七年级数学上册整式的加减合并同类项专题训练

合集下载

《整式的加减》(一)——合并同类项 配套知识讲解2022人教七年级上册专练

《整式的加减》(一)——合并同类项 配套知识讲解2022人教七年级上册专练

整式的加减(一)——合并同类项(提高)【学习目标】 1.掌握同类项及合并同类项的概念,并能熟练进行合并;2. 掌握同类项的有关应用;3. 体会整体思想即换元的思想的应用.【要点梳理】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断几个项是否是同类项有两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项. 要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法的分配律逆用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中照抄;(2)系数相加(减),字母部分不变,不能把字母的指数也相加(减).【典型例题】类型一、同类项的概念1. 判别下列各题中的两个项是不是同类项:(1)-4a 2b 3与5b 3a 2;(2)2213x y z -与2213xy z -;(3)-8和0;(4)-6a 2b 3c 与8ca 2. 【答案与解析】 (1)-4a 2b 3与5b 3a 2是同类项;(2)不是同类项;(3)-8和0都是常数,是同类项;(4)-6a 2c 与8ca 2是同类项.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同;“两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.此外注意常数项都是同类项.2.315212135m n m n x y x y --+-若与是同类项,求出m, n 的值. 【答案与解析】因为315212135m n m n x y x y --+-与是同类项, 所以 315,21 1.m n -=⎧⎨-=⎩ , 解得:2,1.m n =⎧⎨=⎩所以2,1m n ==【总结升华】概念的灵活运用.举一反三:【变式】(2020•石城县模拟)如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( )A. a=2,b=3B. a=1,b=2C. a=1,b=3D. a=2,b=2【答案】C解:根据题意得:a+1=2,b=3,则a=1.【答案】6类型二、合并同类项3.合并同类项:()221324325x x x x -++--;()2222265256a b ab b a -++-;()2223542625yx xy xy x y xy -+-+++;()()()()()2323431215141x x x x -----+- (注:将“1x -”或“1x -”看作整体)【思路点拨】同类项中,所含“字母”,可以表示字母,也可以表示多项式,如(4).【答案与解析】(1)()()()22232234511x x x x x x =-+-++-=+-=+-原式(2) ()()2222665522a a b b ab ab -+-++=原式=(3)原式=()()222562245x y x y xy xy xy -++-+++2245x y xy =++ (4)()()()()()()223323315121412161x x x x x x ⎡⎤⎡⎤=---+----=----⎣⎦⎣⎦原式 【总结升华】无同类项的项不能遗漏,在每步运算中照抄.举一反三:【变式1】化简:(1) 32313125433xy x y xy x ---+ (2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) 【答案】原式3323211231123()()53345334xy xy x x y xy x y =-+--=-+--3221.1512xy x y =--- (2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b)=(a-2b)2-2(a-2b)2+4(a-2b)-(a-2b) =(1-2)(a-2b)2+(4-1)(a-2b)=-(a-2b)2+3(a-2b).4. (2020•大丰市一模)若﹣2a m b 4与5a 2b n+7的和是单项式,则m+n= ﹣1 .【思路点拨】两个单项式的和仍是单项式,这说明﹣2a m b 4与5a 2b n+7是同类项.【答案】-1【解析】解:由﹣2a m b 4与5a 2b n+7是同类项,得,解得. m+n=﹣1,故答案为:﹣1.【总结升华】要善于利用题目中的隐含条件.举一反三:【变式】若35x a b 与30.2ya b -可以合并,则x = ,y = .【答案】3,3±± 类型三、化简求值5. 化简求值:(1)当1,2a b ==-时,求多项式3232399111552424ab a b ab a b ab a b --+---的值. (2)若243(32)0a b b +++=,求多项式222(23)3(23)8(23)7(23)a b a b a b a b +-+++-+的值.【答案与解析】(1)先合并同类项,再代入求值:原式=32391911()(5)52244a b ab a b -++---- =32345a b a b ---将1,2a b ==-代入,得:3233234541(2)1(2)519a b a b ---=-⨯⨯--⨯--=-(2)把(23)a b +当作一个整体,先化简再求值:原式=22(28)(23)(37)(23)10(23)10(23)a b a b a b a b +++--+=+-+由243(32)0a b b +++=可得:430,320a b b +=+=两式相加可得:462a b +=-,所以有231a b +=-代入可得:原式=210(1)10(1)20⨯--⨯-=【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值.举一反三:【变式】3422323323622已知与是同类项,求代数式的值a b xy xy b a b b a b +----+.【答案】 ()()()3422323223323323231,2 4.2, 6.362232624,2,66426228.a b x y xy a b a b b a b b a b b b a b a b b a b a b +--∴+=-=∴=-=--+=-+-+=-∴=-==-⨯-⨯=解:与是同类项,当时,原式 类型四、综合应用6. 若多项式-2+8x+(b-1)x 2+ax 3与多项式2x 3-7x 2-2(c+1)x+3d+7恒等,求ab-cd.【答案与解析】法一:由已知ax 3+(b-1)x 2+8x-2≡2x 3-7x 2-2(c+1)x+(3d+7) ∴ 2,17,82(1),237.a b c d =⎧⎪-=-⎪⎨=-+⎪⎪-=+⎩ 解得:2,6,5,3.a b c d =⎧⎪=-⎪⎨=-⎪⎪=-⎩ ∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27.法二:说明:此题的另一个解法为:由已知(a-2)x 3+(b+6)x 2+[2(c+1)+8]x-(3d+9)≡0. 因为无论x 取何值时,此多项式的值恒为零.所以它的各项系数皆为零,即从而解得解得:【总结升华】若等式两边恒等,则说明等号两边对应项系数相等;若某式恒为0,则说明各项系数均为0;若某式不含某项,则说明该项的系数为0.举一反三: 20,60,2(1)80,(39)0.a b c d -=⎧⎪+=⎪⎨++=⎪⎪-+=⎩2,6,5,3.a b c d =⎧⎪=-⎪⎨=-⎪⎪=-⎩【变式1】若关于x 的多项式-2x 2+mx+nx 2+5x-1的值与x 的值无关,求(x-m)2+n 的最小值.【答案】 -2x 2+mx+nx 2+5x-1=nx 2-2x 2+mx+5x-1=(n-2)x 2+(m+5)x-1∵ 此多项式的值与x 的值无关, ∴ 20,50.n m -=⎧⎨+=⎩ 解得: 25n m =⎧⎨=-⎩当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2.∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n 有最小值为2.【变式2】若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n ----++-++,化简后是四次三项式,求m+n 的值.【答案】分别计算出各项的次数,找出该多项式的最高此项:因为22m x y -的次数是m ,2m mx y -的次数为1m -,33m nx y -的次数为m ,32m x y --的次数为2m -,又因为是三项式 ,所以前四项必有两项为同类项,显然2233m m xy nx y --与是同类项,且合并后为0,所以有5,10m n =+= ,5(1)4m n +=+-=.第二课时【学习目标】 1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值. 【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件.举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y 两边都减去x+y ,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x x x -+=+,去分母,得3(3-7x)=2(2x+1)+2x ,去括号得:9-21x=4x+2+2x. 【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x 项没乘以公分母6.2. 如果5(x+2)=2a+3与(31)(53)35a x a x +-=的解相同,那么a 的值是________. 【答案】711【解析】 由5(x+2)=2a+3,解得275a x -=. 由(31)(53)35a x a x +-=,解得95x a =-. 所以27955a a -=-,解得711a =. 【总结升华】因为两方程的解相同,可把a 看做已知数,分别求出它们的解,令其相等,转化为求关于a 的一元一次方程.举一反三: 【变式】(2020•温州模拟)已知3x=4y ,则= . 【答案】. 解:根据等式性质2,等式3x=4y 两边同时除以3y ,得:=.类型二、一元一次方程的解法3.解方程:4621132x x -+-=. 【答案与解析】解:去分母,得:2(4-6x )-6=3(2x+1).去括号,得:8-12x -6=6x+3.移项,合并同类项,得:-18x =1.系数化为1,得:118x =-. 【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z z z +---++=- 【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+.移项,合并同类项得:1122z =,系数化为1得:z =1.【变式2】解方程:0.10.050.20.05500.20.54x x +--+=. 【答案】解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x-2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x-2|=3的解为x=-1和x=5.举一反三:【变式1】若关于x的方程230x m-+=无解,340x n-+=只有一个解,450x k-+=有两个解,则,,m n k的大小关系为:( )A. m n k>> B.n k m>> C.k m n>> D.m k n>>【答案】A【变式2】若9x=是方程123x m-=的解,则__m=;又若当1n=时,则方程123x n-=的解是.【答案】1;9或3.类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】解:设李伟从家到火车站的路程为y千米,则有:151530601860y y+=-,解得:452y=由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时).李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x千米/时, 则有:452271010116060yx===--(千米/时)答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. (2020春•万州区校级月考)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?【答案与解析】解:设乙还需x天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【总结升华】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【答案】解:设售货员可以打x折出售此商品,得:⨯=+x40000.12000(120%),x=解得: 6.答:售货员最低可以打六折出售此商品.。

浙教版初中数学七年级上册整式的加减(一)——合并同类项(基础)巩固练习

浙教版初中数学七年级上册整式的加减(一)——合并同类项(基础)巩固练习

【巩固练习】一、选择题1.判断下列各组是同类项的有 ( ) .(1)0.2x 2y 和0.2xy 2;(2)4abc 和4ac ;(3)-130和15;(4)-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组2.下列运算正确的是( ).A .2x 2+3x 2=5x 4B .2x 2-3x 2=-x 2C .6a 3+4a 4=10a 7D .8ab 2-8ba 2=03.下列各式中,与x 2y 是同类项的是( ).A .xy 2B .2xyC .-x 2yD .3x 2y 24.在下列各组单项式中,不是同类项的是( ).A .212x y -和2yx - B .-3和100 C .2x yz -和2xy z - D .abc -和52abc 5.如果xy ≠0,22103xy axy +=,那么a 的值为( ). A .0 B .3 C .-3 D .13- 6. 买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.A .47m n +B .28mnC .74m n +D .11mn 7.(2011•宁夏)计算a 2+3a 2的结果是( ).A .3a 2B .4a 2C .3a 4D .4a 4二、填空题8.写出325x y -的一个同类项 .9. 已知多项式ax bx +合并后的结果为零,则a b 与的关系为: .10.若3m n x y 与312xy -是同类项,则______,_______m n ==. 11. 合并同类项22381073x x x x ---++,得 .12.在22226345xy x x y yx x ---+中没有同类项的项是 .13.100252100(________)___t t t t t -+==;223(______)ab b a +=-.14.观察下列算式: 2210101-=+=;2221213-=+=;2232325-=+=;2243437-=+=;2254549-=+=;……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: .三、解答题15. (2010·湖南株洲)在2x 2y ,2xy 2,3x 2y ,-xy ,四个代数式中,找出两个同类项,并合并这两个同类项.16.化简下列各式:(1)22226547a b ab b a a b +--(2)22223232x y x y xy xy -++- (3)2222630.835m n mn mn n m mn n m --+-- (4)33331()2()()0.5()3a b a b b a a b +-+-+-+ 17. 已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.【答案与解析】一、选择题1. 【答案】B【解析】 (1)0.2x 2y 和0.2xy 2,所含字母虽然相同,但相同字母的指数不同,因此不是同类项.(2)4abc 和4ac 所含字母不同.(3)-130和15都是常数,是同类项.(4)-5m 3n 2和4n 2m 3所含字母相同,且相同字母的指数也相同,是同类项.2.【答案】B【解析】222223(23)x x x x -=-=-.3.【答案】C【解析】根据同类项的定义来判断.4.【答案】C【解析】2x yz -和2xy z -中相同的字母的次数不相同. 5.【答案】D 【解析】a 与13互为相反数,故13a =-. 6. 【答案】A7. 【答案】B【解析】a 2+3a 2=4a 2.故选B .二、填空题:8. 【答案】32x y (答案不唯一)【解析】只要字母部分为“32x y ”,系数可以是除0以外的任意有理数.9.【答案】0a b +=【解析】,a b 均为x 的系数,要使合并后为0,则同类项的系数和应为0 .10.【答案】1,311.【答案】227x x --【解析】原式=22(31)(87)10327x x x x -+-+-+=--.12.【答案】6xy【解析】此多项式共有五项,分别是:22226,3,4,5,xy x x y yx x ---,显然没有同类项的项为6xy .13.【答案】2100252100,52;4ab -+--14.【答案】22(1)21n n n --=-【解析】22(1)121n n n n n --=+-=-.三、解答题15. 【解析】先根据同类项的定义,判断出同类项,然后再依据合并同类项的法则进行合并. 解:在四个代数式中.2x 2y 与3x 2y 是一对同类项,且有2x 2y+3x 2y =5x 2y .16.【解析】解:(1)原式=2222(67)(54)a b a b ab b a -+-=22a b ab -+ (2)原式=2222(32)(32)x y x y xy xy -++-=22x y xy -+(3)原式=222263(3)(0.8)5m n mn n m n m mn mn +-+-+--=22332m n mn mn -- (4)原式=31(120.5)()3a b ---+=311()6a b -+ 17. 【解析】解: 222222111338(3)38(3)38333x kxy y xy x kxy xy y x k xy y ----=+----=+---- 因为不含xy 项,所以此项的系数应为0,即有:1303k --=,解得:19k =-. ∴19k =-.。

七年级数学整式加减合并同类项练习题(附答案)

七年级数学整式加减合并同类项练习题(附答案)

七年级数学整式加减合并同类项练习题一、单选题1.2020-的相反数是( )A.2020B.-2020C.12020D.12020- 2.绝对值等于9的数是( )A.9B.9-C.9或9-D.193.实数,a b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A.a b >B.a b <C.0a b +<D.0a b> 4.计算21)3()(-+-的结果是( )A.-2B.0C.1D.25.下列单项式中,与2xy 是同类项的是( )A. 2x yB. 22x yC. 22xyD. 3xy6.下列说法正确的是( ) A.17a+是多项式 B.22243562x x y y ---是四次四项式C.61x -的项数和次数都是6D.3a b +不是多项式 7.下面的去括号正确的是( )A.22(32)32x x x x --=--B.7(51)751a b a b +-=++C.222(35)235m m m m -+=--D.()(1)1a b ab a b ab --+-=-+-8.下列计算:①(1)(2)(3)6-⨯-⨯-=;②(36)(9)4-÷-=-;③293()(1)342⨯-÷-=;④1(4)(2)162-÷⨯-=.其中正确的的个数为( ) A.4 B.3 C.2 D.19.2020年新冠病毒肆虐全球,据报道,截止至2020年4月11日,全球新冠肺炎确诊病例达1700000人,将1700000用科学记数法表示正确的是( )A.417010⨯B.51710⨯C.61.710⨯D.70.1710⨯10.若单项式12m a b -与212n a b 的和仍是单项式,则2m n -的值是( ) A.3 B.4 C.6 D.811.如果整式252n x x --+是关于x 的三次三项式,那么n 等于( )A.3B.4C.5D.612.化简233()(4)2a b a b ---的结果为( )A.103a b --B.103a b -+C.109a b -D.109a b +13.如果多项式2285x xy y kxy +--+不含xy 项,则k 的值为( )A.0B.7C.1D.814.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b ()a b >,则a b -等于( )A.7B.6C.5D.415.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab b a ab b a +---++=26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A.2ab +B.3ab +C.4ab +D.ab - 16.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A.4nB.4mC.2()m n +D.4()m n +二、解答题17.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“-”.他这天下午行车情况如下:(单位:千米)251,103256-+-+---+,,,,,,请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.而小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?18.观察下列各式:()()111x x -÷-=;()()2111xx x -÷-=+; ()()32111xx x x -÷-=++; ()()432111x x x x x -÷-=+++; ……(1)根据上面各式的规律可得()()11n x x -÷-= .(2)利用(1)的结论,求201820172221++⋯++的值.(3)若2201710x x x +++⋯+=,求2018x 的值.三、计算题19.计算 (1)222183(2)(6)()3-+⨯-+-÷- (2)221124[(5)()0.8]5255⎧⎫----⨯-÷⎨⎬⎩⎭ (3)3223731(25)(1)()()(0.1)940.1-⨯--⨯---÷- 20.先合并同类项,再求值:(1)22732658x x x x -+--+,其中2x =-;(2)323253542a b a b ab --++,其中11,2a b =-=. 21.先化简再求值: ()()22222749254,a b a b ab a b ab +---其中2,1a b ==-式的次数相同,求n 的值.四、填空题23.用四舍五入法取近似数,1.804≈ __________(精确到百分位)24.已知一组单项式:2468102345x x x x x -⋯,,-,,-,则按此规律排列的第15个单项式是_______.25.若关于,a b 的多项式2222)3(2()2a ab b a mab b ---++中不含有ab 项,则m = .26.按如图程序输入一个数x ,若输入的数4x =,则输出结果为____.参考答案1.答案:A解析:2020-的相反数是2020, 故选A2.答案:C解析:3.答案:C解析:4.答案:A解析:原式112()-=-+=-.5.答案:C解析:6.答案:B解析:7.答案:C解析:根据去括号法则,得22(32)32x x x x --=-+,A 错误;7(51)751a b a b +-=+-,B 错误;222(35)235m m m m -+=--,C 正确;()(1)1a b ab a b ab --+-=-++-,D 错误,故选C.8.答案:C解析:(1)(2)(3)6-⨯-⨯-=-,①错误;(36)(9)4-÷-=,②错误;293()(1)342⨯-÷-=,③正确;1(4)(2)162-÷⨯-=,④正确.综上可知,正确的有2个.故选C.9.答案:C解析:61700000 1.710=⨯.故选:C.10.答案:B解析:11.答案:C解析:12.答案:B解析:原式23126103a b a b a b =--+=-+,故选B.13.答案:D解析:14.答案:A解析:设重叠部分面积为()(),1697c a b a c b c -=+-+=-=.15.答案:A解析:16.答案:A解析:17.答案:(1)小王在下午出车的出发地的南面,距下午出车的出发地8千米;(2)盈利,盈利了46.8元.解析:18.答案:(1)121n n x x x --++⋯++(2)()()12111n n n x x x x x ---÷-=++⋯++,()()20192018201721212221∴-+-=++⋯++201820172019222121∴++++=-.(3)()()12111n n n x x x x x ---÷-=++⋯++,()()2018201720161110x x x x x ∴-÷-=++⋯++=,201810x ∴-=,20181x ∴=.解析:19.答案:解:(1)原式16434(6)9=-+⨯+-÷ 641254=-+-106=-.(2)原式11427[4(25)]22555=---⨯-÷ 145[4(1)]2527=----⨯ 145(41)2527=-+⨯ 5163=-+ 12=- (3)原式3231691(10)()(10)()91610=---⨯--÷-10001100(1000)=-+-⨯-10001100000=-++99001.=解析:20.答案:(1)原式22(76)(25)(38)35x x x x =-+-+-+=-+,当2x =-时,原式2(2)3(2)546515=--⨯-+=++=.(2) 原式322(55)(34)22a b ab b ab =-+-++=+, 当11,2a b =-=时,原式21132(1)224⎛⎫=+⨯-⨯=- ⎪⎝⎭. 解析:21.答案:()()a b a b ab a b ab +---22222749254 22222749108a b a b ab a b ab =+--+a b ab =-22,∵2,1,a b ==-∴原式()()=⨯--⨯-=-2221216解析:22.因为单项式的次数与多项式的次数相同,所以256n m +-=,所以2n =.解析:23.答案:1.80解析:24.答案:3015x ﹣解析:由题意得,第n 个单项式是21n n n x (﹣),所以第15个单项式是152153011515x x ⨯(-)=-.故答案为:3015x ﹣.25.答案:6-解析:26.答案:78解析:。

七年级数学上册整式的加减难题

七年级数学上册整式的加减难题

七年级数学上册整式的加减难题一、整式的加减难题20题。

1. 化简:3a + 2b - 5a - b- 解析:- 将同类项合并。

同类项是指所含字母相同,并且相同字母的指数也相同的项。

- 对于a的同类项有3a和-5a,合并得(3 - 5)a=-2a。

- 对于b的同类项有2b和-b,合并得(2 - 1)b = b。

- 所以,化简结果为-2a + b。

2. 计算:(2x^2-3x + 1)-( - 3x^2+5x - 7)- 解析:- 去括号时,括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。

- 原式=2x^2-3x + 1 + 3x^2-5x + 7。

- 然后合并同类项,x^2的同类项有2x^2和3x^2,合并得(2 + 3)x^2=5x^2。

- x的同类项有-3x和-5x,合并得(-3-5)x=-8x。

- 常数项有1和7,合并得1 + 7 = 8。

- 所以结果为5x^2-8x + 8。

3. 先化简,再求值:(4a^2-3a)-(2a^2+a - 1)+(2 - a^2+4a),其中a=-2- 解析:- 先化简式子:- 原式=4a^2-3a-2a^2-a + 1+2 - a^2+4a。

- 合并同类项,a^2的同类项有4a^2、-2a^2和-a^2,合并得(4 - 2-1)a^2=a^2。

- a的同类项有-3a、-a和4a,合并得(-3-1 + 4)a = 0。

- 常数项有1和2,合并得1+2 = 3。

- 化简结果为a^2+3。

- 当a = - 2时,代入a^2+3得(-2)^2+3=4 + 3=7。

4. 已知A = 3x^2-2x+1,B = 5x^2-3x + 2,求2A - 3B。

- 解析:- 将A = 3x^2-2x + 1,B = 5x^2-3x + 2代入2A-3B中。

- 2A=2(3x^2-2x + 1)=6x^2-4x + 2。

- 3B = 3(5x^2-3x + 2)=15x^2-9x+6。

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题(含答案)

七年级上册《数学》整式的加减练习题2.1 第1课时单项式一、能力提升1.下列结论正确的是()A.a是单项式,它的次数是0,系数为1B.π不是单项式C.是一次单项式D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4B.3C.2D.13.3×105xy的系数是,次数是.4.下列式子:①ab;②-;③;④-a2+a;⑤-1;⑥a-,其中是单项式的是.(填序号)5.写出一个含有字母x,y的五次单项式:.6.观察下面的单项式:a,2a2,4a3,8a4,…,根据你发现的规律,第8个式子是.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款元;(2)购买m(m≥10)个篮球应付款元.8.若单项式(k-3)x|k|y2是五次单项式,则k=.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.二、创新应用10.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么吗?(4)请你根据猜想,写出第2020,2021个单项式.答案一、能力提升1.D a是单项式,次数、系数均为1,所以A错;因为π是单独的一个数,所以π是单项式,所以B错;的分母中含有字母,无法写成数字与字母的积,所以不是单项式,所以C错;对于D项,它的系数为-,次数为2+3+1=6,所以D正确.2.C由单项式的次数的定义,得2m+3+1=8,将A,B,C,D四选项分别代入验证知C为正确答案.3.3×105;2.4.①②⑤.5.-x4y(答案不唯一).6.128a8.7.(1)9a.(2)0.8ma.8.-3;由题意,得|k|+2=5,且k≠3,解得k=-3.9.-2n;-2,-4,-6,-8,-10,这些数都是负数,且都是偶数,因此第n个数为-2n.二、创新应用10.解:(1)这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1,故系数的规律是(-1)n(2n-1).(2)次数即x的指数的规律是从1开始的连续自然数.(3)第n个单项式是(-1)n(2n-1)x n.(4)第2020个单项式是4039x2020,第2021个单项式是-4041x2021.2.1 第2课时多项式一、能力提升1.下列说法正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.-ab2,-x都是单项式,也都是整式D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项2.如果一个多项式是五次多项式,那么它任何一项的次数()A.都小于5B.都等于5C.都不小于5D.都不大于53.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,……其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b214.若x n-2+x3+1是五次多项式,则n的值是()A.3B.5C.7D.05.-3x2y-2x2y2+xy-4的最高次项为.6.若一个关于a的二次三项式的二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.7.多项式的二次项系数是.8.如图(1)(2),某餐桌桌面可由圆形折叠成正方形(图中阴影部分表示可折叠部分).已知折叠前圆形桌面的直径为am,折叠成正方形后其边长为bm.如果一块正方形桌布的边长为am,并按图(3)所示把它铺在折叠前的圆形桌面上,那么桌布垂下部分的面积是多少?如果按图(4)方式把这块桌布铺在折叠后的正方形桌面上呢?并求当a=2,b=1.4时它们的面积大小(π取3.14).9.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.(1)请把游戏最后丁所报出的答案用整式的形式描述出来;(2)若甲取的数为19,则丁报出的答案是多少?二、创新应用10.如图,观察点阵图形和与之对应的等式,探究其中的规律:(1)请在④和⑤后面的横线上分别写出相应的等式:(2)通过猜想,写出与第n个图形相对应的等式.答案一、能力提升1.C.2.D;多项式的次数指的是次数最高项的次数,故一个五次多项式次数最高项的次数为5.3.B;根据多项式排列的规律,字母a的指数是按1,2,3,…的正整数排列,故第10个式子应为a10.字母b的指数是按1,3,5,7,…的奇数排列,故第10个式子应为b19.中间的符号第1个式子是正,第2个式子是负,这样正、负相间,故第10个式子应为a10-b19.4.C;由题意,得n-2=5,解得n=7.5.-2x2y2;6.2a2-3a-3.7.=-,二次项为,故二次项系数为.8.解:m2;(a2-b2)m2;2.04m2.当a=2,b=1.4时,a2-a2=22-×22=4-3.14=0.86(m2),a2-b2=22-1.42=2.04(m2).9.解:(1)由甲传给乙变为a+1;由乙传给丙变为(a+1)2;由丙传给丁变为(a+1)2-1.故丁所报出的答案为(a+1)2-1.(2)由(1)知,代入a=19,得399.二、创新应用10.解:(1)④4×3+1=4×4-3.⑤4×4+1=4×5-3.(2)4(n-1)+1=4n-3.2.2 第1课时合并同类项一、能力提升1.下列各组式子为同类项的是()A.x2y与-xy2B.0.5a2b与0.5a2cC.3b与3abcD.-0.1m2n与nm22.若-2a m b2m+n与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2B.0C.-1D.13.若x a+2y4与-3x3y2b是同类项,则(a-b)2021的值是()A.-2021B.1C.-1D.20214.已知a=-2021,b=,则多项式3a2+2ab-a2-3ab-2a2的值为()A.1B.-1C.2021D.-5.若2x2y m与-3x n y3的和是一个单项式,则m+n=.6.若关于字母x的整式-3x2+mx+nx2-x+3的值与x的值无关,则m=,n=.7.把(x-y)和(x+y)各看作一个字母因式,合并同类项3(x+y)2-(x-y)+2(x+y)2+(x-y)-5(x+y)2=.8.合并下列各式的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy;(2)3x2y-4xy2-3+5x2y+2xy2+5.9.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.10.先合并同类项,再求值:(1)7x2-3+2x-6x2-5x+8,其中x=-2;(2)3x-4x3+7-3x+2x3+1,其中x=-2.二、创新应用11.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”有一名同学指出,题目中给出的条件“a=0.35,b=-0.28”是多余的,他的说法有没有道理?为什么?答案一、能力提升1.D2.A;∵-2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m-n=2.故选A.3.C;由同类项的定义,得a+2=3,2b=4,解得a=1,b=2.所以(a-b)2021=(1-2)2021=(-1)2021=-1.4.A;把多项式合并同类项,得原式=-ab,当a=-2021,b=时,原式=1.5.5;2x2y m与-3x n y3的和是一个单项式,说明2x2y m与-3x n y3是同类项,即m=3,n=2,故m+n=5.6.1;3;算式的值与x的值无关,说明合并同类项后,所有含x项的系数均为0.-3x2+mx+nx2-x+3=(-3+n)x2+(m-1)x+3,则m=1,n=3.7.0.8.解:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy.(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2.9.解:由同类项定义,得m=3,n=1.3m2n-2mn2-m2n+mn2=(3-1)m2n+(-2+1)mn2=2m2n-mn2.当m=3,n=1时,原式=2×32×1-3×12=18-3=15.10.解:(1)原式=(7-6)x2+(2-5)x+(8-3)=x2-3x+5,当x=-2时,原式=(-2)2-3×(-2)+5=15.(2)原式=-2x3+8,当x=-2时,原式=-2×(-2)3+8=24.二、创新应用11.解:他的说法有道理.因为原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以原式的值与a,b的值无关.即题目中给出的条件“a=0.35,b=-0.28”是多余的.2.2 第2课时去括号一、能力提升1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.【】处被钢笔水弄污了,则此处中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.已知a-b=3,c+d=2,则(b+c)-(a-d)的值为.7.某轮船顺水航行了5h,逆水航行了3h,已知船在静水中的速度为akm/h,水流速度为bkm/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值:(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-21,b=1000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.10.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子内的括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.二、创新应用11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.答案一、能力提升1.B;三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D;由a-3b=-3,得-(a-3b)=3,即-a+3b=3.因此5-a+3b=5+3=8.3.C.4.13x-1;(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1;(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.-1;由a-b=3,可得a-b的相反数为-3,即-(a-b)=-3,即-a+b=-3,因此(b+c)-(a-d)=b+c-a+d=(-a+b)+(c+d)=-3+2=-1.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,因此轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-21,b=1000时,原式=2021.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k) xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:因为a2+b2=5,1-b=-2,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-2)+5=7.二、创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,因此原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.2.3 第3课时整式的加减一、能力提升1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1B.5x+1C.-13x-1D.13x+12.化简-3x-的结果是()A.-16x+B.-16x+C.-16x-D.10x+3.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”图案,如图②所示,再将剪下的两个小长方形拼成一个新的长方形,如图③所示,则新长方形的周长可表示为()A.2a-3bB.4a-8bC.2a-4bD.4a-10b4.小明在复习课堂笔记时,发现一道题:=-x2-xy+y2,括号处被钢笔弄污了,则括号处的这一项是()A.y2B.3y2C.-y2D.-3y25.已知a3-a-1=0,则a3-a+2020=.6.多项式(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)的值与无关.(填“x”或“y”)7.若a2+ab=8,ab+b2=9,则a2-b2的值是.8.若2x-y=1,则(x2+2x)-(x2+y-1)=.9.先化简,再求值:2(a2b+ab2)-(2ab2-1+a2b)-2,其中a=-,b=-2.10.计算:(1)3(a2-4a+3)-5(5a2-a+2);(2)3x2-.11.规定一种新运算:a*b=a+b,求当a=5,b=3时,(a2b)*(3ab)+5a2b-4ab的值.二、创新应用12.扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是多少?并说明你的理由.13.小黄做一道题“已知两个多项式A,B,计算A-B”.小黄误将A-B看作A+B,求得结果是9x2-2x+7.若B=x2+3x-2,请你帮助小黄求出A-B的正确答案.答案一、能力提升1.A;由题意,得(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.2.B.3.B;所得新长方形的长为a-b,宽为a-3b,则其周长为2[(a-b)+(a-3b)]=2(2a-4b)=4a-8b.4.C;=-x2+3xy-y2+x2-4xy-()=-x2-xy-y2-()=-x2-xy+y2,故括号处的这一项应是-y2.5.2021;由a3-a-1=0,得a3-a=1,整体代入得a3-a+2020=1+2020=2021.6.x;因为(4xy-3x2-xy+x2+y2)-(3xy-2x2+2y2)=4xy-3x2-xy+x2+y2-3xy+2x2-2y2=-y2, 所以多项式的值与x无关.7.-1;a2+ab-(ab+b2)=a2+ab-ab-b2=a2-b2=8-9=-1.8.2;当2x-y=1时,(x2+2x)-(x2+y-1)=x2+2x-x2-y+1=2x-y+1=1+1=2.故答案为2.9.解:原式=2a2b+2ab2-2ab2+1-a2b-2=a2b-1,当a=-,b=-2时,原式=×(-2)-1=×(-2)-1=--1=-.10.解:(1)3(a2-4a+3)-5(5a2-a+2)=3a2-12a+9-25a2+5a-10=-22a2-7a-1.(2)3x2-=3x2-5x+x-3-2x2=x2-x-3.11.解:原式=a2b+3ab+5a2b-4ab=(1+5)a2b+(3-4)ab=6a2b-ab.当a=5,b=3时,原式=6×52×3-5×3=450-15=435.二、创新应用12.解:设第一步每堆各有x张牌;第二步左边有(x-2)张牌,中间有(x+2)张牌,右边有x张牌;第三步左边有(x-2)张牌,中间有x+2+1=x+3张牌,右边有(x-1)张牌;第四步中间有x+3-(x-2)=x+3-x+2=5张牌,因此中间一堆牌现有的张数是5.13.解:因为A+B=9x2-2x+7,B=x2+3x-2,所以A=9x2-2x+7-(x2+3x-2)=9x2-2x+7-x2-3x+2=8x2-5x+9,所以A-B=8x2-5x+9-(x2+3x-2) =8x2-5x+9-x2-3x+2=7x2-8x+11.。

人教版七年级上册数学《整式的加减》复习(合并同类项专题练习)(解析版)

人教版七年级上册数学《整式的加减》复习(合并同类项专题练习)(解析版)

人教版七年级上册数学《整式的加减》复习(合并同类项专题练习)知识储备:1.同类项的两同两不同两同:所含字母相同,相同字母的指数也相同;两不同:系数可以不同,字母的排列顺序可以不同.2.合并同类项,可以运用交换律、结合律及分配律.练习反馈:一.选择题.1.下列各组式子中,是同类项的是( )A.-4x与-4yB.3xy与3xC.-3x2y与5xy2D.-6x2y与4yx22.下列各式中,与xy2是同类项的是( )A.x2yB.4y2xC.-ab2D.3xy3. 下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.-x2y3D.-y54.下列计算正确的是( )A.8x+4=12xB.4y-4=yC.4y-3y=yD.3x-x=35.如果3x a-1y2与x2y b+1是同类项,那么b-a的值是()A.2B.1C.-1D.-26.下列运算结果正确的是( )A.5x2-x2=5B.3a2+2a3=5a5C.3+x=3xD.-0.25ab+ab=07. 下列运算中,正确的是( )A.3a+2b=5abB.2a3+3a2=5a5C.3a2b-3ba2=0D.5a2-4a2=18. 把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处高出球面16 cm,那么钢丝大约需要加长(π取3.14)( )A.102 cmB.104 cmC.106 cmD.108 cm二.填空题.9.已知-7x6y4和3x2m y n是同类项,则m+n的值是.10. 如果2x a-1y2与x1y b+1是同类项,那么的值是.11. .若x-y=-2 020,则-6(x-y)2-7(x-y)+6(y-x)2+6(x-y)的值为.12.若关于x,y的多项式x2y-7mxy+y3+6xy化简后不含二次项,则m的值为.13. 已知x2-2y=4,则3x2-6y-21的值是.14. 阅读材料:我们知道,4x-2x+x=(4-2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)-2(a+b)+(a+b)=(4-2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中的应用极为广泛.尝试应用:把(a-b)2看成一个整体,合并3(a-b)2-6(a-b)2+2(a-b)2的结果是;三.解答题.15.已知下列式子:6ab,3xy2,ab,2a,-5ab,5x2y.(1)写出这些式子中的同类项;(2)求(1)中同类项的和.16.先化简,再求值:(1)7x2-3x2-2x-2x2+5+6x,其中x =-2; (2)3x2-6xy-2x2+xy,其中x=2,y=3.17.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.18.若|m-2|+ = 0,则单项式3x2y m+n-1和y4是同类项吗?19.如果两个关于x,y的单项式2mx3y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2 021的值.20.李华老师给学生出了一道题:当a=0.35,b=-0.28时,求7a3-6a3b+3a2b+3a3+6a3b-3ba2-10a3+3的值.题目出完后,张明说:“老师给的条件a=0.35,b=-0.28是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁的话有道理?为什么?人教版七年级上册数学《整式的加减》复习(合并同类项专题练习)(解析版)知识储备:1.同类项的两同两不同两同:所含字母相同,相同字母的指数也相同;两不同:系数可以不同,字母的排列顺序可以不同.2.合并同类项,可以运用交换律、结合律及分配律.练习反馈:一.选择题.1.下列各组式子中,是同类项的是( D)A.-4x与-4yB.3xy与3xC.-3x2y与5xy2D.-6x2y与4yx22.下列各式中,与xy2是同类项的是( B)A.x2yB.4y2xC.-ab2D.3xy3. 下列各式中,与3x2y3是同类项的是(C)A.2x5B.3x3y2C.-x2y3D.-y54.下列计算正确的是( C)A.8x+4=12xB.4y-4=yC.4y-3y=yD.3x-x=35.如果3x a-1y2与x2y b+1是同类项,那么b-a的值是(D)A.2B.1C.-1D.-26.下列运算结果正确的是( D)A.5x2-x2=5B.3a2+2a3=5a5C.3+x=3xD.-0.25ab+ab=07. 下列运算中,正确的是( C)A.3a+2b=5abB.2a3+3a2=5a5C.3a2b-3ba2=0D.5a2-4a2=18. 把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处高出球面16 cm,那么钢丝大约需要加长(π取3.14)( A)A.102 cmB.104 cmC.106 cmD.108 cm二.填空题.9.已知-7x6y4和3x2m y n是同类项,则m+n的值是7.10. 如果2x a-1y2与x1y b+1是同类项,那么的值是2.11. .若x-y=-2 020,则-6(x-y)2-7(x-y)+6(y-x)2+6(x-y)的值为 2 020.12.若关于x,y的多项式x2y-7mxy+y3+6xy化简后不含二次项,则m的值为.13. 已知x2-2y=4,则3x2-6y-21的值是-9.14. 阅读材料:我们知道,4x-2x+x=(4-2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)-2(a+b)+(a+b)=(4-2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中的应用极为广泛.尝试应用:把(a-b)2看成一个整体,合并3(a-b)2-6(a-b)2+2(a-b)2的结果是-(a-b)2;三.解答题.15.已知下列式子:6ab,3xy2,ab,2a,-5ab,5x2y.(1)写出这些式子中的同类项;(2)求(1)中同类项的和.【解析】(1)同类项是6ab,ab,-5ab.(2)这些同类项的和是6ab+ab+(-5ab)=ab.16.先化简,再求值:(1)7x2-3x2-2x-2x2+5+6x,其中x =-2; (2)3x2-6xy-2x2+xy,其中x=2,y=3. 【解析】(1)原式=2x2+4x+5,将x=-2代入得值为5;(2)原式=x2-5xy,当x=2,y=3时,原式=22-5×2×3=4-30=-26.17.已知-2a m bc2与4a3b n c2是同类项,求多项式3m2n-2mn2-m2n+mn2的值.【解析】由同类项定义得m=3,n=1,3m2n-2mn2-m2n+mn2=m2n+mn2=2m2n-mn2,当m=3,n=1时,原式=2×32×1-3×12=18-3=15.18.若|m-2|+ = 0,则单项式3x2y m+n-1和y4是同类项吗? 【解析】因为|m-2|+ = 0,所以m-2=0,-1=0,即m=2,n=3,所以3x2y m+n-1=3x2y4,y4= x2y4满足同类项的条件.所以单项式3x2y m+n-1和y4是同类项.19.如果两个关于x,y的单项式2mx3y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2 021的值.【解析】(1)3=3a-6,得3a=9,a=3;(2)因为2mx3y3+(-4nx3y3)=0,所以2m-4n=0,m-2n=0,所以(m-2n-1)2 021=(-1)2 021=-1.20.李华老师给学生出了一道题:当a=0.35,b=-0.28时,求7a3-6a3b+3a2b+3a3+6a3b-3ba2-10a3+3的值.题目出完后,张明说:“老师给的条件a=0.35,b=-0.28是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁的话有道理?为什么?【解析】7a3-6a3b+3a2b+3a3+6a3b-3ba2-10a3+3=(7+3-10)a3+(-6+6)a3b+(3-3)a2b+3=3.通过合并可知,合并后的结果为常数3,与a,b的值无关,所以张明的话有道理.。

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)七年级数学整式加减合并同类项专项练1.合并同类项1) 4x^32) 03) x(6y-5)+x(7-5y)-10x4) -14x5) a^2-2ab6) -15xy2.合并单项式1) -2y2) 12a^2b^5-3a^2b-ab^23) -m^2n^3+m^3n^23.合并同类项1) 2m^2+2mn^22) -6a^2-ab-b^24.去括号并合并同类项1) -7a-5b2) -2x+105.化简3x^2+11x-36.化简1) -xy2) a-1/27.计算1) -x^2-11xy+4y^22) 4a^3b-13a^2b^2-10b^33) 6a8.计算3a+29.化简求值1) -10xy^32) -610.化简求值5a^2+8ab-6ab^211.先化简再求值2a^2b+11ab^21.答案:(1) 原式 = 4x2) 原式 = 03) 原式 = xy - 3x^2 + 5x4) 原式 = -14x5) 原式 = a^2 - 2ab6) 原式 = -13x^2y - 2xy^2解析:对每个题目进行代数计算,得出结果。

2.答案:(1) 解:原式 = x^22) 解:原式 = 6a^2b^5 - 3a^2b - ab^26a^2b^5 - 3a^2b - ab^23) 解:原式 = -m^2n^3 - m^3n^2m^2n^3 - m^3n^2解析:对每个题目进行代数计算,得出结果。

3.答案:(1) 原式 = m^2 + 2mn^22) 原式 = -3ab解析:对每个题目进行代数计算,得出结果。

4.答案:(1) 6a - (7a + 5b) = -a - 5b2) (3x + 4) - (5x - 6) = -2x + 10解析:对每个题目进行代数计算,得出结果。

5.答案:5x^3 - 3x解析:对原式进行合并同类项,得出结果。

6.答案:(1) x^2 - xy2) -a^2 + a - 1/23) -14) 6a + 4b解析:对每个题目进行代数计算,得出结果。

初中数学整式的加减代数式的求值合并同类项练习题(附答案)

初中数学整式的加减代数式的求值合并同类项练习题(附答案)

初中数学整式的加减代数式的求值合并同类项练习题一、单选题1.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .2.若0x =是一元二次方程2290x b +-=的一个根,则b 的值是( ) A .9B .3-C .3±D .33.如图,在ABC △中,4AB =,3AC =,30BAC =︒,将ABC △绕点按逆时针旋转60︒得到111A B C △连接1BC ,则1BC 的长为( )A .3B .4C . 5D .64.平移抛物线()()13y x x =--+,下列哪种平移方法不能使平移后的抛物线经过原点( ) A .向左平移1个单位 B .向上平移3个单位 C .向右平移3个单位D .向下平移3个单位5.若关于x 的一元二次方程()21210m x x ++-=有实数根,则m 的取值范围是( ) A. 2m >-B. 2m -C. 2m >-且1m ≠-D. 2m -且1m ≠-A. 2B. 3C. 4D. 57.计算222a a -+的结果为( )A .3a -B .a -C .23a -D .2a -8.下列计算正确的是( ) A .527a b ab += B .32532a a a -=C .22243a b ba a b =-D .242113244y --=-9.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是( ) A .28131x x +- B .2251x x -++C .2851x x -+D .2251x x --10.下列计算正确的是( )A .22532a b ab ab ﹣=B .222a a a ﹣=C .22422x x ﹣=D .(2)53x x x ----=11.下列运算正确的是( ) A .22321m m -= B .43523m m m -= C .220m n mn -=D .32m m m -=12.下面计算正确的是( ) A. 2233x x -= B. 235325a a a += C. 33x x += D. 10.2504ab ba -+= 13.下列运算中,正确的是( ) A .325a b ab +=B .325235a a a +=C .22243a b ba a b -+=- D .22541a a -=14.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:22(23)a ab b +--22(35)a ab b -++25a =26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A.2ab +B.3ab +C.4ab +D.ab -15.如果2231,27A m m B m m =-+=--,且0A B C -+=,则C =( )A.28m --B.226m m ---C.28m +D.2526m m --二、解答题16.(1)解方程:()()236x x -+=;(2)已知抛物线2y x bx c =++经过()()1,0,3,0A B -两点,求该抛物线的顶点坐标. 17.已知关于x 的一元二次方程()221430x k x k -++-=.(1)求证:无论k 取何值,该方程总有两个不相等的实数根;(2)若ABC △的斜边c =a 和b 恰好是这个方程的两个根,求k 的值. 18.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)如图1,抛物线l 与x 轴交于A B ,两点,与y 轴交于点C ,//CD x 轴交抛物线于点D ,作出抛物线的对称轴EF ;(2)如图2,抛物线12l l ,交于点P 且关于直线MN 对称,两抛物线分别交x 轴于点A B ,和点C D ,,作出直线MN .19.如图,在ABC △中,AC AB =,把ABC △绕点A 顺时针旋转得到ADE △(点B C 、分别对应点D E 、),BD 和CE 交于点F .(1)求证:CE BD =;(2)若245AB BAC ∠︒=,=,当四边形ADFC 是平行四边形时,求BF 的长. 20.如图,抛物线22y ax bx =+-与y 轴的交点为A ,抛物线的顶点为()1,3B -.(1)求出抛物线的解析式;(2)点P 为x 轴上一点,当PAB △的周长最小时,求出点P 的坐标.21.在平面直角坐标系中,ABC △的位置如图所示:(每个小方格都是边长为1个单位长度的正方形).(1)画出ABC △关于点的中心对称图形111A B C △;(2)将ABC △绕着点逆时针旋转90︒,画出旋转后得到的222A B C △;(3)请利用格点图,仅用无刻度的直尺画出AC 边上的高BD (保留作图痕迹);(4)P 为轴上一点,且PBC △是以BC 为直角边的直角三角形.请直接写出点P 的坐标. 22.某服装店销售一批衬衣,每件进价250元,开始以每件400元的价格销售,每星期能卖出20件,后来因库存积压,决定降价销售,经过两次降价后每件售价为324元,每星期能卖出172件. (1)已知两次降价的百分率相同,求每次降价的百分率;(2)喜欢研究数学的店长在降价的过程中发现,适当的降价可增加销售又可增加收入,且每件衬衣售价每降低1元,销售量会增加2件,若店长想要每星期获利11000元,为了让顾客得到更大的实惠,应把售价定为多少元?23.若二次函数23222y kx k x k ++++=(). (1)求证:抛物线与x 轴有交点.(2)经研究发现,无论k 为何值,抛物线经过某些特定的点,请求出这些定点. (3)若122y x +=,在21x -<<-范围内,请比较1y y ,的大小.24.某数学兴趣小组在探究函数22||3y x x =-+的图象和性质时,经历了以下探究过程:(2)描点并在图中画出函数的大致图象; (3)根据函数图象,完成以下问题:①观察函数22||3y x x =-+的图象,以下说法正确的有_________(填写正确的序号) A .对称轴是直线1x =;B .函数22||3y x x =-+的图象有两个最低点,其坐标分别是()1,2-、()1,2;C .当11x -<<时,y 随x 的增大而增大;D .当函数22||3y x x =-+的图象向下平移3个单位时,图象与x 轴有三个公共点;E .函数2(2)2|2|3y x x =---+的图象,可以看作是函数22||3y x x =-+的图象向右平移2个单位得到.②结合图象探究发现,当m 满足_________时,方程22||3x x m -+=有四个解.③设函数22||3y x x =-+的图象与其对称轴相交于P 点,当直线y n =和函数22||3y x x =-+图象只有两个交点时,且这两个交点与点P 所构成的三角形是等腰直角三角形,则n 的值为____________.25.(1)如图①,在等边三角形ABC 内,点到顶点,,的距离分别是3,4,5,则APB ∠= ,由于PA ,PB ,PC 不在同一三角形中,为了解决本题,我们可以将ABP △绕点逆时针旋转60︒到'ACP △处,连接'PP ,此时,ACP '△≌_________,就可以利用全等的知识,进而将三条线段的长度转化到一个三角形中,从而求出ABP △的度数;(2)请你利用第(1)题的解答方法解答:如图②,ABC △中,90CAB ∠=︒,AB AC =,、为BC 上的点,且45DAE ∠=︒,求证:222BD DC DE +=;(3)如图③,在ABC △中,120,CAB AB AC ∠︒==,60,3EAD BC ︒∠==BD 、DE 、EC 为边的三角形是直角三角形时,求BE 的长.26.二次函数2()(0)y a x h k a =-+≠的图象是抛物线,定义一种变换,先作这条抛物线关于原点对称的抛物线'y ,再将得到的对称抛物线'y 向上平移()0m m >个单位,得到新的抛物线m y ,我们称m y 叫做二次函数2()(0)y a x h k a =-+≠的m 阶变换.(1)已知:二次函数22(2)1y x =++,它的顶点关于原点的对称点为________,这个抛物线的2阶变换的表达式为_________.(2)若二次函数M 的6阶变换的关系式为26'(1)5y x =-+. ①二次函数M 的函数表达式为_________.②若二次函数M 的顶点为点A ,与x 轴相交的两个交点中左侧交点为点B ,在抛物线26'(1)5y x =-+上是否存在点P ,使点P 与直线AB 的距离最短,若存在,求出此时点P 的坐标.(3)抛物线2361y x x -=+-的顶点为点A ,与y 轴交于点B ,该抛物线的m 阶变换的顶点为点C .若ABC △是以AB 为腰的等腰三角形,请直按写出m 的值. 27.化简、求值:()2252345ab ab ab ab ab --+⎡⎤-⎣⎦,其中1223a b ==-,. 三、填空题28.若点(),1A a 与点()3,B b -关于原点对称,则b a =_____________. 29.方程()122x x x +=+的解为______.30.如图,Rt ABC △中,90BAC ∠=︒,AB AC =,将ABC △绕点顺时针旋转30︒得到''A B C △,'CB 与AB 相交于点,连接'AA ,则''B A A ∠的度数是________31.中国古代数学家杨辉的《田亩比类乘除捷法》中有这样一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问长比宽多多少步?经过计算长比宽多_______ 步.32.若直线y x m =+与抛物线22y x x =-有交点,则的取值范围是_______.33.已知函数()2122y a x ax a =--++的图象与两坐标轴共有两个交点,则的值为______. 34.多项式 与22m m +-的和是22m m -.35.规定一种新运算:*a b a b =-,当5,3a b ==时,则22*(354)a b ab a b ab +-= . 36.若多项式22232(53)x y x mx -+-+的值与x 的值无关,则m 等于 .37.一个多项式加上2233x y xy -得323x xy -,则这个多项式为 .参考答案1.答案:B 解析:2.答案:D10, 1b , 3. 故选:D. 答案:C解析:根据旋转的定义和性质可得解析:由()()13y x x =--+得到:()214y x =-++A. 向左平移1个单位后的解析式为:()224y x =-++,当0x =时,0y =,即该抛物线经过原点,故本选项不符合题意。

七年级上册整式的加减题

七年级上册整式的加减题

七年级上册整式的加减题一、整式的加减练习题。

1. 化简:3a + 2b - 5a - b- 解析:- 将同类项分别合并。

对于a的同类项有3a和-5a,对于b的同类项有2b和-b。

- 合并a的同类项:3a-5a=(3 - 5)a=-2a。

- 合并b的同类项:2b - b=(2 - 1)b = b。

- 所以,化简后的结果为-2a + b。

2. 计算:(2x^2-3x + 1)-( - 3x^2+5x - 7)- 解析:- 去括号时,括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。

- 所以(2x^2-3x + 1)-(-3x^2+5x - 7)=2x^2-3x + 1 + 3x^2-5x+7。

- 然后合并同类项,对于x^2的同类项有2x^2和3x^2,x的同类项有-3x和-5x,常数项有1和7。

- 合并x^2的同类项:2x^2+3x^2=(2 + 3)x^2=5x^2。

- 合并x的同类项:-3x-5x=(-3-5)x=-8x。

- 合并常数项:1 + 7=8。

- 所以结果为5x^2-8x + 8。

3. 先化简,再求值:(3a^2-ab + 7)-(5ab - 4a^2+7),其中a = 2,b=(1)/(3)- 解析:- 先化简式子,去括号得3a^2-ab + 7-5ab + 4a^2-7。

- 合并同类项,a^2的同类项有3a^2和4a^2,ab的同类项有-ab和-5ab,常数项7和-7相互抵消。

- 合并a^2的同类项:3a^2+4a^2=(3 + 4)a^2=7a^2。

- 合并ab的同类项:-ab-5ab=(-1-5)ab=-6ab。

- 所以化简后的式子为7a^2-6ab。

- 当a = 2,b=(1)/(3)时,代入式子得:- 7×2^2-6×2×(1)/(3)=7×4 - 4=28 - 4 = 24。

4. 化简:4(x^2+xy - 6)-3(2x^2-xy)- 解析:- 先使用乘法分配律去括号,4(x^2+xy - 6)=4x^2+4xy-24,3(2x^2-xy)=6x^2-3xy。

七年级数学上册第二单元《整式加减》-选择题专项经典练习(答案解析)

七年级数学上册第二单元《整式加减》-选择题专项经典练习(答案解析)

一、选择题1.下列同类项合并正确的是()A.x3+x2=x5B.2x﹣3x=﹣1C.﹣a2﹣2a2=﹣a2D.﹣y3x2+2x2y3=x2y3D解析:D【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A、x3与x2不是同类项,不能合并,故A错误;B、合并同类项错误,正确的是2x﹣3x=﹣x,故B错误;C、合并同类项错误,正确的是﹣a2﹣2a2=﹣3a2,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.2.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a﹣2b)人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a﹣6b)人,则中途上车的人数为()A.16a﹣8b B.7a﹣5b C.4a﹣4b D.7a﹣7b B解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a﹣6b)﹣[(6a﹣2b)﹣(3a﹣b)]=10a﹣6b﹣6a+2b+3a﹣b=7a﹣5b.故选B.【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.3.如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”( )A.32个B.56个C.60个D.64个C解析:C 【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可. 【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -. ∴第5个树枝为15+42=31,第6个树枝为:31+52=63, ∴第(6)个图比第(2)个图多63−3=60个 故答案为C 【点睛】此题考查图形的变化类,解题关键在于找出其规律型.4.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C 【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数 【详解】根据题意列得:20(-2-23020302222a b a b a b a a b aa b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b ) =10b-10a+15a-15b =5a-5b ,则这次买卖中,张师傅赚5(a-b )元. 故选C . 【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.5.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( ) A .1个 B .2个C .3个D .4个A解析:A 【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦. 【详解】字母可以表示任意数,当a <0时,-a >0,故①错误; 0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误; 若a=1,b=-2,a b >,但是22a b <,故④错误;235x y的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键. 6.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个 B .8个C .4个D .5个C解析:C 【分析】根据单项式的定义逐一判断即可. 【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式, -2是单项式, 3b-是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.7.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.8.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍B 解析:B 【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断. 【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B . 【点睛】本题考查了代数式,正确理解代数式表示的意义是关键. 9.下列关于多项式21ab a b --的说法中,正确的是( )A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1-B解析:B 【分析】直接利用多项式的相关定义进而分析得出答案. 【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误; 故选:B . 【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.10.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2 B .﹣2 C .0 D .4A解析:A 【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解. 【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2. 故选:A . 【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.11.若23,33M N x M x +=-=-,则N =( ) A .236x x +- B .23x x -+ C .236x x -- D .23x x - D解析:D 【分析】根据N=M+N-M 列式即可解决此题. 【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D. 【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.12.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C解析:C 【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值. 【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C . 【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 13.下列各式中,去括号正确的是( ) A .2(1)21x y x y +-=+- B .2(1)22x y x y --=++ C .2(1)22x y x y --=-+ D .2(1)22x y x y --=-- C解析:C 【分析】各式去括号得到结果,即可作出判断. 【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C . 【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键. 14.多项式33x y xy +-是( ) A .三次三项式 B .四次二项式C .三次二项式D .四次三项式D解析:D 【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了. 【详解】 解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D.【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关15.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是()A.2010 B.2014 C.2018 D.2022A解析:A【分析】设第二个为x,则第一个,第三个,第四个分别为:x-1,x+1,x+2,总和为:4x+2,分别令代数式为:2010,2014,2018,2022,算出x再判断.【详解】解: 设第二个为x,则第一个,第三个,第四个分别为:x-1,x+1,x+2,总和为:4x+2.当4x+2=2010时,x=502,则x-1=501;当4x+2=2014时,x=503,则x-1=502;当4x+2=2018时,x=504,则x-1=503;当4x+2=2022时,x=505,则x-1=504;由图可知每行有9个数,∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:496497498499500501502503504 505506507508509510511512513故选A.【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程.16.下面用数学语言叙述代数式1a﹣b,其中表达正确的是()A.a与b差的倒数B.b与a的倒数的差C.a的倒数与b的差D.1除以a与b的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b 为a 的倒数与b 的差, 故选:C . 【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.17.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解. 【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.18.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.19.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上C解析:C 【分析】由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案. 【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B , ∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈ 在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈ ∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上. 故答案为:C. 【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律. 20.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号. 21.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+- D .如果||||x y =,那么x y = B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误; 故选:B. 【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.22.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+ B .21x x -+- C .253x x -+- D .2513x x -- C解析:C 【分析】根据题意列出关系式,去括号合并即可得到结果. 【详解】∵一个多项式与x 2-2x+1的和是3x-2, ∴这个多项式=(3x-2)-(x 2-2x+1) =3x-2-x 2+2x-1 =253x x -+-. 故选:C . 【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 23.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A.-7 B.-1 C.5 D.11A解析:A【分析】先确定第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a1=|23+4|-10=17;第2次操作,a2=|17+4|-10=11;第3次操作,a3=|11+4|-10=5;第4次操作,a4=|5+4|-10=-1;第5次操作,a5=|-1+4|-10=-7;第6次操作,a6=|-7+4|-10=-7;第7次操作,a7=|-7+4|-10=-7;…第2020次操作,a2020=|-7+4|-10=-7.故选:A.【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.24.下列各代数式中,不是单项式的是()A.2m-B.23xy-C.0 D.2tD解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】A选项,2m-是单项式,不合题意;B选项,23xy-是单项式,不合题意;C选项,0是单项式,不合题意;D选项,2t不是单项式,符合题意.故选D.【点睛】本题考查单项式的定义,较为简单,要准确掌握定义.25.化简2a-[3b-5a-(2a-7b)]的值为()A.9a-10b B.5a+4b C.-a-4b D.-7a+10b A 解析:A【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b , 故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.26.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B解析:B 【分析】根据同类项是字母相同且相同字母的指数也相,可得答案. 【详解】33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的. 【点睛】本题考查了同类项,利用了同类项的定义. 27.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj D解析:D 【分析】明码“love”中每一个字母所代表的数字分别为12,15,22,5,再根据这四个数字的奇偶性,求得其密码. 【详解】l 对应的序号12为偶数,则密码对应的序号为1212182+=,对应r ;o 对应的序号15为奇数,则密码对应的序号为|1525|52-=,对应e ; v 对应的序号22为偶数,则密码对应的序号为2212232+=,对应w ; e 对应的序号5为奇数,则密码对应的序号为|525|102-=,对应j . 由此可得明码“love ”译成密码是rewj . 故选:D . 【点睛】本题考查了绝对值和求代数式的值.解题的关键是明确字母与数字的相互转化,每一个字母代表一个数字,一一对应关系.28.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C 解析:C 【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案. 【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意; B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意; C 选项、333541x x x x -++-+-=3724x x -++,符合题意; D 选项、337322724x x x x x -+---=-+-,不符合题意. 故选:C . 【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 29.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ;B. (-b)+a=-b+a ;C. (-b)+(-a)=-b-a ;D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒ 故选:B ﹒ 【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒ 30.下列去括号正确的是( ) A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x+--=+-+D .()()223423422x y x x y x--+=--+ C解析:C 【分析】依据去括号法则计算即可判断正误. 【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+-⎪⎝⎭,故此选项错误;B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x+--=+-+,此选项正确;D. ()()223423422x y x x y x--+=---,故此选项错误;故选:C. 【点睛】此题考查整式的化简,注意去括号法则.。

七年级上册数学整式的加减题

七年级上册数学整式的加减题

七年级上册数学整式的加减题一、整式的加减练习题。

1. 化简:3a + 2b - 5a - b- 解析:将同类项进行合并。

同类项是指所含字母相同,并且相同字母的指数也相同的项。

在3a+2b - 5a - b中,3a和-5a是同类项,2b和-b是同类项。

- 合并同类项得:(3a - 5a)+(2b - b)=-2a + b。

2. 计算:(2x^2-3x + 1)-( - 3x^2+5x - 7)- 解析:去括号时,如果括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

- 原式=2x^2-3x + 1+3x^2-5x + 7,然后合并同类项,(2x^2+3x^2)+(-3x-5x)+(1 + 7)=5x^2-8x+8。

3. 化简:4(a^2b - 2ab^2)-(a^2b+2ab^2)- 解析:先使用乘法分配律去括号,4(a^2b-2ab^2) = 4a^2b-8ab^2,-(a^2b +2ab^2)=-a^2b-2ab^2。

- 然后合并同类项得:(4a^2b-a^2b)+(-8ab^2-2ab^2) = 3a^2b-10ab^2。

4. 求整式2a^2-3a - 1与-3a^2+5a - 2的差。

- 解析:求差就是用第一个整式减去第二个整式,即(2a^2-3a - 1)-(-3a^2+5a - 2)。

- 去括号得2a^2-3a - 1 + 3a^2-5a + 2,合并同类项(2a^2+3a^2)+(-3a-5a)+(-1 + 2)=5a^2-8a+1。

5. 化简:3x^2y - [2xy^2-2(xy-(3)/(2)x^2y)+xy]+3xy^2- 解析:先去小括号,3x^2y-[2xy^2-2xy + 3x^2y+xy]+3xy^2,再去中括号3x^2y - 2xy^2+2xy - 3x^2y-xy + 3xy^2。

- 最后合并同类项(3x^2y-3x^2y)+(-2xy^2+3xy^2)+(2xy-xy)=xy^2+xy。

合并同类项 同步练习 2024--2025学年人教版七年级数学上册_46465798

合并同类项  同步练习   2024--2025学年人教版七年级数学上册_46465798

新人教版(2024版)第四章整式的加减同步作业3 4.2.1合并同类项班级姓名家长签名年月日知识要点:1、所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个常数项也是同类项.2、化简多项式的一般步骤:(1)找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4)按同一个字母的降幂(或升幂排列).同步练习一.选择题1.计算4x2﹣x2的结果是()A.4B.3x2C.2x2D.4x22.下列计算正确的是()A.3x+3y=6xy B.ab﹣6ba=﹣5abC.3x2﹣2x=x D.4a2b+2ab2=6a2b3.已知单项式3a m+1b与﹣b n﹣2a3可以合并同类项,则m,n的值分别为()A.2,3B.2,2C.3,2D.3,34.下列运算正确的是()A.2x+3y=5xy B.6x﹣4x=2x2C.﹣a2﹣a2=0D.7a2b﹣3a2b=4a2b5.关于x,y的多项式1+4xy2+nxy2+xy中不含xy2项,则n的值是()A.0B.4C.﹣1D.﹣46.下列计算正确的是()A.2m3+3m2=5m5B.m+n=mnC.2m2n﹣nm2=m2n D.2m3﹣3m2=m7.若单项式3x 3y m 与−14x n+1y 2的和是单项式,则这两个单项式的和为( ) A .−34x 3y 2B .114x 2y 3C .114x 3y 2D .134x 3y 28.下列各项代数式相加能合并成一个单项式的是( ) A .3xy 与2ab B .2a 2b 与﹣0.5ba 2 C .3a 与2abD .13与x9.下列说法:①平方等于本身的数只有1;②若a ,b 互为相反数,且ab ≠0,则a b=−1;③若|a |=a ,则(﹣a )3的值为负数;④如果a +b +c =0,且|a |>|b |>|c |,那么ac <0;⑤2x 2+3x 3=5x 5;⑥多项式−2x 2y3+2xy −1是三次三项式;正确的个数为( )A .3个B .4个C .5个D .6个10.对于式子x +2x +3x +4x +…+99x +100x ,按照以下规则改变指定项的符号(仅限于正号与负号之间的变换):第一次操作改变偶数项前的符号,其余各项符号不变;第二次操作:在前一次操作的结果上只改变3的倍数项前的符号;第三次操作:在前一次操作的结果上只改变4的倍数项前的符号;第四次操作:在前一次操作的结果上只改变6的倍数项前的符号.下列说法:①第二次操作结束后,一共有51项的符号为正号;②第三次操作结束后,所有10的倍数项之和为170x ;③第四次操作结束后,所有项的和为825x .其中正确的个数是( ) A .0 B .1 C .2 D .3二.填空题(11.合并同类项:8m 2﹣5m 2= .12.若单项式12x 2y m与﹣2x n y 3的和仍为单项式,则m +n = .13.2x k y k +2与3x 2y n 的和是5x 2y n ,则k +n = . 14.若4x 2y 3+2ax 2y 3=4bx 2y 3,则3+a ﹣2b = .15.若a n +a n ⋯+a n ︸a 个a n=a 4(a 为大于1的整数),则n 的值是 .16.如图,某校的图书码共有7位数字,它是由6位“数字代码”和1位“校验码”构成,其中校验码是用来校验图书码中前6位数字代码的正确性的,它的编制是按照特定的算法得来的.以图1所示的图书码为例,其算法为:第1步,计算前6位数字中从左向右数偶数位上的数字之和为a ,即a =9+1+3=13;第2步,计算前6位数字中从左向右数奇数位上的数字之和为b ,即b =6+0+2=8; 第3步,计算3a 与b 的和为c ,即c =3×13+8=47;第4步,取大于或等于c 且为10的整数倍的最小数d ,即d =50; 第5步,计算d 与c 的差就是校验码X ,即X =50﹣47=3.如图2,某个图书码中的一位数字被墨水污染了,设这位数字为m ,则m 的值为 . (共9小题)17.计算:﹣3ab ﹣4ab 2+7ab ﹣2ab 2.18.单项式﹣2x 4y m ﹣1与5x n ﹣1y 2的和是一个单项式,求m ﹣2n 的值.19.已知单项式x 3y m +1与单项式12x n−1y 2的和也是单项式.(1)求m ,n 的值;(2)当x =1,y =2时,求x 3y m +1+12x n−1y 2的值.20.(1)已知x=3时,多项式ax3﹣bx+5的值是1,当x=﹣3时,求ax3﹣bx+5的值.(2)如果关于字母x的二次多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求(m+n)(m﹣n)的值.21.已知T=3a+ab﹣7c2+3a+7c2.(1)化简T;(2)当a=3,b=﹣2,c=−16时,求T的值.22.(1)计算:3333+3+3=;7777+7+7=.(2)设aaa是一个三位数,表示这个三位数每一数位上的数字都是a.试说明:无论a取何值,aaaa+a+a的值为定值.23.(1)小丽在计算14a 2−617a 2−1117a 2时,采用了如下做法:解:14a 2−617a 2−1117a 2=14a 2−(617a 2+1117a 2)⋯① =14a 2−a 2 =−34a 2⋯②步骤①的依据是: ; 步骤②的依据是: . (2)请试着用小丽的方法计算:−37x 2y −4419x 2y −47x 2y +619x 2y .24.阅读材料:在合并同类项中,5a ﹣3a +a =(5﹣3+1)a =3a ,类似地,我们把(x +y )看成一个整体,则5(x +y )﹣3(x +y )+(x +y )=(5﹣3+1)(x +y )=3(x +y ).“整体思想”是中学教学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛. 尝试应用:(1)把(x ﹣y )2看成一个整体,合并3(x ﹣y )2﹣6(x ﹣y )2+2(x ﹣y )2的结果是 .(2)已知a 2﹣2b =1,求3﹣2a 2+4b 的值.25.【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”.通常的解题方法是把x,y看作字母,把a看作系数合并同类项.因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,其中a+3=0,则a=﹣3.(1)若关于x的多项式(2x﹣3)m+m2﹣3x的值与x的取值无关,求m的值;【能力提升】(2)7张如图(a)的小长方形,长为a、宽为b,按照图(b)的方式不重叠地放在大长方形ABCD内,将大长方形中未被覆盖的两个部分涂上阴影,设右上角的面积为S1,左下角的面积为S2,当AD变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.。

七年级数学整式的加减同类项合并练习题(附答案)

七年级数学整式的加减同类项合并练习题(附答案)
6.下列计算正确的是()
A.
B.
C.
D.
7.已知一个多项式与 的和等于 ,则这个多项式是( )
A. B.
C. D.
8.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目: ,空格的地方被墨水弄脏了,请问空格中的一项是()
A. B. C. D.
29.一个多项式M减去多项式 ,马虎同学将减号抄成了加号,运算结果得 ,则多项式M是.
30.规定一种新运算: ,当 时,则 .
参考答案
1.答案:D
解析:解:A、 不能合并,故A错误;
B、 ,故B错误;
C、 ,故C错误;
D、 ,故D正确;
故选:D.
根据合并同类项的法则进行计算即可.
本题考查了合并同类项,掌握运算法则是解题的关键.
16.孙爷爷今年a岁,张伯伯今年 岁,经过x年后,它们相差()
A.20岁B. 岁C. 岁D.a岁
17.如图所示,下列各图中的三个数之间具有相同的规律,根据此规律,图形中M与 的关系是()
A. B. C. D.
18.多项式 与 的和为()
A. B.
C. D.
二、解答题
19.小明在做一道题“已知两个多项式 ,计算 ”时,误将 看成 ,求得的结果是 ,若 ,请你帮助小明求出 的正确答案.
29.答案:
解析:由题意可知, ,
所以 .
30.答案:
解析:由题意知 .
当 时,原式 .
(2)因为
所以
当 时,原式 .
解析:
22.答案:(1)
(2)
解析:(1)原式
(2)原式
23.答案:3

人教新课标七年级上册数学整式的加减练习题50道

人教新课标七年级上册数学整式的加减练习题50道

人教新课标七年级上册数学整式的加减练习题50道1、6a^2b+1ab^2-4ab^2-7a^2b^2合并同类项得:-7a^2b^2+2a^2b-3ab^22、-3x^2y+2x^2y+3xy^2-2xy2合并同类项得:-3x^2y+5xy^23、-2(a^2-3a)+5a^2-2a展开得:-2a^2+6a+5a^2-2a合并同类项得:3a^2+4a4、2x-(x+3y)-(-x-y)-(x-y)化简得:2x-x-3y+x+y-x+y合并同类项得:-y5、(2x^4-5x^2-4x+1)-(3x^3-5x^2-3x)化简得:2x^4-3x^3+4x^2-x+16、-[-(x+1)]-(x-1)化简得:x+1-x+1合并同类项得:27、-3(x^2-2xy+y^2)+(2x^2-xy-2y^2)展开得:-3x^2+6xy-3y^2+2x^2-xy-2y^2合并同类项得:-x^2+5xy-5y^28、5ab-2[3ab-(4ab^2+ab)]-5ab^2,其中a=,b=。

化简得:5ab-2[3ab-4ab^2-ab]-5ab^2展开得:5ab-6ab+8ab^2+5ab^2合并同类项得:13ab^2-a9、3ab-4ab+8ab-7ab+ab合并同类项得:ab10、7x-(5x-5y)-y化简得:7x-5x+5y-y合并同类项得:2x+4y11、23a^3bc^2-15ab^2c+8abc-24a^3bc^2-8abc合并同类项得:-a^3bc^2-15ab^2c-8abc12、-7x^2+6x+13x^2-4x-5x^2合并同类项得:x^2+2x13、2y+(-2y+5)-(3y+2)化简得:2y-2y+5-3y-2合并同类项得:-y+314、(2x^2-3xy+4y^2)+(x^2+2xy-3y^2)合并同类项得:3x^2-xy+y^215、2a-(3a-2b+2)+(3a-4b-1)合并同类项得:2a-3a+3a-2b-4b+2-1合并同类项得:-3b+116、-6x^2-7x^2+15x^2-2x^2合并同类项得:x^217、2x-(x+3y)-(-x-y)-(x-y)与第4题重复,已删除18、2x+2y-[3x-2(x-y)]化简得:2x+2y-3x+4x-2y合并同类项得:3x19、5-(1-x)-1-(x-1)化简得:5-1+x-1-1-x+1合并同类项得:320、一个多项式减去3m^4-m^3-2m+5得-2m^4-3m^3-2m^2-1,那么这个多项式等于______。

七年级上册数学整式加减法计算题

七年级上册数学整式加减法计算题

七年级上册数学整式加减法计算题一、整式加法计算题。

1. 计算:(3x + 2y)+(4x - 3y)- 解析:- 去括号法则:括号前是正号,去掉括号后,括号里的各项不变号。

- 所以原式=3x + 2y+4x - 3y。

- 合并同类项:同类项的系数相加,字母和指数不变。

- 对于x的同类项3x和4x,系数相加得(3 + 4)x=7x;对于y的同类项2y和-3y,系数相加得(2-3)y=-y。

- 最终结果为7x - y。

2. 计算:(2a^2+3a - 1)+(a^2-2a + 3)- 解析:- 去括号得2a^2+3a - 1+a^2-2a + 3。

- 合并同类项:对于a^2的同类项2a^2和a^2,系数相加得(2 +1)a^2=3a^2;对于a的同类项3a和-2a,系数相加得(3-2)a=a;常数项-1和3相加得2。

- 结果为3a^2+a + 2。

3. 计算:(5m+3n)+( - 3m - 2n)- 解析:- 去括号得5m + 3n-3m - 2n。

- 合并同类项:m的同类项5m和-3m合并得(5-3)m = 2m;n的同类项3n和-2n合并得(3 - 2)n=n。

- 结果为2m + n。

4. 计算:(x^2y+3xy^2)+( - 2x^2y+xy^2)- 解析:- 去括号得x^2y+3xy^2-2x^2y+xy^2。

- 合并同类项:对于x^2y的同类项x^2y和-2x^2y,系数相加得(1-2)x^2y=-x^2y;对于xy^2的同类项3xy^2和xy^2,系数相加得(3 + 1)xy^2=4xy^2。

- 结果为-x^2y + 4xy^2。

5. 计算:(4a^3-2a^2+a)+( - 3a^3+a^2-2a)- 解析:- 去括号得4a^3-2a^2+a - 3a^3+a^2-2a。

- 合并同类项:对于a^3的同类项4a^3和-3a^3,系数相加得(4-3)a^3=a^3;对于a^2的同类项-2a^2和a^2,系数相加得(-2 + 1)a^2=-a^2;对于a的同类项a和-2a,系数相加得(1-2)a=-a。

七年级数学上册 3.4 整式的加减 3.4.1 同类项跟踪训练(含解析)(新版)华东师大版-(新版)

七年级数学上册 3.4 整式的加减 3.4.1 同类项跟踪训练(含解析)(新版)华东师大版-(新版)

同类项一.选择题(共9小题)1.若﹣5x2y m与x n y是同类项,则m+n的值为()A. 1 B.2 C.3 D.42.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=24.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.5.如果代数式4x2a﹣1y与是同类项,那么()A.a=2,b=﹣6 B.a=3,b=﹣8 C.a=2,b=﹣5 D.a=3,b=﹣96.已知与﹣x3y2n是同类项,则(nm)2010的值为()A.2010 B.﹣2010 C.1 D.﹣17.已知单项式﹣3x2m﹣n y4与x3y m+2n是同类项,则m n的值为()A.B.3 C.1 D.28.单项式﹣x a+b y a﹣1与3x2y是同类项,则a﹣b的值为()A. 2 B.0 C.﹣2 D.19.若2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,则m,n的值分别是()A.1,1 B.1,2 C.1,3 D.2,1二.填空题(共7小题)10若代数式2a3b n+2与﹣3a m﹣2b是同类项,则mn= _________ .11.若单项式2x2y m与﹣3x n y3是同类项,则m+n的值是_________ .12.若代数式﹣4x6y与x2n y是同类项,则常数n的值为_________ .13.已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012= _________ .14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则2m+3n= _________ .15.当m= _________ 时,﹣x3b2m与x3b是同类项.16.如果单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,那么两个单项式的积为_________ .三.解答题(共7小题)17.如果单项式2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项.(1)(7a﹣22)2004的值.(2)若2mx a y+5nx2a﹣3y=0,求(2m+5n)2005的值.18.己知3a m•b4与﹣5a4•b n﹣1是同类项,求m+n的值.19.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.20.已知﹣5.1×10m x2y n与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n的最小值是几?当n取最小值时,合并同类项后的单项式的系数和次数是几?21.若关于x,y的单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.(1)求(4m﹣13)2009的值.(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求的值.22.阅读下面第(1)题的解答过程,然后解答第(2)题.(1)已知﹣2x m+5n y5与4x2y m﹣3n是同类项,求m+n的值.解:根据同类项的意义,可知x的指数相同,即:m+5n=2.y的指数也相同,即m﹣3n=5.所以:(m+5n)+(m﹣3n)=2+5,即:2m+2n=2(m+n)=7所以:(2)已知x m﹣3n y7与是同类项,求m+2n的值.23.若单项式的和仍是单项式,求m,n的值.第三章整式加减.1同类项参考答案与试题解析一.选择题(共9小题)1.若﹣5x2y m与x n y是同类项,则m+n的值为()A. 1 B.2 C.3 D.4考点:-同类项.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n,m的值,再相加即可.解答:-解:∵﹣5x2y m和x n y是同类项,∴n=2,m=1,m+n=2+1=3,故选:C.点评:-本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.2.下列各式中,与2a的同类项的是()A.3a B.2ab C.﹣3a2D.a2b考点:-同类项.分析:-本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.中的字母是a,a的指数为1,解答:-解:2a中的字母是a,a的指数为1,A、3a中的字母是a,a的指数为1,故A选项正确;B、2ab中字母为a、b,故B选项错误;C、中字母a的指数为2,故C选项错误;D、字母与字母指数都不同,故D选项错误,故选:A.点评:-考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.3.如果单项式﹣x a+1y3与x2y b是同类项,那么a、b的值分别为()A.a=1,b=3 B.a=1,b=2 C.a=2,b=3 D.a=2,b=2考点:-同类项.分析:-根据同类项是字母相同相同,且相同的字母的指数也相同,可得答案.解答:-解:单项式﹣x a+1y3与x2y b是同类项,a+1=2,b=3,a=1,b=3,故选:A.点评:-本题考查了同类项,相同的字母的指数也相同是解题关键.4.已知代数式﹣3x m﹣1y3与x n y m+n是同类项,那么m、n的值分别是()A.B.C.D.考点:-同类项;解二元一次方程组.分析:-本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值.解答:-解:由同类项的定义,得,解得.故选C.点评:-同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.5.如果代数式4x2a﹣1y与是同类项,那么()A.a=2,b=﹣6 B.a=3,b=﹣8 C.a=2,b=﹣5 D.a=3,b=﹣9考点:-同类项.分析:-根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,即可求得a和b的值.解答:-解:根据同类项的定义可知:2a﹣1=5,3a+b=1,解得:a=3把a=3代入到3a+b=1,解得:b=﹣8.故选B.点评:-本题考查同类项定义,判断两个项是不是同类项,一看所含字母是否相同,二看相同字母的指数是否相同.6.已知与﹣x3y2n是同类项,则(nm)2010的值为()A.2010 B.﹣2010 C.1 D.﹣1考点:-同类项.专题:-探究型.分析:-先根据同类项的定义列出方程组,求出n、m的值,再把m、n的值代入代数式进行计算即可.解答:-解:∵与﹣x3y2n是同类项,∴,解得,∴2010=(﹣1)2010=1.故选C.点评:-本题考查的是同类项的定义,能根据同类项的定义列出关于m、n的方程组是解答此题的关键.7.已知单项式﹣3x2m﹣n y4与x3y m+2n是同类项,则m n的值为()A.B.3 C.1 D.2考点:-同类项.专题:-计算题.分析:-根据同类项的定义得到2m﹣n=3,m+2n=4,然后解方程组,再把方程组的解代入m n进行计算即可.解答:-解:∵单项式﹣3x2m﹣n y4与x3y m+2n是同类项,∴2m﹣n=3,m+2n=4,解方程组,得,∴m n=21=2.故选D.点评:-本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫同类项.8.单项式﹣x a+b y a﹣1与3x2y是同类项,则a﹣b的值为()A. 2 B.0 C.﹣2 D.1考点:-同类项;解二元一次方程组.分析:-本题考查同类项的定义,由同类项的定义可先求得a和b的值,从而求出它们的差.解答:-解:由同类项得定义得,,解得,则a﹣b=2﹣0=2.故选A.点评:-同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.9.若2a m b2m+3n与a2n﹣3b8的和仍是一个单项式,则m,n的值分别是()A.1,1 B.1,2 C.1,3 D.2,1考点:-同类项;解二元一次方程组.分析:-根据同类项的定义即可列出方程组,求出m、n的值即可.解答:-解:依题意,得,将①代入②,可得2(2n﹣3)+3n=8,即4n﹣6+3n=8,即7n=14,n=2.则m=1.故选B.点评:-本题考查的是同类项和方程的综合题目.两个单项式的和为单项式,则这两个单项式必须是同类项.二.填空题(共7小题)10.若代数式2a3b n+2与﹣3a m﹣2b是同类项,则mn= ﹣5 .考点:-同类项.分析:-根据同类项是字母相同,且相同字母的指数也相同,可得m、n的值再根据有理数的乘法,可得答案.解答:-解:2a3b n+2与﹣3a m﹣2b是同类项,m﹣2=3,n+2=1,m=5,n=﹣1,mn=5×(﹣1)=﹣5,故答案为:﹣5.点评:-本题考查了同类项,相同字母的指数也相同是解题关键.11.若单项式2x2y m与﹣3x n y3是同类项,则m+n的值是 5 .考点:-同类项.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.解答:-解:∵单项式2x2y m与﹣3x n y3是同类项,∴m=3,n=2,∴m+n=3+2=5.故答案为5.点评:-本题考查同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.注意:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.12.若代数式﹣4x6y与x2n y是同类项,则常数n的值为 3 .考点:-同类项.专题:-计算题.分析:-根据同类项的定义得到2n=6解得n值即可.解答:-解:∵代数式﹣4x6y与x2n y是同类项,∴2n=6解得:n=3故答案为:3.点评:-本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.13.已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012= 1 .考点:-同类项.专题:-计算题.分析:-根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出m,n的值,再代入代数式计算即可.解答:-解:∵﹣2x m﹣1y3和x n y m+n是同类项,∴m﹣1=n,3=m+n,解得m=2,n=1,所以(n﹣m)2012=(1﹣2)2012=1.故答案为:1.点评:-本题考查了同类项的定义,注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则2m+3n= 13 .考点:-同类项.分析:-本题考查同类项的定义(所含字母相同,相同字母的指数相同),可得:m﹣2=3,n+1=2,解方程即可求得m,n的值,从而求出2m+3n的值.解答:-解:由同类项的定义,可知m﹣2=3,n+1=2,解得n=1,m=5,则2m+3n=13.故答案为:13点评:-同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.15.当m= 0.5 时,﹣x3b2m与x3b是同类项.考点:-同类项.专题:-计算题.分析:-利用同类项的定义计算即可求出m的值.解答:-解:由﹣x3b2m与x3b是同类项,得到2m=1,解得:m=0.5,点评:-此题考查了同类项,熟练掌握同类项的定义是解本题的关键.16.如果单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,那么两个单项式的积为﹣12a5b2.考点:-同类项;单项式乘单项式.分析:-根据同类项的定义,相同字母的指数相同得到关于m、n的方程组,通过解方程组求得它们的值,然后将其代入两个单项式,利用单项式的乘法法则进行解答即可.解答:-解:∵单项式﹣3a2m﹣n b与4a3m+n b5m+8n是同类项,∴,解得,则这两个单项式是﹣3a b与4b,∴﹣3a b×4b=﹣12a5b2.故答案是:﹣12a5b2.点评:-本题考查了同类项的定义和整式的乘法,根据同类项定义中相同字母的指数相同确定出具体的单项式是解题的关键.三.解答题(共7小题)17.如果单项式2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项.(1)(7a﹣22)2004的值.(2)若2mx a y+5nx2a﹣3y=0,求(2m+5n)2005的值.考点:-同类项.专题:-计算题.分析:-(1)根据同类项所含字母相同,相同字母的指数相同可得a的值,代入求解即可;(2)利用2mx a y+5nx2a﹣3y=0,得出它们的系数和为0,进而得出答案.解答:-解:(1)∵单项式是同类项,∴2a﹣3=a,∴a=3,∴(7a﹣22)2004=1;(2)∵2mx a y+5nx2a﹣3y=0,2mx a y与﹣5nx2a﹣3y是关于x,y的单项式,且它们是同类项,∴2m+5n=0,∴(2m+5n)2005=0.点评:-此题主要考查了同类项,利用同类项定义得出系数关系是解题关键.18.己知3a m•b4与﹣5a4•b n﹣1是同类项,求m+n的值.考点:-同类项.分析:-根据同类项是字母相同,且相同字母的指数相同,可得m,n的值,根据有理数的加法运算,可得答案.解答:-解:∵3a m•b4与﹣5a4•b n﹣1是同类项,∴m=4,n﹣1=4,n=5,m+n=×4+5=2+5=7.点评:-本题考查了同类项,同类项是字母相同,且相同字母的指数相同.19.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.考点:-同类项;代数式求值.分析:-利用同类项的定义求出m,n的值,代入代数式求值即可.解答:-解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣1.点评:-本题主要考查了同类项及代数式求值,解题的关键是根据同类项的定义求出m,n的值.20.已知﹣5.1×10m x2y n与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n的最小值是几?当n取最小值时,合并同类项后的单项式的系数和次数是几?考点:-同类项;单项式.分析:-本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m和n的值,根据合并同类项法则合并同类项即可.解答:-解:由﹣5.1×10m x2y n与3n x m+1y n是同类项,得m=1,﹣5.1×10x2y n+3n x2y n=(﹣51+3n)x2y n,由﹣51+3n>0得n最小是4,即(﹣51+34)x2y4=30x2y4,合并同类项后,单项式的系数是30,次数是6.点评:-本题考查的是同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同,(2)相同字母的指数相同,是易混点,还要注意同类项与字母的顺序无关,与系数无关,以及合并同类项的法则,难度适中.21.若关于x,y的单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.(1)求(4m﹣13)2009的值.(2)若2ax m y+5bx2m﹣3y=0,且xy≠0,求的值.考点:-同类项.分析:-根据同类项的定义列出方程,求出m的值.(1)将m的值代入代数式计算.(2)将m的值代入2ax m y+5bx2m﹣3y=0,且xy≠0,得出2a+5b=0,即a=﹣2.5b.代入求得的值.解答:-解:单项式2ax m y与5bx2m﹣3y是同类项,且a,b不为零.m=2m﹣3,解得m=3(1)将m=3代入,(4m﹣13)2009=﹣1.(2)∵2ax m y+5bx2m﹣3y=0,且xy≠0,∴(2a+5b)x3y=0,∴2a+5b=0,a=﹣2.5b.∴=﹣点评:-同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.22.阅读下面第(1)题的解答过程,然后解答第(2)题.(1)已知﹣2x m+5n y5与4x2y m﹣3n是同类项,求m+n的值.解:根据同类项的意义,可知x的指数相同,即:m+5n=2.y的指数也相同,即m﹣3n=5.所以:(m+5n)+(m﹣3n)=2+5,即:2m+2n=2(m+n)=7所以:(2)已知x m﹣3n y7与是同类项,求m+2n的值.考点:-同类项.分析:-根据(1)小题的解题方法,结合同类项的概念直接进行计算.解答:-解:根据同类项的意义,可知x的指数相同,即:m﹣3n=3.y的指数也相同,即3m+11n=7.所以:(m﹣3n)+(3m+11n)=3+7,即:4m+8n=4(m+2n)=10所以:m+2n=.点评:-本题主要考查了同类项的概念,注意类比方法的运用.23.若单项式的和仍是单项式,求m,n的值.考点:-同类项;解二元一次方程组.专题:-计算题.分析:-由同类项的定义,即相同字母的指数相同,得到关于m、n的方程组,即可求得m和n的值.解答:-解:由同类项的定义,得,解得m=1,n=﹣0.5.故答案为m=1,n=﹣0.5.点评:-本题主要考查同类项的定义这类题目的解题关键是从同类项的定义出发,列出方程(组)并求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8. ,
【解析】
【分析】
根据合并同类项的法则以及有理数的运算法则即可求出答案.
【详解】

代入得,原式 .
【点睛】
本题考查了整式的化简求值,解题的关键熟练运用整式的运算法则.
9. .
【解析】.解:原式 …………3分
………………………………5分
10.(1) ;(2) .
【解析】
【分析】
根据整式的加减运算即可求解.
【详解】
原式=
= (-1-3+4)a+(3-12)b
=-9b
【点睛】
本题考查了整式的加减,解题的关键是熟练掌握整式的加减运算法则.
7.(1)4m-n;(2)
【解析】
【分析】
(1)合并同类项即可得到答案;
(2)将多项式合并同类项.
【详解】
(1) ,
(2) .
【点睛】
此题考查整式的加减法计算,将多项式中的同类项合并.
七年级数学上册整式的加减合并同类项专题训练
学校:___________姓名:___________班级:___________考号:___________
1.合并同类项:
2.合并同类项:
3.合并同类项:
4.合并同类项
6.合并同类项: .
7.合并同类项:
8.合并同类项:
(1)
(2)
9.合并同类项: ,
【解析】
试题分析:(1)先找出同类项,利用加法的交换结合律将同类项结合在一起,然后利用合并同类项的法则计算即可;
(2)先去括号,然后合并同类项即可.
试题解析:
(1)解:原式=(5x-3x)+(2y-7y)
=2x-5y;
(2)解:原式=3m2-n2-2m2+4n2
=(3m2-2m2)+( -n2+4n2)
10.合并同类项:
11.合并同类项:(1) ;
(2) .
12.合并同类项
(1)
(2)
13.合并同类项
(1)
(2)
14.合并下列各式的同类项:
(1并同类项
(1)
(2)
16.合并同类项: .
17.合并同类项: =__________.
17.合并同类项: =_____.
18.合并同类项: =________________.
【详解】
原式=(2-1)a2+(4-1)ab+(3-4)b2
=a2+3ab-b2.
故答案为a2+3ab-b2.
【点睛】
本题考查了合并同类项的知识,熟练掌握同类项的定义是解题的关键.
20.
【解析】
【分析】
根据合并同类项法则计算即可得答案.
【详解】
8 5 6 =(8-5-6)m2=-3m2,
故答案为:-3m2
试题解析:(1)原式=(5a+2a)+(3b-4b)=7a-b
(2)原式= +2ab+ -2 +4ab-2 =( -2 )+(2ab+4ab)+( -2 )=- +6ab-
考点:合并同类项计算
15. .
【解析】
试题分析:系数相加减,字母和字母指数不变. =-8x.
考点:合并同类项.
16.
【解析】
【分析】
【点睛】
本题考查合并同类项,合并同类项后,所得项的系数是合并前各同类项系数的和,且字母部分不变;熟练掌握合并同类项法则是解题关键.
=m2+3n2.
13.(1) ;(2) ;(3)
【解析】
【分析】
通过合并同类项的法则对三个式子进行化简即可;
【详解】
(1)原式 .
(2)原式 .
(3)原式 .
【点睛】
本题主要考查了合并同类项的知识点,准确计算是解题的关键.
14.(1) ;(2)
【解析】
试题分析:首先找出各式中的同类项,然后进行合并同类项计算.
19.合并同类项: ________.
20.合并同类项:8 5 6 =__________.
参考答案
1.2a+6b
【解析】
试题分析:先去括号,然后合并同类项即可.
试题解析:
解:原式=4a﹣2a+6b=2a+6b.
2.- +2x+8
【解析】
试题分析:首先找出同类项,然后进行合并同类项计算.
试题解析:原式 =(2—3) +(—3+5)x+8
【详解】
(1)原式
.
(2)原式
.
【点睛】
此题主要考查合并同类项,解题的关键是熟知整式的加减运算法则.
11.(1)3x2y2-xy;(2)-a+3b.
【解析】
试题分析:(1)先确定同类项后再合并即可;(2)去括号后再合并同类项即可.
试题解析:解:(1)
= ;
(2)
=
=
考点:整式的加减运算.
12.(1) 2x-5y; (2) m2+3n2
根据合并同类项的方法进行计算即可得到答案.
【详解】
= = ,故答案为 .
【点睛】
本题考查合并同类项,解题的关键是掌握合并同类项的求法.
17.
【解析】
【分析】
根据合并同类项的法则求出即可.
【详解】

故答案为: .
【点睛】
本题考查合并同类项,熟练掌握计算法则是解题关键.
18.-3a2b+6ab2+3
【解析】
考点:合并同类项
3.
【解析】
试题分析:先找出同类项,再根据合并同类项法则即可得到结果.
原式=
考点:本题考查的是合并同类项
点评:解答本题的关键是熟练掌握合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
4. .
【解析】
【分析】
首先去括号,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变进行合并即可.
【分析】
先找出同类项,然后再根据合并同类项法则进行合并即可.
【详解】
=(-5a2b+2ba2)+(-4ab+4ba)+6ab2+3
=-3a2b+6ab2+3,
故答案为:-3a2b+6ab2+3.
【点睛】
本题考查了合并同类项,正确找出同类项并熟练掌握合并同类项法则是解题的关键.
19.
【解析】
【分析】
把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
【详解】

=
=
= .
【点睛】
本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变,去括号时要变号.
5.
【解析】
【分析】
先去括号得到 ,再合并同类项,即可得到答案.
【详解】
= = .
【点睛】
本题考查合并同类项,解题的关键是掌握合并同类项.
6.-9b
【解析】
【分析】
去括号合并同类项即可得到结果,去第二个括号时,前面是负号,把“-”及其括号去掉,括号内各项都要改变符号.
相关文档
最新文档