7 习题七 光的衍射
光的衍射计算题与答案解析
《光的衍射》计算题1. 在某个单缝衍射实验中,光源发出的光含有两秏波长1和2,垂直入射于单缝上.假如1的第一级衍射极小与2的第二级衍射极小相重合,试问(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? 解:(1) 由单缝衍射暗纹公式得111sin λθ=a 222sin λθ=a 由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ=3分(2) 211112sin λλθk k a == (k 1 = 1, 2, ……) a k /2sin 211λθ=222sin λθk a = (k 2 = 1, 2, ……) a k /sin 222λθ=若k 2 = 2k 1,则1 = 2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合. 2分2. 波长为600 nm (1 nm=10-9 m)的单色光垂直入射到宽度为a =0.10 mm 的单缝上,观察夫琅禾费衍射图样,透镜焦距f =1.0 m ,屏在透镜的焦平面处.求:(1) 中央衍射明条纹的宽度 x 0;(2) 第二级暗纹离透镜焦点的距离x 2 . 解:(1) 对于第一级暗纹,有a sin ϕ 1≈因ϕ 1很小,故 tg ϕ 1≈sin ϕ 1 = / a 故中央明纹宽度x 0 = 2f tg ϕ 1=2f / a = 1.2 cm 3分(2) 对于第二级暗纹,有 a sin ϕ 2≈2x 2 = f tg ϕ 2≈f sin ϕ 2 =2f / a = 1.2 cm 2分3. 在用钠光(λ=589.3 nm)做光源进行的单缝夫琅禾费衍射实验中,单缝宽度a=0.5 mm ,透镜焦距f =700 mm .求透镜焦平面上中央明条纹的宽度.(1nm=109m)解: a sin ϕ = 2分a f f f x /sin tg 1λφφ=≈== 0.825 mm 2分x =2x 1=1.65 mm 1分4. 某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长.解:设第三级暗纹在ϕ3方向上,则有a sin ϕ3 = 3此暗纹到中心的距离为 x 3 = f tg ϕ3 2分因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f / a .两侧第三级暗纹的距离是 2 x 3 = 6f / a = 8.0mm∴= (2x 3) a / 6f 2分= 500 nm 1分5. 用波长=632.8 nm(1nm=10−9m)的平行光垂直照射单缝,缝宽a =0.15 mm ,缝后用凸透镜把衍射光会聚在焦平面上,测得第二级与第三级暗条纹之间的距离为1.7 mm ,求此透镜的焦距.解:第二级与第三级暗纹之间的距离x = x 3 –x 2≈f / a . 2分∴ f ≈a x / =400 mm 3分6. (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,1=400 nm ,=760 nm(1 nm=10-9 m).已知单缝宽度a =1.0×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =1.0×10-3 cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) 1分 ()222231221sin λλϕ=+=k a 1分f x /tg 11=ϕ , f x /tg 22=ϕ由于11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ= 1分a f x /2322λ= 1分则两个第一级明纹之间距为a f x x x /2312λ∆=-=∆=0.27 cm 2分(2) 由光栅衍射主极大的公式 1111sin λλϕ==k d2221sin λλϕ==k d 2分且有f x /tg sin =≈ϕϕ所以 d f x x x /12λ∆=-=∆=1.8 cm 2分7. 一束平行光垂直入射到某个光栅上,该光束有两种波长的光,1=440 nm ,2=660 nm (1 nm = 10-9 m).实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角ϕ=60°的方向上.求此光栅的光栅常数d .解:由光栅衍射主极大公式得 111sin λϕk d = 222sin λϕk d =212122112132660440sin sin k k k k k k =⨯⨯==λλϕϕ 4分当两谱线重合时有 ϕ1=ϕ2 1分即69462321===k k ....... 1分 两谱线第二次重合即是4621=k k , k 1=6, k 2=4 2分 由光栅公式可知d sin60°=6160sin 61λ=d =3.05×10-3 mm 2分8. 一束具有两种波长1和2的平行光垂直照射到一衍射光栅上,测得波长1的第三级主极大衍射角和2的第四级主极大衍射角均为30°.已知1=560 nm (1 nm= 10-9 m),试求:(1) 光栅常数a +b(2) 波长2解:(1) 由光栅衍射主极大公式得()1330sin λ=+b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+b a()4204/30sin 2=+=b a λnm 2分9. 用含有两种波长=600 nm 和='λ500 nm (1 nm=10-9 m)的复色光垂直入射到每毫米有200 条刻痕的光栅上,光栅后面置一焦距为f=50 cm 的凸透镜,在透镜焦平面处置一屏幕,求以上两种波长光的第一级谱线的间距x .解:对于第一级谱线,有:x 1 = f tg ϕ 1, sin ϕ 1= / d 1分 ∵ sin ϕ ≈tg ϕ ∴ x 1 = f tg ϕ 1≈f / d 2分 和'两种波长光的第一级谱线之间的距离x = x 1 –x 1'= f (tg ϕ 1 – tg ϕ 1')= f (-') / d =1 cm 2分10. 以波长400 nm ─760 nm (1 nm =10-9 m)的白光垂直照射在光栅上,在它的衍射光谱中,第二级和第三级发生重叠,求第二级光谱被重叠的波长范围.解:令第三级光谱中=400 nm 的光与第二级光谱中波长为'的光对应的衍射角都为, 则 d sin=3,d sin=2λ'λ'= (d sin / )2==λ23600nm 4分∴第二级光谱被重叠的波长范围是 600 nm----760 nm 1分11. 氦放电管发出的光垂直照射到某光栅上,测得波长=0.668 m 的谱线的衍射角为ϕ=20°.如果在同样ϕ角处出现波长2=0.447 m 的更高级次的谱线,那么光栅常数最小是多少?解:由光栅公式得sin ϕ= k 11 / (a +b ) = k2 2 / (a +b ) k 11 = k 22将k 2k 1约化为整数比k 2k 1=3 / 2=6 / 4=12 / 8 ...... k 2k 1 = 1/2=0.668 / 0.447 3分取最小的k 1和k 2, k 1=2,k 2=3,3分则对应的光栅常数(a + b ) = k 11 / sin ϕ =3.92 m2分12. 用钠光(=589.3 nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°. (1) 若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2) 若以白光(400 nm -760 nm) 照射在该光栅上,求其第二级光谱的张角. (1 nm= 10-9 m)解:(1)(a + b ) sin ϕ = 3a +b =3 / sin ϕ , ϕ=60° 2分 a + b =2'/sinϕ' ϕ'=30° 1分3 / sin ϕ =2'/sin ϕ' 1分'=510.3 nm1分(2)(a + b ) =3 / sin ϕ =2041.4 nm 2分2ϕ'=sin -1(2×400 / 2041.4) (=400nm) 1分 2ϕ''=sin -1(2×760 / 2041.4) (=760nm) 1分白光第二级光谱的张角 ϕ = 22ϕϕ'-''= 25° 1分13.某种单色光垂直入射到每厘米有8000条刻线的光栅上,如果第一级谱线的衍射角为 30°那么入射光的波长是多少?能不能观察到第二级谱线?解:由光栅公式(a +b )sin ϕ =kk =1,=30°,sinϕ=1 / 2∴=(a+b)sinϕ/ k =625 nm 3分实际观察不到第二级谱线2分若k =2, 则sinϕ=2 / (a + b) = 1, ϕ2=90°14. 用波长为589.3 nm (1 nm = 10-9 m)的钠黄光垂直入射在每毫米有500 条缝的光栅上,求第一级主极大的衍射角.解:d=1 / 500 mm,=589.3 nm,∴sin=d=0.295 =sin-10.295=17.1°3分第一级衍射主极大: d sin= 2分15. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱.钠黄光包含两条谱线,其波长分别为589.6 nm和589.0 nm.(1nm=109m)求在第二级光谱中这两条谱线互相分离的角度.解:光栅公式,d sin=k.现d=1 / 500 mm=2×10-3 mm,1=589.6 nm,2=589.0 nm,k=2.∴sin1=k1/ d=0.5896,1=36.129°2分sin2=k2 / d=0.5890,2=36.086°2分=1-2=0.043°1分16.波长范围在450~650 nm之间的复色平行光垂直照射在每厘米有5000条刻线的光栅上,屏幕放在透镜的焦面处,屏上第二级光谱各色光在屏上所占范围的宽度为35.1 cm.求透镜的焦距f.(1 nm=10-9 m)解:光栅常数 d = 1m / (5×105) = 2 ×10-5m.2分设λ1 = 450nm,λ2 = 650nm,则据光栅方程,λ1和λ2的第2级谱线有d sin θ 1 =2λ1; dsin θ 2=2λ2据上式得: θ 1 =sin -12λ1/d =26.74°θ 2 = sin -12λ2 /d =40.54° 3分第2级光谱的宽度 x 2 -x 1 = f (tg θ 2-tg θ 1)∴ 透镜的焦距 f = (x 1 - x 2) / (tg θ 2 -tg θ 1) =100 cm . 3分17.设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察钠黄光(λ=589 nm )的光谱线.(1)当光线垂直入射到光栅上时,能看到的光谱线的最高级次k m 是 多少? (2)当光线以30°的入射角(入射线与光栅平面的法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级次mk ' 是多少? (1nm=10-9m)解:光栅常数d=2×10-6 m 1分(1) 垂直入射时,设能看到的光谱线的最高级次为k m ,则据光栅方程有d sin= k m∵ sin≤1 ∴ k m / d ≤1 , ∴ k m ≤d / =3.39∵ k m 为整数,有k m =3 4分(2) 斜入射时,设能看到的光谱线的最高级次为mk ',则据斜入射时的光栅方程有 ()λθmk d '='+sin 30sin d k m/sin 21λθ'='+ ∵ sin '≤1 ∴ 5.1/≤'d k mλ ∴λ/5.1d k m≤'=5.09∵ mk '为整数,有 m k '=5 5分18. 一双缝,缝距d=0.40 mm,两缝宽度都是a=0.080 mm,用波长为=480 nm (1 nm = 10-9 m) 的平行光垂直照射双缝,在双缝后放一焦距f =2.0 m的透镜求:(1) 在透镜焦平面处的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉亮纹数目N和相应的级数.解:双缝干涉条纹:(1) 第k级亮纹条件:d sin=k第k级亮条纹位置:x k = f tg≈f sin≈kf / d相邻两亮纹的间距:x = x k+1-x k=(k+1)f / d-kf / d=f / d=2.4×10-3 m=2.4 mm 5分(2) 单缝衍射第一暗纹:a sin1 =单缝衍射中央亮纹半宽度:x0 = f tg1≈f sin1≈f / a=12 mmx0/x =5∴双缝干涉第±5极主级大缺级.3分∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 1分分别为k = 0,±1,±2,±3,±4级亮纹1分或根据d / a = 5指出双缝干涉缺第±5级主大,同样得该结论的3分.。
光的衍射习题(附答案)
光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f 为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为mm.3.平行单色光垂直入射在缝宽为a = mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f= m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = m,则可知该入射的红光波长λ=或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于μm.8.钠黄光双线的两个波长分别是nm和nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f= m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈ f sinθ1≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈ f sinθ2≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈ f (2 λ / a λ / a)= f λ / a=××107/×104) m=.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 109 m).已知单缝宽度a = ×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= ×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32f Δλ/a = cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = cm14.一双缝缝距d = mm,两缝宽度都是a = mm,用波长为λ = 480 nm(1 nm =109 m)的平行光垂直照射双缝,在双缝后放一焦距f= m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ = kλ第k级亮条纹位置:x1= f tanθ1≈ f sinθ1≈ k f λ / d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ / d k λ / d= f λ / d = ×103 m = mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mm Δx0/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。
第07章光的衍射习题答案
1习题7.1 已知单缝宽度0.6b mm =,使用的凸透镜焦距400f mm '=,在透镜的焦平面上用一块观察屏观察衍射图样.用一束单色平行光垂直照射单缝,测得屏上第4级明纹到中央明纹中心的距离为1.4mm .求:⑴该入射光的波长;⑵对应此明纹的半波带数?解:(1)单缝衍射的明纹:()sin 212b k λθ=+单缝衍射图样的第4级明纹对应的衍射角为:()()449sin 21241222k b b b λλλθθ≈=+=⨯+= 单缝衍射图样的第4级明纹中心的位置为 4449tan 2y f f f b λθθ'''=≈=⨯⇒429by f λ='20.6 1.49400⨯⨯=⨯84.6710mm -=⨯467nm = (2)对于第4级明纹对应衍射角方向,缝两边光线的光程差为 499sin 22b b b λλθ∆==⨯= 对应的半波带数 92922N λλλ∆=== 7.2 在单缝实验中,已知照射光波长632.8nm λ=,缝宽0.10b mm =,透镜的焦距50f cm '=.求:⑴中央明纹的宽度;⑵两旁各级明纹的宽度;⑶中央明纹中心到第3级暗纹中心的距离?解:(1)所以中央亮纹角宽度为02/b θλ∆=,宽度则为 6002632.810'500 6.3280.1l f mm θ-⨯⨯=∆=⨯= (2)各级亮纹 6632.810'500 3.1640.1k l f mm b λ-⨯==⨯= (3)中央明纹中心到第三暗纹中心的距离为 33'9.492y f mm bλ== 7.3 一束单色平行光垂直照射在一单缝上,若其第3级明条纹位置正好与2600nm λ=的单色平行光的第2级明条纹的位置重合.求前一种单色光的波长?解:单缝衍射明纹估算式:()sin 21(1,2,3,)b k k θ=±+=⋅⋅⋅根据题意,第二级和第三级明纹分别为22sin 2212b λθ=⨯+() 33sin 2312b λθ=⨯+() 且在同一位置处,则23sin sin θθ= 解得:325560042577nm λλ==⨯=7.4 用590nm λ=的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:根据光栅方程sin ,d k θλ=当90θ=︒时可以得到最多明条纹,所以 60.002590103j j -=⨯⨯⇒=所以可见7条明条纹。
7光的衍射习题答案
习题7.1 已知单缝宽度0.6b mm =,使用的凸透镜焦距400f mm '=,在透镜的焦平面上用一块观察屏观察衍射图样.用一束单色平行光垂直照射单缝,测得屏上第4级明纹到中央明纹中心的距离为1.4mm .求:⑴该入射光的波长;⑵对应此明纹的半波带数?解:(1) 单缝衍射的明纹: ()s i n212b k λθ=+单缝衍射图样的第4级明纹对应的衍射角为:()()449sin 21241222k bbbλλλθθ≈=+=⨯+=单缝衍射图样的第4级明纹中心的位置为 4449tan 2y f f f bλθθ'''=≈=⨯ ⇒ 429by fλ='20.6 1.49400⨯⨯=⨯84.6710mm -=⨯467nm = (2)对于第4级明纹对应衍射角方向,缝两边光线的光程差为 499sin 22b b b λλθ∆==⨯= 对应的半波带数 92922N λλλ∆=== 7.2 在单缝实验中,已知照射光波长632.8nm λ=,缝宽0.10b mm =,透镜的焦距50f cm '=.求:⑴中央明纹的宽度;⑵两旁各级明纹的宽度;⑶中央明纹中心到第3级暗纹中心的距离?解:(1)所以中央亮纹角宽度为02/b θλ∆=,宽度则为 6002632.810'500 6.3280.1l f mm θ-⨯⨯=∆=⨯= (2)各级亮纹 6632.810'5003.1640.1k l f m m b λ-⨯==⨯= (3)中央明纹中心到第三暗纹中心的距离为 33'9.492y f m m bλ== 7.3 一束单色平行光垂直照射在一单缝上,若其第3级明条纹位置正好与2600nm λ=的单色平行光的第2级明条纹的位置重合.求前一种单色光的波长?解:单缝衍射明纹估算式:()sin 21(1,2,3,)b k k θ=±+=⋅⋅⋅根据题意,第二级和第三级明纹分别为22sin 2212b λθ=⨯+()33sin 2312b λθ=⨯+()且在同一位置处,则 23sin sin θθ= 解得: 325560042577nm λλ==⨯= 7.4 用590nm λ=的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:根据光栅方程sin ,d k θλ=当90θ=︒时可以得到最多明条纹,所以60.002590103j j -=⨯⨯⇒=所以可见7条明条纹.7.5 波长600nm λ=的单色光垂直入射到一光栅上,第2、第3级明条纹分别出现在2sin 0.20θ=与3sin 0.30θ=处,且第4级缺级.求:⑴光栅常数;⑵光栅上狭缝的宽度;⑶在屏上实际呈现出的全部级数?解:根据光栅方程sin ,d k θλ=(1)则光栅的光栅常数 6322260010610s i n 0.20d m m λθ--⨯⨯===⨯(2)由于第4级缺级,4db= 31.5104db mm -==⨯(3)03max 6sin 9061011060010d k λ--⨯⨯===⨯则出现第0,1,2,3,5,6,7,9k =±±±±±±±级条纹,共15条.7.6 为了测定一光栅的光栅常数,用波长632.8nm λ=的氦氖激光器的激光垂直照射光栅,做光机的衍射光谱实验,已知第一级明条纹出现在030的方向上.问:⑴这光栅的光栅常数是多大?⑵这光栅的1cm 内有多少条缝?⑶第二级明条纹是否可能出现?为什么?解:(1)根据光栅方程 s i nd k θλ= 6301632.810 1.26610sin sin 30k mmd mm λθ--⨯⨯===⨯(2)41179001.26610cm cmn d cm-===⨯ 则1cm 中有7900条缝 (3)对于第二级明条纹62322632.810sin 11.26610mmd mmλθ--⨯⨯===⨯0290θ=即第二级明纹看不到.7.7 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长480nm λ=的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:⑴透镜焦平面上单缝衍射中央明条纹的宽度;⑵单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:⑴单缝衍射条纹中央明纹宽度为:602248010500m 240.02mm L f m mm b mmλ-⨯⨯'∆==⨯=.(2)相邻干涉条纹的间距为648010500m 2.40.1mmy f m mm d mmλ-⨯'∆==⨯=011242252.4L mm y mm∆⨯==∆ 又因为0.150.02d mm b mm==即第5,10,缺级.则出现第0,1,2,3,4k =±±±±级条纹,共9条.7.8 波长为500nm 及520nm 的平行单色光同时垂直照射在光栅常数为0.02mm 的衍射光栅上,在光栅后面用一焦距为2m 的透镜把光线聚在屏上,求这两种单色光的第一级光谱线间的距离?解:根据光栅方程错误!未找到引用源。
7 习题七 光的衍射
习题七姓名一、选择题1.在单缝衍射实验中,缝宽a =0.2mm ,透镜焦距f =0.4m ,入射光波长λ=500nm ,则在距离中央亮纹中心位置2mm 处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为几个半波带? [ ](A )亮纹,3个半波带; (B )亮纹,4个半波带;(C )暗纹,3个半波带; (D )暗纹,4个半波带。
2.波长为632.8nm 的单色光通过一狭缝发生衍射。
已知缝宽为1.2mm ,缝与观察屏之间的距离为D =2.3m 。
则屏上两侧的两个第8级极小之间的距离x ∆为 [ ](A )1.70cm ; (B )1.94cm ; (C )2.18cm ; (D )0.97cm 。
3.波长为600nm 的单色光垂直入射到光栅常数为2.5×10-3mm 的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现的全部级数为 [ ](A )0、±1、±2、±3、±4; (B )0、±1、±3;(C )±1、±3; (D )0、±2、±4。
4.用白光(波长范围:400nm-760nm )垂直照射光栅常数为2.4×10-4cm 的光栅,则第一级光谱的张角为 [ ](A )9.5︒; (B )18.3︒; (C )8.8︒; (D )13.9︒。
5.欲使波长为λ(设为已知)的X 射线被晶体衍射,则该晶体的晶面间距最小应为 [ ]。
(A )λ/4; (B )2λ; (C )λ; (D )λ/2。
二、填空题1.在单缝夫琅和费衍射实验中,设第一级暗纹的衍射角很小。
若以钠黄光(λ1=589nm)为入射光,中央明纹宽度为 4.0mm ;若以蓝紫光(λ2=442nm)为入射光,则中央明纹宽度为________mm 。
2.单色光1λ=720nm 和另一单色光2λ经同一光栅衍射时,发生这两种谱线的多次重叠现象。
光的衍射答案
光的衍射答案 The document was prepared on January 2, 2021第7章 光的衍射一、选择题1(D),2(B),3(D),4(B),5(D),6(B),7(D),8(B),9(D),10(B)二、填空题(1). 1.2mm ,3.6mm(2). 2, 4(3). N 2, N(4). 0,±1,±3,.........(5). 5(6). 更窄更亮(7).(8). 照射光波长,圆孔的直径(9). ×10-4(10).三、计算题1. 在某个单缝衍射实验中,光源发出的光含有两种波长1和2,垂直入射于单缝上.假如1的第一级衍射极小与2的第二级衍射极小相重合,试问(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合解:(1) 由单缝衍射暗纹公式得由题意可知 21θθ= , 21sin sin θθ=代入上式可得 212λλ=(2) 211112sin λλθk k a == (k 1 = 1, 2, ……)222sin λθk a = (k 2 = 1, 2, ……)若k 2 = 2k 1,则1 = 2,即1的任一k 1级极小都有2的2k 1级极小与之重合.2. 波长为600 nm (1 nm=10-9 m)的单色光垂直入射到宽度为a = mm 的单缝上,观察夫琅禾费衍射图样,透镜焦距f = m ,屏在透镜的焦平面处.求:(1) 中央衍射明条纹的宽度 x 0;(2) 第二级暗纹离透镜焦点的距离x 2解:(1) 对于第一级暗纹,有a sin 1≈因 1很小,故 tg 1≈sin 1 = / a故中央明纹宽度 x 0 = 2f tg 1=2f / a = cm(2) 对于第二级暗纹,有 a sin 2≈2x 2 = f tg 2≈f sin 2 =2f / a = cm3. 如图所示,设波长为的平面波沿与单缝平面法线成角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角.解:1、2两光线的光程差,在如图情况下为由单缝衍射极小值条件a (sin -sin ) = k k = 1,2,……得 = sin —1( k / a+sin ) k = 1,2,……(k 0)4. (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,1=400 nm ,=760 nm (1 nm=10-9 m).已知单缝宽度a =×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =×10-3 cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知 ()111231221sin λλϕ=+=k a (取k =1 ) f x /tg 11=ϕ , f x /tg 22=ϕ由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ=,a f x /2322λ= 则两个第一级明纹之间距为 a f x x x /2312λ∆=-=∆= cm (2) 由光栅衍射主极大的公式且有 f x /tg sin =≈ϕϕ所以 d f x x x /12λ∆=-=∆= cm5.一衍射光栅,每厘米200条透光缝,每条透光缝宽为a=2×10-3 cm ,在光栅后放一焦距f=1 m 的凸透镜,现以=600 nm (1 nm =10-9 m)的单色平行光垂直照射光栅,求:(1) 透光缝a 的单缝衍射中央明条纹宽度为多少(2) 在该宽度内,有几个光栅衍射主极大解:(1) a sin = k tg = x / f当 x << f 时,ϕϕϕ≈≈sin tg , a x / f = k ,取k = 1有x = f l / a = 0.03 m∴中央明纹宽度为 x = 2x = 0.06 m(2) ( a + b ) sin λk '=='k ( a +b ) x / (f )=取k = 2,共有k = 0,±1,±2 等5个主极大.6. 用一束具有两种波长的平行光垂直入射在光栅上,1=600 nm ,2=400 nm (1nm=10﹣9m),发现距中央明纹5 cm 处1光的第k 级主极大和2光的第(k +1)级主极大相重合,放置在光栅与屏之间的透镜的焦距f =50 cm ,试问:(1) 上述k =(2) 光栅常数d =解:(1) 由题意,1的k 级与2的(k +1)级谱线相重合所以d sin 1=k 1,d sin 1= (k+1) 2 , 或 k 1 = (k +1) 2(2) 因x / f 很小, tg 1≈sin 1≈x / f 2分∴ d = k 1 f / x= ×10-3 cm7. 氦放电管发出的光垂直照射到某光栅上,测得波长= m 的谱线的衍射角为=20°。
光的衍射参考答案
光的衍射参考解答(机械)一 选择题1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将(A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动[ A ][参考解]一级暗纹衍射条件:λϕ=1s i n a ,所以中央明纹宽度af f f x λϕϕ2s i n 2t a n211=≈=∆中。
衍射角0=ϕ的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。
2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹(A )间距变大 (B )间距变小(C )不发生变化 (D )间距不变,但明纹的位置交替变化[ C ][参考解]单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。
3.波长λ=5500Å的单色光垂直入射于光栅常数d=2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A )2 (B )3 (C )4 (D )5[ B ][参考解]由光栅方程λϕk d ±=s i n及衍射角2πϕ<可知,观察屏可能察到的光谱线的最大级次64.3105500102106=⨯⨯=<--λdk m ,所以3=m k 。
4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。
[ D][参考解]参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。
光的衍射习题
四 几种衍射的情况表格(一)
光强分布 决定光强 分布因素 极值条件 极大条件 极小条件 花样特 征 特征量
菲 半波(奇 1 氏 A a a 或偶) k 1 k 圆 2 2 1 1 孔 圆孔中心轴上 k r R 衍 0 任一点的光强 射
ห้องสมุดไป่ตู้sin u
例3.波长为 的光经过常数为d 的光栅衍射时,能观察的最 高级次为什么?衍射光谱中能够得到的最大波长决定于什么? 求能使波长达 100 m 的红外线产生的衍射光谱的光栅所应 具有的光谱常数.
解: (1)由光栅方程知:
j
d sin j
d sin
与d一定时,j的最
2
3 6 10
5
2
7
可知
2
cm
2 3 1
2
七个半波带 九个半波带
4 4 . 7 10
5
cm
2 4 1
2
9
2
讨论:一般此时的半波带形形状为平行狭缝的带状,也满足 相邻两半波带上的对应点到P点的光程差为 2(即该两点 到P点的振幅 a k 相等)
1)单缝衍射中央明纹宽度 2)在该宽度内有几个光栅衍射主极大 3)总共可以看到多少条谱线 4)若将垂直入射改为入射角 i 30 的斜入射,衍射光谱的 最高级次和可看到的光谱线总数
0
解:1)由暗纹条件 对于单缝衍射第一级极小
sin 1
b sin k b sin
b
当 0 . 5 mm 时, k 1 当
1mm
时, k 4
光的衍射习题、答案与解法(2010.11.1)
光衍射习题、答案与解法一、填空题1.根据惠更斯—菲涅耳原理,若已知光在某时间的波阵面为S ,则S 的前方某点P 的光强取决于波阵面S 上所有面积元发出的子波各自传到P 点( D )(A )振动振幅之和 (B )光强之和 (C )振动振幅之和的平方 (D )振动的相干叠加 2.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变大时,除中央明纹的中心位置不变外,各级衍射条纹 ( A ) (A )对应的衍射角变小 (B )对应的衍射角变大(C )对应的衍射角也不变 (D )光强也不变 参考答案:λϕk a =sin ⎪⎭⎫⎝⎛=-a k λϕ1sin 3.在单缝夫琅禾费单缝衍射实验中,波长λ为的单色光垂直入射到单缝上,对应于衍射角为030的方向上,若单缝处波面可分为6个半波带,则缝宽度a 等于( B )(A )λ (B )λ6 (C )λ2 (D )λ4 参考答案:2sin λϕka = λλλϕλ6212630sin 26sin 20=⨯=⨯==ka4.一束波长为λ的平行单色光垂直入射到一单色AB 上,装置如图1所示,在屏幕P 上形成衍射图样,如果Q 是中央PQCλfALB亮纹一侧第二个暗纹的中心所在位置,则BC 得长度为 ( D )(A )2/λ (B )λ (C )2/3λ (D )λ2 参考答案:λϕk a =sin λλϕ2sin ==k a5. 波长为nm 600=λ)m 10nm 1(9-=的单色光垂直照射到宽mm 3.0=a 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一个屏幕,用以观测衍射条纹,今测得屏幕中央明条纹一侧第一个暗条纹和另一侧第一个暗条纹之间的距离为mm 4=∆x ,则凸透镜的焦距f 为 ( C )(A )m 2 (B ) m 1.0 (C )m 1 (D )m 5.0参考答案:⎪⎪⎩⎪⎪⎨⎧==-=∆=-12k x x x x k a f x k k k k λ ()m 1106002103.01042933=⨯⨯⨯⨯⨯=∆=---a x f λ6.一束平行单色光垂直入射在光栅上,当光栅常数()b a +,为下列哪种情况时(a 代表每条缝的宽度),k=3、6、9等级次的明纹均不出现 ( B )(A )a b a 2=+ (B )a b a 3=+(C )a b a 4=+(D )a b a 6=+参考答案:()⎪⎪⎪⎩⎪⎪⎪⎨⎧==='==+963sin sin k k k k a k b a λϕλϕ ===='=+392613k k a b a 7.一束白光垂直照射在一光栅上,在形成的同一级光栅谱中,离中央明纹最近的是 ( A )(A )紫光 (B )绿光 (C )黄光 (D )红光参考答案:()λϕk b a =+sin⎪⎭⎫ ⎝⎛+=-b a k λϕ1sin 红λλ〈3 8.若用衍射光栅准确测定一单色光可见光的波长,在下列各种光栅中选用那一种最为合适?( D )(A )mm 5.0(B ) mm 1(C )mm 01.0(D )mm 100.13-⨯参考答案:()⎪⎪⎩⎪⎪⎨⎧===+21sin πϕλϕk k b a()()mm 107nm 7001107001sin 49--⨯==⨯⨯==+ϕλk b a9.波长为λ的单色光垂直入射于光栅常数为d 、缝宽为a 、总缝数为N 的光栅上,取⋅⋅⋅⋅±±=2,1,0k ,则决定出现明纹的衍射角θ的公式可写成( C )(A )λθk Na =sin (B )λθk a =sin (C )λθk d =sin (D )λθk Nd =sin 参考答案:()λϕk b a =+sin λϕk d =sin10.提高光仪器分辨率本领的方法是:( B ) ( A )增大透光孔径,增大入射光的波长 ( B )增大透光孔径,减小入射光的波长 ( C ) 减小透光孔径,增大入射光的波长 ( D ) 减小透光孔径,减小入射光的波长 参考答案:λ22.1D R = Dλθ22.1= 二、填空题1.在单缝夫琅禾费衍射实验中,波长nm 400=λ的平行光垂直入射单缝,所用凸透镜焦距m 5.1=f ,第三级暗纹离中央明纹中心m 100.33-⨯,另一波长为0λ的光的第二级暗纹在屏的同一位置上,则单缝的缝宽m 103.5-4⨯=a ,波长nm 0060=λ。
光的衍射选择题解答与分析
7光的衍射7.1惠更斯—菲涅耳原理1. 根据惠更斯-菲涅耳原理,假设光在某时刻的波阵面为S ,那么S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 (A) 振动振幅之和. (B) 光强之和. (C) 振动振幅之和的平方. (D) 振动的相干叠加. 答案:(D) 参考解答:惠更斯原理可以定性说明波遇到障碍物时为什么会拐弯,但是它不能解释拐弯之后波的强度的重新分布〔对光而言,表现为出现明暗相间的衍射条纹〕现象。
在杨氏双缝干预实验的启发下,注意到干预可导致波的能量出现重新分布,法国物理学家菲涅耳认为:同一波阵面上发出的子波是彼此相干的,它们在空间相遇以后发生相干迭加,使得波的强度出现重新分布,由此而形成屏上观察到的衍射图样。
这一经 “子波相干叠加〞思想补充开展后的惠更斯原理,称为惠更斯-菲涅耳原理。
对所有选择,均给出参考解答,进入下一步的讨论。
2. 衍射的本质是什么?干预和衍射有什么区别和联络?参考解答:根据惠更斯-菲涅耳原理,衍射就是衍射物所发光的波阵面上各子波在空间场点的相干叠加,所以衍射的本质就是干预,其结果是引起光场强度的重新分布,形成稳定的图样。
干预和衍射的区别主要表达在参与叠加的光束不同,干预是有限光束的相干叠加,衍射是无穷多子波的相干叠加。
7.2单缝衍射1. 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. 答案:(B) 参考解答:根据半波带法讨论的结果,单缝衍射明纹的角位置由下式确定,,2)12(sin λθ+±=k a 即...)3,2,1(2)12(sin =+±=k ak λθ.显然对于给定的入射单色光,当缝宽度a 变小时,各级衍射条纹对应的衍射角变大。
对所有选择,均给出参考解答,进入下一步的讨论。
7光的衍射习题详解.doc
Y» = asin&ua— = 0.2 x 10~3 f ? X |-------- =10"6 m=l 000nm=2/i0.4即"2x2牛吟因此,一、选择题1.在单缝衍射实验小,缝宽d = 0.2mm,透镜焦距/=0.4m,入射光波长/l = 500nm,则在距离中央亮纹中心位置2mm处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为儿个半波带?[ ](A)亮纹,3个半波带;(B)亮纹,4个半波带;(C)暗纹,3个半波带;(D)暗纹,4个半波带。
答案:D解:沿衍射方向&,最人光程羌为根据单缝衍射亮、暗纹条件,可判断出该处是暗纹,从该方向上可分为4个半波带。
2.波长为632.8nm的单色光通过一狭缝发生衍射。
已知缝宽为1.2mm,缝与观察屏Z间的距离为D =2.3mo则屏上两侧的两个第8级极小之间的距离/匕为[ ](A) 1.70cm;(B) 1.94cm;(C) 2.18cm;(D) 0.97cm。
答案:B解:第k级暗纹条件为asin^ = Uo据题意有j 2注:总::Ax = 2D tan 0 « 2£>sin 0 = 2D —a代入数据得A c oa 8x632.8x10—9 2Ax = 2x2.3x --------------- -—— =1.94x10 m=1.94cm1.2x10』3.波长为600nm的单色光垂直入射到光栅常数为2.5xl()-3mm的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现的全部级数为[ ](A) 0、±1、±2、±3、±4;(B) 0、±1、±3:(C) ±1、±3;(D) 0、±2、±4o答案:B解:光栅公式dsing",最高级次为k祁=色=2.5"():“ (取整数)。
(完整版)光的衍射习题(附答案)
光的衍射(附答案)一.填空题1.波长λ= 500 nm(1 nm = 10−9 m)的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为4.0 mm,则λ2 ≈ 442 nm(1 nm = 10−9 m)的蓝紫色光的中央明纹宽度为3.0 mm.3.平行单色光垂直入射在缝宽为a = 0.15 mm的单缝上,缝后有焦距为f = 400mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 10−6 m)的光栅上,用焦距f= 0.500 m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l= 0.1667 m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00 nm和589.59 nm(1 nm = 10−9 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1a sinθ2= 2 λ2由题意可知θ1 = θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = 0.100 mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f = 1.00 m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx 1 = f tanθ1≈f sinθ1≈f λ/ a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx 2 = f tanθ2≈f sinθ2≈ 2 f λ/ a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1= x2− x1≈f (2 λ/ a −λ/ a)= f λ/ a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 10−9 m).已知单缝宽度a = 1.0×10−2 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= 1.0×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1=12(2 k + 1)λ1=12λ1(取k = 1)a sinφ2=12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于 sin φ1 ≈ tan φ1,sin φ2 ≈ tan φ2 所以 x 1 = 32 f λ1 / ax 2 = 32f λ2 / a则两个第一级明纹之间距为Δx 1 = x 2 − x 1 = 32f Δλ / a = 0.27 cm(2) 由光栅衍射主极大的公式d sin φ1 = k λ1 = 1 λ1 d sin φ2 = k λ2 = 1 λ2且有sin φ = tan φ = x / f所以Δx 1 = x 2 − x 1 = f Δλ / a = 1.8 cm14. 一双缝缝距d = 0.40 mm ,两缝宽度都是a = 0.080 mm ,用波长为λ = 480 nm (1 nm = 10−9 m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数. 解:双缝干涉条纹(1) 第k 级亮纹条件:d sin θ = k λ第k 级亮条纹位置:x 1 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d 相邻两亮纹的间距:Δx = x k +1 − x k = (k + 1) f λ / d − k λ / d = f λ / d = 2.4×10−3m = 2.4 mm(2) 单缝衍射第一暗纹:a sin θ1 = λ单缝衍射中央亮纹半宽度:Δx 0 = f tan θ1 ≈ f sin θ1 ≈ k f λ / d = 12 mm Δx 0 / Δx = 5∴ 双缝干涉第 ±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9 分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d / a = 5指出双缝干涉缺第 ±5 级主极大,同样可得出结论。
高考物理光的衍射题
高考物理光的衍射题光的衍射是光通过一个小孔或者绕过障碍物后,发生偏折和交叉现象的现象。
光的衍射是光的波动性质的重要表现,对光学的研究和应用具有重要意义。
下面我们将以高考物理中常见的一些光的衍射题为例,详细解析光的衍射原理和解题方法。
1. 单缝衍射题目:将单色光垂直入射到一个宽度为a的单缝上,当入射光波长为λ时,在离缝中心距离x处的衍射光亮度达到最大值。
求此时的衍射极限角。
解析:根据单缝衍射的原理,当衍射光达到最大亮度时,衍射极限角θ可以通过以下公式计算得到:sinθ = λ / a其中,λ为入射光波长,a为单缝宽度。
在解题过程中,我们可以根据已知条件代入公式,求解得到最终的答案。
2. 双缝衍射题目:将波长为λ的单色光垂直入射到一个由两个宽度为a的缝隙组成的缝隙上,两个缝距离为d。
在距离屏幕L处观察到光的衍射图样,求出观察到的第m级明条纹的夹角。
解析:双缝衍射是一种常见的光学现象,在解题过程中需要用到夫琅禾费衍射公式:asinθ = mλ其中,m代表观察到的明条纹级别,λ为入射光波长,a为单个缝隙宽度,d为两个缝隙的距离,θ为夹角。
在解答此类题目时,可以根据已知条件代入公式,求解得到最终的答案。
3. 狭缝衍射题目:将波长为λ的单色光垂直入射到一条宽度为a的狭缝上,通过一个观察屏幕上观察光的衍射现象。
如果将观察屏幕水平移动一个距离L,观察到的亮条纹数目N也移动了一个单位。
求解狭缝的宽度a。
解析:狭缝衍射是一种比较复杂的光学现象,需要运用夫琅禾费衍射公式结合几何关系来解答。
根据已知条件可以得到以下公式:a = λ * L / N其中,λ代表入射光的波长,L为观察屏幕的移动距离,N为亮条纹的移动单位。
通过代入已知条件,求解得到狭缝的宽度a。
通过对以上三个典型的高考物理光的衍射题的解析,我们可以发现光的衍射问题在高考物理中经常出现。
解答光的衍射题需要运用光的波动性质和几何关系相结合的方法,通过物理公式的运用来求解。
专题7 光的衍射和光的偏振(原卷版)
专题7 光的衍射和光的偏振1 (2023河南四市二模)(5分)下列对于光的认识,正确的是()。
(填正确答案标号。
选对1个得2分,选对2个得4分,选对3个得5分;每错选1个扣3分,最低得分为0分)A.光从空气射入玻璃中时,光的传播速度发生变化B.白光的干涉图样是彩色的,是因为发生干涉时光的频率发生了变化C.“闻其声不见其人”是因为声波比光波的衍射更明显D.使用双缝干涉实验装置测量光的波长时,想要观察到更多的干涉条纹,可通过减小双缝之间的距离实现或者增大双缝到目镜之间的距离实现E.光的偏振现象说明光是一种横波2 (2023重庆名校质检)关于下列四幅图所涉及的光学知识中,说法正确的是()A. 图甲检查工件的平整度利用光的衍射现象B. 图乙医用内窥镜利用光的干涉现象C. 图丙在坦克内壁上开孔安装玻璃利用光的折射现象扩大视野D. 图丁泊松亮斑是由于光的偏振现象产生的3. (2023重庆名校质检)如图所示分别为红光和绿光在相同条件下的干涉和衍射图样。
下列判断正确的是()A. 甲图是绿光的衍射图样B. 乙图是红光的干涉图样C. 丙图是红光的衍射图样D. 丁图是绿光的干涉图样4. (2022天津河东二模)下列说法正确的是()A. 图1中,用自然光照射透振方向(箭头所示)互相垂直的前后两个竖直放置的偏振片,光屏依然发亮B. 图2为光导纤维示意图,内芯的折射率比外套的折射率小C. 图3所示的雷达测速利用了多普勒效应D. 图4所示的照相机镜头上呈现的淡紫色是由光的衍射现象引起的5. (2022江苏南京宁海中学4月模拟)下列图中的有关应用,说法不正确的是()A. 在图甲中,利用光的干涉原理检测物体表面的平整度B. 在图乙中,内窥镜利用了光的全反射原理C. 在图丙中,全息照片的拍摄利用了光的干涉原理D. 在图丁中,超声波测速仪利用波的衍射原理测汽车速度6 . (2022年高考广东梅州二模) 利用图(a)所示的装置(示意图),观察蓝光的干涉、衍射现象,在光屏上得到如图(b)中甲和乙两种图样。
光的衍射习题答案
思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住? 答:只有当障碍物的大小比波长大得不多时,衍射现象才显著。
对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显著。
2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样?为什么?答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。
由此可知,这时人眼看到的是夫琅和费衍射图样。
3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。
答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。
离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。
4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。
(B)光强之和。
(C)振动振幅之和的平方。
(D)振动的相干叠加。
答:衍射光强是所有子波相干叠加的结果。
选(D)。
5波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30º,则缝宽的大小( )(A ) a =0.5λ。
(B ) a =λ。
(C )a =2λ。
(D )a =3λ。
答:[ C ]6波长为λ的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30︒,则缝宽a 等于( )(A ) a =λ 。
(B ) a =2λ。
(C ) a =23λ。
(D ) a =3λ。
答:[ D ]7在单缝夫琅和费衍射实验中波长为λ的单色光垂直入射到单缝上,对应于衍射角为30︒的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) λ 。
(B) 1.5λ。
光的衍射习题(附答案)之欧阳地创编
光的衍射(附答案)一.二.填空题1.波长λ = 500 nm(1 nm = 10−9m)的单色光垂直照射到宽度 a = 0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为 d = 12 mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈ 589 nm)中央明纹宽度为4.0mm,则λ2 ≈ 442 nm(1 nm = 10−9m)的蓝紫色光的中央明纹宽度为3.0mm.3.平行单色光垂直入射在缝宽为a = 0.15mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8mm,则入射光的波长为500nm (或5×10−4mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b=3a时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d =2 μm(1 μm = 10−6 m)的光栅上,用焦距f=0.500m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l=0.1667m,则可知该入射的红光波长λ=632.6或633nm.7.一会聚透镜,直径为3cm,焦距为20cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于 2.24×10−5rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于4.47μm.8.钠黄光双线的两个波长分别是589.00nm和589.59nm(1 nm = 10−9m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1= 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 10−9m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d .三. 计算题11. 在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1) 由单缝衍射暗纹公式得a sin θ1= 1 λ1 a sin θ2= 2 λ2由题意可知θ1 = θ2, sin θ1= sin θ2代入上式可得λ1 = 2 λ2(2)a sin θ1=k 1λ1=2k 1λ2(k 1=1, 2, …)sin θ1=2k 1λ2/ aa sin θ2=k 2λ2(k 2=1, 2, …)sin θ2=2k 2λ2/ a若k 2= 2 k 1,则θ1= θ2,即λ1的任一k 1级极小都有λ2的2k 1级极小与之重合.12. 在单缝的夫琅禾费衍射中,缝宽a =0.100mm ,平行光垂直如射在单缝上,波长λ=500 nm ,会聚透镜的焦距f = 1.00 m .求中央亮纹旁的第一个亮纹的宽度Δx . 解:单缝衍射第1个暗纹条件和位置坐标x 1为a sin θ1= λx 1=f tan θ1 ≈ f sin θ1≈ f λ /a (∵θ1很小) 单缝衍射第2个暗纹条件和位置坐标x 2为a sin θ2= 2λx 2=f tan θ2 ≈ f sin θ2≈ 2f λ /a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx 1=x 2 − x 1≈ f (2λ /a − λ /a )=f λ /a=1.00×5.00×10−7/(1.00×10−4) m=5.00mm .13. 在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm ,λ2= 760 nm (1 nm = 10−9m ).已知单缝宽度a =1.0×10−2cm ,透镜焦距f = 50 cm .(1) 求两种光第一级衍射明纹中心间的距离.(2) 若用光栅常数a =1.0×10-3cm 的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sin φ1=12 (2 k + 1) λ1 = 12 λ1(取k = 1) a sin φ2= 12 (2 k + 1) λ2=32λ2tan φ1= x 1/f ,tan φ2= x 1/f 由于 sin φ1 ≈tan φ1,sin φ2 ≈tan φ2所以 x 1= 32 f λ1 /ax 2= 32f λ2 /a 则两个第一级明纹之间距为Δx 1=x 2 − x 1=32f Δλ/a =0.27cm (2) 由光栅衍射主极大的公式d sin φ1= k λ1 = 1 λ1d sin φ2= k λ2 = 1 λ2且有sin φ=tan φ =x / f所以Δx 1=x 2 − x 1=f Δλ/a =1.8cm14. 一双缝缝距d =0.40mm ,两缝宽度都是a =0.080mm ,用波长为λ = 480 nm (1 nm = 10−9m )的平行光垂直照射双缝,在双缝后放一焦距f = 2.0 m 的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l ;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N 和相应的级数.解:双缝干涉条纹(1)第k 级亮纹条件:d sin θ =kλ第k 级亮条纹位置:x 1=f tan θ1 ≈ fsin θ1≈ kf λ /d相邻两亮纹的间距:Δx =x k +1 − x k =(k + 1) fλ /d − k λ /d =fλ /d = 2.4×10−3 m= 2.4 mm(2)单缝衍射第一暗纹:a sin θ1= λ单缝衍射中央亮纹半宽度:Δx 0=f tan θ1 ≈f sin θ1 ≈ kf λ/d =12mmΔx 0/Δx =5∴双缝干涉第±5级主极大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0,±1, ±2, ±3, ±4级亮纹或根据d/a=5指出双缝干涉缺第±5 级主极大,同样可得出结论。
光的衍射习题答案
光的衍射习题答案光的衍射习题答案光的衍射是光波在通过一个孔或者绕过一个障碍物时发生的现象。
它是光的波动性质的直接证明,也是物理学中的重要概念之一。
在学习光的衍射时,我们经常会遇到一些习题,下面我将为大家提供一些光的衍射习题的答案。
1. 一束波长为500纳米的单色光通过一个宽度为0.1毫米的狭缝,距离狭缝1米处的屏上出现了衍射条纹。
求出相邻两个亮纹之间的间距。
解答:根据衍射的基本公式,亮纹的位置可以通过以下公式计算:sinθ = mλ / a其中,θ是衍射角,m是亮纹的次序,λ是波长,a是狭缝的宽度。
由题可知,波长λ为500纳米,即0.5微米,狭缝宽度a为0.1毫米,即0.1微米。
代入公式可得:sinθ = m * 0.5微米 / 0.1微米由于sinθ的值很小,我们可以使用近似公式sinθ ≈ θ,即:θ ≈ m * 0.5微米 / 0.1微米根据小角近似,当θ很小时,sinθ ≈ θ。
因此,亮纹之间的间距可以近似为:d ≈ λ / sinθ代入已知数据可得:d ≈ 0.5微米 / (m * 0.1微米 / 0.1微米)化简得:d ≈ 5微米 / m所以,相邻两个亮纹之间的间距与亮纹的次序m成反比关系。
当m为1时,相邻两个亮纹之间的间距为5微米;当m为2时,相邻两个亮纹之间的间距为2.5微米,依此类推。
2. 一束波长为600纳米的单色光垂直照射到一个宽度为0.2毫米的狭缝上,距离狭缝1米处的屏上出现了衍射条纹。
求出最亮的亮纹的角度。
解答:最亮的亮纹对应的是m=0的情况,即中央最亮的部分。
根据衍射公式sinθ = mλ / a,代入已知数据可得:sinθ = 0 * 0.6微米 / 0.2微米sinθ = 0由于s inθ的值为0,我们可以得到θ的值为0。
因此,最亮的亮纹的角度为0度,即光线垂直照射到屏上。
3. 一束波长为400纳米的单色光通过一个宽度为0.3毫米的狭缝,距离狭缝1米处的屏上出现了衍射条纹。
光的衍射习题及答案
第二章 光的衍射1. 单色平面光照射到一小圆孔上,将其波面分成半波带。
求第к个带的半径。
若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。
解:2022rr k k +=ρ 而20λkr r k +=20λk r r k =-20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+ 略去22λk 项,则 λρ0kr k=将cm104500cm,100,1-80⨯===λr k 带入上式,得cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。
问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。
解:(1)根据上题结论ρρ0kr k =将cm105cm,400-50⨯==λr 代入,得cm 1414.01054005k k k =⨯⨯=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。
(2)P 点最亮时,小孔的直径为cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。
解:根据题意m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。
光的衍射单元测试题及答案
光的衍射单元测试题及答案
问题一:
一束波长为500 nm 的单色光照射到一条宽度为0.2 mm 的狭缝上,狭缝后面的屏幕距离狭缝10 m,屏幕上呈现出光的衍射现象。
1. 屏幕上的主极大位置是在哪里?
2. 如果把狭缝的宽度从0.2 mm 增加到 0.5 mm,屏幕上呈现出
的光的衍射现象会如何变化?
答案:
1. 主极大位置计算公式为X = (n * λ * D) / a,其中 X 表示主极
大位置(即屏幕上距离狭缝的位置),n 表示标志某一极大的整数,λ 表示光波的波长,D 表示狭缝到屏幕的距离,a 表示狭缝的宽度。
根据公式计算,主极大位置 X = (1 * 500 nm * 10 m) / 0.2 mm = 2500 mm = 2.5 m。
2. 当狭缝宽度增加到 0.5 mm,屏幕上呈现出的光的衍射现象
会发生如下变化:
- 主极大宽度会变窄,即在屏幕上的主极大位置左右两侧的亮区会缩小。
- 主极大强度会变弱,即主极大上的亮度会减弱。
- 衍射角会变大,即从屏幕上看,衍射光束的夹角会增大。
请注意,以上答案仅供参考,具体情况可能会因实际条件和实验设计的差异而略有不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页共4页 习题七 光的衍射 习题册-上-7
学院 班 序号___________姓名
习题七
一、选择题
1.在单缝衍射实验中,缝宽a =0.2mm ,透镜焦距f =0.4m ,入射光波长λ=500nm ,则在距离中央亮纹中心位置2mm 处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为几个半波带? [ ]
(A )亮纹,3个半波带; (B )亮纹,4个半波带;
(C )暗纹,3个半波带; (D )暗纹,4个半波带。
2.波长为632.8nm 的单色光通过一狭缝发生衍射。
已知缝宽为1.2mm ,缝与观察屏之间的距离为D =2.3m 。
则屏上两侧的两个第8级极小之间的距离x ∆为 [ ]
(A )1.70cm ; (B )1.94cm ; (C )2.18cm ; (D )0.97cm 。
3.波长为600nm 的单色光垂直入射到光栅常数为2.5×10-3mm 的光栅上,光栅的刻痕与缝宽相等,则光谱上呈现的全部级数为 [ ]
(A )0、±1、±2、±3、±4; (B )0、±1、±3;
(C )±1、±3; (D )0、±2、±4。
4.用白光(波长范围:400nm-760nm )垂直照射光栅常数为2.4×10-4cm 的光栅,则第一级光谱的张角为 [ ]
(A )9.5︒; (B )18.3︒; (C )8.8︒; (D )13.9︒。
5.欲使波长为λ(设为已知)的X 射线被晶体衍射,则该晶体的晶面间距最小应为 [ ]。
(A )λ/4; (B )2λ; (C )λ; (D )λ/2。
二、填空题
1.在单缝夫琅和费衍射实验中,设第一级暗纹的衍射角很小。
若以钠黄光(λ1=589nm)为入射光,中央明纹宽度为 4.0mm ;若以蓝紫光(λ2=442nm)为入射光,则中央明纹宽度为________mm 。
2.单色光1λ=720nm 和另一单色光2λ经同一光栅衍射时,发生这两种谱线的多次重叠现象。
设1λ的第1k 级主极大与2λ的第2k 级主极大重叠。
现已知当1k 分别为2, 4, 6,,时,对应的2k 分别为3, 6, 9,,。
,则波长2λ= nm 。
3.为测定一个光栅的光栅常数,用波长为632.8nm 的单色光垂直照射光栅,测得第一级主
极大的衍射角为18°,则光栅常数d =_________;第二级主极大的衍射角θ = 。
4.一宇航员声称,他恰好能分辨他下方距他为H =160km 的地面上两个发射波长550nm 的点光源。
假定宇航员的瞳孔直径D =5.0mm ,则此两点光源的间距为x ∆= m 。
5.在比较两条单色X 射线谱线波长时,注意到谱线A 在与某种晶体的光滑表面成30︒的掠射角时出现第1级反射极大。
谱线B (已知具有波长0.097nm )则在与同一晶体的同一表面成60︒的掠射角时出现第3级反射极大,则谱线A 的波长为A λ= nm ;晶面间距为 d = nm 。
三、计算题
1.波长为600nm 的单色光垂直照射到一单缝宽度为 0.05mm 的光栅上,在距光栅2m 的屏幕上,测得相邻两条纹间距0.4cm x ∆=。
求:(1)在单缝衍射的中央明纹宽度内,最多可以看到几级,共几条光栅衍射明纹?(2)光栅不透光部分宽度b 为多少?
2.在复色光照射下的单缝衍射图样中,某一波长单色光的第3级明纹位置恰与波长λ=600nm 的单色光的第2级明纹位置重合,求这光波的波长。
3.波长为680nm 的单色可见光垂直入射到缝宽为41.2510cm a -=⨯的透射光栅上,观察到第四级谱线缺级,透镜焦距1m f =。
求:
(1)此光栅每厘米有多少条狭缝;
(2)在屏上呈现的光谱线的全部级次和条纹数。
4.波长为400nm~760nm 范围的一束复色可见光垂直入射到光栅常数44.810cm d -=⨯的透射光栅上,在屏上形成若干级彩色光谱。
已知透镜焦距 1.2m f =。
求:
(1)第二级光谱在屏上的线宽度;
(2)第二级与第三级光谱在屏上重叠的线宽度。
5.已知天空中两颗星相对于一望远镜的角距离为4.84 10-6rad,它们发出的光波波长为550nm。
问望远镜物镜的口径至少要多大,才能分辨出这两颗星?。