-0.56x +12.92. (2)由b ^=-0.56<0知,y 与x 之间是负相关,将x =6代入回归方程可预测该店当日的销售量y ^=-0.56×6+12.92=9.56(千克).(3)由(1)知μ=x =7,由σ2=s 2=15[(2-7)2+(5-7)2+(8-7)2+(9-7)2+(11-7)2]=10,得σ≈3.2.从而P (3.8<X <13.4)=P (μ-σ<X <μ+2σ)=P (μ-σ<X <μ)+P (μ<X <μ+2σ)=12P (μ-σ<X <μ+σ)+12P (μ-2σ<X <μ+2σ)=0.818 6.13.某班级准备从甲、乙两人中选一人参加某项比赛,已知在一个学期的10次考试中,甲、乙两人的成绩(单位:分)的茎叶图如图所示.(1)你认为选派谁参赛更合适?并说明理由.(2)若从甲、乙两人10次的成绩中各随机抽取1次,设抽到的2次成绩中,90分以上的次数为X ,求随机变量X 的分布列和数学期望.解:(1)根据茎叶图可知,甲的平均成绩x 甲=79+85+86+88+88+88+94+95+95+9610=89.4, 乙的平均成绩x 乙=74+78+85+86+88+92+93+97+98+9910=89,甲的平均成绩略大于乙的平均成绩. 又甲的成绩的方差s 2甲=110[(79-89.4)2+(85-89.4)2+(86-89.4)2+(88-89.4)2+(88-89.4)2+(88-89.4)2+(94-89.4)2+(95-89.4)2+(95-89.4)2+(96-89.4)2]=27.24,乙的成绩的方差s 2乙=110[(74-89)2+(78-89)2+(85-89)2+(86-89)2+(88-89)2+(92-89)2+(93-89)2+(97-89)2+(98-89)2+(99-89)2]=64.2,故甲的成绩的方差小于乙的成绩的方差, 因此选派甲参赛更合适.(2)随机变量X 的所有可能取值为0,1,2.P (X =0)=C 16C 15C 110C 110=310,P (X =1)=C 14C 15+C 16C 15C 110C 110=12, P (X =2)=C 14C 15C 110C 110=15.随机变量X 的分布列为X 0 1 2 P3101215数学期望E(X )=0×310+1×12+2×15=910.14.近日,某市举行了教师选拔考试(既有笔试又有面试),该市教育局对参加该次考试的50名教师的笔试成绩(单位:分)进行分组,得到的频率分布表如下:(1)(2)估计参加考试的这50名教师的笔试成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)若该市教育局决定在分数较高的第三、四、五组中任意抽取2名教师进入面试,设ξ为抽到的第五组教师的人数,求ξ的分布列及数学期望.解:(1)由频率分布表可得,⎩⎪⎨⎪⎧5+15+x +10+y =50,0.1+0.3+z +0.2+0.1=1.00.1×50=y ,解得⎩⎪⎨⎪⎧x =15,y =5,z =0.3.补全的频率分布直方图如下:(2)估计参加考试的这50名教师的笔试成绩的平均数为(55×0.01+65×0.03+75×0.03+85×0.02+95×0.01)×10=74.(3)由(1)可知,第三、四、五组的教师的人数分别为15,10,5. 随机变量ξ的所有可能取值为0,1,2.P (ξ=0)=C 225C 230=2029, P (ξ=1)=C 125C 15C 230=2587, P (ξ=2)=C 25C 230=287. 所以ξ的分布列为 ξ0 1 2 P2029 2587 287 所以E(ξ)=0×2029+1×2587+2×287=13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

限时规范训练(限时练·夯基练·提能练)A级基础夯实练1.(2018·河南正阳模拟)已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.158 7,则P(2<X<4)=()A.0.682 6B.0.341 3C.0.460 3 D.0.920 7解析:选A.∵随机变量X服从正态分布N(3,1),∴正态曲线的对称轴是直线x=3,∵P(X≥4)=0.158 7,∴P(2<X<4)=1-2P(X≥4)=1-0.317 4=0.682 6.故选A.2.(2018·广西两校联考)甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ21),N(μ2,σ22),其正态分布密度曲线如图所示,则下列说法错误的是()A.甲类水果的平均质量为0.4 kgB.甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右C.甲类水果的平均质量比乙类水果的平均质量小D.σ2=1.99解析:选D.由题中图象可知甲的正态曲线关于直线x=0.4对称,乙的正态曲线关于直线x=0.8对称,所以μ1=0.4,μ2=0.8,故A正确,C正确.由图可知甲类水果的质量分布比乙类水果的质量分布更集中于平均值左右,故B正确.因为乙的正态曲线的峰值为1.99,即12πσ2=1.99,所以σ2≠1.99,故D错误,于是选D.3.(2018·孝感模拟)已知袋中有3个白球,2个红球,现从中随机取出3个球,其中取出1个白球计1分,取出1个红球计2分,记X 为取出3个球的总分值,则E(X )=( )A.185B .215C .4D .245 解析:选B.由题意知,X 的所有可能取值为3,4,5,且P (X =3)=C 33C 35=110,P (X =4)=C 23·C 12C 35=35,P (X =5)=C 13·C 22C 35=310,所以E(X )=3×110+4×35+5×310=215. 4.甲、乙、丙三位同学上课后独立完成5道自我检测题,甲的及格概率为45,乙的及格概率为25,丙的及格概率为23,则三人中至少有一人及格的概率为( )A.1675B .5975 C.125 D .2425 解析:选D.设“甲及格”为事件A ,“乙及格”为事件B ,“丙及格”为事件C ,则P (A )=45,P (B )=25,P (C)=23,∴P (A )=15,P (B )=35,P (C )=13,则P (A B C )=P (A )P (B )P (C )=15×35×13=125,∴三人中至少有一人及格的概率P =1-P (A B C )=2425.故选D. 5.已知随机变量X ,Y 满足X +Y =8,若X ~B (10,0.6),则E(Y ),D (Y )分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6解析:选B.∵随机变量X ,Y 满足X +Y =8,X ~B (10,0.6),∴E(X )=10×0.6=6,D (X )=10×0.6×0.4=2.4,则E(Y )=E(8-X )=8-E(X )=8-6=2,D (Y )=D (8-X )=D (X )=2.4.故选B.6.如图是总体的正态曲线,下列说法正确的是( )A .组距越大,频率分布直方图的形状越接近于它B .样本容量越小,频率分布直方图的形状越接近于它C .阴影部分的面积代表总体在(a ,b )内取值的百分比D .阴影部分的平均高度代表总体在(a ,b )内取值的百分比解析:选C.总体的正态曲线与频率分布直方图的形状关系如下:当样本容量越大,组距越小时,频率分布直方图的形状越接近总体的正态曲线,故A ,B 不正确.在总体的正态曲线中,阴影部分的面积代表总体在(a ,b )内取值的百分比,故选C.7.设随机变量ξ~B (2,p ),η~B (3,p ),若P (ξ≥1)=59,则P (η≥2)的值为( )A.2027B .827 C.727 D .127解析:选C.∵ξ~B (2,p ),P (ξ≥1)=59,∴P (ξ≥1)=1-P (ξ<1)=1-C 02p 0(1-p )2=59,∴p =13,∴P (η≥2)=1-P (η=0)-P (η=1)=1-C 03×⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫233-C 13×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫232=1-827-1227=727,故选C.8.已知服从正态分布N(μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为0.683,0.955和0.997.某校为高一年级1 000名新生每人定制一套校服,经统计,学生的身高(单位:c m)服从正态分布N(165,52),则适合身高在155~175 c m范围内学生的校服大约要定制()A.683套B.955套C.972套D.997套解析:选B.设学生的身高为随机变量ξ,则P(155<ξ<175)=P(165-5×2<ξ<165+5×2)=P(μ-2σ<ξ<μ+2σ)=0.955.因此适合身高在155~175 c m范围内学生的校服大约要定制1 000×0.955=955(套).故选B.9.2018年1月某校高三年级1 600名学生参加了教育局组织的期末统考,已知数学考试成绩X~N(100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次统考中成绩不低于120分的学生人数约为() A.80 B.100C.120 D.200解析:选 D.∵X~N(100,σ2),∴其正态曲线关于直线X=100对称,又成绩在80分到120分之间的人数约为总人数的34,由对称性知成绩不低于120分的学生人数约为总人数的12×⎝⎛⎭⎪⎫1-34=18,∴此次考试成绩不低于120分的学生人数约为18×1 600=200.故选D.10.经检测,有一批产品的合格率为34,现从这批产品中任取5件,记其中合格产品的件数为ξ,则P(ξ=k)取得最大值时,k的值为( )A .5B .4C .3D .2解析:选B.根据题意得,P (ξ=k)=C k 5⎝ ⎛⎭⎪⎫34k ⎝ ⎛⎭⎪⎫1-345-k ,k =0,1,2,3,4,5,则P (ξ=0)=C 05⎝ ⎛⎭⎪⎫340×⎝ ⎛⎭⎪⎫145=145,P (ξ=1)=C 15⎝ ⎛⎭⎪⎫341×⎝ ⎛⎭⎪⎫144=1545,P (ξ=2)=C 25⎝ ⎛⎭⎪⎫342×⎝ ⎛⎭⎪⎫143=9045,P (ξ=3)=C 35⎝ ⎛⎭⎪⎫343×⎝ ⎛⎭⎪⎫142=27045,P (ξ=4)=C 45⎝ ⎛⎭⎪⎫344×⎝ ⎛⎭⎪⎫141=40545,P (ξ=5)=C 55⎝ ⎛⎭⎪⎫345×⎝ ⎛⎭⎪⎫140=24345,故当k =4时,P (ξ=k)最大. B 级 能力提升练11.(2018·福建福州质检)从某技术公司开发的某种产品中随机抽取200件,测量这些产品的一项质量指标值(记为Z),由测量结果得如下频率分布直方图:(1)公司规定:当Z ≥95时,产品为正品;当Z <95时,产品为次品.公司每生产一件这种产品,若是正品,则盈利90元;若是次品,则亏损30元.记ξ为生产一件这种产品的利润,求随机变量ξ的分布列和数学期望;(2)由频率分布直方图可以认为,Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2(同一组中的数据用该区间的中点值作代表).①利用该正态分布,求P(87.8<Z<112.2);②某客户从该公司购买了500件这种产品,记X表示这500件产品中该项质量指标值位于区间(87.8,112.2)内的产品件数,利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 7,P(μ-2σ<Z <μ+2σ)=0.954 5.解:(1)由频率估计概率,产品为正品的概率为(0.033+0.024+0.008+0.002)×10=0.67,所以随机变量ξ的分布列为所以E(ξ)=90×0.67(2)由频率分布直方图知,抽取产品的该项质量指标值的样本平均数x和样本方差s2分别为x=70×0.02+80×0.09+90×0.22+100×0.33+110×0.24+120×0.08+130×0.02=100,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+02×0.33+102×0.24+202×0.08+302×0.02=150.①因为Z~N(100,150),从而P(87.8<Z<112.2)=P(100-12.2<Z<100+12.2)=0.6827.②由①知,一件产品中该项质量指标值位于区间(87.8,112.2)内的概率为0.682 7,依题意知X~B(500,0.682 7),所以E(X )=500×0.682 7=341.35.12.(2018·广西南宁测试)某食品店为了了解气温对销售量的影响,随机记录了该店1月份其中5天的日销售量y (单位:千克)与该地当日最低气温x (单位:℃)的数据,如下表:(1)求出y 与x 的回归方程y =b x +a ;(2)判断y 与x 之间是正相关还是负相关,若该地1月份某天的最低气温为6 ℃,请用所求回归方程预测该店当日的销售量;(3)设该地1月份的日最低气温X ~N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2,求P (3.8<X <13.4).附:①回归方程y ^=b ^x +a ^中,b ^=∑i=1nx i y i -n y∑i =1n x 2i -n x 2,a ^=y -b ^ x . ②10≈3.2, 3.2≈1.8.若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ)=0.954 5.解:(1)x =15∑i =15x i =355=7,y =15∑i =15y i =455=9, ∑i =15x i y i -5x y =2×12+5×10+8×8+9×8+11×7-5×7×9=-28,∑i =15x 2i -5x 2=22+52+82+92+112-5×72=50,∴b ^=-2850=-0.56. ∴a ^=y -b ^ x =9-(-0.56)×7=12.92.∴所求的回归方程是y ^=-0.56x +12.92.(2)由b ^=-0.56<0知,y 与x 之间是负相关,将x =6代入回归方程可预测该店当日的销售量y ^=-0.56×6+12.92=9.56(千克).(3)由(1)知μ=x =7,由σ2=s 2=15[(2-7)2+(5-7)2+(8-7)2+(9-7)2+(11-7)2]=10,得σ≈3.2.从而P (3.8<X <13.4)=P (μ-σ<X <μ+2σ)=P (μ-σ<X <μ)+P (μ<X <μ+2σ)=12P (μ-σ<X <μ+σ)+12P (μ-2σ<X <μ+2σ)=0.818 6.13.某班级准备从甲、乙两人中选一人参加某项比赛,已知在一个学期的10次考试中,甲、乙两人的成绩(单位:分)的茎叶图如图所示.(1)你认为选派谁参赛更合适?并说明理由.(2)若从甲、乙两人10次的成绩中各随机抽取1次,设抽到的2次成绩中,90分以上的次数为X ,求随机变量X 的分布列和数学期望.解:(1)根据茎叶图可知,甲的平均成绩 x 甲=79+85+86+88+88+88+94+95+95+9610=89.4,乙的平均成绩 x 乙=74+78+85+86+88+92+93+97+98+9910=89, 甲的平均成绩略大于乙的平均成绩.又甲的成绩的方差s 2甲=110[(79-89.4)2+(85-89.4)2+(86-89.4)2+(88-89.4)2+(88-89.4)2+(88-89.4)2+(94-89.4)2+(95-89.4)2+(95-89.4)2+(96-89.4)2]=27.24,乙的成绩的方差s 2乙=110[(74-89)2+(78-89)2+(85-89)2+(86-89)2+(88-89)2+(92-89)2+(93-89)2+(97-89)2+(98-89)2+(99-89)2]=64.2,故甲的成绩的方差小于乙的成绩的方差,因此选派甲参赛更合适.(2)随机变量X 的所有可能取值为0,1,2.P (X =0)=C 16C 15C 110C 110=310, P (X =1)=C 14C 15+C 16C 15C 110C 110=12, P (X =2)=C 14C 15C 110C 110=15. 随机变量X 的分布列为数学期望E(X)=0×310+1×12+2×15=910.14.近日,某市举行了教师选拔考试(既有笔试又有面试),该市教育局对参加该次考试的50名教师的笔试成绩(单位:分)进行分组,得到的频率分布表如下:(1)(2)估计参加考试的这50名教师的笔试成绩的平均数(同一组中。

相关文档
最新文档