数据建立柯布道格拉斯生产函数分析美国某行业的投入产出情况
柯布-道格拉斯生产函数例题
柯布-道格拉斯生产函数例题Y=A·K^α·L^β其中,Y代表产出,A代表全要素生产率,K代表资本投入,L代表劳动力投入,α和β是生产函数的弹性系数。
下面我们通过一个例题来具体说明柯布-道格拉斯生产函数的具体应用。
假设一个工厂使用柯布-道格拉斯生产函数来描述其生产过程。
在其中一时期,该工厂的全要素生产率A为1,资本投入K为100,劳动力投入L为50。
利用柯布-道格拉斯生产函数求出该工厂的产出。
根据柯布-道格拉斯生产函数,将给定的参数代入公式,可以得到:Y=1·100^α·50^β对于具体的弹性系数α和β,我们可以根据实际情况来确定。
假设α为0.5,β为0.5,则可以计算出产出为:Y=1·100^0.5·50^0.5=1·10·7.071=70.71因此,该工厂在给定的资本投入和劳动力投入下,可以获得70.71的产出。
接下来,我们来分析一下这个例题的结果。
首先,从数值上可以看出,产出随着资本和劳动力的增加而增加,但增加的速度逐渐减缓。
也就是说,在资本投入和劳动力投入增加时,每增加一个单位的投入,产出的增加逐渐变小。
这是柯布-道格拉斯生产函数的典型特征。
其次,我们可以通过调整参数来观察产出的变化。
比如,如果我们将资本投入K增加到200,劳动力投入L保持不变,则可以计算出产出为:Y=1·200^0.5·50^0.5=1·14.142=14.142可以看到,当资本投入翻倍时,产出并没有翻倍,而是略微增加了。
这说明随着资本投入的增加,产出的增长速度逐渐减缓,即边际产出递减。
最后,我们还可以通过改变全要素生产率A来观察产出的变化。
比如,如果我们将全要素生产率A增加到2,而资本投入和劳动力投入保持不变,则可以计算出产出为:Y=2·100^0.5·50^0.5=2·10·7.071=141.42可以看到,当全要素生产率增加一倍时,产出也相应增加一倍。
【原创】用excel来构建柯布-道格拉斯Cobb-Douglas生产函数的可视化数据分析报告论文(代码+数据)
咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog用excel来构建柯布-道格拉斯Cobb-Douglas生产函数的可视化数据分析报告来源:大数据部落| 有问题百度一下“”就可以了原文:/?p=3430我使用excel来构建Cobb-Douglas生产函数的可视化。
生产函数将任何给定公司的输出表示为两个输入(人工和资本)和参数(α和β)的函数。
当α和β之和等于1时,可以证明它们分别代表劳动力和资本的产出份额。
这种情况也意味着公司的经营规模不断回报。
当公司将其投入扩大一定百分比时,产出增加相同的数量。
如果我们指定alpha和beta,我们可以在xyz空间中绘制每个劳动力,资本和产出量。
我们这样做是为了劳动力和资本,范围从1到100,alpha = beta = .5。
结果是Cobb-Douglas生产表面,资本和劳动力各占50%的投入。
咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog请注意,分隔不同颜色区域的线条间隔相等。
这是规模收益递增的特性。
当劳动力和资本扩张时,效用水平按比例稳定增长。
从上方观察表面也很有用。
咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog那些L形曲线被称为等长或矩形双曲线。
它们代表产生相同(“iso”)输出量(“quant”)的劳动力和资本的不同组合。
例如,L = 4且K = 4,L = 16且K = 1,并且L = 1且K = 16都产生O = 4的输出水平。
对于Q = 4,L形曲线简单地连接这些点。
当曲线向西北方向移动时,它们会绘制组合以获得更高的输出值。
柯布—道格拉斯+eviews6.0
XX村生猪养殖场生产函数分析一、猪场简介XX村生猪养殖场位于XX,临近该镇水库及县道,以生猪销售为主要业务。
该养殖场最初由两兄弟共同投资建设,如今已成立10余年,虽然现在的规模仍然不大,但目前年出栏生猪过万,年生猪销售额超过千万,符合本次调查的要求。
二、数据来源此次调查的数据来源于XX生猪养殖场,在数据处理选择时采用了该养殖场的年度数据,主要包括销售收入、资金投入、劳动力投入数量。
本文的数据分析是在EViews6.0中进行的,数据如下表所示:表一、乐至县燕窝村生猪养殖场数据时间收入(万元)资金投入(万元)劳动力数量(人)1997 4266.86 2798.10 141998 4172.45 2977.45 141999 4531.78 3050.64 142000 4771.12 2935.28 162001 5242.75 3175.49 162002 4856.36 3129.29 162003 6472.34 3119.20 182004 7032.76 3413.29 182005 7176.80 3525.02 212006 7441.92 3757.68 212007 9424.80 5224.95 212008 11608.73 5678.80 232009 19713.08 8567.83 242010 25298.47 10745.27 24下表是上面数据的基本统计信息:表二:数据信息统计表Range: 1 14 -- 14 obs Object CountData Pointsseries 4 56 coef 1 751 Total5807三、模型的设定及变量的假定柯布-道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb )和经济学家道格拉斯(P.H.Douglas )共同探讨投入生产关系时创立的生产函数,是在生产函数的一般形式上作出了改进,引入了技术资源这一因素。
他们根据历史资料,研究了1899-1922年美国资本和劳动对生产的影响,认为在技术不变的情况下产出与投入的劳动力及资本的关系可以表示为:Y AK L αβ=其中Y 表示产量,A 表示技术水平,K 表示投入的资本量,L 表示投入的劳动量,α、β分别表示K 和L 的产出弹性。
柯布道格拉斯函数拓展分析.
一定历史时期的生产函数是反映当时的社会生产力 水平的。只有明确一定历史阶段的社会生产力特征才能 构造出最能反映当时生产力发展水平的生产函数。在工 业时代,生产力水 平是以单位量的资本和劳动力的投入所能获得的产成品 的数量来衡量的。柯布——道格拉斯生产函数正是在 工业经济时代所构造出的反映工业经济时代生产力特征 的函数模型。当人类 进入到信息经济时代,由于信息资源的加入、技术的不 断进步,导致生产力发展的特征和能发生了根本变化, 信息时代的经济发展特征是以性能、质量、产品的差异 性组合,客户服务和信息管理等为主要竞争手段的。如 果我们仍然以工业时代测算生产力的方法去考察信息时 代中信息技术对生产力的作用的话,肯定无法对其做出 准确的判断。所以,原有的柯布——道格拉斯生产函 数已经不能再适应新的经济发展形态。
柯布——道格拉斯生产函 数
戚瓅丹 154
从三方面介绍C-D函数
• 传统的柯布——道格拉斯生产函数及其性质 • 对柯布——道格拉斯生产函的质疑 • 对柯布——道格拉斯生产函数所做的改进
传统的柯布——道格拉斯生产函数及其性质
柯布——道格拉斯生产函数是经济学中使用最为广泛 的生产函数,通常简称为C—D生产函数。它是由美国 数学家柯布(c.w.Cobb)和经济学家道格拉斯 (P.H.Douglas)根据1899年~1922年间美国制造业部 门的有关数据构造出来的。两人共同探讨投入和产出 的关系时,在生产函数的一般形式上引入了技术资源 因素,于1928年提出了这一函数形式。他们认为,在 技术经济条件不变的情况下,产出与投入的劳动力和 资本的关系可以表示为:
• 索洛经济增长速度方程表明产出增长率为技术进步速度和资本、劳动投入的 增长率的加权和。其表现形式为:
• 其中,P、a、k和1分别表示产出量、技术进步、资本投入和劳动投入的增长 速度,α、β分别表示资本和劳动的产出弹性。
微观经济学实验三:估计柯布-道格拉斯生产函数PPT课件
可编辑
3
3.实验原理
★ 柯布-道格拉斯生产函数
柯布-道格拉斯生产函数是由数学家C.柯布与经济学 家P.道格拉斯于20世纪30年代初一起提出来的。他们根据 美国1899—1922年的工业生产统计资料,得出这一时期 美国的生产函数。柯布-道格拉斯生产函数的表达式为:
Q = ALαKβ 式中Q代表总产量,L代表劳动投入量,K代表资本 投入量 。A、α、β为常数,且 0<α<1 ,0<β<1 。
8
4.实验步骤
1)设计回归模型
对柯布- 道格拉斯生产函数取其对数形式,因而设计 回归模型如下:
ln Q = C+ αln l + βln k + u 其中,Q代表总产出,l代表劳动投入量,k代表资本投 入量, α、β分别代表回归系数。
可编辑
9
4.实验步骤
2) 利用EViews软件进行回归分析,得到回归方程:
以国民经济中某一个行业或某一企业为对象,收集相关 数据进行回归分析,估计它的规模报酬状况。
1、根据我国钢铁行业的有关数据,研究其生产函数、规 模报酬及其变化趋势。
2、根据我国粮食生产的有关数据,研究其生产函数、规 模报酬及其变化趋势。
LOG(Y) = 1.168 + 0.607*LOG(L) + 0.372*LOG(K)
劳动的产出弹性α=0.607,资本的产出弹性β= 0.372 。
2)无约束条件的系数估计值α+β=0.607+0.372=0.979, 经Wald检验,无法拒绝原假设,即α+β=1,说明该行业生 产遵循规模报酬不变的假设。
在本实验中,最初提出的C-D生产函数中,假定参
数满足 + =1 ,也就是假定研究对象满足规模报酬不 变。即当资本与劳动的数量同时增长倍时,产出量也增 长 倍。
微观经济学实验三:估计柯布-道格拉斯生产函数
18
14
• 选择View/Coefficient Tests/Omitted Variables—Likelihood Ration,在打开的 对话框中,列出检验统计量名,用至少一 个空格相互隔开。
15
5.实验结果分析
1) 根据回归结果可知,美国金属行业生产的柯布-道格拉 斯生产函数为: LOG(Y) = 1.168 + 0.607*LOG(L) + 0.372*LOG(K) 劳动的产出弹性α=0.607,资本的产出弹性β= 0.372 。 2)无约束条件的系数估计值α+β=0.607+0.372=0.979, 经Wald检验,无法拒绝原假设,即α+β=1,说明该行业生产 遵循规模报酬不变的假设。 1937年,提出了C-D生产函数的改进型,即取消了 + =1 的假定,允许要素的产出弹性之和大于1或小于1,即承 认研究对象可以是规模报酬递增的,也可以是规模报酬递减 的,取决于参数的估计结果。因而基于C-D生产函数的改进 型,也可以说该行业的生产存在一定程度的规模报酬递减的 情况。
11
4.实验步骤
3)Wald系数检验----有约束条件的检验
利用EViews软件进行Wald检验,结果如下(原假设: 约束条件有效):
EViews显示F统计量和 2 统计量及相应的P值。它们 的P值表明我们可以确定地接受规模报酬不变的原假设。
12
4.实验步骤
4)遗漏变量检验
这一检验能给现有方程添加变量,而且判断添加的变 量对解释因变量变动是否有显著作用,以期完善原有模型 的设计。原假设H0是添加变量不显著。 本实验中,超越对数生产函数模型
柯补道格拉斯生产函数的成本函数
柯布-道格拉斯(Cobb-Douglas)生产函数是描述生产过程中输入与产出关系的数学模型。
在经济学中,柯布-道格拉斯生产函数广泛应用于描述企业的生产过程,并且对于企业的成本分析具有重要的意义。
本文将深入探讨柯布-道格拉斯生产函数的成本函数,分析其在企业经济中的应用和意义。
1. 柯布-道格拉斯生产函数简介柯布-道格拉斯生产函数最初由美国经济学家查尔斯·柯布和保罗·道格拉斯提出,用于描述输入与产出之间的关系。
其一般形式为:Q = A * L^a * K^b,其中Q表示产出,L表示劳动力输入,K表示资本输入,A为总要素生产率(Total Factor Productivity,TFP),a和b分别为劳动力和资本的弹性系数。
该函数表明产出与劳动力和资本的投入量成正比,同时与总要素生产率的影响呈现指数关系。
2. 柯布-道格拉斯生产函数的成本函数在企业经济中,成本是企业经营活动的核心指标之一。
柯布-道格拉斯生产函数可以通过对数变换后转化为成本函数形式,描述企业的生产成本与输入要素之间的关系。
成本函数的一般形式为:C = wL + rK,其中C表示总成本,w表示单位劳动力的工资,L表示劳动力投入量,r表示单位资本的租金,K表示资本投入量。
该成本函数表明总成本与劳动力和资本的投入成本成正比。
3. 柯布-道格拉斯生产函数的应用柯布-道格拉斯生产函数的成本函数在企业经济中具有重要的应用价值。
通过成本函数可以对企业的成本进行有效的管理和控制。
企业可以根据成本函数分析各项要素成本的相对重要性,通过控制劳动力和资本的投入量来实现成本最小化,从而提高生产效率和经济效益。
成本函数还可以为企业的产量规划和定价提供重要依据。
通过成本函数分析企业的生产要素价格和产出水平,可以有效制定合理的产量规划和产品定价策略,以实现企业利润最大化。
4. 柯布-道格拉斯生产函数的意义在现代经济学理论中,柯布-道格拉斯生产函数的成本函数对企业经济管理具有深远的意义。
柯布--道格拉斯生产函数
柯布--道格拉斯生产函数柯布-道格拉斯生产函数是一种用来描述产出与产出要素输入之间关系的经济学模型。
该模型是由美国经济学家柯布和道格拉斯在20世纪20年代提出的,被广泛应用于宏观经济学中的生产函数分析。
Y = A L^α K^β其中,Y表示产出, L表示劳动力输入量, K表示资本输入量, A表示全要素生产率, α和β是生产函数中劳动力因素和资本因素的弹性系数,而α+β的总和表示生产函数的规模收益。
所谓规模收益是指生产要素的总量增加一倍,能使产出增加的比例。
即α+β大于1时,存在递增规模收益;等于1时,存在恒等规模收益;小于1时,存在递减规模收益。
该生产函数的基本思想是,产出量可以用输入的各种生产要素数量来解释,而生产效率的提升可以通过升级技术和管理方法等手段来实现。
这一经济学模型通过科学地评估生产要素的投入和产出之间的关系,从而有效地指导产品生产的决策,同时也为企业实现成本最小化和效益最大化提供了理论基础。
优点:1.全要素生产率是该模型的核心概念,所包含的生产要素非常广泛,可以更全面地反映产出与产出要素之间的关系。
2.该模型能够帮助企业优化生产要素的投入,提高生产效率和效益。
3.对于某些复杂的生产运营系统,利用柯布-道格拉斯生产函数可以更加精细地建立生产模型,以便于深入分析和研究。
1.柯布-道格拉斯生产函数基于某一市场的生产数据,不适用于所有市场,无法复刻到所有不同形式的生产环境中。
2.该模型忽略了信息、技能和组织等非生产要素对企业产出的影响,对于这些影响因素的分析不够完备。
3.由于该模型只考虑单一生产函数,可能无法很好地解释某些特殊的产出情况。
专题拓展5.1:柯布——道格拉斯生产函数
专题拓展5.1:柯布——道格拉斯生产函数社会财富的生产过程是多种多样的。
几千年来,随着生产力水平的不断提高,人类生产活动的形式,已从刀耕火种的落后状态发展到电子计算机控制的大规模自动化生产。
然而,从经济学的角度来看,无论何种生产过程,都可以看成是在一定社会、经济、技术和自然条件下,一组技术要素转化为产出的过程。
生产函数就是在某些前提假设下,描述这一过程的经济数学模型。
它表示的是在一定的技术水平下各种生产要素投入量的某一组合同它所能产出的最大可能产出量之间的关系。
西方经济学家对生产函数的定义,以诺贝尔经济学奖获得者萨缪尔森教授为生产函数所下的定义为代表。
他认为生产函数是一种技术关系,被用来表明每一种具体数量的投入物(即生产要素)的配合所可能生产的最大产量。
一定历史时期的生产函数是反映当时的社会生产力水平的。
只有明确一定历史阶段的社会生产力特征才能构造出最能反映当时生产力发展水平的生产函数。
柯布——道格拉斯生产函数正是在工业经济时代所构造出的反映工业经济时代生产力特征的函数模型。
柯布——道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家道格拉斯(P.H.Douglas)共同探讨投入和产出的关系时创造的生产函数,是在生产函数的一般形式上作了改进,引入了技术资源这一因素。
他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,认为在技术经济条件不变的情况下,产出与投入的劳动力及资本的关系可以表示为:其中:Y——产量;A ——技术水平;K ——投入的资本量;L ——投入的劳动量;——K和L的产出弹性。
指数表示资本弹性,说明当生产资本增加1%时,产出平均增长%;是劳动力的弹性,说明当投入生产的劳动力增加1%时,产出平均增长%;A是常数,也称效率系数。
函数中把 A技术水平作为固定常数,难以反映出因技术进步而给产出带来的影响,为了克服这一不足之处,应该对柯布——道格拉斯生产函数作以改进。
柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数
柯布—道格拉斯生产函数的经济学涵义是什么,在现代经济条件下,怎样对该函数进行补充与修正?姓名:钱寿麒学号:20090316319院系:城乡建设与工程管理柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数、他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制将这些边际产出乘以相应的生产要素量,得到资本的总产出为1/4P,劳动的总产出为3/4P。
他们显然被自己的结论吓坏了。
因为他们竟然表示他们自己千辛万苦好不容易得到的这样一个结果是值得怀疑的,强调他们的文章不在于给出结论,而在于演示方法。
当然,吓坏他们的,决不是因为他们发现资本也能“创造”价值,而只是因为他们发现产出的大部分,即3/4的产出都应归属于劳动。
继柯布和道格拉斯之后,其他西方学者也对所谓的生产函数进行了实证研究,如霍奇等。
霍奇还根据其研究的结果,计算了所谓的最优生产要素配置。
根据这一配置,要大大降低劳动要素的投入,增加资本要素的投入,好象无限扩大厂房面积,就能够大大增加产出似的、生产函数是指在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。
柯布-道格拉斯生产函数
• 这就意味着边际生产率函数为零阶齐次 的。
– 如果一个函数是k 阶齐次的,那么其导数就 是k-1阶齐次的
29
规模报酬不变
• 任何投入的边际生产率取决于资本和劳 动之比(而不是这些投入的具体水平) • k 和 l 之间的边际技术替代率仅仅取决于 k 和 l之比,而不是运行规模
30
规模报酬不变
• 生产函数是位似的 • 从几何上看,所有的等产量线均是彼此的 射线扩展
31
规模报酬不变
• 沿着一条从原点出发的射线 ( k/l不变), 所 有等产量线上的RTS都是相同的
k 每期
随着产出扩张,等产量线 均匀排列
q=3 q=2 q=1
l 每期
32
规模报酬
• 规模报酬可被扩展为n 种投入的生产函数
q = f(x1,x2,…,xn)
• 如果所有的投入均乘以一个正常数t, 可以 得到
– 生产中劳动分工的进一步细化和专业化 – 效率降低,因为企业规模变大会导致管理难 度增加
26
规模报酬
• 如果生产函数给定为 q = f(k,l),所有的投 入都乘以某个正常数 (t >1), 则
对产出的影响 f(tk,tl) = tf(k,l) f(tk,tl) < tf(k,l) f(tk,tl) > tf(k,l) 规模报酬 不变 递减 递增
这一生产函数就意味着k 和 l 足够大时, 边际生产率递减
– fll 和 fkk < 0 如果 kl > 200
22
递减的边际技术替代率
• 对任一生产函数求二阶交叉导数得
fkl = flk = 2400kl - 9k 2l 2
仅当 kl < 266时,为正
柯布-道格拉斯生产函数
柯布-道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(PaulH.Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的,是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布-道格拉斯生产函数-简介保罗·道格拉斯柯布和道格拉斯研究的是1899年至1922年美国制造业的生产函数。
他们指出,制造业的投资分为,以机器和建筑物为主要形式的固定资本投资和以原料、半成品和仓库里的成品为主要形式的流动资本投资,同时还包括对土地的投资。
在他们看来,在商品生产中起作用的资本,是不包括流动资本的。
这是因为,他们认为,流动资本属于制造过程的结果,而非原因。
同时,他们还排除了对土地的投资。
这是因为,他们认为,这部分投资受土地价值的异常增值的影响较大。
因此,在他们的生产函数中,资本这一要素只包括对机器、工具、设备和工厂建筑的投资。
而对劳动这一要素的度量,他们选用的是制造业的雇佣工人数。
但是,不幸地是,由于当时对这些生产要素的统计工作既不是每年连续的,也不是恰好按他们的分析需要来分类统计的。
因而,他们不得不尽可能地利用有的一些其它数据,来估计出他们打算使用的数据的数值。
比如,用生铁、钢、钢材、木材、焦炭、水泥、砖和铜等用于生产机器和建筑物的原料的数量变化来估计机器和建筑物的数量的变化;用美国一两个州的雇佣工人数的变化来代表整个美国的雇佣工人数的变化等等。
经过一番处理,他们得到关于1899年至1922年间,产出量P、资本C和劳动L的相对变化的数据(以1899年为基准)。
令人佩服的是,在没有计算机的年代里,他们从这些数据中,得到了如下的生产函数公式:P=1.01L3/4C1/4柯布(C.W.Cobb)这一结果虽然与现代计算机统计软件的计算结果不同,但两者无本质上的差别。
柯布道格拉斯函数拓展分析.
• 其中,Y表示产出量,K表示资金的投入,L表示劳动的投入,At表示技术 水平,α表示资金的产出弹性,β表示劳动的产出弹性。
• 当α=0,β=1讨,
就变成
,则技术水平
。若用劳动
者人数表示劳动的数量,则此时的A即表示每个劳动者的平均产出量,这
时衡量技术水平的指标就是劳动生产率。用劳动生产率可以对国家间、
三、对柯布——道格拉斯生产函数所做的改 进
• 最早对柯布一道格拉斯生产函数做出修正的有:美国国家经济研究署(BER) 于1983年作的研究报告《IT and Innovation>),之后有宾西法尼亚大学的劳林 希提(1990)和麻省理工学院的恩里克布莱约森(1991)。目前,国内外有很多 学者都对柯布——道格拉斯生产函数的改进进行了研究。具有代表性的理 论观点综述如下:
一定历史时期的生产函数是反映当时的社会生产力 水平的。只有明确一定历史阶段的社会生产力特征才能 构造出最能反映当时生产力发展水平的生产函数。在工 业时代,生产力水 平是以单位量的资本和劳动力的投入所能获得的产成品 的数量来衡量的。柯布——道格拉斯生产函数正是在 工业经济时代所构造出的反映工业经济时代生产力特征 的函数模型。当人类 进入到信息经济时代,由于信息资源的加入、技术的不 断进步,导致生产力发展的特征和能发生了根本变化, 信息时代的经济发展特征是以性能、质量、产品的差异 性组合,客户服务和信息管理等为主要竞争手段的。如 果我们仍然以工业时代测算生产力的方法去考察信息时 代中信息技术对生产力的作用的话,肯定无法对其做出 准确的判断。所以,原有的柯布——道格拉斯生产函 数已经不能再适应新的经济发展形态。
柯布道格拉斯生产函数与劳动价值论
柯布—道格拉斯生产函数与劳动价值论□管怀鎏生产函数是西方经济学中一个十分重要的概念,按照萨缪尔森的定义,生产函数是“在技术水平既定条件下确定某一组要素投入所能带来的最大产出的关系式”。
著名的柯布—道格拉斯生产函数,是美国数学家柯布(Charles W. Cobb)与经济学家道格拉斯(Paul Douglas)根据历史统计资料,研究了1899至1922年美国的资本与劳动力数量对制造业产量的影响后提出来的,其形式为Q=ALαK1-α式中,L代表劳动力投入量;K代表资本投入量;Q代表产出量;A系技术系数,为正常数;α为小于1的正数。
柯布—道格拉斯生产函数具有较为广泛的适用范围,它可用来描述一国总的投入产出关系,也可用来模拟单个企业或部门的生产情况,在经济理论研究与政策分析评价中占有相当重要的地位。
笔者认为,研究这一问题具有重要的意义,一方面,借助现代经济分析方法厘清生产函数与劳动价值论的内在联系,将使劳动价值论在精确化、现代化方面向前推进一步;另一方面,通过将生产函数这一现代经济分析中的常用工具置于劳动价值论基础之上,也可从一特定的侧面进一步彰显马克思劳动价值论的科学性与生命力。
一众所周知,按照马克思主义经济学的观点,任何商品生产过程内部都包含互相对立但又不可分割的两个方面:一方面,是劳动过程,这是从劳动的质的方面来考察的过程,是具体劳动创造使用价值的过程;另一方面,是价值形成过程,这是从劳动的量的方面来考察的过程,是抽象劳动凝结为商品价值的过程。
因此,同一生产过程,就它是劳动过程来说,我们看到的是,投入一定量生产资料和劳动力,生产出了一定量的产品;就它是价值形成过程来说,我们看到的则是,这一定量生产资料中的价值转移到产品中,同时投入生产过程的一定量劳动力进行的劳动,形成新的价值,也加入到产品中去,与生产资料的转移价值一道,共同构成一定量产品的价值。
因为这是同一商品生产过程的两个不同的方面,所以描述它们的数学形式是不同的。
柯布道格拉斯生产函数及其应用
柯布-道格拉斯生产函数及其应用考号:姓名:[内容提要]生产函数是指在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。
柯布—道格拉斯生产函数是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,它是经济学中使用最广泛的一种生产函数形式,采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。
柯布—道格拉斯生产函数模型广泛应用于经济数量分析,运用我国1990-2008年的相关数据,运用应用统计学的方法来验证我国经济增长方式是粗放式的,提出应该加大科技创新投入,进而加快促进技术进步,深化经济和政治体制改革来加快我国省经济增长方式的转变。
[关键词]生产函数柯布道格拉斯经济数量分析经济增长一、生产函数(一)简述生产函数是指在一定时期内,在技术水平不变的情况下,生产中所使用的各种生产要素的数量与所能生产的最大产量之间的关系。
它可以用一个数理模型、图表或图形来表示。
换句话说,就是一定技术条件下投入与产出之间的关系,在处理实际的经济问题时,生产函数不仅是表示投入与产出之间关系的对应,更是一种生产技术的制约。
例如,在考虑成本最小化问题时,必须要考虑到技术制约,而这个制约正是由生产函数给出的。
另外,在宏观经济学的增长理论中,在讨论技术进步的时候,生产函数得到了很大的讨论。
(二)常见生产函数1、固定投入比例生产函数固定投入比例生产函数是指在每一个产量水平上任何一对要素投入量之间的比例都是固定的生产函数。
2、柯布-道格拉斯生产函数柯布-道格拉斯生产函数是由数学家柯布(C.W.Cobb)和经济学家道格拉斯(PaulH.Douglas)于20世纪30年代提出来的。
柯布—道格拉斯生产函数被认为是一种很有用的生产函数,因为该函数以其简单的形式具备了经济学家所关心一些性质,它在经济理论的分析和应用中都具有一定意义。
柯布道格拉斯生产函数
RNL
INL
LNL
YNL
�元 �元亿 �人万 亿�位 �位单�I �位单� L 单�R
�元亿 �位单�Y
份年
据数计统出支费经 D&R、资投产资定固、口人业就、值总产生省苏江年 9002-6991�一表
。本样为作据数年 41 共�年 9002-6991�划计”五一十“到划计”五 九“ 从了取选 �限有源来据数及施实的划计年五家国到虑考 。志标的素 因展发济经为作值产总年省苏江以 �性得可的据数及况情际实省苏江 据根。得所理整过通� 》 鉴 年 计统 苏 江 《于 自 来据 数 有所 的 文本 。示表 R 号符以并�用作的长增济经 对其究研来标指的新创术技量衡为作出支费经 D&R 以此因 �入投是素 因响影的长增济经究研到虑考 。主为出产和入投以新创术技量衡 。示表 I 用�额总 金资的入投为作�额资投产资定固会社全的年每把�面方量金资 。示表来 L 号符以并�耗消的动劳明说来数人业就用采。数人 业就作称�员人的入收营经或酬报动劳得取并动劳会社加参际实�中 数人力动劳。口人的动活济经会社加参未尚或加参际实、力能动劳有 、上以�岁 61 常通�龄年定一、区地或家国个一是数人力动劳 。量变释解被为作 �示表 Y 入收用�标指的展发济经为作 PDG 以然仍此因。题难术技少 不在存还上算核在 PDG 色绿�PDG 统传替代”PDG 色绿“以�量质活 生的民人映反能不更�益效和率效的长增济经、价代的出付式方长增 济经映反能不�本成会社映反法无�性限局有具标指心核的动活济经 民国算核为作 PDG 以但。标指济经的区地或家国个一量衡来用�值价 的务 劳 和品 产 终最 部 全 的出 产 生所 中 济经 的 区 地或 家 国 个 一 内 期时
61308051 班 8 融金 燕海徐
柯布道格拉斯生产函数
柯布道格拉斯生产函数柯布道格拉斯生产函数前言在社会经济的发展中,生产力的提高是推动经济持续增长的重要因素之一。
生产函数是研究生产力的核心工具,柯布道格拉斯生产函数是其中的经典代表之一。
下面将对柯布道格拉斯生产函数进行详细介绍。
一、生产函数的概念生产函数是研究生产关系的基本方法,它描述了技术、资本和劳动等生产要素之间的数量关系,即输入到输出的转化关系。
生产函数通常以数学公式的形式表达,可以表示为:Y = F(K, L)其中,Y表示产出,K表示资本,L表示劳动,F代表生产函数。
生产函数需要满足以下性质:1.生产函数是单调递增的,即当资本和劳动数量增加时,产出也会增加。
2.生产函数的边际收益递减,即当某一要素的投入增加时,对应的产出增加量会逐渐减少。
3.生产函数的二阶导数是负数,即边际产出弹性递减。
二、柯布道格拉斯生产函数的基本形式柯布道格拉斯生产函数是一种以“常比例”为特征的生产函数,它的基本形式为:Y = AK^α L^β其中,Y、K、L、A分别表示产出、资本、劳动、全要素生产率;α、β为弹性系数,常数A反映了技术水平和生产组织的效率。
三、柯布道格拉斯生产函数的特点1. 规模报酬递增当资本和劳动的增加引起产出增加的比率超过资本和劳动增加的比率时,称之为规模报酬递增。
对于柯布道格拉斯生产函数来说,如果α+β>1,则在所有的生产要素数量翻倍的情况下,产品输出将以更快的比率增长。
2. 规模报酬递减当资本和劳动的增加引起产出增加的比率低于资本和劳动增加的比率时,称之为规模报酬递减。
对于柯布道格拉斯生产函数来说,如果α+β<1,则在所有的生产要素数量翻倍的情况下,产品输出将以更慢的比率增长。
3. 规模报酬不变当资本和劳动的增加引起产出增加的比率等于资本和劳动增加的比率时,称之为规模报酬不变。
对于柯布道格拉斯生产函数来说,如果α+β=1,则在所有的生产要素数量翻倍的情况下,产品输出将按照同样的比率增长。
柯布-道格拉斯(Cobb-Douglas)生产函数模型
柯布-道格拉斯(Cobb-Douglas )生产函数模型齐微辽宁工程技术大学理学院,辽宁阜新(123000)E-mail: qiwei1119@摘 要:柯布-道格拉斯生产函数(Cobb-Douglas production function )用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数.本文对大量的生产数据进行处理,建立多项式拟合模型和线性规划模型对数据进行处理完成问题,对生产数据分析我们建立了多项式拟合,通过误差分析,多项式拟合模型是完全符合数据的.但通过使用线性回归方法求得的柯布-道格拉斯生产函数,通过对其进行误差分析我们知道柯布-道格拉斯生产函数与原始数据的误差比多项式拟合模型下的误差小的多.关键词:柯布-道格拉斯生产函数;多项式拟合;线性回归柯布-道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家道格拉斯(P.H.Douglas)共同探讨投入和产出的关系时创造的生产函数,是在生产函数的一般形式上作了改进,引入了技术资源这一因素.他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,认为在技术经济条件不变的情况下,产出与投入的劳动力及资本的关系可以表示为:Y AK L αβ=其中: Y —— 产量;A —— 技术水平;K —— 投入的资本量;L —— 投入的劳动量;,αβ——K 和L 的产出弹性.经济学中著名的柯布-道格拉斯(Cobb-Douglas )生产函数的一般形式为 (,),0,1Q K L aK L αβαβ=<< (1-1)其中,,Q K L 分别表示产值、资金、劳动力,式中,,a αβ要由经济统计数据确定.现有《中国统计年鉴(2003)》给出的统计数据如表(其中总产值取自“国内生产总值”,资金 取自“固定资产投资”,劳动力取自“就业人员”)[3].问题1:运用适当的方法,建立产值与资金、劳动力的优化模型,并做出模型的分析与检验.问题2:建立Cobb-Douglas 优化模型,并给出模型中参数,αβ的解释.问题3:将几个模型做出比较与分析.表0-1 经济统计数据年份 总产值/万亿元 资金/万亿元 劳动力/亿人1984 0.7171 0.0910 4.8179 1985 0.8964 0.2543 4.9873 1986 1.0202 0.3121 5.1282 1987 1.1962 0.3792 5.2783 1988 1.4928 0.4754 5.4334 1989 1.6909 0.4410 5.5329 1990 1.8548 0.4517 6.4749 1991 2.1618 0.5595 6.5491 1992 2.6638 0.8080 6.6152 1993 3.4634 1.3072 6.6808 1994 4.6759 1.7042 6.7455 1995 5.8478 2.0019 6.8065 1996 6.7885 2.2914 6.8950 1997 7.4463 2.4941 6.9820 1998 7.8345 2.8406 7.0637 1999 8.2068 2.9854 7.1394 2000 9.9468 3.2918 7.2085 2001 9.7315 3.7314 7.3025 2002 10.4791 4.3500 7.37401.问题一求解1.1 模型建立假设:有()()()t L t K t Q ,,分别表示产值,资金和劳动力,并假设()t Q 仅与()()t L t K ,有关[1]..由表0-1中的数据拟合出()()()t L t K t Q ,,的关系:用Matlab 画出表1-1中数据的关系图,应用Matlab 中的plot 画出图形如图1-1.图1-1产值、资金和劳动力数据关系图由图1-1可知:选定()t Q 看作是()()t L t K +的一元多项式的优化模型.从而建立模型()()()()t L t K G t Q +=.1.2 模型的求解通过Matlab 计算出()t Q 和()()t L t K + 数据之间拟合误差如表1-1.表1-1 数据拟合次数误差拟合次数 1 2 3 4 5 6 误差 3.0313 2.4294 1.5141 1.2366 1.0898 1.0887由上表得知五次拟合和六次拟合误差已经达到很接近,和四次拟合误差相差很大,所以本文选择五次拟合来求解模型()()()()t L t K G t Q +=.本文选用的是Matlab 中的plotfit 来五次拟合数据求解模型并用rcoplot 来误差分析. 得到的拟合多项式系数p 如表1-2.表1-2 多项式系数多项式次数5 4 3 2 1 0 相应系数 0.0062 -0.2711 4.6074-37.6090 148.3464 -226.4984这样就知道了模型多项式为:()()()()()()()()()()()()()()()54320.00620.2711 4.607437.6090148.3464226.4984Q K t L t K t L t K t L t K t L t K t L t =×+−×++×+−×++×+−(1-1) 多项式模型下,新的产值预测值如表1-3.表1-3 多项式模型的产值预测值年份1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 预测值0.5962 1.0362 1.1860 1.2929 1.3800 1.4008 1.9636 2.1686 2.6129 3.6773年份1994 1995 1996 1997 1998 1999 2000 2001 2002 预测值 4.7428 5.6358 6.5850 7.28598.23048.65859.27909.920810.4620程序运行所得到的残差图如图1-2.图1-2 模型数据的残差图由图1-2可以看到除了第十七个数据点偏离了原点,其他的点均在原点附近.继而得出模型:()()()()()()()()()()()()()()()54320.00620.2711 4.607437.6090148.3464226.4984Q K t L t K t L t K t L t K t L t K t L t =×+−×++×+−×++×+− (1-2)1.3 模型的误差分析 本文在假设的前提下,确定(),()()K t L t Q t 与的关系,即()Q t 可看作是()()K t L t +的一元多项式,从而本文做分析得到,做五次的多项式拟合达到最佳拟合.能从S 的值知道拟合误差,S 中有R 类似于回归中的判别系数、df 自由度、normr 拟合算法中用到的范德孟系数.本文通过预测值Y 值可以看到和原始值y 存在着误差,但是这些误差都是在可接受范围之内的误差[2].2 问题二的线性回归模型2.1模型的建立本文假设的是在1=+βα的情况下,用)(t Q ,)(t K ,)(t L 分别表示某一地区或部门在时刻t 的产值、资金和劳动力,它们的关系可以一般地记作))(),(()(t L t K F t Q =(2-1) 其中F 为待定函数.对于固定的时刻t ,上述关系可写作),(L K F Q =(2-2)为寻找F 的函数形式,引入记号L Q z =,L K y = (2-3) z 是每个劳动力的产值,y 是每个劳动力的投资.如下的假设是合理的:z 随着y 的增加而增长,但增长速度递减.进而简化地把这个假设表示为()z ag y =,αy y g =)(,10<<α (2-4)显然函数)(y g 满足上面的假设,常数0a >可看成技术的作用.由(2-3),(2-4)即可得到(2-2)式中F 的具体形式为1Q aK L αα−=,10<<α(2-5)由(2-5)式容易知道Q 有如下性质 0,>∂∂∂∂L Q K Q ,0,2222<∂∂∂∂LQ K Q (2-6) 记L Q Q K ∂∂=,K Q 表示单位资金创造的产值;LQ Q L ∂∂=,L Q 表示单位劳动力创造的产值,则从(2-5)式可得α=Q KQ K ,α−=1QLQ L ,Q LQ KQ L K =+ (2-7) (2-7)式可解释为:α是资金在产值中占有的份额,α−1是劳动力在产值中占有的份额.于是α的大小直接反映了资金、劳动力二者对于创造产值的轻重关系.2.2模型的求解本文求解得出1Q aK L αα−=中的()1b 和α值为:0.7784和0.7833,这样能求得a 的值为:2.1780,β的值为:1-0.7833,即为:0.2167.这样得到模型如下:()()()2167.07833.01780.2t L t K t Q ×= (2-8)利用以上模型求解出一组新的预测值如表2-1.表2-1 多项式模型的产值预测值年份预测值0.5962 1.0362 1.1860 1.2929 1.3800 1.4008 1.9636 2.1686 2.6129 3.6773年份1994 1995 1996 1997 1998 1999 2000 2001 2002 预测值 4.7428 5.6358 6.5850 7.28598.23048.65859.27909.9208 10.4620程序运行所得的残差图如图2-1所示:图2-1 模型数据残差图由图2-1可以看到除了第一个数据点偏离了原点,其他的点均在原点附近,这样可以得到线性回归模型是符合题目的.继而模型可得:()()()0.78330.21672.1780Q t K t L t =× (2-9)程序计算得到的r 和rint 值见表2-2.表2-2 r 和rint 值 r rint 0.4259 0.2705 0.5814-0.1634 -0.4602 0.1334-0.2005 -0.4950 0.0940-0.2001 -0.4979 0.0976-0.1620 -0.4691 0.14510.0175 -0.2999 0.33490.0572 -0.2568 0.37120.0402 -0.2775 0.3580-0.0410 -0.3620 0.2799-0.1575 -0.4687 0.1537-0.0672 -0.3857 0.25130.0284 -0.2901 0.34690.0690 -0.2462 0.38410.0923 -0.2200 0.40470.0387 -0.2747 0.35210.0439 -0.2686 0.35640.1576 -0.1427 0.45780.0347 -0.2737 0.3431-0.0136 -0.3188 0.29172.3 模型α和β的解释通过对柯布-道格拉斯生产函数传递变形后,进行求解得出βα,的值,同样也进行预测数据和原始数据比较.从图上可以知道模型中参数βα,的解释:α是劳动力产出的弹性系数,β是资本产出的弹性系数,从这个模型看出,决定工业系统发展水平的主要因素是投入的劳动力数、固定资产和综合技术水平(包括经营管理水平、劳动力素质、引进先进技术等).根据α和β的组合情况,它有三种类型:①1αβ+>称为递增报酬型,表明按现有技术用扩大生产规模来增加产出是有利的.②1<+βα称为递减报酬型,表明按现有技术用扩大生产规模来增加产出是得不偿失的.③1=+βα称为不变报酬型,表明生产效率并不会随着生产规模的扩大而提高,只有提高技术水平,才会提高经济效益.3 问题三:模型比较分析模型一是通过假设后进行拟合得到模型关系式,模型二是通过变形后线性回归运算得到模型.他们与实际之间都存在误差.五次多项式拟合模型的数据误差数是:1.0898.线性回归模型数据误差:r =[0.4259 -0.1634 -0.2005 -0.2001 -0.1620 0.0175 0.0572 0.0402 -0.0410 -0.1575 -0.0672 0.0284 0.0690 0.0923 0.0387 0.0439 0.1576 0.0347 -0.0136];m=sum(r)得到这个模型的误差数:m=1.0000e-004.可以看出1.0000e-004<1.0898,很明显柯布-道格拉斯(Cobb-Douglas )生产函数比假设的多项式拟合函数更接近实际数据,更加准确.在生产产值上的预测,柯布-道格拉斯(Cobb-Douglas )生产函数预测的结果近似就是准确生产值[4].4 评价和结论4.1 模型缺点一定历史时期的生产函数是反映当时的社会生产力水平的.只有明确一定历史阶段的社会生产力特征才能构造出最能反映当时生产力发展水平的生产函数.在工业时代,生产力水平是以单位量的资本和劳动力的投入所能获得的产成品的数量来衡量的.也就是说工业时代的生产力是以产量、能耗、劳动生产率等针对物质、能量的生产和利用等概念构成的.而对工业时代生产力水平的衡量是以投入产出的数量为依据的,表现在:(1)工业时代的生产是在一个较为稳定的生产技术条件下形成的,是针对某一生产和设计都很成熟的产品进行物质性生产.(2)工业时代衡量生产技术水平的标志是在一定的时间范围内,单位量的资本和劳动力的投人所能获得的产成品的数量.(3)工业时代的生产力水平体现为以某一生产技术组织资本和劳动力的投入,从而获得最接近于该生产技术所能达到的产出极限.柯布—道格拉斯生产函数正是在工业经济时代所构造出的反映工业经济时代生产力特征的函数模型.当人类进入到信息经济时代,由于信息资源的加入、技术的不断进步,导致生产力发展的特征和性能发生了变化,信息时代的经济发展特征是以性能、质量、产品的差异性组合,客户服务和信息管理等为主要竞争手段的.这样也就决定了信息时代这种以非物质,非能量的信息经济的生产力的概念与工业时代截然不同.如果仍然以工业时代测算生产力的方法去考察信息时代中信息技术对生产力的作用的话,肯定无法对其做出准确的判断.同样,原有的柯布——道格拉斯生产函数已经不能再适应新的经济发展形态,在工业时代用以衡量生产力水平的产量,资本投入量和劳动力投入量已经不能完全适应信息时代的生产力发展水平了;在信息经济时代,所投入的生产要素的核心成分从资本、劳动力逐渐转变为以信息技术为代表的高新技术.当信息资源应用于生产中时,对生产人员、资本、流程等形成革命性的影响作用,极大地提高了生产要素生产率,促进了经济发展.综合上述原因,需要对柯布——道格拉斯生产函数做出了一定的修正,使之适用于信息时代的生产力发展水平.4.2 模型改进4.2.1 对投入量的计量对投入的计量应包含:信息技术设备的资本投入,如电脑、数控设备、信息化管理设备、网络设备和其他软件等等;信息技术的劳动力投入,如电脑软件编制人员、硬件安装维护人员、信息化管理人员等等;非信息技术设备的资本投入,如传统的工业技术装备、生产设备、厂房等其他在工业时代类似的资本投入;非信息技术的劳动力投入,比如生产线上的操作工、一般管理人员等,这里需要指出的是“非信息技术的劳动力”既包括一般意义上的蓝领工人,也包括其他一些白领管理人员.4.2.2 对产出量的计量对产出量的计量则不应仅包含单位生产成品数量,而是应该考虑到生产者的盈利水平是否提高.因为从工业时代过渡到信息时代,企业的竞争手段已经从“低成本生产”转向了“全方位的优质服务”.这其实也是竞争发展到一定阶段的必然结果.所以,考察信息技术对生产力具有怎样的影响务必要从一个新的视角出发,不能仅仅衡量其对产成品数量的影响,更应从信息技术是否对提高整体赢利水平,扩大市场份额和增强竞争实力等方面进行综合考察.4.2.3 改进后的模型改进后的柯布—道格拉斯生产函数的表现形式为:0011a b c d Y K L K L =式中: Y —— 产量;0K —— 非信息技术设备的资本投入;0L —— 非信息技术的劳动力投入;1K —— 信息技术设备的资本投入;1L —— 信息技术的劳动力投入;,,,a b c d —— 产出弹性.此模型较原来的模型增加了信息技术设备的资本投入1K 和信息技术的劳动力投入1L ,使得模型成为更贴近时代的生产模型,改进后的柯布—道格拉斯生产函数0011a b c d Y K L K L =是在现代信息工业经济时代构造出的反映了现代信息工业经济时代生产力特征的函数模型.改进后的柯布—道格拉斯生产函数模型更具有时代特色,适用性更广、更具时代感.参考文献[1]唐焕文,贺明峰.《数学模型引论》[M],北京:教育出版社,2005.[2]雷功炎.《数学模型讲义》[M],北京:京大学出版社,2002.[3]白其峰.《数学建模案例分析》[M],京:洋出版社,2000.[4]李庆杨,王能超,易大意.《数值分析》[M],京:华大学出版社,2005.Cobb-Douglas production function modelQiweiCollege of Science,Liaoning Technology University,Fuxin (123000)AbstractCobb-Douglas production function used to predict national and regional systems or large industrial enterprises in production and development of the means of production of an economic model, called the production function. In this paper, a large number of production data Process, the establishment of polynomial fitting model and the linear programming model for data processing is complete problems, the production data analysis We have established a polynomial fitting, through error analysis, polynomial fitting model is fully consistent with the data . But through the use of linear regression obtained O'Brien - Douglas production function, through its error analysis we know that O'Brien - Douglas production function with the raw data of error than polynomial fitting model of the small number of errors .Keywords: Cobb-Douglas production function; polynomial fitting; linear regression。
柯布-道格拉斯生产函数概述
柯布-道格拉斯生产函数概述柯布—道格拉斯生产函数最初是美国数学家柯布(C.W.Cobb)和经济学家保罗·道格拉斯(Paul H. Douglas)共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的。
是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
它是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的。
柯布—道格拉斯生产函数的一般形式可以表示为:他们根据有关历史资料,研究了从1899-1922年美国的资本和劳动对生产的影响,在技术经济条件不变的情况下,得出了产出与投入的劳动力及资本的关系。
但是柯布-道格拉斯生产函数中把技术水平A作为固定常数,难以反映出因技术进步而给产出带来的影响。
柯布—道格拉斯生产函数中,如果有任何一种投入品为零,则产出也为零,因此对于生产来说,每种生产要素都是必需的,没有一种要素可以完全替代另一种要素。
柯布—道格拉斯生产函数是采用的边际分析方法,可用于分析要素投入对产量(产出)的贡献率、规模收益和其他系列问题。
是生产函数中应用广泛的一种!根据研究目的和需要,现在有很多在柯布——道格拉斯生产函数基础上变形应用的函数形式。
[编辑]柯布-道格拉斯生产函数的基本形式柯布-道格拉斯生产函数的基本形式为:Y = A(t)LαKβμ式中Y是工业总产值,At是综合技术水平,L是投入的劳动力数(单位是万人或人),K是投入的资本,一般指固定资产净值(单位是亿元或万元,但必须与劳动力数的单位相对应,如劳动力用万人作单位,固定资产净值就用亿元作单位),α是劳动力产出的弹性系数,β是资本产出的弹性系数,μ表示随机干扰的影响,μ≤1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据建立柯布—道格拉斯生产函数分析美国某行业的投入产出情况实验目的
1.利用数据建立柯布—道格拉斯生产函数分析美国某行业的投入产出情况,并用多种统计方法检验规模报酬不变的假设。
2.利用CES生产函数检验是否使用柯布道格拉斯生产函数建模是较为合适的。
实验报告
1、问题提出
生产力水平决定了一个国家或者地区的生活水平,因此研究分析产出受那些因素的影响以及是如何被影响对于把握生产规律并进而提高生产效率有着极大的意义。
2、指标选择
从经济学原理的课程学习中可以知道,产量Y主要是被这几个因素所决定:技术水平(T),资本量(K),劳动(L),人力资本(H)自然资源(N)。
根据已有的数据资料,为达到实验目的,并且简化实验模型与分析,只分析劳动与资本量这两个因素的投入对产出的影响。
在本次实验中,我们分析美国某行业投入与产出情况。
选择样本容量为27的样本,分析劳动量,资本与产出的关系。
3、数据来源
数据由老师提供,详细数据见表1
4.数据处理
将表1中的实验数据化为其对数,方便建模时分析,如表2所示
5.09565.367985.228105.50465.35375
6.537576.115426.571165.770005.534065.465694.946845.0372 15.481766.28549
7.355535.368866.987586.25715.71986.728255.648975.015755.560336.209795.6174 94.8978
表2
5.数据分析
而且没有发现明显产出越多。
投入越多,K与资本L可以明显的发现劳动量数据,1观察表.
不符合实际的数据。
但是其中的幂函数关系需要通过进一步的分析发现。
6.建立模型
通过数理经济学的学习我们还了解到,生产函数常以柯布-道格拉斯(Cobb-Douglas)幂函数的形式出现。
柯布-道格拉斯生产函数最初是美国数学家柯布(Cobb)和经济学家道格拉斯(Douglas)共同探讨投入生产关系时创立的生产函数,他们根据历史资料,研究了1899-1922年美国资本和劳动对生产的影响,认为在技术不变的情况下产出与投入的劳动力??LAKY?及资本的关系可以表示为:,其中Y表示产量,A表示技术水平,K表示投入的资本量,L表示投入的劳动量,α、β分别表示K和L的产出弹性。
由于柯布-道格拉斯(Cobb-Douglas)生产函数是一个非线性模型,对生产函数取对数,可得: ??lnL K??ln Y?ln A
?????X Y??X+建立线性模型:利用样本数据用Eviews做lnY对lnK和lnL i21i021的回归
Dependent Variable: LNY
Method: Least Squares
Date: 10/27/16 Time: 12:46
Sample: 1 27
Included observations: 27
Prob. Std. Error Coefficient Variable t-Statistic
0.0003 0.373400 0.087246 4.279838 LNK
0.0001 0.129114 4.697887 LNL 0.606563
0.0017 3.523783
0.330983 1.166313
C
0.942420 R-squared
Mean dependent var 7.443631
0.937622 S.D. dependent var 0.761153 Adjusted R-squared
S.E. of regression Akaike info criterion 0.190103 -0.378063
Sum squared resid Schwarz criterion -0.234081 0.867339
Log likelihood -0.335249 8.103847 Hannan-Quinn criter.
F-statistic 1.854054
Durbin-Watson stat 196.4056
Prob(F-statistic)
0.000000
得出回归方程:Y=0.373400lnK+0.606563lnL+1.166313
7.模型检验
Y对lnK与lnL的回归模型的检验
经济检验:
α为0.373400,说明产出与资本投入成正相关,且在其他条件保持不变的情况下,资本投入增
加1%,产出增加约0.37%
β为,说明产出与劳动量成正相关,且在其他条件保持不变的情况下,资本0.606563的估计符
合经济理论,故通过经济检验。
β与α,对0.61%,产出增加约1%投入增加.
统计检验:
2R说明模型整体上对样本数据拟)拟合优度检验:=0.0.942420,修整的决定系数1( Y的大部分差异作出了解释。
K和L对合很好,即解释变量表明F(2,24)=3.40,5%的显著性水平下,F 统计量的临界值(2)显著性检验:在0.05因此t(24)=2.0639,24的t统计量的临界值为模型的线性关系显著成立。
自由度为0.025 lnL的参数显著性的异于零。
lnK与延伸问题:
,但是,很接近于1L的产出弹性之和为0.97996估计的资本量投入K与劳动量投入,即估计的生产函数是否,下面从它统计学的意义上考察,看它是否显著不为1并不为1 具有规模收益不变的特征。
生产函数可以化为如下形式=1,则Cobb-Dauglasα若+β?ln(K/L)
ln(Y/L)=lnA+???+Y?+X:的回归建立受约束线性模型利用,Eviews做ln(Y/L)对ln(K/L)0ii11 Dependent Variable: Y
Method: Least Squares
Date: 10/27/16 Time: 14:41
Sample: 1 27
Included observations: 27
Prob. t-Statistic Variable
Coefficient Std. Error
0.0001 4.717486 0.076543 X 0.361091
0.0000 8.022381
C
0.133562 1.071482
0.470952 R-squared 1.678343 Mean dependent var
0.449790 Adjusted R-squared 0.251624 S.D. dependent var
0.186645 S.E. of regression -0.448030 Akaike info criterion
0.870909 Sum squared resid -0.352042 Schwarz criterion
8.048399 Log likelihood -0.419487 Hannan-Quinn criter.
22.25467 Durbin-Watson stat 1.870391
F-statistic
0.000077 Prob(F-statistic)
得出回归方程:ln(Y/L)=0.361091ln(K/L)+1.071482
从回归结果看,无约束回归模型的残差平方和为0.867339,受约束回归模型的残差平方和为0.870909,样本容量n=27,计算F统计量为: F=0.098785
在5%的显著性水平下,自由度为(1,24)的F统计量的临界值为4.26,大于计算的F值,故不能拒绝该行业投入产出具有规模收益不变这一假设,即该行业产出投入的规模收益不变。
8.结果解释
利用柯布-道格拉斯(Cobb-Douglas)函数对美国某行业进行回归分析,发现该行业的产出与资本及劳动投入的关系基本满足柯布-道格拉斯的函数形式,这一定量的结果为产业调控产出提供了一定的理论依据。
同时,在0.05的显著性水平下,我们接受了资本投入量与劳动投入量的弹性之和为1的假定,即接受了该行业规模经济不变。