高中数学选修2-2综合测试卷
高中新课标数学选修(2-2)综合测试题(4)
高中新课标数学选修(2-2)综合测试题一、选择题1、函数2x y =在区间]2,1[上的平均变化率为( ) (A )2 (B )3 (B )4 (D )52曲线3x y =在点)1,1(处的切线与x 轴、直线2=x 所围成的三角形的面积为( )(A )38 (B )37 (C )35(D )343、已知直线kx y =是x y ln =的切线,则k 的值为( ) (A )e1 (B )e1-(C )e2 (D )e2-4、设ai b bi a ++,,1是一等比数列的连续三项,则b a ,的值分别为( )(A )21,23±=±=b a (B )23,21=-=b a(C )21,23=±=b a (D )23,21-=-=b a5、方程)(04)4(2R a ai x i x ∈=++++有实根b ,且bi a z +=,则=z ( )(A )i 22- (B )i 22+(C )i 22+- (D )i 22--6、已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (21=rc b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R 。
类比三角形的面积可得四面体的体积为( )(A )R s s s s V )(214321+++= (B )Rs s s s V )(314321+++=(C )Rs s s s V )(414321+++= (D )R s s s s V )(4321+++=7、数列 ,4,4,4,4,3,3,3,2,2,1的第50项是( )(A )8 (B )9 (C )10 (D )118、在证明12)(+=x x f 为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数12)(+=x x f 满足增函数的定义是小前提;④函数12)(+=x x f 满足增函数的定义是大前提;其中正确的命题是( )(A )①② (B )②④ (C )①③ (D )②③9、若R b a ∈,,则复数i b b a a )62()54(22-+-++-表示的点在( ) (A )在第一象限 (B )在第二象限(C )在第三象限 (D )在第四象限 10、用数学归纳法证明不等式“)2(2413212111>>+++++n nn n ”时的过程中,由k n =到1+=k n 时,不等式的左边( )(A )增加了一项)1(21+k(B )增加了两项)1(21121+++k k(C )增加了两项)1(21121+++k k ,又减少了11+k ;(D )增加了一项)1(21+k ,又减少了一项11+k ;11、如图是函数d cx bx x x f +++=23)(的大致 图象,则2221x x +等于( ) (A )32 (B )34 (C )38 (D )31212、对于函数233)(x x x f -=,给出下列四个命题:①)(x f 是增函数,无极值;②)(x f 是减函数,有极值;③)(x f 在区间]0,(-∞及),2[+∞上是增函数;④)(x f 有极大值为0,极小值4-;其中正确命题的个数为( )(A )1 (B )2(C )3 (D )4班级: 姓名:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题13、函数13)(3+-=x x x f 在闭区间]0,3[-上的最大值与最小值分别为:14、若i z 311-=,i z 862-=,且21111z z z =+,则z 的值为 ;15、用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .16、物体A 的运动速度v 与时间t 之间的关系为12-=t v (v 的单位是s m /,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为t v 81+=,两个物体在相距为405m 的同一直线上同时相向运动。
部编版高中数学选修二综合测试题带答案典型例题
(名师选题)部编版高中数学选修二综合测试题带答案典型例题单选题,则该函数在x=1处的切线斜率为()1、已知函数f(x)=x−1xA.0B.1C.2D.32、我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则下列说法不正确的是()A.小寒比大寒的晷长长一尺B.春分和秋分两个节气的晷长相同C.小雪的晷长为一丈五寸D.立春的晷长比立秋的晷长长3、设数列{an}的通项公式为an=2n-7,则|a1|+|a2|+|a3|+…+|a15|=()A.139B.153C.144D.178,对任意的n∈N∗都有na n=(n+2)a n+1,则S2021=()4、已知数列{a n}的前n项和为S n,a1=12A .20192020B .20202021C .20212022D .101010115、若函数f(x)=x 2−ax +lnx 在区间(1,e )上单调递增,则a 的取值范围是( ) A .[3,+∞)B .(−∞,3]C .[3,e 2+1]D .[e 2+1,3]6、若等差数列的首项是−24,且从第10项开始大于0,则公差d 的取值范围是( ) A .[83,+∞)B .(−∞,3)C .[83,3)D .(83,3]7、已知函数f (x )=(x −1)(x −2)(x −3),则曲线y =f (x )在点(2,0)处的切线方程为( ) A .y =x +2B .y =−x +2C .y =x −2D .y =−x −28、设曲线y =e 2ax (e =2.718…为自然对数的底数)在点(0,1)处的切线及直线2x −y −1=0和两坐标轴的正半轴所围成的四边形有外接圆,则a =( ) A .−1B .−14C .14D .1 多选题9、若直线y =12x +b 是函数f(x)图像的一条切线,则函数f(x)可以是( )A .f(x)=1x B .f(x)=x 4C .f(x)=sinx D .f(x)=e x 10、下列四个选项中,不正确的是( ) A .数列23,34,45,56,…的一个通项公式是a n =n n+1B .数列的图象是一群孤立的点C .数列1,−1,1,−1,…与数列−1,1,−1,1,…是同一数列D .数列12,14,…,12n 是递增数列11、设数列{a n },{b n }的前n 项和分别为S n ,T n ,S 1=1,S n+1=n+2nS n ,且b n =a n+12an a n+2,则下列结论正确的是( )A .a 2021=2021B .S n =n (n+1)2C .b n =1−1n (n+2)D .13≤T n −n <34填空题12、已知数列{a n }满足a 1=32,a n+1=3a na n +3,则数列{a n }的通项公式为______.部编版高中数学选修二综合测试题带答案(四十四)参考答案1、答案:C分析:利用导数的定义求解.因为f(1+Δx)−f(1)=(1+Δx)−11+Δx −(1−11),=Δx+1−11+Δx =Δx+Δx1+Δx,所以斜率k=limΔx→0f(1+Δx)−f(1)Δx,=limΔx→0(1+11+Δx)=1+1=2.故选:C2、答案:C分析:先计算从夏至到冬至的晷长构成等差数列的公差和冬至到夏至的晷长构成等差数列的公差,再对选项各个节气对应的数列的项进行计算,判断说法的正误,即得结果.由题意可知,夏至到冬至的晷长构成等差数列{a n},其中a1=15寸,a13=135寸,公差为d寸,则135=15+12d,解得d1=10(寸);同理可知,由冬至到夏至的晷长构成等差数列{b n},首项b1=135,末项b13=15,公差d2=−10(单位都为寸).故小寒与大寒相邻,小寒比大寒的晷长长10寸,即一尺,选项A正确;∵春分的晷长为b7,∴b7=b1+6d2=135−60=75,∵秋分的晷长为a7,∴a7=a1+6d1=15+60=75,故春分和秋分两个节气的晷长相同,所以B正确;∵小雪的晷长为a11,∴a11=a1+10d1=15+100=115,115寸即一丈一尺五寸,故小雪的晷长为一丈一尺五寸,C错误;∵立春的晷长,立秋的晷长分别为b4,a4,∴a4=a1+3d1=15+30=45,b4=b1+3d2=135−30=105,∴b4>a4,故立春的晷长比立秋的晷长长,故D正确.故选:C.小提示:关键点点睛:本题的解题关键在于看懂题意,二十四节气的晷长变化形成两个等差数列,即结合等差数列项的计算突破难点.3、答案:B分析:根据数列的通项公式,可得数列{an}为等差数列,即可求得a1,d,进而可得前n项和S n,所求可化简为S15−2S3,代入公式,即可得答案.∵an=2n-7,∴a n+1−a n=2(n+1)−7−(2n−7)=2,∴数列{an}为等差数列,且a1=-5,d=2.∴前n项和S n=na1+n(n−1)d2=−5n+n(n−1)×22=n2−6n.∴|a1|+|a2|+…+|a15|=−a1−a2−a3+a4+⋅⋅⋅+a15=−S3+(S15−S3)=S15−2S3=153.故选:B4、答案:C解析:由na n=(n+2)a n+1,可得n(n+1)a n=(n+1)(n+2)a n+1,数列{n(n+1)a n}为常数列,令n=1,可得n(n+1)a n=2a1=1,进而可得a n=1n(n+1),利用裂项求和即可求解.数列{a n}满足a1=12,对任意的n∈N∗都有na n=(n+2)a n+1,则有n(n+1)a n=(n+1)(n+2)a n+1,可得数列{n(n+1)a n}为常数列,有n(n+1)a n=2a1,得n(n+1)a n=1,得a n=1n(n+1),又由a n=1n(n+1)=1n−1n+1,所以S2021=1−12+12−13+⋅⋅⋅12021−12022=1−12022=20212022.故选:C小提示:方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{a n}的前n项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如a n =(−1)n f (n )类型,可采用两项合并求解. 5、答案:B分析:由f ′(x )≥0分离常数a ,利用构造函数法,结合导数,求得a 的取值范围. 依题意f ′(x )=2x −a +1x ≥0在区间(1,e )上恒成立,即a ≤2x +1x在区间(1,e )上恒成立,令g (x )=2x +1x(1<x <e ),g ′(x )=2−1x 2=2x 2−1x 2=(√2x+1)(√2x−1)x 2>0,g (x )在(1,e )上递增,g (1)=3, 所以a ≤3.所以a 的取值范围是(−∞,3]. 故选:B 6、答案:D分析:直接写出等差数列的通项公式,由a 9⩽0且a 10>0联立不等式组求得公差d 的取值范围. 解:∵等差数列的首项是−24,则等差数列的通项公式为a n =−24+(n −1)d , 要使从第10项开始为正,则由{a 10=−24+9d >0a 9=−24+8d ⩽0 ,解得:83<d ⩽3.故选:D . 7、答案:B分析:求得函数f (x )的导数,得到切线的斜率,结合直线的点斜式方程,即可求解.由题意,函数f (x )=(x −1)(x −2)(x −3)=(x −2)[(x −1)(x −3)], 可得f ′(x )=(x −1)(x −3)+(x −2)[(x −1)(x −2)]′, 所以曲线y =f (x )在点(2,0)处切线的斜率为k =f ′(2)=−1, 所以切线方程为y −0=−(x −2),即y =−x +2. 故选:B. 8、答案:B分析:由导数的几何意义,求得切线的方程y =2ax +1,根据围成的四边形有外接圆,得到切线与直线2x −y −1=0垂直,列出方程,即可求解.由题意,函数f (x )=e 2ax ,可得f ′(x )=2ae 2ax ,则f ′(0)=2a , 即曲线y =e 2ax 在点(0,1)处的切线的斜率为k =2a , 所以切线方程为y −1=2ax ,即y =2ax +1,要使得切线与直线2x −y −1=0和两坐标轴的正半轴所围成的四边形有外接圆, 则满足两直线垂直,即2a ×2=−1,解得a =−14.故选:B. 9、答案:BCD分析:求得已知直线的斜率k ,对选项中的函数分别求导,可令导数为k ,解方程即可判断结论 解:直线y =12x +b 的斜率为k =12,由f(x)=1x的导数为f ′(x)=−1x2,即切线的斜率小于0,故A 不正确;由f(x)=x 4的导数为f ′(x)=4x 3,而4x 3=12,解得x =12,故B 正确;由f(x)=sinx 的导数为f ′(x)=cosx ,而cosx =12有解,故C 正确;由f(x)=e x 的导数为f ′(x)=e x ,而e x =12,解得x =−ln2,故D 正确, 故选:BCD小提示:此题考查导数的几何意义,正确求导是解题的关键,考查运算能力,属于基础题 10、答案:ACD分析:由a 1=12≠23可判断A ;由数列的通项公式以及n ∈N ∗可判断B ;由数列定义可判断C ;由递减数列定义可判断D . 对于A ,当通项公式为a n =n n+1时,a 1=12≠23,不符合题意,故选项A 错误;对于B ,由数列的通项公式以及n ∈N ∗可知,数列的图象是一群孤立的点,故选项B 正确; 对于C ,由于两个数列中的数排列的次序不同,因此不是同一数列,故选项C 错误; 对于D ,数列12,14,…,12n是递减数列,故选项D 错误.故选:ACD . 11、答案:ABD分析:对于AB ,通过累乘法求出{S n }的通项公式,进而求出{a n }的通项公式,即可求解; 对于CD ,通过{a n }的通项公式求出{b n }的通项公式,再通过裂项相消求T n ,进而求解. 由题意,得S n+1S n=n+2n, ∴当n ≥2时,S n =S n S n−1×S n−1S n−2×⋅⋅⋅×S 2S 1×S 1=n+1n−1×n n−2×⋅⋅⋅×31×1=n (n+1)2,又当n =1时S 1=1也符合上式, ∴S n =n (n+1)2,易得a n =n ,∴a 2021=2021,故A ,B 正确; b n =a n+12an a n+2=(n+1)2n (n+2)=1+1n (n+2)=1+12(1n −1n+2),∴T n =n +12(1−13+12−14+13−15+⋅⋅⋅+1n−1−1n+1+1n −1n+2)=n +12(1+12−1n+1−1n+2) =n +34−12(1n+1+1n+2)<n +34, 易知{T n −n}单调递增,∴T n −n ≥T 1−1=13,∴13≤T n −n <34,故C 错误,D 正确.故选:ABD . 12、答案:a n =3n+1分析:对递推数列两边同时去倒数,可得1an+1−1a n=13,所以数列{1a n}是首项为23,公差为13的等差数列,即可求出数列{a n }的通项公式. 因为a 1=32,a n+1=3a na n+3,所以1a n+1=a n +33a n =13+1a n,即1an+1−1a n=13,所以数列{1a n}是首项为23,公差为13的等差数列,所以1a n=23+13(n −1)=n+13,所以a n =3n+1.所以答案是:a n =3n+1.。
高中数学选修二综合测试题典型例题(带答案)
高中数学选修二综合测试题典型例题单选题1、函数y=f(x)的图像如图所示,下列不等关系正确的是()A.0<f′(2)<f′(3)<f(3)−f(2)B.0<f′(2)<f(3)−f(2)<f′(3)C.0<f′(3)<f(3)−f(2)<f′(2)D.0<f(3)−f(2)<f′(2)<f′(3)答案:C分析:根据导数的几何意义和函数平均变化率的定义,结合图象,即可求解.如图所示,根据导数的几何意义,可得f′(2)表示切线l1斜率k1>0,f′(3)表示切线l3斜率k3>0,=f(3)−f(2),表示割线l2的斜率k2,又由平均变化率的定义,可得f(3)−f(2)3−2结合图象,可得0<k3<k2<k1,即0<f′(3)<f(3)−f(2)<f′(2).故选:C.,则f(x)()2、已知f(x)=3xe xA .在(−∞,+∞)上单调递增B .在(−∞,1)上单调递减C .有极大值3e ,无极小值D .有极小值3,无极大值 答案:C分析:根据导数判断单调性与极值 f ′(x)=3−3x e x,则x <1时f ′(x)>0,x >1时f ′(x)<0f(x)在区间(−∞,1)上单调递增,在区间(1,+∞)上单调递减 有极大值f(1)=3e故选:C3、若数列{a n }满足a 1a 2a 3⋅⋅⋅a n =n 2(n ≥2),则a 3=( ) A .9B .3C .94D .49 答案:C分析:利用前n 项积与通项的关系可求得结果. 由已知可得a 3=a 1a 2a 3a 1a 2=3222=94.故选:C.4、设等差数列{a n }的前n 项和为S n ,数列{b n }的前n 和为T n ,已知a 5=11,S 10=120,b n =1a n ⋅a n+1,若T k =17,则正整数k 的值为( ) A .9B .8C .7D .6 答案:A分析:设等差数列{a n }的公差为d ,根据a 5=11,S 10=120求得公差d ,即可求得数列{a n }的通项,从而求得数列{b n }的通项,再根据裂项相消法求得数列{b n }的前n 和为T n ,从而可得出答案. 解:设等差数列{a n }的公差为d , S 10=10(a 1+a 10)2=5(a 5+a 6)=5(11+a 6)=120,所以a 6=13,则d =a 6−a 5=2,所以a n =a 5+2(n −5)=2n +1,所以b n =1a n ⋅a n+1=12(12n+1−12n+3), 所以T n =12(13−15+15−17+⋯+12n+1−12n+3)=12(13−12n+3)=n3(2n+3), 因为T k =17,所以k 3(2k+3)=17,解得k =9. 故选:A.5、设a ≠0,若x =a 为函数f (x )=a (x −a )2(x −b )的极大值点,则( ) A .a <b B .a >b C .ab <a 2D .ab >a 2 答案:D分析:先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到a,b 所满足的关系,由此确定正确选项.若a =b ,则f (x )=a (x −a )3为单调函数,无极值点,不符合题意,故a ≠b .∴f(x)有x =a 和x =b 两个不同零点,且在x =a 左右附近是不变号,在x =b 左右附近是变号的.依题意,为函数的极大值点,∴在x =a 左右附近都是小于零的.当a <0时,由x >b ,f (x )≤0,画出f (x )的图象如下图所示:由图可知b <a ,a <0,故ab >a 2.当a >0时,由x >b 时,f (x )>0,画出f (x )的图象如下图所示:由图可知b >a ,a >0,故ab >a 2. 综上所述,ab >a 2成立. 故选:D小提示:本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答. 6、若直线l 与曲线y =√x 和x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12 答案:D分析:根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 设直线l 在曲线y =√x 上的切点为(x 0,√x 0),则x 0>0, 函数y =√x 的导数为y ′=2√x ,则直线l 的斜率k =2√x 0,设直线l 的方程为y −√x 0=2√x 0−x 0),即x −2√x 0y +x 0=0,由于直线l 与圆x 2+y 2=15相切,则√1+4x 0=√5,两边平方并整理得5x 02−4x 0−1=0,解得x 0=1,x 0=−15(舍),则直线l 的方程为x −2y +1=0,即y =12x +12.故选:D.小提示:本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 7、已知正项等比数列{a n }的前n 项和为S n ,若−5,S 3,S 6成等差数列,则S 9−S 6的最小值为( ) A .25B .20C .15D .10答案:B分析:利用等比数列前n 项和的性质表示出S 9−S 6,再表示成同一变量S 3,然后利用基本不等式求出其最小值即可.因为{a n }是正项等比数列,所以S 3,S 6−S 3,S 9−S 6仍然构成等比数列, 所以(S 6−S 3)2=S 3(S 9−S 6). 又−5,S 3,S 6成等差数列,所以S 6−5=2S 3,S 6−S 3=S 3+5, 所以S 9−S 6=(S 6−S 3)2S 3=(S 3+5)2S 3=S 3+25S 3+10.又{a n }是正项等比数列,所以S 3>0,S 3+25S 3+10≥2√S 3⋅25S 3+10=20,当且仅当S 3=5时取等号.故选:B.8、已知等比数列{a n }中,a 1=2a 2,则这个数列的公比为( ) A .2B .√2C .12D .√22答案:C分析:结合等比数列的知识求得正确答案. 数列{a n }是等比数列, 所以公比q =a 2a 1=12.故选:C 多选题9、已知数列{a n }满足a 1=−12,a n+1=11−a n,则下列各数是{a n }的项的有( )A .−2B .23C .32D .3 答案:BD分析:根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.因为数列{a n }满足a 1=−12,a n+1=11−a n,∴a 2=11−(−12)=23;a 3=11−a 2=3;a 4=11−a 3=−12=a 1;∴数列{a n }是周期为3的数列,且前3项为−12,23,3; 故选:BD .小提示:本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.10、记S n 为等差数列{a n }的前n 项和.若a 1+3a 5=S 7,则以下结论一定正确的是( ) A .a 4=0B .S n 的最大值为S 3C .S 6=S 1D .|a 3|<|a 5| 答案:AC分析:根据等差数列的定义及前n 项和公式可求得公差d 与a 1的关系,再对各项进行逐一判断即可. 设等差数列的公差为d ,因为a 1+3a 5=S 7,可得a 1+3(a 1+4d )=7a 1+21d ,解得a 1=−3d , 又由a n =a 1+(n −1)d =(n −4)d ,所以a 4=0,所以A 正确; 因为公差d 的正负不能确定,所以S 3可能为最大值最小值,故B 不正确; 由S 6−S 1=a 2+a 3+a 4+a 5+a 6=5a 4=0,所以S 6=S 1,所以C 正确; 因为a 3+a 5=2a 4=0,所以a 3=−a 5,即|a 3|=|a 5|,所以D 错误. 故选:AC.11、已知函数f(x)=xlnx ,若0<x 1<x 2,则下列结论正确的是( ) A .x 2f(x 1)<x 1f(x 2)B .x 1+f(x 1)<x 2+f(x 2) C .f(x 1)−f(x 2)x 1−x 2<0D .当lnx >−1时,x 1f(x 1)+x 2f(x 2)>2x 2f(x 1)答案:AD 分析:设g(x)=f(x)x=lnx ,函数g(x)单调递增,可判断A ;设ℎ(x)=f(x)+x ,则ℎ′(x)=lnx +2不是恒大于零,可判断B ;f(x)=xlnx ,f ′(x)=lnx +1不是恒小于零,可判断C ;当x >1e时,lnx >−1,故f ′(x)=lnx +1>0,函数f(x)=xlnx 单调递增,故(x 2−x 1)[f(x 2)−f(x 1)]=x 1f(x 1)+x 2f(x 2)−x 2f(x 1)−x 1f(x 2)>0,即x 1f(x 1)+x 2f(x 2)>x 2f(x 1)+x 1f(x 2),由此可判断D.得选项. 解: 对于A 选项,因为令g(x)=f(x)x=lnx ,在(0,+∞)上是增函数,所以当0<x 1<x 2时,g(x 1)<g(x 2),所以f(x 1)x 1<f(x 2)x 2,即x 2f(x 1)<x 1f(x 2).故A 选项正确;对于B 选项,因为令g(x)=f(x)+x =xlnx +x ,所以g′(x)=lnx +2,所以x ∈(e −2,+∞)时,g′(x)>0,g(x)单调递增,x ∈(0,e −2)时,g′(x)<0,g(x)单调递减.所以x 1+f(x 1)与x 2+f(x 2)无法比较大小.故B 选项错误;对于C 选项,令f′(x)=lnx +1,所以x ∈(0,1e )时,f′(x)<0,f(x)在(0,1e )单调递减,x ∈(1e ,+∞)时,f′(x)>0,f(x)在(1e,+∞)单调递增,所以当0<x 1<x 2<1e时,f(x 1)>f(x 2),故f(x 1)−f(x 2)x 1−x 2<0成立,当1e<x 1<x 2时,f(x 1)<f(x 2),f(x 1)−f(x 2)x 1−x 2>0.故C 选项错误;对于D 选项,由C 选项知,当lnx >−1时,f(x)单调递增,又因为A 正确,x 2f(x 1)<x 1f(x 2)成立, 所以x 1⋅f(x 1)+x 2⋅f(x 2)−2x 2f(x 1)>x 1⋅f(x 1)+x 2⋅f(x 2)−x 2f(x 1)−x 1f(x 2) =x 1[f(x 1)−f(x 2)]+x 2[f(x 2)−f(x 1)] =(x 1−x 2)[f(x 1)−f(x 2)]>0,故D 选项正确. 故选:AD .小提示:用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 填空题12、等差数列{a n }的前n 项和为S n ,且满足S 19>0,S 20<0,则使S n 取得最大值的n 为______. 答案:10分析:由S19>0,S20<0,结合等差数列的前n项和公式得到第10项大于0,第10项和第11项的和小于0,得到第10项大于0,这样前10项的和最大.由S19>0,S20<0,可知{a n}为递减的等差数列,设其公差为d,则d<0,由S19=19(a1+a19)2>0,S20=10(a1+a20)<0,得a1+a19=2a10>0,a1+a20=a10+a11<0,所以a10>0,a11<0,所以使S n取得最大值的n为10,所以答案是:10.小提示:一般地,如果{a n}为等差数列,S n为其前n项和,则有性质:(1)若m,n,p,q∈N∗,m+n=p+q,则a m+a n=a p+a q;(2)S n=n(a k+a n+1−k)2,k=1,2,⋯,n且S2n−1=(2n−1)a n;(3)S n=An2+Bn且{S nn}为等差数列;(4)S n,S2n−S n,S3n−S2n,⋯为等差数列.13、若直线y=2x+a是函数f(x)=x+lnx的图象在某点处的切线,则实数a=____________.答案:−1分析:利用f′(x)=2求得切点坐标,代入切线方程,从而求得a.令f′(x)=1+1x=2,解得x=1,所以切点为(1,1),将(1,1)代入切线y=2x+a得1=2+a,a=−1.所以答案是:−114、若对任意的x1,x2∈(m,+∞),且当x1<x2时,都有lnx1−lnx2x1−x2>2x1x2,则m的最小值是________.答案:2分析:将lnx1−lnx2x1−x2>2x1x2变形为x1lnx1+2x1<x2lnx2+2x2,令f(x)=xlnx+2x,利用f(x)在(m,+∞)上是递增函数求解.由题意得:0<x1<x2,所以x 1−x 2<0, 则lnx 1−lnx 2x 1−x 2>2x 1x 2等价于x 1x 2(lnx 1−lnx 2)>2(x 2−x 1), 即x 1lnx 1+2x 1<x 2lnx 2+2x 2,令f (x )=xlnx+2x,则f (x 1)<f (x 2),又x 2>x 1>m ,所以f (x )在(m,+∞)上是递增函数, 所以f ′(x )=x−2x 2>0成立,解得x >2所以m ≥2, 故m 的最小值是2, 所以答案是:2 解答题15、在①a 3=5,S 9=63;②3a 2=a 10,S 2=7;③a 1=3,S 8−S 6=19这三个条件中任选一个,补充在下列问题中的横线上,并解答(若选择两个或三个按照第一个计分).已知等差数列{a n }的前n 项和为S n ,___________,数列{b n }是公比为2的等比数列,且b 2=a 2.求数列{a n },{b n }的通项公式. 答案:a n =n +2;b n =2n分析:设等差数列{a n }的公差为d ,根据等差数列的基本量方法,结合等差数列的性质可得{a n },进而根据b 2=a 2求得{b n }的通项公式即可 设等差数列{a n }的公差为d .若选①:根据等差数列的性质,由S 9=63有9a 5=63,故a 5=7,所以{a 1+2d =5a 1+4d =7 ,解得{a 1=3d =1,故a n =3+(n −1)=n +2.故b 2=a 2=4,故b n =b 2⋅2n−2=2n若选②:由题意{3(a 1+d )=a 1+9d 2a 1+d =7 ,即{a 1=3d 2a 1+d =7 ,解得{a 1=3d =1,故a n =3+(n −1)=n +2.故b 2=a 2=4,故b n =b 2⋅2n−2=2n若选③:由S 8−S 6=19可得a 7+a 8=19,即{a 1+2d =52a 1+13d =19 ,解得{a 1=3d =1,故a n =3+(n −1)=n +2.故b 2=a 2=4,故b n =b 2⋅2n−2=2n。
高中数学选修2-2综合测试试题及答案解析
高中数学选修2-2综合测试试题及答案解析时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.曲线y =4x -x 3在点(-1,-3)处的切线方程是导学号 10510897( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -22.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在导学号 10510898( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是导学号 10510899( )4.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为导学号 10510900( )A.92B.322C.32D .945.(2016·宜春高二检测)已知函数f (x )=sin x +e x +x 2015,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),则f 2016(x )=导学号 10510901( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x6.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是导学号 10510902( ) A.12 B .-1 C .0D .17.(2016·哈尔滨质检)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos(x +π6);③y =e x -1;④y =x 2.其中为一阶格点函数的序号为导学号 10510903( ) A .①② B .②③ C .①③D .②④8.(2016·淄博高二检测)下列求导运算正确的是导学号 10510904( ) A .(2x )′=x ·2x -1 B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(xcos x )′=cos x -x sin x (cos x )29.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是导学号 10510905( )A .289B .1024C .1225D .137810.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,则a =导学号 10510906( )A .64B .32C .16D .811.(2016·全国卷Ⅲ理,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有导学号 10510907( )A .18个B .16个C .14个D .12个12.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是导学号 10510908( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.导学号 1051090914.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.导学号 1051091015.对大于或等于2的自然数m 的n 次方幂有如下分解方式:导学号 10510911 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.16.(2016·全国卷Ⅱ理,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.导学号 10510912三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·大连高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z -1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .导学号 10510913(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值范围.18.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.导学号 1051091419.(本题满分12分)已知A n (n ,a n )为函数y 1=x 2+1图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设c n =a n -b n ,其中n ∈N *.导学号 10510915(1)求证:数列{c n }既不是等差数列也不是等比数列; (2)试比较c n 与c n +1的大小.20.(本题满分12分)设函数f (x )=x ln x .导学号 10510916 (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.21.(本题满分12分)(2016·贵州高二检测)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….导学号 10510917(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.22.(本题满分12分)(2016·北京文,20)设函数f (x )=x 3+ax 2+bx +c .导学号 10510918 (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.高中数学选修2-2综合测试试题答案解析1.[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.2. [答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i. ∴复数z 在复平面上的对应点在第二象限,故应选B.3. [答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限,∴-b2>0,∴b <0,排除C ,故选A.4.[答案] B[解析] 由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2,∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9,由二次函数可知当a =32时,上式取最小值322.故选B.5.[答案] A[解析] f 1(x )=f ′(x )=cos x +e x +2015x 2014,f 2(x )=f 1′(x )=-sin x +e x +2015× 2014x 2013, f 3(x )=f 2′(x )=-cos x +e x +2015×2014×2013x 2012,…,∴f 2016(x )=sin x +e x .6.[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7. [答案] C[解析] 对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos(x +π6)不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图象经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选C.8.[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x)′=2x +1x 2;对于D ,(xcos x )′=cos x +x sin x (cos x )2;综上可知选B.9.[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·(n +1)2,图2中满足b n =n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.10.[答案] A[解析] y ′=-12x -32,∴k =-12a -32,切线方程是y -a -12=-12a -32(x -a ),令x =0,y =32a -12,令y =0,x =3a ,∴三角形的面积是S =12·3a ·32a -12=18,解得a =64.11. [答案] C[解析] 由题意可得a 1=0,a 8=1,a 2,a 3,…,a 7中有3个0、3个1,且满足对任意k ≤8,都有a 1,a 2,…,a k 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.12.[答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x 3恒成立.令1x =t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x 3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2.综上知-6≤a ≤-2. 13. [答案]22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.14.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1, ∵f (x )≥0对任意实数x 都成立,∴Δ=4(a 1+a 2+…+a n )2-4n ≤0, ∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .15. [答案] 15[解析] 依题意得n 2=10×(1+19)2=100,∴n =10.易知m 3=21m +m (m -1)2×2,整理得(m -5)(m +4)=0,又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.16. [答案] 1-ln2[解析] 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln2.17. [解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ), z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y i(x -3)2+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值范围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值范围是[0,8).18. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =3π2.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(3π2,2π),单调减区间为(π,3π2).f 极大(x )=f (π)=π+2,f 极小(x )=f (3π2)=3π2.19. [解析] (1)证明:依题意,a n =n 2+1,b n =n ,c n =n 2+1-n . 假设{c n }是等差数列,则2c 2=c 1+c 3,∴2(5-2)=2-1+10-3. ∴25=2+10,产生矛盾, ∴{c n }不是等差数列.假设{c n }是等比数列,则c 22=c 1c 3,即(5-2)2=(2-1)(10-3).有6=65-32-10,产生矛盾, ∴{c n }也不是等比数列.(2)解:∵c n +1=(n +1)2+1-(n +1)>0,c n =n 2+1-n >0, ∴c n +1c n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1), 0<n 2+1<(n +1)2+1, 又0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1, ∴0<n 2+1+n(n +1)2+1+(n +1)<1,∴c n +1c n<1,即c n +1<c n . 20. [解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e ,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e ).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12,f (1e )=1e ln 1e =-1e , 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .21. [解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a(-2)n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a(-2)n -1. 方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a (-2)n -1成立. ②假设当n =k (k ≥1,k ∈N )时,a n =a (-2)n -1成立,即a k=a ·(-12)k -1, 则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a(-2)n -1成立. 由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22. [解析] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时, f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时, f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时, f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增;所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
高中数学选修2-2综合测试题(全册含答案)
高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。
2.复数就像向量,有大小和方向。
3.复数就像计算机中的复数类型,有实部和虚部。
4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。
改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。
一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。
①复数的加减法运算可以类比多项式的加减法运算法则。
②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。
③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是:A。
①③B。
②④C。
②③D。
①④2.删除明显有问题的段落。
3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。
14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。
4.解答题:15.1) F(x)的单调区间为(-∞。
0)和(2.+∞)。
2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。
又因为AB⊥AC,所以AC²=AD²+DC²。
高中数学选修2-2第一章《导数及其应用》单元测试(一)
A. y 2x 1
B. y 3x 2
C. y 2x 3
D. y x 2
7.函数 f (x) e ln x x 在 (0, 2e] 上的最大值为
A.1 e C. e
B. 1 D. 0
8.若函数 f (x) x(x c) 2 在 x 2 处取得极大值,则常数 c
A. 2 C. 2 或 6
数学选修 2-2 第一章《导数及其应用》单元测试
一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项
是符合题目要求的)
1.定积分 2 (ex 2x)dx 的值为 0
A.1
B. e2
C. e2 3
D. e2 4
2.某物体的位移 s (米)与时间 t (秒)的关系式为 s t 2 t ,则该物体在 t 2 时的瞬时速度为
A. 2 米/秒 C. 5 米/秒
B. 3 米/秒 D. 6 米/秒
3.已知曲线 y x2 上一点 P 处的切线与直线 2x y 1 0 平行,则点 P 的坐标为
A. (1,1)
B. (1,1)
C. (2, 4)
D. (3, 9)
4.已知 f (x) x2 2x f (1) ,则 f (3)
11.若函数 f (x) lnx ax 1 在[1, ) 上是单调函数,则实数 a 的取值范围为 x
A. (, 0] [1 , ) 4
B. (, 1 ] [0, ) 4
C.[ 1 , 0] 4
D. (,1]
12.已知函数 f (x) ax 1 (a 1) ln x 1 在 (0,1] 上的最大值为 3 ,则实数 a x
即 2x y 1 0 .(6 分)
高中数学2-1、2-2综合测试 (31)
数学选修2-1和2-2综合测试一、选择题(本大题共10小题,每小题5分)⒈有下面四个命题:⑪方程2x-5=0在自然数集N中无解⑫方程2x²+9x-5=0在整数集Z中有一解,在有理数集Q中有两解⑬x=i是方程x²+1=0在复数集C中的一个解⑭x的四次方=1在实数R上有两解,在复数集C中也有两解其中正确命题的个数为()(复数的定义)A、1B、2C、3D、42、点P是椭圆x²/5+y²/4=1上的一点,F1和F2是焦点,且F1PF2=30°,求△F1PF2的面积()(S△F1PF2=b²tanα/2)A、4/(2+√3)B、4/(2+√2)C、2D、3/23、a,b为非零向量,“a⊥b”是“函数f(x)=(xa+b)*(xb+a)为一次函数”的()(常用逻辑用语的辨别)A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件4、已知P是椭圆x²/a²+y²/b²=1(a>b>0)上的一动点,且P椭圆长轴两顶点连线的斜率之积为-1/2,则椭圆的离心率为()(椭圆的离心率)A、√3/2B、√2/2C、1/2D、√3/35、在直三棱柱ABC-A1B1C1中,∠BAC=π/2,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的最小值( )(建立空间直角坐标系)A.√5/5 B.1 C.2√5/5 D.3√5/56、设函数f(x)在实数集R上的导函数是f'(x),且2f(x)+xf'(x)>x^2 则下面不等式恒成立的是?(导数与函数结合)A.f(x)>0B.f(x)<0C.f'(x)>xD.f'(x)<x7、已知f(x)=x^3+x(x属于R),a,b,c也属于R,且a+b大于0,b+c 大于0,c+a大于0,则f(a)+f(b)+f(c)的符号为(推理与证明)A.正B.负C.等于0 D.无法确定8、7.“因为指数函数y=ax是增函数(大前提),而y=x是指数函数(小前提),所以y=x是增函数(结论)”,上面推理的错误是( )(三段论的辨析)A.大前提错导致结论错B.小前提错导致结论错C.推理形式错导致结论错D.大前提和小前提错都导致结论错9、(微积分应用)10、某人为了观看2012年奥运会,从2005年起,每年5月10日到银行存入a元定期储蓄,若年利率为p且保持不变,并约定每年到期存款均自动转为新的一年定期,到2012年将所有的存款及利息全部取回,则可取回的钱的总数(元)为()(归纳推理应用)A.a(1+p)7B.a(1+p)8C.ap[(1+p)7-(1+p)]D.ap[(1+p)8-(1+p)]二、填空题(本大题共4小题,每小题5分)11、已知x是实数,y是纯虚数,且满足(2x-1)+(3-y)i=y-I,则x,y的值分别是(复数的计算)12、设A,B两点的坐标是(-a,0)(a,0),若动点M满足kMA*kMB=-1,则动点M的轨迹方程为(轨迹方程及x的取值范围)13、已知F是双曲线x²/4-y²/12=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为(双曲线的性质)14、观察下列等式:C15+C55=23-2,C19+C59+C99=27+23,C113+C513+C913+C1313=211-25,C117+C517+C917+C1317+C1717=215+27,……由以上等式推测到一个一般的结论:对于n∈N*,C14n+1+C54n+1+C94n+1+…+C4n+14n+1=__________________.(考查归纳推理的能力)三、解答题(共6小题,15~18题每题13分,19,20题每题14分)15、已知ab≠0求证:a+b=1的充要条件是a³-b³+ab-a²-b²=0(充要条件的证明)16、求证:ln(n+1)>1/3+1/5+1/7+...+1/(2n+1) (n∈R+)(数学归纳法和导数结合)17、(微积分与导数相结合)18、(空间直角坐标系解决几何问题).19、已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P 作直线l的垂线,垂足为Q,且向量QP*QF-FP*FQ=0(椭圆综合应用),⑪求动点P的轨迹C的方程⑫已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于AB两点,设||DA|=L1,|DB|=L2,求L1/L2+L2/L1的最大值20、设函数f(x)=(a/3)x^3+bx^2+4cx+d的图象关于原点对称.y=f(x)的图象在点P(1,m)处的切线斜率为-6.且当x=2时函数f(x)有极值.(导数综合应用)1.求a.b.c.d的值2.若x1,x2属于[-1,1].求证|f(x1)-f(x2)|<=44/3答案解析1、选C.有三解1、-1、i²2、选A.S△F1PF2=b²tanα/2=4×[1/(2+√3)]= 4/(2+√3)3、选B. 函数f(x)=(xa+b)*(xb+a)为一次函数﹤=﹥a⊥b且|a|≠|b|4、选B.设P(x0,y0),则[y0/(x0-a) ] ×[y0/(x0-a]= ﹣1/2 化简得x0²/a²+2y0²/a²=1又P在椭圆上,所以x0²/a²+y0²/b²=1 所以a²=2b²,e=√2/25、选A.以A为原点,AB,AC,AA1为x,y,z轴j建立坐标系选A.D(0,y,0) F(x,0,0) ,G(1/2,0,1),E(0,1,1/2)向量GD=(-1/2,y,-1), 向量EF=(x,-1,-1/2)∵GD⊥EF ∴-x/2-y+1/2=0∴y=1/2-x/2 (0<x<1)|DF|²=x²+y²=x²+(1/2-x/2)²=5/4*x²-1/2x+1/4=5/4(x²-2/5x)+1/4=5/4(x-1/5)²+1/5≥1/5∴|DF|min=√5/56、选A.反正法:设f(x)=<0 则0<x^2<2f(x)+xf'(x)=<xf(x) 因为R上都成立如果x<0 f'(x)<0 x<0时减函数 x>0 f'(x)>0 x>0是为增所以f(x)>f(0) 令原式中x=0则f(x)>0 即f(x)>f(x)>0 矛盾则f(x)>0恒成立 f(x)>1/2*x(x-f'(x)) 因为f(x)>0恒成立则 1/2*x(x-f'(x))=<07、选A2[f(a)+f(b)+f(c)]=(a^3+b^3+a+b)+(b^3+c^3+b+c)+(c^3+a^3+c+a )=(a+b)(a^2-ab+b^2+1)+(b+c)(b^2-bc+c^2+1)+(c+a)(c^2-ca+a^ 2+1)因为(a+b)(a^2-ab+b^2+1)=(a+b)[(a-b/2)^2+3b^2/4+1]>0同理(b+c)(b^2-bc+c^2+1)>0(c+a)(c^2-ca+a^2+1)>0所以2[f(a)+f(b)+f(c)]>08、选A 当a﹥0时y=ax为增函数,当a﹤0时y=ax为减函数9、选D.∫f(ax+b)dx=(1/a)∫f(ax+b)d(ax+b)令ax+b=t则,原式=(1/a)∫f(t)dt已知:∫f(x)dx=F(x)+C所以,原式=(1/a)F(t)+C将t=ax+b代入,就有:原式=(1/a)F(ax+b)+C10、选D.到2006年5月10日存款及利息为a(1+p).到2007年5月10日存款及利息为a(1+p)(1+p)+a(1+p)=a[(1+p)2+(1+p)]到2008年5月10日存款及利息为a[(1+p)2+(1+p)](1+p)+a(1+p)=a[(1+p)3+(1+p)2+(1+p)]……所以到2012年5月10日存款及利息为a[(1+p)7+(1+p)6+…+(1+p)]=a(1+p)[1-(1+p)7]1-(1+p)=ap[(1+p)8-(1+p)].11、-3/2和4i设y=bi(b∈R且b≠0)则(2x-1)+(3-bi)i=bi-i整理得(2x-1+b)+3i=(b-1)i∴2x-1+b=0且b-1=3解得x=-3/2 y=4i12、x²+y²=a²(x≠±a)设M为(x,y) x≠±a∵kMA*kMB=-1∴y/(x+a) ×y/(x-a)=-1∴x²+y²=a²(x≠±a)13、9已知F(-4,0)设F1为双曲线的右焦点,则F1(4,0),点A(1,4)在双曲线两支之间,由双曲线定义,|PF|-|PF1|=2a=4,而|PF|+|PA|=4+|PF1|+|PA|≥4+|AF1|=4+5=9当且仅当A,P,F1三点共线时,取等号14、24n-1+(-1)n22n-1等式右端第一项指数3,7,11,15,…构成的数列通项公式为an=4n-1,第二项指数1,3,5,7,…的通项公式bn=2n-1,两项中间等号正、负相间出现,∴右端=24n-1+(-1)n22n-1.15、必要性:∵a+b=1a+b-1=0∴(a+b)(a²-ab+b²)-(a²-ab+b²)=(a²-ab+b²)(a+b-1)=0充分性:a³+b³+ab-a²-b²=0(a²-ab+b²)(a+b-1)=0∵ab≠0∴a≠0且b≠0∴a²-ab+b²=(a-b/2) ²+(3/4)b²﹥0∴a+b-1=0即a+b=1综上所述:当ab≠0时a+b=1的充要条件是a³-b³+ab-a²-b²=0 16、17、⑪设tx^2=uφ(x)=(1/x^2)∫(0,x^2sinx)f(u)du.φ'(x)=[xf(x^2sinx)(2xsinx+x^2cosx)-2∫(0,x^2sinx)f(u)du]/x^3 (x不等于0)⑫x=0时,φ(0)=0,limφ(x)/x=lim∫(0,x^2sinx)f(u)du/x^3=limf(x^2sinx)(2xsinx+x^2cosx)/3x^2=f(0)=2 x趋于0时,limφ'(x)=lim[xf(x^2sinx)(2xsinx+x^2cosx]/x^3-2lim∫(0,x^2sinx)f(u)du]/ x^3=f(0)-2limf(x^2sinx)(2xsinx+x^2cosx)/3x^2=-2在x=0处不连续18、19、⑪设P(x,y), Q(x,-1)∵QP*FQ-FP*FQ=0∴(0,y+1)●(-x,2)-(x,y-1)●(x,-2)=0∴2(y+1)-(x²-2y+2)=0∴轨迹为C:x²=4y㈡设M(t,t²/4),|MD|²=t²+(2-t²/4)²圆M:(x-t)²+(y+t²/4)²=t²+(2-t²/4)²令y=0,得(x-t)²=4,x=t±2∴A(t-2,0),B(t+2,0)l1=√(t²-4t+8),l2=√(t²+4t+8)∴l1/l2+l2/l1=(l1²+l2²)/(l1l2)=[(t²-4t+8)+ (t²+4t+8)]/ √[(t²+4t+8)(t²-4t+8)]=(2t²+16)/√[(t²+8)²-16t²]=(2t²+16)/√(t⁴+64 )=2√[(t²+8)²/(t⁴+64)]=2√[(t⁴+64+16t²)/(t⁴+64)]=2√[1+16t²/(t⁴+64)]=2√[1+16/(t²+64/t²)]∵t²+64/t²≥2√64=16∴∴1+16/(t²+64/t²)≤220、⑪函数f(x)=(a/3)x^3+bx^2+4cx+d的图象关于原点对称,则f(0)=0,所以d=0①f(x)=x[(a/3)x²+bx+4c]②,f´(x)=ax²+2bx+4c③,当x=2时函数f(x)有极值,根据对称性,当x=-2时函数f(x)也有极值,x=±2是函数的两个极值点,也是f´(x)=ax²+2bx+4c=0的两个根,代入得:4a±4b+4c=0,解得b=0④,c=-a⑤,代入②函数f(x)化为:f(x)=(a/3)x(x²-12)⑥,同时f´(x)=a(x²-4),又y=f(x)的图象在点P(1,m)处的切线斜率为-6, 所以f´(1)=a(1²-4)=-6,所a=2⑦,由⑤,c=-2⑧,于是f(x)=(2/3)x(x²-12)⑨,f´(x)=2(x²-4)⑩,a=2 b=0 c=-2 d=0⑫.当x∈[-1,1]时,由⑩f´(x)<0,f(x)单调递减,x1,x2属于[-1,1],所以|f(x1)-f(x2)|≤f(-1)-f(1)由⑨,f(-1)=22/3,f(1)=-22/3所以|f(x1)-f(x2)|≤22/3-(-22/3)=44/3。
高中数学选修2-2分章节测试卷(含答案)
第一章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.函数y =sin(π4-x )的导数为( )A .-cos(π4+x )B .cos(π4-x )C .-sin(π4-x )D .-sin(x +π4)2.(2009·广东三校联考)函数f (x )=a ln x +x 在x =1处取得极值,则a 的值为( ) A.12B .-1C .0D .-123.如果f (x )为定义在R 上的偶函数,且导数f ′(x )存在,则f ′(0)的值为( ) A .2B .1C .0D .-14.(2009·全国卷Ⅰ)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1B .2C .-1D .-25.已知f (x )=(x -1)2+2,g (x )=x 2-1,则f [g (x )]( ) A .在(-2,0)上递增 B .在(0,2)上递增 C .在(-2,0)上递增 D .在(0,2)上递增6.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .2≤m ≤47.(2009·江西高考)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或78.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 9.由y =sin x ,y =cos x ,x =0,x =π所围成图形的面积可表示为( ) A.⎠⎛0π(sin x -cos x )dxC.⎠⎛0π(cos x -sin x )dx10.已知f (a )=⎠⎛01(2ax 2-a 2x )dx ,则f (a )的最大值为( )A .-12B.19C.29D .不存在11.(2009·青岛模拟)如右图,在一个长为π,宽为2的矩形OABC 内,由曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π412.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a ) 二、填空题:本大题共4小题,每小题5分,共20分. 13.⎠⎛02(2x -e x )dx =________.14.(2009·海淀区模拟)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的导函数y=f ′(x )的部分图象如右图所示,且导函数f ′(x )有最小值-2,则ω=________,φ=________.15.若函数y =a (x 3-x )的单调递减区间为(-33,33),则a 的取值范围是________. 16.物体A 以速度v =3t 2+1在一直线上运动,在此直线上物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,当t =________ s 时,两物体相遇,相遇时物体A 走过________m.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(2009·浙江高考)已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;(2)若函数f(x)在区间(-1,1)上不单调...,求a的取值范围.18.(本小题满分12分)已知F(x)=⎠⎛x-1t(t-4)dt,x∈(0,+∞).(1)求F(x)的单调区间;(2)求函数F(x)在[1,5]上的最值.19.(本小题满分12分)已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.20.(本小题满分12分)求函数y=x3-3ax+2的极值,并说明方程x3-3ax+2=0何时有三个不同的实根?何时有唯一的实根?(其中a>0)21.(本小题满分12分)已知函数f(x)=13ax3-bx2+(2-b)x+1,在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.(1)证明a>0;(2)求z=a+2b的取值范围.22.(本小题满分12分)(2009·湖北黄冈模拟)已知函数f(x)=12x2-a ln x(a∈R).(1)若f(x)在x=2时取得极值,求a的值;(2)求f(x)的单调区间;(3)求证:当x>1时,12x2+ln x<23x3.第二章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分.1.所有自然数都是整数,4是自然数,所以4是整数,以上三段推理( ) A .正确 B .推理形式不正确 C .两个“自然数”概念不一致 D .两个“整数”概念不一致 2.若a >0,b >0,则有( )A.b 2a >2b -aB.b 2a <2b -aC.b 2a ≥2b -a D.b 2a≤2b -a 3.设S (n )=1n +1n +1+1n +2+1n +3+…+1n 2,则( )A .S (n )共有n 项,当n =2时,S (2)=12+13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12+13+14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+144.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N *)真,则F (k +1)真,现已知F (7)不真,则有:①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中为真命题的是( )A .③⑤B .①②C .④⑥D .③④5.若x ,y ∈R ,且2x 2+y 2=6x ,则x 2+y 2+2x 的最大值为( ) A .14B .15C .16D .176.设f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)等于( )A .0B .1 C.52D .57.若O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC→|AC →|),λ∈[0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心8.如图所示为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A 到H 有几条不同的旅游路线可走( )A .15B .16C .17D .189.对于直角坐标平面内的任意两点A (x 1,y 1)、B (x 2,y 2)定义它们之间的一种“距离”:||AB ||=|x 2-x 1|+|y 2-y 1|.给出下列三个命题:①若点C 在线段AB 上,则||AC ||+||CB ||=||AB ||; ②在△ABC 中,若∠C =90°,则||AC ||2+||CB ||2=||AB ||2; ③在△ABC 中,||AC ||+||CB ||>||AB ||. 其中真命题的个数为( ) A .0B .1C .2D .310.已知a ,b ,c ,d 是正实数,P =a a +b +c +b a +b +d +c c +d +a +d c +d +b ,则有( )A .0<P <1B .1<P <2C .2<P <3D .3<P <411.一个等差数列{a n },其中a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (1≤n ≤19).一个等比数列{b n },其中b 15=1.类比等差数列{a n }有下列结论,正确的是( )A .b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *)B .b 1b 2…b n =b 1b 2…b 29-nC .b 1+b 2+…+b n =b 1+b 2+…+b 29-n (1≤n ≤29,n ∈N *)D .b 1+b 2+…+b n =b 1+b 2+…+b 29-n 12.观察数表1 2 3 4 …第一行 2 3 4 5 …第二行 3 4 5 6 …第三行 4 5 6 7 …第四行 … … … …第一列 第二列 第三列 第四列根据数表中所反映的规律,第n 行与第n 列的交叉点上的数应该是( ) A .2n -1 B .2n +1 C .n 2-1D .n 2二、填空题:本大题共4小题,每小题5分,共20分.13.若三角形内切圆的半径为r ,三边长分别为a ,b ,c ,则三角形的面积S =12r (a +b +c ),根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别为S 1,S 2,S 3,S 4,则四面体的体积V =________.14.若符号“*”表示求实数a 与b 的算术平均数的运算,即a *b =a +b2,则两边均含有运算符号“*”和“+”,且对于任意3个实数a 、b 、c 都能成立的一个等式可以是________.15.把数列{2n +1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数……循环下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,则第104个括号内各数字之和为________.16.已知n 次多项式P n (x )=a 0x n +a 1x n -1+…+a n -2x 2+a n -1x +a n .如果在一种算法中,计算x k 0(k =2,3,4,…,n )的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P n (x 0)的值共需要________次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=xP k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P n (x 0)的值共需要________次运算.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)证明对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2.18.(本小题满分12分)(2009·江苏高考)如右图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C .求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .19.(本小题满分12分)求证:y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b (a ,b ,c 是互不相等的实数)这三条抛物线中,至少有一条与x 轴有两个交点.20.(本小题满分12分)已知函数f(n)(n∈N*),满足条件:①f(2)=2,②f(xy)=f(x)·f(y),③f(n)∈N*,④当x>y时,有f(x)>f(y).(1)求f(1),f(3)的值;(2)由f(1),f(2),f(3)的值,猜想f(n)的解析式;(3)证明你猜想的f(n)的解析式的正确性.21.(本小题满分12分)已知数列a1,a2,…,a30,其中a1,a2,…,a10是首项为1,公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…a30是公差为d2的等差数列(d≠0).(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,a40是公差为d3的等差数列,…,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?22.(本小题满分12分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=x2+abx-c(b,c∈N)有且只有两个不动点0,2,且f(-2)<-12.(1)求函数f(x)的解析式;(2)已知各项均不为零的数列{a n}满足4S n·f(1a n)=1,求数列的通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证当n≥2时,恒有a n<3成立.第三章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.一个实数x 与一个虚数y 的和x +y 必为( )A .实数B .虚数C .可能实数也可能是虚数D .纯虚数 2.复数4+3i1+2i 的实部是( )A .-2B .2C .3D .43.复数z =m -2i1+2i (m ∈R ,i 为虚数单位)在复平面上的对应点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.若复数a +3i1+2i (a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .65.若3+2i 是关于x 的方程2x 2+px +q =0(p ,q ∈R )的一个根,则q 的值是( ) A .26B .13C .6D .56.已知z 1=2-5i ,z 2=-3+i ,z 1,z 2的对应点分别为P 1,P 2,则向量P 2P 1→对应的复数为( ) A .-5+6iB .5-6iC .5+6iD .-1-4i7.已知m1+i =1+n i ,其中m ,n 是实数,i 是虚数单位,则m +n i 的值为( )A .1+2iB .1-2iC .2+iD .2-i8.复数z 满足|3z +1|=|z -i|,则复数z 对应点的轨迹是( ) A .直线B .正方形C .圆D .椭圆9.“复数z =12+32i ”是“z +1z ∈R ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件10.复数-35+2i 2+35i +(21+i )2008的虚部为( )A .-1B .1C .-iD .i11.设f (n )=(1+i 1-i )n +(1-i 1+i )n(n ∈N *),则集合{x |x =f (n )}中的元素有( )A .1个B .2个C .3个D .无穷多个12.若复数z ,a ,x 满足x =a -z 1-a z,且|z |=1,则|x |等于( )A .0B .1C .|a |D.12二、填空题:本大题共4小题,每小题5分,共20分.13.已知复数z 0=3+2i ,复数z 满足z ·z 0=3z +z 0,则复数z =________. 14.复数z 满足|z +2+2i|=|z |,那么|z -1+i|的最小值是________. 15.i 是虚数单位,若1+7i 2-i=a +b i(a ,b ∈R ),则乘积ab =________.16.对于n 个复数z 1,z 1,…,z n ,如果存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1z 1+k 2z 2+…+k n z n =0,就称z 1,z 2,…,z n 线性相关.若要说明复数z 1=1+2i ,z 2=1-i ,z 3=-2线性相关,那么可取{k 1,k 2,k 3}=________.(只要写出满足条件的一组值即可)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(1)设复数z 1=1+i ,z 2=x +2i(x ∈R ).若z 1z 2为实数,求实数x ; (2)计算:(4-i 5)(6+2i 7)+(7-i 11)(4-3i).18.(本小题满分12分)在复数范围内解方程|z 2|+(z +z )i =3-i2+i .(i 为虚数单位)19.(本小题满分12分)已知z =(-1+3i)(1-i)-(1+3i)i ,ω=z +a i(a ∈R ),当|ωz |≤2时,求a的取值范围.20.(本小题满分12分)已知z ∈C ,z -1z +1是纯虚数,求|z 2-z +2|的最小值.21.(本小题满分12分)设虚数z 满足|2z +5|=|z +10|. (1)求|z |的值;(2)若z m +mz为实数,求实数m 的值;(3)若(1-2i)z 在复平面上对应的点在第一、三象限的角平分线上,求复数z .22.(本小题满分12分)对任意一个非零复数α,定义M α={ω|ω=α2n -1,n ∈N *}.(1)设α是方程x +1x =2的一个根,试用列举法表示集合M α.若在M α中任取两个元素,求其和为零的概率P ;(2)若集合M α中只有三个元素,试写出满足条件的一个α值,并说明理由.第一章 综合能力检测答案一、选择题:1.解析:y ′=-cos(π4-x )=-sin[π2-(π4-x )]=-sin(π4+x ). 答案:D2.解析:f ′(x )=ax +1,令f ′(x )=0,得x =-a ,由题知当a =-1时,原函数在x =1处取得极值. 答案:B3.解析:偶函数的导数为奇函数,即f ′(x )为奇函数,故f ′(0)=0. 答案:C4.解析:y ′=1x +a ,设直线y =x +1与曲线y =ln(x +a )相切的切点为(x 0,x 0+1),则1x 0+a =1,∴x 0=1-a ,∴ln(1-a +a )=2-a ,∴e 2-a =1, ∴a =2. 答案:B5.解析:F (x )=f [g (x )]=x 4-4x 2+6,F ′(x )=4x 3-8x .令F ′(x )>0,得-2<x <0或x >2,∴F (x )在(-2,0)上递增. 答案:C6.解析:由题意,得f ′(x )=x 2-2(4m -1)x +(15m 2-2m -7),由于f ′(x )≥0恒成立,故Δ≤0,解得2≤m ≤4. 答案:D7.解析:设直线与曲线y =x 3的切点为P (x 0,y 0), 则⎩⎪⎨⎪⎧y 0=x 30y 0x 0-1=3x 20⇒切线斜率k =3x 20=0或k =274. 若k =0,切线方程为y =0. 由⎩⎪⎨⎪⎧y =0,y =ax 2+154x -9, 消去y ,得ax 2+154x -9=0,其判别式Δ=0⇒a =-2564;若k =274,切线方程为y =274(x -1),由⎩⎨⎧y =274(x -1),y =ax 2+154x -9消去y ,得ax 2-3x -94=0,其判别式Δ=0⇒a =-1. 答案:A8. 解析:∵f ′(x )=-x +b x +2,由题知,f ′(x )<0在(-1,+∞)上恒成立,即-x +bx +2<0,∴b <x (x +2)=(x +1)2-1. ∴b <-1.又当b =-1时,f ′(x )=-x -1x +2=-x (x +2)+1x +2=-(x +1)2x +2<0,∴b ≤-1. 答案:C9.解析:由y =sin x ,y =cos x ,x =0,x =π所围成的图形,如下图的阴影部分.答案:B10.解析:⎠⎛01(2ax 2-a 2x )dx=(23ax 3-12a 2x 2)|10=23a -12a 2, 即f (a )=23a -12a 2=-12(a 2-43a +49)+29=-12(a -23)2+29,∴当a =23时,f (a )有最大值29. 答案:C11.解析:根据几何概型的意义,所投的点落在阴影部分的概率是S 阴影S 矩形,由S 阴影=⎠⎛0πsin xdx =(-cos x )|π0=2,所求概率为S 阴影S 矩形=22π=1π. 答案:A 12.解析:设函数F (x )=xf (x ),∴F ′(x )=[xf (x )]′=f (x )+xf ′(x )≤0,∴F (x )=xf (x )在(0,+∞)上单调递减.∵a <b ,∴F (a )≥F (b ),即af (a )≥bf (b ).又∵0<a <b ,f (b )≥0,∴af (a )≤bf (a ),bf (b )≥af (b ).∴bf (a )≥af (b ). 答案:A二、填空题:13.解析:⎠⎛02(2x -e x )dx =(x 2-e x )|20=4-e 2+1=5-e 2. 答案:5-e 214.解析:f ′(x )=ωcos(ωx +φ), 依题意,得ω=2,2cos(π3+φ)=-1,解得φ=π3.答案:2 π315.解析:∵y ′=a (3x 2-1),令y ′<0,当a >0时,不等式的解集为(-33,33); 当a <0时,不等式的解集为(-∞,-33)∪(33,+∞).∵已知函数y =a (x 3-x )在(-33,33)上单调递减, ∴a >0. 答案:a >016.解析:设A 追上B 时,所用的时间为t 0,依题意有s A =s B +5,即10tdt+5,t 30+t 0=5t 20+5,即t 0(t 20+1)=5(t 20+1),解得t 0=5 s .所以s A =5t 20+5=130(m). 答案:130三、解答题:17.解:(1)由函数f (x )的图象过原点,得b =0, 又f ′(x )=3x 2+2(1-a )x -a (a +2), f (x )在原点处的切线斜率是-3, 则-a (a +2)=-3,所以a =-3,或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎨⎧-1<a <1,a ≠-a +23,或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧ -1<a <1,a ≠-12,或⎩⎪⎨⎪⎧-5<a <1,a ≠-12,所以a 的取值范围是(-5,-12)∪(-12,1).18.解:F (x )=⎠⎛x -1(t 2-4t )dt =(13t 3-2t 2)|x -1=13x 3-2x 2-(-13-2)=13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4,由F ′(x )<0,即x 2-4x <0,得0<x <4,∴F (x )的单调递增区间为(-1,0)∪(4,+∞),单调递减区间为(0,4).(2)由(1)知F (x )在[1,4]上递减,[4,5]上递增.又∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253. 19.解:(1)f ′(x )=3ax 2+2bx +c ,因为x =±1是函数f (x )的极值点,所以x =±1是方程f ′(x )=0即3ax 2+2bx +c =0的两根.由根与系数的关系,得⎩⎨⎧-2b3a =0,①c3a =-1,②又f (1)=-1,所以a +b+c =-1.③ 由①②③,解得a =12,b =0,c =-32.(2)因为f (x )=12x 3-32x ,所以f ′(x )=32x 2-32=32(x -1)·(x +1).当x <-1或x >1时,f ′(x )>0,当-1<x <1时,f ′(x )<0.所以函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.所以当x =-1时,函数取得极大值f (-1)=1,当x =1时,函数取得极小值f (1)=-1.20.解:函数的定义域为R ,其导函数为y ′=3x 2-3a .由y ′=0,得x=±a ,列表讨论如下:x (-∞,-a ) -a(-a ,a ) a (a ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值由此可得,函数x =-a 处取得极大值2+2a 32;在x =a 处取得极小值2-2a 32.根据列表讨论,可作出函数的草图(如右图所示),因为极大值f (-a )=2+2a 32>0,故当极小值f (a )=2-2a 32<0,即a >1时,方程x 3-3ax +2=0有三个不同的实根;当极小值f (a )=2-2a 32>0,即0<a <1时,方程x 3-3ax +2=0有唯一的实根.21.解:求函数f (x )的导数得 f ′(x )=ax 2-2bx +2-b .(1)证明:由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值,知x 1,x 2是f ′(x )=0的两个根.所以f ′(x )=a (x -x 1)(x -x 2). 当x <x 1时,f ′(x )>0,函数为增函数, 由x -x 1<0,x -x 2<0得a >0. (2)在题设下,0<x 1<1<x 2<2等价于⎩⎨⎧f ′(0)>0,f ′(1)<0,f ′(2)>0.即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0.化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上三条直线2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A (47,67),B (2,2),C (4,2).z 在这三点的值依次为167,6,8.所以z 的取值范围为(167,8).22.解:(1)f ′(x )=x -ax ,∵x =2是一个极值点,∴2-a2=0.∴a =4.此时f ′(x )=x -4x =x 2-4x =(x -2)(x +2)x.∵f (x )的定义域是{x |x >0},∴当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. ∴当a =4时,x =2是f (x )的极小值点.∴a =4. (2)∵f ′(x )=x -ax,∴当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x -a )(x +a )x,令f ′(x )>0有x >a ,∴函数f (x )的单调递增区间为(a ,+∞); 令f ′(x )<0有0<x <a ,∴函数f (x )的单调递减区间为(0,a ). (3)证明:设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x >0,∴g (x )在(1,+∞)上是增函数. ∴g (x )>g (1)=16>0.∴当x >1时,12x 2+ln x <23x 3.第二章 综合能力检测答案一、选择题:1.解析:三段论中的大前提、小前提及推理形式都是正确的. 答案:A 2.解析:∵b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,∴b 2a≥2b -a . 答案:C 3.解析:从n 到n 2共有n 2-n +1个自然数,即S (n )共有n 2-n +1项.故选D. 4.解析:若F (k )真,则F (k +1)一定真,其逆否命题为F (k +1)不真,则F (k )不真. ∴F (7)不真,则F (6)不真;F (6)不真,则F (5)不真. 答案:A5.解析:x 2+y 2+2x =x 2+(6x -2x 2)+2x =-x 2+8x =-(x -4)2+16≤16. 答案:C6.解析:∵f (x +2)=f (x )+f (2) ∴令x =-1则有 f (1)=f (-1)+f (2) ∴f (2)=2f (1)又∵f (1)=12,∴f (2)=1∴f (5)=f (2+3)=f (2)+f (3) =f (2)+f (2)+f (1) =2f (2)+f (1)=2+12=52. 答案:C7.解析:OP →=OA →+λ(AB →|AB →|+AC →|AC →|),AP →=λ(AB →|AB →|+AC →|AC →|)=λ(e 1+e 2),∴AP 是∠A 的内角平分线.答案:B8.解析:这是图论中的一个问题,如果一条一条的去数,由于道路错综复杂,哪些已算过,哪些没有算过就搞不清了,所以我们换一个思路,用分析法来试试.要到H 点,需从F 、E 、G 走过来,F 、E 、G 各点又可由哪些点走过来,……,这样一步步倒推,最后归结到A ,然后再反推过去得到如下的计算法:A 至B 、C 、D 的路数记在B 、C 、D 圆圈内,B 、C 、D 分别到F 、E 、G 的路数亦记在F 、E 、G 圆圈内,最后F 、E 、G 各个路数之和,即得至H 的总路数如答图1所示. 答案:C9.解析:①当点C 在线段AB 上时,可知||AC ||+||CB ||=||AB ||,故①是正确的.②取A (0,0),B (1,1),C (1,0),则||AC ||2=1,||BC ||2=1,||AB ||2=(1+1)2=4,故②是不正确的.③取A (0,0),B (1,1),C (1,0),证明||AC ||+||CB ||=||AB ||,故③不正确.故选B. 10.解析:P =a a +b +c +b a +b +d +c c +d +a +dc +d +b>a a +b +c +d +b a +b +d +c +c c +d +a +b +d c +d +b +a =1, P =a a +b +c +b a +b +d +c c +d +a +dc +d +b<a a +b +b a +b +c c +d +d c +d =2, ∴1<P <2. 答案:B11. 解析:在等差数列{a n }中,a 10=0,知以a 10为等差中项的项和为0,如a 9+a 11=a 8+a 12=…=a 2+a 18=a 1+a 19=0.而在等比数列{b n }中,b 15=1,类比地有b 1b 29=b 2b 28=…=b 14b 16=1.从而类似地总结规律应为各项之积.∵等差数列{a n }中a 10=0,∴a 1+a 19=a 2+a 18=…=a 8+a 12=a 9+a 11=0. 即:a 19-n +a n +1=0, a 18-n +a n +2=0, a 17-n +a n +3=0, …∴a 1+a 2+…+a n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n . ∵b 15=1,∴b 1b 29=b 2b 28=…=b 14b 16=1. 即b 29-n b n +1=b 28-n b n +2=…=b 14b 16=1.∴b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *).故选A.12.解析:根据数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行第n 列交叉点上的数应该是2n -1. 答案:A二、填空题:13.解析:由平面图形到空间图形的类比过程中,边长→面积,面积→体积. 答案:13R (S 1+S 2+S 3+S 4)14.解析:答案不唯一.因为a +(b *c )=a +b +c 2=2a +b +c 2,又(a +b )*(a +c )=(a +b )+(a +c )2=2a +b +c2,因此答案成立.同时:(a *b )+c =(a *c )+(b *c );a *(b +c )=(a +b )*c =(b +c )*a =(a +c )*b ;(a *b )+c =(b *a )+c 也符合题意. 答案:a +(b *c )=(a +b )*(a +c )15.解析:前面103个括号中共用了256个数,第104个括号有4个数分别是515,517,519,521,其和为2072. 答案:207216.解析:P n (x 0)=a 0x n -10+…+a n -2x 20+a n -1x 0+a n ,共需n 次加法运算,每个小因式中所需乘法运算依次为n ,n -1,…,1.故共需计算次数为n +n (n +1)2=12n (n +3).第二种运算中,P 0(x 0)=a 0,不需要运算,P 1(x 0)=x 0P 0(x 0)+a 1,需2次运算.P 2(x 0)=x 0P 1(x 0)+a 2,需2+2次运算,依次往下,P n (x 0)需2n 次运算. 答案:12n (n +3) 2n三、解答题:17.证明:(分析法)要证x 4+y 4≥12xy (x +y )2,只需证明2(x 4+y 4)≥xy (x +y )2, 即证2(x 4+y 4)≥x 3y +xy 3+2x 2y 2.只需x 4+y 4≥x 3y +xy 3与x 4+y 4≥2x 2y 2同时成立即可. 又知x 4+y 4-2x 2y 2=(x 2-y 2)2≥0,即x 4+y 4≥2x 2y 2成立, 只需再有x 4+y 4≥x 3y +xy 3成立即可. 由于x 4+y 4-x 3y -xy 3=(x -y )(x 3-y 3), ∵x -y 与x 3-y 3同号,∴(x -y )(x 3-y 3)≥0,即x 4+y 4≥x 3y +xy 3成立.∴对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2成立.18.证明:(1)因为E 、F 分别是A 1B 、A 1C 的中点,所以EF ∥BC ,EF ⊄面ABC ,BC ⊂面ABC .所以EF ∥平面ABC .(2)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以BB 1⊥面A 1B 1C 1,BB 1⊥A 1D , 又A 1D ⊥B 1C ,所以A 1D ⊥平面BB 1C 1C , 又A 1D ⊂平面A 1FD , 所以平面A 1FD ⊥平面BB 1C 1C .19.证明:假设三条抛物线均与x 轴无两交点,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0,∴a 2+b 2+c 2-ab -ac -bc ≤0,即12[(a -b )2+(b -c )2+(c -a )2]≤0,∴a =b =c ,与a ,b ,c 是互不相等的实数矛盾.故三条抛物线中,至少有一条与x 轴有两个交点.20.解:(1)∵f (2)=f (2×1)=f (2)·f (1),又f (2)=2,∴f (1)=1.又∵f (4)=f (2·2)=f (2)·f (2)=4,2=f (2)<f (3)<f (4)=4,且f (3)∈N *.∴f (3)=3.(2)由f (1)=1,f (2)=2,f (3)=3,猜想f (n )=n (n ∈N *).(3)用数学归纳法证明:(ⅰ)当n =1时,f (1)=1,函数解析式成立. (ⅱ)假设n =k 时,f (k )=k ,函数解析式成立.①若k +1=2m (m ∈N *),f (k +1)=f (2m )=f (2)·f (m )=2m =k +1. ②若k +1=2m +1(m ∈N *),f (2m +2)=f [2(m +1)]=f (2)·f (m +1)=2(m +1)=2m +2,2m =f (2m )<f (2m +1)<f (2m +2)=2m +2. ∴f (2m +1)=2m +1=k +1.即当n =k +1时,函数解析式成立. 综合(ⅰ)(ⅱ)可知,f (n )=n (n ∈N *)成立. 21.解:(1)a 10=10,a 20=10+10d =40, ∴d =3.(2)a 30=a 20+10d 2=10(1+d +d 2)(d ≠0), a 30=10[(d +12)2+34],当d ∈(-∞,0)∪(0,+∞)时,a 30∈[7.5,+∞);(3)所给数列可推广为无穷数列{a n },其中a 1,a 2,…,a 10是首项为1,公差为1的等差数列,当n ≥1时,数列a 10n ,a 10n +1,…,a 10(n +1)是公差为d n 的等差数列.研究的问题可以是:试写出a 10(n +1)关于d 的关系式,并求a 10(n +1)的取值范围 研究的结论可以是:由a 40=a 30+10d 3=10(1+d +d 2+d 3), 依次类推可得a 10(n +1)=10(1+d +…+d n ) =⎩⎪⎨⎪⎧10×1-d n +11-d ,d ≠1,10(n +1),d =1.当d >0时,a 10(n +1)的取值范围为(10,+∞). 22.解:(1)依题意有x 2+a bx -c=x ,化简为(1-b )x 2+cx +a =0,由根与系数的关系得⎩⎪⎨⎪⎧2+0=-c 1-b,2·0=a 1-b,解得⎩⎪⎨⎪⎧a =0,b =1+c 2,代入表达式得f (x )=x 2(1+c 2)x -c ,由f (-2)=-21+c <-12,得c <3.又因为c ∈N ,b ∈N ,若c =0,b =1,f (x )=x 不止有两个不动点,若c =1,b =32,则f (x )=x只有一个不动点,所以c =2,b =2,故f (x )=x 22(x -1)(x ≠1).(2)由题设得4S n ·(1a n)22(1a n-1)=1,得2S n =a n -a 2n ,(*) 且a n ≠1,把n -1代入得2S n -1=a n -1-a 2n -1.(**)由(*)与(**)两式相减得2a n =(a n -a n -1)-(a 2n -a 2n -1),即(a n +a n -1)(a n -a n -1+1)=0,所以a n =-a n -1或a n -a n -1=-1,把n =1代入(*)得2a 1=a 1-a 21,解得a 1=0(舍去)或a 1=-1.由a 1=-1,a n =-a n -1,得a 2=1,这与a n ≠1矛盾,所以a n -a n -1=-1,即{a n }是以-1为首项,-1为公差的等差数列,所以a n =-n .(3)证明:(采用反证法)假设a n ≥3(n ≥2),则由(1)知a n +1=f (a n )=a 2n2a n -2,所以a n +1a n =a n 2(a n -1)=12·(1+1a n -1)≤12(1+12)=34<1,即a n +1<a n (n ≥2,n ∈N ),有a n <a n -1<…<a 2,而当n =2时,a 2=a 212a 1-2=168-2=83<3,所以a 2<3.这与假设矛盾,故假设不成立,所以a n <3.第三章 综合能力检测答案一、选择题:1.解析:由复数的概念可知x +y 仍是虚数. 答案:B2. 解析:4+3i 1+2i =(4+3i)(1-2i)1+22=(4+6)+(3-8)i5=2-i. 答案:B3.解析:m -2i 1+2i =(m -2i)(1-2i)(1+2i)(1-2i)=(m -4)-2(m +1)i5,对于m 的值,不存在m 使m -4>0且m+1<0,故对应的点不可能在第一象限. 答案:A4.解析:∵z =(a +3i)(1-2i)(1+2i)(1-2i)=a +65+(3-2a )i 5.若z 为纯虚数,则⎩⎪⎨⎪⎧a +6=0,3-2a ≠0⇒⎩⎪⎨⎪⎧a =-6,a ≠32.答案:C5.解析:由于实系数一元二次方程的虚根成对出现,是互为共轭复数的,故另一根为3-2i ,则(3+2i)·(3-2i)=q2=13.故选A.6.解析:∵P 2P 1→=OP 1→-OP 2→,∴P 2P 1→对应的复数为z 1-z 2=(2-5i)-(-3+i)=5-6i. 答案:B7.解析:由m1+i =1+n i 得m =(1+i)(1-n i)=(1+n )+(1-n )i ,∴⎩⎪⎨⎪⎧ m =1+n ,0=1-n ,∴⎩⎪⎨⎪⎧m =2,n =1,∴m +n i =2+i. 答案:C8.解析:设z =x +y i ,则|3x +3y i +1|=|x +y i -i|. ∴(3x +1)2+9y 2=x 2+(y -1)2, 即4x 2+4y 2+3x +y =0.∴复数z 对应点Z 的轨迹为圆.故选C.9.解析:由z =12+32i 可得,z +1z =12+32i +12-32i =1∈R . ∴z =12+32i 是z +1z ∈R 的充分条件.但z +1z ∈R ⇒|z |=1z =12+32i ,所以z =12+32i 是z +1z∈R 的充分非必要条件. 答案:A10.解析:-35+2i 2+35i +(21+i )2008=i(35i +2)2+35i +1i1004=i +1. 答案:B11.解析:f (n )=(1+i 1-i )n +(1-i1+i )n =i n +(-i)n (n ∈N *),根据i n 取值的周期性,给n 赋值发现集合{x |x =f (n )}={0,-2,2},故应选C.12.解析:由|z |=1,得|z |2=1,即z ·z =1,所以x =a -z z z -a z =a -zz (z -a )=-1z=-z ,所以|x |=|-z |=1. 答案:B二、填空题:13.解析:由已知得z =z 0z 0-3=3+2i 2i =1-32i. 答案:1-32i14.解析:设z =x +y i(x ,y ∈R ),由|z +2+2i|=|z |得(x +2)2+(y +2)2=x 2+y 2,即x +y +2=0,点(1,-1)到直线x +y +2=0的距离为d =|1-1+2|2=2,∴|z -1+i|的最小值为 2. 答案: 215.解析:1+7i 2-i =(1+7i)(2+i)4+1=-1+3i由-1+3i =a +b i 得a =-1,b =3 ∴ab =-3 答案:-316.解析:由k 1z 1+k 2z 2+k 3z 3=0得k 1(1+2i)+k 2(1-i)+k 2·(-2)=0, 即(k 1+k 2-2k 3)+(2k 1-k 2)i =0,∴⎩⎪⎨⎪⎧k 1+k 2-2k 3=0,2k 1-k 2=0.∴k 1∶k 2∶k 3=1∶2∶32.(答案不唯一,只需满足1∶2∶32的任何一组都行) 答案:{1,2,32}三、解答题:17.解:(1)z 1z 2=(1+i)(x +2i)=x +2i +x i -2=(x -2)+(2+x )i ,因为z 1z 2是实数,所以x +2=0,所以x =-2.(2)原式=2(4-i)(3-i)+(7-i)(4-3i)=2(12-3i -4i 2)+(28-4i -21i +3i 2)=2(11-7i)+25(1-i)=47-39i.18.解:原方程化简为|z |2+(z +z )i =1-i ,设z =x +y i(x 、y ∈R ),代入上述方程;得x 2+y 2+2x i =1-i ,所以⎩⎪⎨⎪⎧x 2+y 2=1,2x =-1.解得⎩⎨⎧x =-12,y =±32.所以原方程的解是z =-12±32i.19.解:z =2+4i -(1+3i)i =1+i i =-i(1+i)=1-i ,ω=1+(a -1)i ,ωz =1+(a -1)i1-i=[1+(a -1)i](1+i)2=2-a +a i 2,由|ωz |≤2,得(2-a 2)2+(a2)2≤2,解得1-3≤a ≤1+ 3.故a 的取值范围是[1-3,1+3].20.解:设z =x +y i(x ,y ∈R ),则z -1z +1=(x -1)+y i (x +1)+y i =x 2+y 2-1+2y i(x +1)2+y 2是纯虚数,∴x2+y 2=1且y ≠0,于是-1<x <1.而|z 2-z +2|=|(x +y i)2-(x +y i)+2|=|(x 2-y 2-x +2)+y (2x -1)i|=(x 2-y 2-x +2)2+y 2(2x -1)2=8x 2-6x +2=8(x -38)2+78,∴当x =38时,|z 2-z +2|取得最小值144. 21.解:(1)设z =x +y i(x ,y ∈R ,且y ≠0),则 (2x +5)2+(2y )2=(x +10)2+y 2. 化简得x 2+y 2=25.∴|z |=5. (2)∵z m +m z =x +y i m +m x +y i=(x m +mx x 2+y 2)+(y m -myx 2+y2)i 为实数,∴y m -myx 2+y 2=0. 又y ≠0,且x 2+y 2=25, ∴1m -m25=0,解得m =±5. (3)(1-2i)z =(1-2i)(x +y i)=(x +2y )+(y -2x )i ,依据题意,得x +2y =y -2x . ∴y =-3x .①又∵|z |=5,即x 2+y 2=25.② 由①、②得⎩⎨⎧x =102,y =-3102或⎩⎨⎧x =-102,y =3102.∴z =102-3102i 或z =-102+3102i. 22.解:(1)解方程x +1x =2,得x =22±22i.当α1=22+22i 时,ω=α2n -11=(α21)nα1=[(22+22i)2]n α1=in α1.由i n 的周期性知,ω有四个值,n =1时,ω=22+22i ;n =2时,ω=-22+22i ;n =3时,ω=-22-22i ;n =4是,ω=22-22i. 当α2=22-22i 时,ω=α2n -12=(α22)n α2=(-i)nα2.当n =1时,ω=22-22i ;n =2时,ω=-22-22i ;n =3时,ω=-22+22i ;n =4时,ω=22+22i.∴不论α=22+22i 还是α=22-22i ,都有 M α={22+22i ,22-22i ,-22+22i ,-22-22i},P =2C 24=13. (2)取α=-12+32i ,则α3=1,α5=-12-32i ,于是M α={α,α3,α5}={-12+32i,1,-12-32i}.(或取α=-12-32i ,则α3=1,α5=-12+32i)。
高中数学选修2-1、2-2综合试题
④“ x > 2 ”是“ 1 4.由直线 x = 12 D . 15B . 2 ln 2高中数学选修2-1、2-2 综合试题班级-------------姓名-----------得分-----------一、 选择题(本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.复数 z 的虚部记作 Im (z ),若 z= 5 1 + 2i,则 Im ( z )=( )A .2B . 2iC .-2D .-2i2.考察以下列命题:①命题“ lg x = 0, 则x=1 ”的否命题为“若 lg x ≠ 0, 则x ≠ 1 ”②若“ p ∧ q ”为假命题,则 p 、q 均为假命题③命题 p : ∃x ∈ R ,使得 s in x > 1 ;则 ⌝p : ∀x ∈ R ,均有 sin x ≤ 11< ”的充分不必要条件x 2则真命题的个数为( ) A .1 B .2C .3D .43.在平行六面体 ABCD - A B C D 中, M 为 A C 与 B D 的交点。
1 1 111 111若 AB = a , AD = b , AA = c 则与 BM 相等的向量是()11 1 1 1A . - a + b + cB . a + b + c2 2 2 2A1DD1 C1 MB1 C1 1 1 1C . - a - b + cD . a - b + c2 2 2 2A B1 , x = 2, 曲线 y = - 及轴所围图形的面积为 ( )2 xA .- 2ln 2 C . 1 ln 2 45.已知抛物线 y 2 = 2 px( p > 0) 上有一点 M (4,y ),它到焦点 F 的距离为 5,则 ∆OFM 的面积(O 为原点)为()A .1B .2C . 2D . 2 26.用火柴棒摆“金鱼”,如图所示:…①②③7.在正三棱柱ABC-A B C中,若AB=2B B,则AB与C B所成角的大小为()②实数a,b,有(a+b)2=a2+2ab+b2;类比向量a,b,有(a+b)2=a+2a⋅b+b按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n+2B.6n-2C.8n+2D.8n-2111111A.60°B.75°C.105°D.90°8.给出下面四个类比结论()①实数a,b,若ab=0则a=0或b=0;类比向量a,b,若a⋅b=0,则a=0或b=022③向量a,有a2=a2;类比复数z,有z2=z2④实数a,b有a2+b2=0,则a=b=0;类比复数z,z有z2+z2=0,则212z=z=012其中类比结论正确的命题个数为()A.0B.1C.2D.39.已知抛物线=2px(p>1)的焦点F恰为双曲线(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为()A.2B.2C.2+1D.2+210.设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径()A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C二、填空题(每小题5分,共20分。
(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(答案解析)
一、选择题1.给出下列函数:①()()2ln 1f x x x =+-;②()3cos f x x x =;③()xf x e x =+.0a ∃>使得()0aaf x dx -=⎰的函数是( )A .①②B .①③C .②③D .①②③2.已知71()x x +展开式中,5x 的系数为a ,则62axdx =⎰( )A .10B .11C .12D .133.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .24.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 5.3侧面与底面所成的角是45︒,则该正四棱锥的体积是( ) A .23B .43C .23D .236.22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 17.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .438.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .29.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .50 10.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞11.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( ) A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 12.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .23二、填空题13.若112lim 22n nn n n t t +-→+∞-=+ ,则实数t 的取值范围是_____________.14.曲线,,0x y e y e x ===围成的图形的面积S =______15.曲线()sin 0πy x x =≤≤与x 轴围成的封闭区域的面积为__________. 16.已知函数()323232t f x x x x t =-++在区间()0,∞+上既有极大值又有极小值,则实数t 的取值范围是__________. 17.定积分()12xx e dx +=⎰__________.18.曲线2y x =与直线230x y --=所围成的平面图形的面积为________.19.二项式33()6a x -的展开式的第二项的系数为,则的值为______.20.若,则的值是__________.三、解答题21.已知二次函数()f x 满足(0)0f =,且对任意x 恒有(1)()22f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()'()g x f x f x λ=-,其中'()f x 为()f x 的导函数.若对任意[0,1]x ∈,函数()y g x =的图象恒在x 轴上方,求实数λ的取值范围.22.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值. 23.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围. 24.计算曲线223y x x =-+与直线3y x所围图形的面积.25.在(332x x11的展开式中任取一项,设所取项为有理项的概率为α,求1x α⎰d x26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】利用定义判断①②中的函数为奇函数,根据奇函数和定积分的性质,判断①②;利用反证法,结合定积分的性质,判断③. 【详解】对①,()f x 的定义域为R1())))()f x x x x f x --===-=-即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对②,()f x 的定义域为R33()cos()cos ()f x x x x x f x -=--=-=-,即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对③,若0a ∃>,使得()0aaf x dx -=⎰成立则()2102aax x a aa a e x dx e x e e ---⎛⎫+=+- ⎪⎝==⎭⎰,解得0a =,与0a >矛盾,则③不满足 故选:A 【点睛】本题主要考查了定积分的性质以运用,属于中档题.2.D解析:D 【分析】利用二项式的通项公式求得7a =,从而求得762xdx ⎰的值.【详解】在71()x x +展开式中,得二项式的通项公式7721771rr r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令725r -=,解得1r =,所以5x 的系数为177C =,即7a =.所以7267662213axdx xdx x ===⎰⎰.故选:D 【点睛】本题主要考查二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,求定积分的值,属于中档题.3.D解析:D 【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 4.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .5.B解析:B 【解析】设底面边长为a ,依据题设可得棱锥的高2ah =,底面中心到顶点的距离2d =,由勾股定理可得2221()()22a a +=,解之得2a =,所以正四棱锥的体积21242323V =⨯⨯=,故应选答案B .6.B解析:B 【解析】3221321322217ln |ln 2||,.11133x S x S x S e e e S S S ==<==<==-∴<<选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.7.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()22320328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.8.A解析:A 【解析】试题分析:由1(1)1x f x x e ++=-+知()2x f x x e =-+,则()1(0)2x f x e f ''=+⇒=,而(0)1f =-,即切点坐标为()0,1-,切线斜率(0=2k f '=),则切线()():12021l y x y x --=-⇒=-,切线l 与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l 与坐标轴围成的三角形的面积为1111224S =⋅⋅-= 考点:函数在某点处的切线9.B解析:B 【解析】由定积分的物理意义,得,即力做的功为46.考点:定积分的物理意义.10.C解析:C 【分析】本题可以先根据定积分的运算法则建立a 与b 的等量关系,然后设abt ,则312t a b,再然后根据构造法得出a 、b 为方程23102t xx t 的根,最后根据判别式即可得出结果. 【详解】112(31)()(33)ax x b dx ax abx x b dx 1223331()02222abx x ab ax bx a b =+++=+++=,即3210ab a b,设ab t ,则312t a b,a 、b 为方程23102t xx t 的根,有231402t t ,解得19t 或1t ≥, 所以1,[1,)9a b ,故选C .【点睛】本题考查定积分的运算法则以及构造法,能否根据被积函数的解析式得出原函数的解析式是解决本题的关键,考查韦达定理的使用,是中档题.11.B解析:B 【解析】由31x x=,得1x =±,则图象的交点为(1,1)--,(1,1) ∵()31min ,f x x x ⎧⎫=⎨⎬⎩⎭∴根据对称性可得函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积为143401141111|ln |ln 42ln 201444x dx dx x x x +=+=+=+⎰⎰ 故选B12.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.二、填空题13.【分析】利用数列的极限的运算法则转化求解即可【详解】解:当|t|≥2时可得可得t =﹣2当|t|<2时可得:综上可得:实数t 的取值范围是:﹣22)故答案为﹣22)【点睛】本题考查数列的极限的运算法则的 解析:[)2,2-【分析】利用数列的极限的运算法则,转化求解即可. 【详解】解:当|t |≥2时,n+1nn n-1n 2-t lim =22+t→∞,可得2n 22()11t lim 2121n t t t→∞⨯--==⎛⎫+ ⎪⎝⎭ ,可得t =﹣2. 当|t |<2时,n+1nn n-1n 2-t lim =22+t→∞可得: 22()2lim 211?()2n n tt t →∞+=+ , 综上可得:实数t 的取值范围是:[﹣2,2). 故答案为[﹣2,2). 【点睛】本题考查数列的极限的运算法则的应用,考查计算能力.14.【解析】【分析】先求出两曲线的交点再由面积与定积分的关系利用定积分即可求解【详解】由题意令解得交点坐标为所以曲线围成的图形的面积【点睛】本题主要考查了利用定积分求解曲边形的面积其中解答中根据题设中的 解析:1【解析】 【分析】先求出两曲线,x y e y e ==的交点,再由面积与定积分的关系,利用定积分即可求解. 【详解】由题意,令x y ey e=⎧⎨=⎩,解得交点坐标为(1,)e , 所以曲线,,0xy e y e x ===围成的图形的面积110()()|1x xS e e dx ex e =-=-=⎰.【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题设中的条件建立面积的积分表达式,利用定积分的计算准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.2【解析】与轴所围成的封闭区域的面积故答案为2解析:2 【解析】sin (0π)y x x =≤≤与x 轴所围成的封闭区域的面积ππsin d cos cos πcos020S x x x==-=-+=⎰,故答案为2.16.【解析】由题意可得在有两个不等根即在有两个不等根所以解得填解析:90,8⎛⎫⎪⎝⎭【解析】2()32f x tx x -'=+,由题意可得()0f x '=在()0,+∞有两个不等根,即2320tx x -+=在()0,+∞有两个不等根,所以302980tt ⎧>⎪⎨⎪∆=->⎩,解得908t <<,填90,8⎛⎫⎪⎝⎭ 17.e 【解析】点睛:1求曲边图形面积的方法与步骤(1)画图并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围从而确定积分的上下限;(3)确定被积函数;(4)求出各曲边梯形的面积和即各积分解析:e 【解析】1212120(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=⎰. 点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.18.【解析】试题分析:联立交点所以围成的图形为直线的左上方和曲线所围成的区域面积为考点:1定积分的应用---求曲边梯形的面积;2微积分基本定理【方法点晴】求曲边梯形的步骤:①画出草图在直角坐标系中画出直 解析:323【解析】 试题分析:联立2{230y x x y =--=,交点(1,1)A -,(9,3)B ,所以围成的图形为直线的左上方和曲线所围成的区域,面积为322332111132(23)(3)|(399)(13)333S y y dy y y y --=+-=+-=+---+=⎰.考点:1.定积分的应用---求曲边梯形的面积;2.微积分基本定理.【方法点晴】求曲边梯形的步骤:①画出草图,在直角坐标系中画出直线或曲线的大致图象;②联立方程,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示为若干个定积分的和;④计算定积分,写出答案.由于本题中,若对x 进行定积分,2,y x y x ==±,有些麻烦,这里就转化为对y 进行定积分,要容易很多.19.或【解析】试题分析:展开后第二项系数为时时考点:1定积分;2二项式定理解析:3或73【解析】试题分析:展开后第二项系数为233122a a -=-∴=±,1a =时3121|33x -==,1a =-时 31217|33x --== 考点:1.定积分;2.二项式定理20.2【解析】试题分析:∵易得故答案为考点:定积分的计算解析:2 【解析】 试题分析:∵,易得,故答案为.考点:定积分的计算.三、解答题21.(1)()2f x x x =+;(2){|0}λλ<【解析】分析:(1)设2()f x ax bx c =++,代入已知,由恒等式知识可求得,,a b c ; (2)由(1)得()g x ,题意说明()0<g x 在[0,1]x ∈上恒成立,由分离参数法得221x x x λ+<+,问题转化为求22([0,1])21x x x x +∈+的最小值. 详解:(1)设()()20f x ax bx c a =++≠,()00f =,0c ∴=. 于是()()()()22111f x f x a x b x ax bx +-=+++--222ax a b x =++=+.解得1a =,1b =.所以()2f x x x =+. (2)由已知得()()221g x x x x λ=+-+ 0>在[]0,1x ∈上恒成立. 即221x x x λ+<+在[]0,1x ∈上恒成立. 令()221x x h x x +=+,[]0,1x ∈ 可得()()()()()22222212221'02121x x x x x h x x x +-+++==>++. ∴函数()h x 在[]0,1单调递增,∴ ()()min 00h x h ==.∴ λ的取值范围是{|0}λλ<.点睛:本题考查用导数研究不等式恒成立问题,不等式恒成立问题通常伴随着考查转化与化归思想,例如常用分离参数法化为()()g h x λ≤,这样只要求得()h x 的最小值min ()h x ,然后再解min ()()g h x λ≤,即得λ范围.22.(1)800()4(010)25f x x x x =+≤≤+;(2)当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元.【解析】试题分析:(I )根据c (0)=8计算k ,从而得出f (x )的解析式;(II )利用基本不等式得出f (x )的最小值及等号成立的条件.试题(1)当0x =时,()085k c ==,∴40k =. 由题意知,()4020425f x x x ⨯=++,即()()800401025f x x x x =+≤≤+. (2)∵()()800401025f x x x x =+≤≤+∴()()21600'425f x x -=++,令()'0f x =,即()242516000x +-=, ∴7.5x =. 当[)0,7.5x ∈时,()'0f x <,当(]7.5,10x ∈时,()'0f x >,当7.5x =时,()f x 取得最小值. ()min 80047.57027.55f x =⨯+=⨯+. 所以,当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元. 23.(Ⅰ)3a=-,2b =-;(Ⅱ)[]4,16-;(Ⅲ)124t ≤≤ 【解析】试题分析:(Ⅰ)由导函数研究原函数切线的方法得到关于实数a,b 的方程组,求解方程组可得3a =-,2b =-;(Ⅱ)将不等式恒成立的问题分类讨论可得实数t的取值范围是124t ≤≤+ 试题(Ⅰ)()232f x x ax '=+ ∴()1323f a =+=-' ∴3a =- ∴()323f x x x =-因为()113f b =-= ∴2b =- (Ⅱ)由(Ⅰ)得()323f x x x =- ∴()236f x x x '=- 令()0f x '= 解得120,2x x ==()()()()14,00,24,416f f f f -=-==-=∴()f x 的值域是[]4,16- (Ⅲ)因为[]1,4x ∈时,不等式()()f x g x ≤恒成立∴()22160tx t x -++≥在[]1,4上恒成立,令()()2216h x tx t x =-++ 对称轴为1t x t +=因为0t >∴11t x t+=> ∴()21441240t t t t +⎧<⎪⎨⎪∆=+-≤⎩或()()144168160t t h t t +⎧≥⎪⎨⎪=-++≥⎩ 解得:t的取值范围为124t ≤≤+ 24.92. 【解析】【详解】试题分析:利用定积分计算曲线所围成面积,先画出图象,再找到图象交点的横坐标,然后写出定积分式子,注意被积函数为上方的图象对应的函数减图象在下方的函数. 试题由23{23y x y x x =+=-+解得03x x ==及.从而所求图形的面积332200[(3)(23)](3)S x x x dx x x dx =+--+=-+⎰⎰3230139=|322x x ⎛⎫-+= ⎪⎝⎭. 考点:定积分. 25.67 【分析】 先求()332x x -11展开式的通项公式,其中有2项有理项,确定概率1α6=,根据定积分的计算法则,先求出被积函数x α的原函数,再分别将积分上下限代入求差,即可求出结果.【详解】解:T r +1=11r C ·(3x )11-r ·()32x -r =11r C ·311-r ·(-2)r ·,r =0,1,…,11,共12项其中只有第4项和第10项是有理项,故所求概率为21α126==. 111716600066=|=77x dx x dx x α∴=⎰⎰ 【点睛】本题考查利用二项展开式的通项公式解决二项式展开式的特定项问题、考查古典概型的概率公式,考查定积分的计算.解题关键是熟练应用二项式展开式的通项公式,找出符合条件的项数.26.(1)1m ≤-;(2)4a ≤.【解析】试题分析:(1)求导,利用导数对t 的范围进行分类讨论求最值.(2)本小题实质是22ln 3x x x ax ≥-+-在()0,x ∈+∞上恒成立,进一步转化为3 2ln a x x x ≤++在()0,x ∈+∞上恒成立,然后构造函数()32ln (0)h x x x x x=++>利用导数研究h(x)的最小值即可.注意不要忽略x>0的条件,导致求导数的方程时产生增根. 试题(1)()f x 定义域为()0,+∞,()()ln 1f x x m '=++,因为()f x 在()1,+∞上为单调函数,则方程()ln 10x m ++=在()1,+∞上无实根. 故10m +≥,则1m ≤-.(2)22ln 3x x x ax ≥-+-,则32ln a x x x ≤++,对一切()0,x ∈+∞恒成立. 设()32ln (0)h x x x x x =++>,则()()()231'x x h x x +-=, 当()()()0,1,'0,x h x h x ∈<单调递减,当()()()1,,'0,x h x h x ∈+∞>单调递增.()h x 在()0,+∞上,有唯一极小值()1h ,即为最小值.所以()()min 14h x h ==,因为对任意()()()0,,2x f x g x ∈+∞≥恒成成立,故4a ≤.点睛:利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a 恒成立,只需f(x)min≥a 即可;f(x)≤a 恒成立,只需f(x)max≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.。
高中数学人教A版选修2-2综合测试试卷
高中数学人教A 版选修2-2综合测试试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.1+2i (1-i )2=( ) A .-1-12i B .-1+12i C .1+12i D .1-12i 2.若f(x)=e x,则lim Δx →0f (1-2Δx )-f (1)Δx=( ) A .e B .-e C .2e D .-2e3.已知数列2,5,11,20,x,47,…合情推出x 的值为( ) A .29 B .31 C .32 D .334.函数y =f(x)在区间[a ,b]上的最大值是M ,最小值是m ,若m =M ,则f ′(x)( )A .等于0B .大于0C .小于0D .以上都有可能 5.已知函数f(x)=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,- 3 )∪(3,+∞)D .(-3, 3 )6.用数学归纳法证明不等式1+12+13+…+12n -1<n(n ∈N *且n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3D .1+12+13+14<37.对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,有f ′(x )>0,g ′(x )>0,则x <0时,有( )A .f ′(x )>0,g ′(x )>0B .f ′(x )<0,g ′(x )>0C .f ′(x )<0,g ′(x )<0D .f ′(x )>0,g ′(x )<08.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 9.曲线y =13x 3+12x 2在点T(1,56)处的切线与两坐标轴围成的三角形的面积为( )A .4918B .4936C .4972D .4914410.在平面直角坐标系中,直线x -y =0与曲线y =x 2-2x 所围成的面积为( )A .1B .52C .92 D .911.用反证法证明命题:“若a ,b ∈N ,ab 能被5整除,则a ,b 中至少有一个能被5整除”,那么假设的内容是( ) A .a ,b 都能被5整除 B .a ,b 都不能被5整除 C .a ,b 有一个能被5整除 D .a ,b 有一个不能被5整除12.桌上放着红桃、黑桃和梅花三种牌,共20张,下列判断正确的是( )①桌上至少有一种花色的牌少于6张;②桌上至少有一种花色的牌多于6张;③桌上任意两种牌的总数将不超过19张.A .①②B .①③C .②③D .①②③二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.关于x的不等式mx2-nx+p>0(m,n,p∈R)的解集为(-1,2),则复数m+p i所对应的点位于复平面内的第________象限.14.已知函数f(x)=3x2+2x,若⎠⎛1-1f(x)d x=2f(a)成立,则a=________.15.观察下列等式:(1+1)=2×1,(2+1)(2+2)=22×1×3,(3+1)(3+2)(3+3)=23×1×3×5,…照此规律,第n个等式可为________________.16.若函数f(x)=4xx2+1在区间(m,2m+1)上是单调递增函数,则实数m的取值范围是________.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)用反证法证明:在△ABC中,若sin A>sin B,则∠B 必为锐角.19.(12分)已知函数f(x)=ax3+bx2+cx在点x0处取得极小值-7,其导函数y=f′(x)的图象经过点(-1,0),(2,0),如图所示,试求x0,a,b,c的值.20.(12分)设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.21.(12分)已知数列{a n}的前n项和为S n,且a1=1,S n=n2a n(n ∈N*).(1)写出S1,S2,S3,S4,并猜想S n的表达式;(2)用数学归纳法证明你的猜想,并求出a n的表达式.22.(12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.1+2i (1-i )2=( ) A .-1-12i B .-1+12i C .1+12iD .1-12i解析 1+2i(1-i )2=1+2i -2i =(1+2i )i -2i ·i =-1+12i . 答案 B2.若f(x)=e x,则lim Δx →0f (1-2Δx )-f (1)Δx=( ) A .e B .-e C .2eD .-2e解析 ∵f(x)=e x ,∴f ′(x)=e x ,f ′(1)=e .∴lim Δx →0f (1-2Δx )-f (1)Δx =-2lim Δx →0f (1-2Δx )-f (1)-2Δx=-2f ′(1)=-2e .答案 D3.已知数列2,5,11,20,x,47,…合情推出x 的值为( ) A .29 B .31 C .32D .33解析 观察前几项知,5=2+3,11=5+2×3,20=11+3×3, x =20+4×3=32,47=32+5×3. 答案 C4.函数y =f(x)在区间[a ,b]上的最大值是M ,最小值是m ,若m =M ,则f ′(x)( )A .等于0B .大于0C .小于0D .以上都有可能答案 A5.已知函数f(x)=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,- 3 )∪(3,+∞)D .(-3, 3 )解析 f ′(x)=-3x 2+2ax -1,若f(x)在(-∞,+∞)上为单调函数只有f ′(x)≤0, ∴Δ=(2a)2-4(-3)(-1)≤0, 解得-3≤a ≤ 3. 答案 B6.用数学归纳法证明不等式1+12+13+…+12n -1<n(n ∈N *且n >1)时,第一步应验证不等式( )A .1+12<2B .1+12+13<2C .1+12+13<3 D .1+12+13+14<3答案 B7.对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,有f ′(x )>0,g ′(x )>0,则x <0时,有( )A .f ′(x )>0,g ′(x )>0B .f ′(x )<0,g ′(x )>0C .f ′(x )<0,g ′(x )<0D .f ′(x )>0,g ′(x )<0解析 由f (-x )=-f (x )及g (-x )=g (x )知,f (x )为奇函数,g (x )为偶函数,由函数奇偶性的性质得f ′(x )>0,g ′(x )<0.答案 D 8.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪⎪21=13(23-13)=73,S 2=⎠⎛121x d x =ln x ⎪⎪⎪⎪ 21=ln 2,S 3=⎠⎛12e x d x =e x ⎪⎪⎪⎪21=e 2-e .∵e 2-e >4,ln 2<lne =1,2<73<3,∴S 3>S 1>S 2. 答案 B9.曲线y =13x 3+12x 2在点T(1,56)处的切线与两坐标轴围成的三角形的面积为( )A .4918B .4936C .4972D .49144解析 y ′=x 2+x ,y ′|x =1=2,∴切线方程为y -56=2(x -1),与坐标轴的交点分别为(0,-76),(712,0),故切线与坐标轴围成的三角形的面积S =12×76×712=49144.答案 D10.在平面直角坐标系中,直线x -y =0与曲线y =x 2-2x 所围成的面积为( )A .1B .52C .92D .9解析 如图所示由⎩⎨⎧y =x 2-2x ,y =x ,得交点(0,0),(3,3).∴阴影部分的面积为 S =⎠⎛03(x -x 2+2x)d x =⎠⎛3(-x 2+3x)d x =(-13x 3+32x 2)⎪⎪⎪⎪ 30=-9+272=92.答案 C11.用反证法证明命题:“若a ,b ∈N ,ab 能被5整除,则a ,b 中至少有一个能被5整除”,那么假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 有一个能被5整除D .a ,b 有一个不能被5整除 答案 B12.桌上放着红桃、黑桃和梅花三种牌,共20张,下列判断正确的是( )①桌上至少有一种花色的牌少于6张;②桌上至少有一种花色的牌多于6张;③桌上任意两种牌的总数将不超过19张.A .①②B .①③C .②③D .①②③答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.关于x 的不等式mx 2-nx +p >0(m ,n ,p ∈R )的解集为(-1,2),则复数m +p i 所对应的点位于复平面内的第________象限.解析 因为mx 2-nx +p >0(m ,n ,p ∈R )的解集为(-1,2),所以⎩⎪⎨⎪⎧m <0,(-1)+2=n m,(-1)×2=p m ,解得m <0,p >0.故复数m +p i 所对应的点位于复平面内的第二象限.答案 第二14.已知函数f (x )=3x 2+2x ,若⎠⎛1-1f(x)d x =2f(a)成立,则a =________.解析 ∵⎠⎛1-1(3x 2+2x)d x =(x 3+x 2)⎪⎪⎪⎪1-1=2,∴2(3a 2+2a)=2.即3a 2+2a -1=0, 解得a =-1,或a =13. 答案 -1或13 15.观察下列等式: (1+1)=2×1,(2+1)(2+2)=22×1×3,(3+1)(3+2)(3+3)=23×1×3×5, …照此规律,第n 个等式可为________________.解析 观察上列等式可得第4个等式为(4+1)(4+2)(4+3)(4+4)=24×1×3×5×7,…,第n 个等式为(n +1)(n +2)(n +3)…(n +n)=2n ×1×3×5×…×(2n -1).答案 (n +1)(n +2)(n +3)…(n +n)=2n ×1×3×…×(2n -1)16.若函数f(x)=4x x 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析 f ′(x)=4(x 2+1)-4x·2x (x 2+1)2=4(1+x )(1-x )(x 2+1)2,令f ′(x)>0,得(1+x)(1-x)>0,解得-1<x<1.若在区间(m,2m +1)上是单调增函数,则有⎩⎨⎧ m>-1,2m +1<1,解得-1<m<0.但m =0时,也适合,故-1<m ≤0.答案 (-1,0]三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)用反证法证明:在△ABC 中,若sin A>sin B ,则∠B 必为锐角.证明 假设B 不是锐角,则0°<∠A<∠A +∠C =180°-∠B ≤90°,∴sin A<sin (180°-B),即sin A<sin B ,这与已知sin A>sin B 矛盾,故∠B 必为锐角.18.(12分)已知f(x)为二次函数,且f(-1)=2,f ′(0)=0,∫10f(x)d x=-2.(1)求f(x)的表达式;(2)求f(x)在[-1,1]上的最大值与最小值.解 (1)设f(x)=ax 2+bx +c(a ≠0),则f ′(x)=2ax +b.由f(-1)=2,f ′(0)=0,得⎩⎪⎨⎪⎧ a -b +c =2,b =0,即⎩⎪⎨⎪⎧c =2-a ,b =0. ∴f(x)=ax 2+2-a.又∵⎠⎛01f(x)d x =⎠⎛01(ax 2+2-a)d x =⎣⎢⎡⎦⎥⎤13ax 3+(2-a )x ⎪⎪⎪10=13a +2-a =-2,∴a =6.从而c =-4.故f(x)=6x 2-4.(2)∵f(x)=6x 2-4,x ∈[-1,1],∴f(x)min =-4.f(x)max =f(-1)=f(1)=2.故f(x)在[-1,1]上的最大值为2,最小值为-4.19.(12分)已知函数f(x)=ax 3+bx 2+cx 在点x 0处取得极小值-7,其导函数y =f ′(x)的图象经过点(-1,0),(2,0),如图所示,试求x 0,a ,b ,c 的值.解 由y =f ′(x)的图象可知,在(-∞,-1)上f ′(x)<0,在(-1,2)上f ′(x)>0,在(2,+∞)上f ′(x)<0,故f(x)在(-∞,-1)上递减,在(-1,2)上递增,在(2,+∞)上递减.因此,f(x)在x =-1处取得极小值, 所以x 0=-1.∵f(x)=ax 3+bx 2+cx ,∴f ′(x)=3ax 2+2bx +c.故由f ′(-1)=0,f ′(2)=0,f(-1)=-7,得⎩⎪⎨⎪⎧ 3a -2b +c =0,12a +4b +c =0,-a +b -c =-7,解得a =-2,b =3,c =12.20.(12分)设f(x)=a(x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值.解 (1)∵f (x )=a (x -5)2+6ln x =ax 2-10ax +25a +6ln x ,∴f ′(x )=2ax -10a +6x =2a (x -5)+6x .令x =1,得f (1)=16a ,f ′(1)=-8a +6.故曲线在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1).又点(0,6)在切线上,得6-16a =8a -6,∴a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x ,(x >0),f ′(x )=x -5+6x =(x -2)(x -3)x. 令f ′(x )=0,得x 1=2,x 2=3.当0<x <2或x >3时,f ′(x )>0,故f (x )的增区间为(0,2),(3,+∞);当2<x <3时,f ′(x )<0,故f (x )的减区间为(2,3).由此可知,当x =2时,f (x )取得极大值f (2)=92+6ln2.当x =3时,f (x )取得极小值f (3)=2+6ln3.21.(12分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n∈N *).(1)写出S 1,S 2,S 3,S 4,并猜想S n 的表达式;(2)用数学归纳法证明你的猜想,并求出a n 的表达式.解 (1)易求得S 1=1=22,S 2=43,S 3=32=64,S 4=85,猜想S n =2n n +1. (2)①当n =1时,S 1=2×11+1=1,猜想成立. ②假设n =k (k ∈N *)时,S k =2k k +1, 则当n =k +1时,S k +1=(k +1)2a k +1=(k +1)2(S k +1-S k ),∴S k +1=(k +1)2k 2+2k ·2k k +1=2(k +1)(k +1)+1, 这表明当n =k +1时,猜想也成立.根据①,②可知,对n ∈N *,S n =2n n +1,从而a n =S n n 2=2n (n +1). 22.(12分)已知函数f (x )=ln(1+x )-x +k 2x 2(k ≥0).(1)当k =2时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间.解 (1)当k =2时,f (x )=ln(1+x )-x +x 2,f ′(x )=11+x-1+2x . 由于f (1)=ln2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln2=32(x -1),即3x -2y +2ln2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞), 当k =0时,f ′(x )=-x 1+x, 所以在区间(-1,0)上f ′(x )>0;在区间(0,+∞)上f ′(x )<0, 故f (x )的单调增区间为(-1,0),单调减区间为(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-k k >0. 所以在区间(-1,0)和(1-k k ,+∞)上f ′(x )>0;在(0,1-k k )上f ′(x )<0,故f (x )的单调增区间为(-1,0)和(1-k k ,+∞),单调减区间为(0,1-k k ).当k =1时,f ′(x )=x 21+x>0,故f (x )的单调增区间为(-1,+∞). 当k >1时,由f ′(x )=x (kx +k -1)1+x =0,得x 1=0,x 2=1-k k ∈(-1,0),所以在区间(-1,1-k k )和(0,+∞)上f ′(x )>0;在区间(1-k k ,0)上f ′(x )<0,故f (x )的单调增区间为(-1,1-k k )和(0,+∞),单调减区间为(1-k k ,0).。
人教A版选修2-2数学:第三章《数系的扩充与复数的引入》综合测试2(新人教A版选修2—2).docx
高中新课标数学选修(2-2)第三章测试题一、选择题1.0a =是复数()z a bi a b =+∈R ,为纯虚数的( )A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件D.既不是充分也不必要条件 答案:B2.若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3 B.2C.1D.1-答案:D3.复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠ B.2a ≠且1a ≠ C.0a = D.2a =或0a =答案:D4.设1z ,2z 为复数,则下列四个结论中正确的是( )A.若22120z z +>,则2212z z >-B.12z z -C.22121200z z z z +=⇔== D.11z z -是纯虚数或零 答案:D5.设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数 答案:D6.若1i +是实系数方程20x bx c ++=的一个根,则方程的另一个根为( ) A.1i - B.1i -+ C.1i -- D.i 答案:A7.已知复数1cos z i θ=-,2sin z i θ=+,则12z z ·的最大值为( )A.32 D.3答案:A 8.已知m ∈R ,若6()64m mi i +=-,则m 等于( )A.2-B.C.D.4答案:B9.在复平面内,复数12ω=-+对应的向量为OA u u u r ,复数2ω对应的向量为OB u u u r .那么向量AB u u u r对应的复数是( )A.1 B.1- D.答案:D10.在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小;②123z z z ∈C ,,,若221221()()0z z z z -+-=,则13z z =; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±; ④z 是虚数的一个充要条件是z z +∈R ;⑤若a b ,是两个相等的实数,则()()a b a b i -++是纯虚数; ⑥z ∈R 的一个充要条件是z z =.A.0 B.1 C.2 D.3 答案:B11.复数()a bi a b +∈R ,等于它共轭复数的倒数的充要条件是( ) A.2()1a b += B.221a b += C.221a b -= D.2()1a b -=答案:B12.复数z 满足条件:21z z i +=-,那么z 对应的点的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线 答案:A 二、填空题13.若复数cos sin z i θθ=-·所对应的点在第四象限,则θ为第 象限角. 答案:一14.复数z i =与它的共轭复数z 对应的两个向量的夹角为 . 答案:60°15.已知2z i =-,则32452z z z -++= . 答案:2 16.定义运算a b ad bc c c =-,则符合条件2132i z zi-=+的复数z = . 答案:7455i -三、解答题17.已知复数(2)()x yi x y -+∈R ,的模为3,求yx的最大值. 解:23x yi -+=∵,22(2)3x y -+=∴,故()x y ,在以(20)C ,为圆心,3为半径的圆上,yx表示圆上的点()x y ,与原点连线的斜率. 如图,由平面几何知识,易知yx的最大值为3. 18.已知1z i a b =+,,为实数. (1)若234z z ω=+-,求ω;(2)若2211z az bi z z ++=--+,求a ,b 的值.解:(1)2(1)3(1)41i i i ω=++--=--, 2ω=∴;(2)由条件,得()(2)1a b a ii i+++=-,()(2)1a b a i i +++=+∴,121a b a +=⎧⎨+=⎩,,∴解得12a b =-⎧⎨=⎩,.19.已知2211z x x i =++,22()z x a i =+,对于任意x ∈R ,均有12z z >成立,试求实数a 的取值范围. 解:12z z >∵, 42221()x x x a ++>+∴,22(12)(1)0a x a -+->∴对x ∈R 恒成立.当120a -=,即12a =时,不等式成立; 当120a -≠时,21201124(12)(1)0a a a a ->⎧⇒-<<⎨---<⎩, 综上,112a ⎛⎤∈- ⎥⎝⎦,. 20.已知()z i z ω=+∈C ,22z z -+是纯虚数,又221116ωω++-=,求ω. 解:设()z a bi a b =+∈R ,2(2)2(2)z a bi z a bi--+=+++∴2222(4)4(2)a b bia b +-+=++. 22z z -+∵为纯虚数, 22400a b b ⎧+-=⎨≠⎩,.∴222211(1)(1)(1)(1)a b i a b i ωω++-=++++-++∴2222(1)(1)(1)(1)a b a b =++++-++ 222()44a b b =+++844b =++ 124b =+.12416b +=∴.1b =∴.把1b =代入224a b +=,解得a =.z i =∴.2i ω=∴.21.复数3(1)()1i a bi z i++=-且4z =,z 对应的点在第一象限内,若复数0z z ,,对应的点是正三角形的三个顶点,求实数a ,b 的值.解:2(1)(1)()2()221i i z a bi i i a bi a bi i++=+=+=---···,由4z =,得224a b +=. ①∵复数0,z ,z 对应的点是正三角形的三个顶点,z z z =-∴,把22z a bi =--代入化简,得1b =. ② 又Z ∵点在第一象限内,0a <∴,0b <.由①②,得1a b ⎧=⎪⎨=-⎪⎩.故所求a =1b =-.22.设z 是虚数1z z ω=+是实数,且12ω-<<.(1)求z 的值及z 的实部的取值范围.(2)设11zzμ-=+,求证:μ为纯虚数; (3)求2ωμ-的最小值.(1)解:设0z a bi a b b =+∈≠R ,,,, 则1a bi a bi ω=+++2222a b a b i a b a b ⎛⎫⎛⎫=++- ⎪ ⎪++⎝⎭⎝⎭.因为ω是实数,0b ≠,所以221a b +=,即1z =.于是2a ω=,即122a -<<,112a -<<.所以z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,;(2)证明:2222111211(1)1z a bi a b bi bi z a bi a b a μ------====-++++++.因为112a ⎛⎫∈- ⎪⎝⎭,,0b ≠,所以μ为纯虚数;(3)解:22222122(1)(1)b a a a a a ωμ--=+=+++1222111a a a a a -=-=-+++12(1)31a a ⎡⎤=++-⎢⎥+⎣⎦因为112a ⎛⎫∈- ⎪⎝⎭,,所以10a +>,故223ωμ-·≥431-=. 当111a a +=+,即0a =时,2ωμ-取得最小值1. 高中新课标数学选修(2-2)第三章测试题一、选择题1.实数x ,y 满足(1)(1)2i x i y ++-=,则xy 的值是( ) A.1 B.2C.2-D.1-答案:A2.复数cos z i θ=,[)02πθ∈,的几何表示是( ) A.虚轴B.虚轴除去原点C.线段PQ ,点P ,Q 的坐标分别为(01)(01)-,,, D.(C)中线段PQ ,但应除去原点 答案:C3.z ∈C ,若{}22(1)1M z z z =-=-|,则( )A.{}M =实数B.{}M =虚数C.{}{}M实数复数苘D.{}M ϕ=答案:A4.已知复数1z a bi =+,21()z ai a b =-+∈R ,,若12z z <,则( ) A.1b <-或1b > B.11b -<< C.1b > D.0b >答案:B5.已知复数z 满足2230z z --=的复数z 的对应点的轨迹是( ) A.1个圆 B.线段C.2个点D.2个圆答案:A6.设复数()z z ∈C 在映射f 下的象是zi ·,则12i -+的原象为( ) A.2i - B.2i + C.2i -+ D.13i +-答案:A7.设A ,B 为锐角三角形的两个内角,则复数(cot tan )(tan cot )z B A B A i =-+-对应的点位于复平面的( )A.第一象限 B.第二象限C.第三象限D.第四象限答案:B8.已知()22f z i z z i +=++,则(32)f i +=( ) A.9i B.93i +C.9i -D.93i --答案:B 9.复数2()12miA Bi m AB i-=+∈+R ,,,且0A B +=,则m =( )B.23 C.23-D.2答案:C10.(32)(1)i i +-+表示( ) A.点(32),与点(11),之间的距离 B.点(32),与点(11)--,之间的距离 C.点(32),与原点的距离 D.点(31),与点(21),之间的距离 答案:A11.已知z ∈C ,21z -=,则25z i ++的最大值和最小值分别是( )11 B.3和1C.和3答案:A12.已知1z ,2z ∈C ,12z z +=1z =2z =12z z -=( )A.1 B.12C.2答案:D 二、填空题13.若()1()f z z z =-∈C ,已知123z i =+,25z i =-,则12z f z ⎛⎫= ⎪ ⎪⎝⎭.答案:19172626i - 14.“复数z ∈R ”是“11z z=”的 . 答案:必要条件,但不是充分条件 15.A ,B 分别是复数1z ,2z 在复平面上对应的两点,O 为原点,若1212z z z z +=-,则AOB △为 . 答案:直角16.若n 是整数,则6(1)(1)nn i i -+-=· . 答案:8±或8i ±三、解答题17.已知复数3z z -对应的点落在射线(0)y x x =-≤上,1z +=z . 解:设()z a bi a b =+∈R ,,则33324z z a bi a bi a bi -=+-+=+, 由题意得4120ba b ⎧=-⎪⎨⎪>⎩,,①又由1z +=22(1)2a b ++=, ② 由①,②解得21a b =-⎧⎨=⎩,,2z i =-+∴.18.实数m 为何值时,复数216(815)55m z m i m i m m -⎛⎫=++++ ⎪++⎝⎭.(1)为实数; (2)为虚数; (3)为纯虚数;(4)对应点在第二象限.解:226(815)5m m z m m i m +-=++++.(1)z 为实数28150m m ⇔++=且50m +≠,解得3m =-; (2)z 为虚数2815050m m m ⎧++≠⇔⎨+≠⎩,,解得3m ≠-且5m ≠-;(3)z 为纯虚数226058150m m m m m ⎧+-=⎪⇔+⎨⎪++≠⎩,,解得2m =;(4)z 对应的点在第二象限226058150m m m m m ⎧+-<⎪⇔+⎨⎪++>⎩,,解得5m <-或32m -<<.19.设O 为坐标原点,已知向量1OZ u u u u r ,2OZ u u u u r分别对应复数12z z ,,且213(10)5z a i a =+-+,22(25)1z a i a=+--,a ∈R .若12z z +可以与任意实数比较大小,求1OZ u u u u r ,2OZ u u u u r 的值.解:213(10)5z a i a =--+,则31232[(10)(25)]51z z a a i a a+=++-+-+-的虚部为0, 22150a a +-=∴.解得5a =-或3a =. 又50a +≠∵,3a =∴.则138z i =+,21z i =-+,1318OZ ⎛⎫= ⎪⎝⎭u u u u r ,,2(11)OZ =-u u u u r ,. 1258OZ OZ =u u u u r u u u u r ∴·.20.已知z 是复数,2z i +与2zi-均为实数,且复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围.解:设()z x yi x y =+∈R ,,2(2)z i x y i +=++为实数,2y =-∴.211(22)(4)2255z x i x x i i i -==++---为实数, 4x =∴,则42z i =-.22()(124)8(2)z ai a a a i +=+-+-∵在第一象限, 212408(2)0a a a ⎧+->⎨->⎩,,∴解得26a <<. 21.已知关于x 的方程2(6)90()x i x ai a -+++=∈R 有实数根b . (1)求实数a ,b 的值;(2)若复数z 满足2z a bi z --=,求z 为何值时,z 有最小值并求出最小值. 解:(1)将b 代入题设方程,整理得2(69)()0b b a b i -++-=, 则2690b b -+=且0a b -=,解得3a b ==;(2)设()z x yi x y =+∈R ,,则2222(3)(3)4()x y x y -++=+, 即22(1)(1)8x y ++-=.∴点Z 在以(11)-,为圆心,22为半径的圆上, 画图可知,1z i =-时,min 2z =.。
(完整版)高中数学选修2-2综合测试题(附答案)
高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。
已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15 则第n 个三角形数为( ) A .n B .2)1(+n n C .12-n D .2)1(-n n 3、求由曲线y x =2y x =-+及y 轴所围成的图形的面积错误..的为( ) A.4(2)x x dx -+⎰B.0xdx ⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3) 8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( ) A .[)1,12,33⎡⎤-⎢⎥⎣⎦ B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是A.32B.23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为( ) A .(-24,8) B .(-24,1]C .[1,8]D .[1,8)高二数学选修2-2综合测试题(答题卡)一、选择题(60分)。
高中数学北师大版必修三、选修二--1、选修二--2综合检测试题
高二期末复习一、选择题1. 在下列命题中:①若向量,a b 共线,则向量,a b所在的直线平行;②若向量,a b 所在的直线为异面直线,则向量,a b一定不共面;③若三个向量,,a b c 两两共面,则向量,,a b c共面;④已知是空间的三个向量,,a b c,则对于空间的任意一个向量p 总存在实数x,y,z 使得p x a y b z c =++;其中正确的命题的个数是 ( A )(A )0 (B )1 (C )2 (D )3 2. 方程 2x +6x +13 =0的一个根是( )A -3+2iB 3+2iC -2 + 3iD 2 + 3i3.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数b a i+为纯虚数”的( B )A.充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B.4.执行如图所示的程序框图,输出S 值为(A )2 (B )4 (C )8 (D )16 【答案】C5.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 ( C )(A )2211612xy+= (B )221128xy+=(C )22184xy+= (D )221124xy+=6.设集合A p a a x a x A ∈><<--=1:},0,2|{命题,命题.2:A q ∈若q p ∨为真命题,q p ∧为假命题,则a 的取值范围是( C )A .210><<a a 或B .210≥<<a a 或C .21≤<aD .21≤≤a7.已知命题p :∃x ∈R ,使sin x =25;命题q :∀x ∈R ,都有x 2+x +1>0. ( C )给出下列结论: ① 命题“q p ∧”是真命题③命题“q p ∨⌝”是真命题;② 命题“q p ⌝∨⌝”是假命题 ④命题“q p ⌝∧”是假命题 其中正确的是A .②③B .②④C .③④D .①②③8.设a ,b 是两个实数,且a ≠b ,①22(3)2611a a a +>++;②)1(222--≥+b a b a ;③332a b a b a b +>+;④2>+ab b a 。
最新人教版高中数学选修2-2综合测试题及答案2套
最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。
第一象限B。
第二象限C。
第三象限D。
第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。
答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。
10B。
5/3C。
-1D。
-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。
A。
①②③B。
①③C。
①D。
②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。
答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。
极大值5,极小值-27B。
极大值5,极小值-11C。
极大值5,无极小值D。
极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。
答案:C5.函数y=4x^2+1/x的单调递增区间是()A。
(0,+∞)B。
(-∞,1)C。
(1,2)D。
(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。
高中数学 综合测试题3 新人教A版选修2-2
高中新课标数学选修(2-2)综合测试题一、选择题1.函数2y x =在区间[12],上的平均变化率为( ) A.2 B.3 C.4 D.5答案:B2.已知直线y kx =是ln y x =的切线,则k 的值为( )A.1e B.1e- C.2e D.2e -答案:A3.如果1N 的力能拉长弹簧1cm ,为了将弹簧拉长6cm (在弹性限度内)所耗费的功为( ) A.0.18J B.0.26J C.0.12J D.0.28J答案:A4.方程2(4)40()x i x ai a ++++=∈R 有实根b ,且z a bi =+,则z =( )A.22i - B.22i + C.22i -+ D.22i --答案:A5.ABC △内有任意三点不共线的2002个点,加上A B C ,,三个顶点,共2005个点,把这2005个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为( ) A.4005 B.4002 C.4007 D.4000答案:A6.数列1,2,2,3,3,3,4,4,4,4,的第50项( ) A.8 B.9 C.10 D.11答案:C7.在证明()21f x x =+为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数()21f x x =+满足增函数的定义是大前提;④函数()21f x x =+满足增函数的定义是大前提.其中正确的命题是( ) A.①② B.②④ C.①③ D.②③答案:C8.若a b ∈R ,,则复数22(45)(26)a a b b i -++-+-表示的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限答案:D9.一圆的面积以210πcm /s 速度增加,那么当圆半径20cm r =时,其半径r 的增加速率u 为( )A.12cm/s B.13 cm/s C.14 cm/s D.15 cm/s答案:C10.用数学归纳法证明不等式“11113(2)12224n n n n +++>>++”时的过程中,由n k =到1n k =+时,不等式的左边( )A.增加了一项12(1)k +B.增加了两项11212(1)k k +++ C.增加了两项11212(1)k k +++,又减少了一项11k + D.增加了一项12(1)k +,又减少了一项11k +答案:C11.在下列各函数中,值域不是[22]-,的函数共有( ) (1)(sin )(cos )y x x ''=+ (2)(sin )cos y x x '=+ (3)sin (cos )y x x '=+(4)(sin )(cos )y x x ''=· A.1个B.2个C.3个D.4个答案:C12.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( ) A.23B.43 C.83D.123答案:C二、填空题13.函数3()31f x x x =-+在闭区间[30]-,上的最大值与最小值分别为 .答案:3,17-14.若113z i =-,268z i =-,且12111z z z +=,则z 的值为 .答案:42255i -+15.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .答案:21n a n =+16.物体A 的运动速度v 与时间t 之间的关系为21v t =-(v 的单位是m/s ,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为18v t =+,两个物体在相距为405m 的同一直线上同时相向运动.则它们相遇时,A 物体的运动路程为 .答案:72m三、解答题17.已知复数1z ,2z 满足2212121052z z z z +=,且122z z +为纯虚数,求证:123z z -为实数.证明:由2212121052z z z z +=,得22112210250z z z z -+=, 即221212(3)(2)0z z z z -++=,那么222121212(3)(2)[(2)]z z z z z z i -=-+=+, 由于,122z z +为纯虚数,可设122(0)z z bi b b ==∈≠R ,且, 所以2212(3)z z b -=,从而123z z b -=±, 故123z z -为实数.18.用总长14.8的钢条做一个长方体容器的框架,如果所做容器的底面的一边长比另一边长多0.5m ,那么高是多少时容器的容积最大?并求出它的最大容积.解:设该容器底面矩形的短边长为x cm ,则另一边长为(0.5)x +m ,此容器的高为14.8(0.5) 3.224y x x x =--+=-, 于是,此容器的容积为:32()(0.5)(3.22)2 2.2 1.6V x x x x x x x =+-=-++,其中0 1.6x <<,即2()6 4.4 1.60V x x x '=-++=,得11x =,2415x =-(舍去), 因为,()V x '在(01.6),内只有一个极值点,且(01)x ∈,时,()0V x '>,函数()V x 递增; (11.6)x ∈,时,()0V x '<,函数()V x 递减;所以,当1x =时,函数()V x 有最大值3(1)1(10.5)(3.221) 1.8m V =⨯+⨯-⨯=, 即当高为1.2m 时,长方体容器的空积最大,最大容积为31.8m . 19.如图所示,已知直线a 与b 不共面,直线c a M =,直线b c N =,又a 平面A α=,b 平面B α=,c 平面C α=,求证:A B C ,,三点不共线.证明:用反证法,假设A B C ,,三点共线于直线l , A B C α∈,,∵,l α⊂∴.c l C =∵,c ∴与l 可确定一个平面β. c a M =∵,M β∈∴.又A l ∈,a β⊂∴,同理b β⊂,∴直线a ,b 共面,与a ,b 不共面矛盾. 所以A B C ,,三点不共线.20.已知函数32()31f x ax x x =+-+在R 上是减函数,求a 的取值范围.解:求函数()f x 的导数:2()361f x ax x '=+-. (1)当()0()f x x '<∈R 时,()f x 是减函数.23610()0ax x x a +-<∈⇔<R 且36120a ∆=+<3a ⇔<-.所以,当3a <-时,由()0f x '<,知()()f x x ∈R 是减函数; (2)当3a =-时,33218()331339f x x x x x ⎛⎫=-+-+=--+ ⎪⎝⎭,由函数3y x =在R 上的单调性,可知当3a =-时,()()f x x ∈R 是减函数; (3)当3a >-时,在R 上存在使()0f x '>的区间,所以,当3a >-时,函数()()f x x ∈R 不是减函数. 综上,所求a 的取值范围是(3)--,∞.21.若0(123)i x i n >=,,,,,观察下列不等式:121211()4x x x x ⎛⎫++ ⎪⎝⎭≥,123123111()9x x x x x x ⎛⎫++++ ⎪⎝⎭≥,,请你猜测1212111()n nx x x x x x ⎛⎫++++++⎪⎝⎭满足的不等式,并用数学归纳法加以证明.解:满足的不等式为21212111()(2)n n x x x n n x x x ⎛⎫++++++⎪⎝⎭≥≥,证明如下: 1.当2n =时,结论成立;2.假设当n k =时,结论成立,即21212111()k kx x x k x x x ⎛⎫++++++⎪⎝⎭12121121121111111()()1k k k k k x x x x x x x x x x x x x ++⎛⎫⎛⎫=+++++++++++++++ ⎪ ⎪⎝⎭⎝⎭· 212111)1k kk x x x x ⎛⎫+++++++ ⎪⎝⎭≥ 2221(1)k k k ++=+≥.显然,当1n k =+时,结论成立.22.设曲线2(0)y ax bx c a =++<过点(11)-,,(11),. (1)用a 表示曲线与x 轴所围成的图形面积()S a ; (2)求()Sa 的最小值.解:(1)曲线过点(11)-,及(11),,故有1a b c a b c =-+=++,于是0b =且1c a =-,令0y =,即2(1)0ax a +-=,得x = 记α=,β,由曲线关于y 轴对称, 有2300()2[(1)]2(1)3a S a ax a dx x a x ββ⎡⎤=+-=+-⎢⎥⎣⎦⎰|2(13a a ⎡=-=⎢⎣· (2)()S a 3(1)()(0)a f a a a-=<,则223221(1)()[3(1)(1)](21)a f a a a a a a a -'=---=+.令()0f a '=,得12a =-或1a =(舍去).又12a ⎛⎫∈-- ⎪⎝⎭,∞时,()0f x'<;102a ⎛⎫∈- ⎪⎝⎭,时,()0f x '>.所以,当12a =-时,()f a 有最小值274,此时()S a高中新课标数学选修(2-2)综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数cos sin y x x x =-的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) (A )当0()0f x '=时,0()f x 为()f x 的极大值(B )当0()0f x '=时,0()f x 为()f x 的极小值 (C )当0()0f x '=时,0()f x 为()f x 的极值 (D )当0()f x 为()f x 的极值时, 0()0f x '=3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是 ( ) (A )1 (B 7 (C 13(D )54.若函数3()y a x x =-的递减区间为33(,33-,则a 的取值范围是 ( ) (A )(0,)+∞ (B )(1,0)- (C )(1,)+∞ (D )(0,1)5.下列四条曲线(直线)所围成的区域的面积是 ( ) (1)sin y x =;(2) s y co x =; (3)4x π=-;(4) 4x π=2 (B)22226.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,叫 ( )(A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。
人A数学选修2-2 阶段测试 (3)
选修2-2综合测评 (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知复数z =21-i,则z 2-z ·z 等于( ) A .-2+2i B .2i C .-2-2iD .-2i解析:∵z =21-i =2(1+i )(1-i )(1+i )=1+i ,∴z =1-i ,∴z 2-z ·z =(1+i)2-(1+i)(1-i)=2i -2=-2+2i. 答案:A2.(2019·福建三明高二月考)某演绎推理的“三段”分解如下:①函数f (x )=13x 是减函数;②指数函数y =a x (0<a <1)是减函数;③函数f (x )=13x 是指数函数,则按照演绎推理的三段论模式,排序正确的是( )A .①→②→③B .③→②→①C .②→①→③D .②→③→①解析:按照演绎推理的三段论模式可得,已知指数函数y =a x (0<a <1)是减函数,因为函数f (x )=13x ⎝ ⎛⎭⎪⎫0<13<1是指数函数,所以函数f (x )=13x 是减函数,即排序正确的是②→③→①,故选D.答案:D3.如图,曲线f (x )=x 2和g (x )=2x 围成几何图形的面积是( )A.12 B.23C.43D.4解析:由f(x)=x2与g(x)=2x得x2=2x,得x=0或x=2,=4-83=43,故选C.答案:C4.设z=(2t2+5t-3)+(t2-2t+2)i,t∈R,则下列命题中正确的是() A.z对应的点Z在第一象限B.z对应的点Z在第四象限C.z不是纯虚数D.z是虚数解析:当t=12或t=-3时,2t2+5t-3=0,此时z为纯虚数,C不正确;当-3<t<12时,2t2+5t-3<0,又t2-2t+2>0,此时z对应的点Z在第二象限,当t<-3或t>12时,2t2+5t-3>0,又t2-2t+2>0,此时z对应的点Z在第一象限,A、B不正确;∵t2-2t+2>0恒成立,∴z是虚数,D正确.故选D.答案:D5.(2019·蚌埠二中高二检测)已知函数y=f(x)的导函数y=f′(x)的图象如图所示,则()A.函数f(x)有1个极大值点,1个极小值点B.函数f(x)有2个极大值点,2个极小值点C.函数f(x)有3个极大值点,1个极小值点D.函数f(x)有1个极大值点,3个极小值点解析:根据导函数的图象知,在x2处导函数由大于0变为小于0,此时原函数有极大值,在x3处导函数由小于0变为大于0,此时原函数有极小值,在x1,x4处导函数没有正负变化无极值点,故选A.答案:A6.设函数f(x)=x cos x+(a-2)x sin x+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=x B.y=2xC.y=4x D.y=3x解析:∵函数f(x)=x cos x+(a-2)x sin x+ax为奇函数,∴a=2.∴f(x)=x cos x+2x,∴f′(x)=cos x-x sin x+2,∴f′(0)=cos 0+2=3,∴曲线y=f(x)在(0,0)处的切线方程为y=3x.故选D.答案:D7.(2019·南阳一中高二月考)定积分|x|d x=()A.52B.-52C.32D.-32解析:如图,|x |d x =12+2=52,故选A.答案:A8.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则实数a =( ) A .4或-3 B .4或-11 C .4D .-3解析:∵f (x )=x 3+ax 2+bx +a 2, ∴f ′(x )=3x 2+2ax +b . ∵f (x )在x =1处取得极值10,∴⎩⎪⎨⎪⎧ f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,解得⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11,经检验⎩⎪⎨⎪⎧a =-3,b =3时函数f (x )在R 上单调递增,无极值,不符合题意,当⎩⎪⎨⎪⎧ a =4,b =-11时函数f (x )在x =1处取得极小值10, ∴⎩⎪⎨⎪⎧a =4,b =-11,故选C. 答案:C9.设f (x )=13x 3+ax 2+5x +6在区间[1,3]上为单调函数,则实数a 的取值范围是()A.[-5,+∞)B.(-∞,-3]C.(-∞,-3]∪[-5,+∞)D.[-5,5]解析:f′(x)=x2+2ax+5.由f′(x)≥0在[1,3]上恒成立,或f′(x)≤0在[1,3]上恒成立,得a≥-x2-52x或a≤-x2-52x,设g(x)=-x2-52x=-⎝⎛⎭⎪⎫x2+52x,则g(x) 在[1,3]上的值域为[-3,-5],∴a≤-3或a≥- 5.答案:C10.给出下面三个推理:①由“若a、b是实数,则|a+b|≤|a|+|b|”推广到复数中,则有“若z1、z2是复数,则|z1+z2|≤|z1|+|z2|”;②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”.其中,推理得到的结论正确的个数有()A.0个B.1个C.2个D.3个解析:由复数的几何意义知,①正确;设球的内接长方体的长、宽、高分别为a、b、c,则a2+b2+c2=(2R)2,由基本不等式a2+b2+c2≥33a2b2c2,即abc ≤,当且仅当a =b =c 时,等式成立,即正方体的体积最大,②正确;球的体积V =43πR 3,则V ′=4πR 2,③正确,综上所述,三个推理均正确.故选D.答案:D11.(2019·哈尔滨师大附中月考)已知函数f (x )=x 3-ln(x 2+1-x ),则对于任意实数a ,b (a +b >0),则f (a )+f (b )a +b的值为( ) A .恒正 B .恒等于0 C .恒负D .不确定解析:可知函数f (x )+f (-x )=x 3-ln(x 2+1-x )+(-x )3-ln(x 2+1+x )=0,所以函数为奇函数,同时f ′(x )=3x 2+1x 2+1>0,f (x )是递增函数,f (a )+f (b )a +b =f (a )-f (-b )a -(-b ),所以f (a )+f (b )a +b>0,所以选A.答案:A12.(2019·江西赣州十四县(市)期中联考)设f (x )=e x (x 2+2x ),令f 1(x )=f ′(x ),f n +1(x )=f ′n (x ),若f n (x )=e x (A n x 2+B n x +C n ),则数列⎩⎨⎧⎭⎬⎫1C n 的前n 项和为S n ,当|S n-1|≤12 019时,n 的最小整数值为( )A .2 017B .2 018C .2 019D .2 020解析:由题意得f 1(x )=(2x +2)e x +(x 2+2x )e x =(x 2+4x +2)e x , f 2(x )=(2x +4)e x +(x 2+4x +2)e x =(x 2+6x +6)e x , f 3(x )=(2x +6)e x +(x 2+6x +6)e x =(x 2+8x +12)e x ,…由此可得C 1=2,C 2=6,C 3=12,故可归纳得C n =n (n +1),∴1C n=1n (n +1)=1n -1n +1,∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 由题意得|S n -1|=1n +1≤12 019,解得n ≥2 018.∴n 的最小整数值为2 018.故选B.答案:B二、填空题(本大题共4小题,每小题5分,共20分) 13.若复数z =3-i|2-i|,则|z |=________. 解析:z =3-i |2-i|=3-i 5,∴|z |=|3-i|5=105= 2. 答案: 214.对大于或等于2的正整数的幂运算有如下分解方式: 22=1+332=1+3+542=1+3+5+7…23=3+533=7+9+1143=13+15+17+19…根据上述分解规律,若m 2=1+3+5+…+11,p 3的分解中最小的正整数是21,则m +p =______.解析:由所给等式推测m =6,p =5,∴m +p =11. 答案:1115.已知z 1=m 2-(m 2-3m )i ,z 2=(m 2-4m +3)i +10(m ∈R ),若z 1<z 2,求实数m 的取值为________.解析:∵z 1<z 2,∴z 1与z 2均为实数,∴⎩⎪⎨⎪⎧m 2-3m =0,m 2-4m +3=0,∴m =3.答案:316.对于三次函数y =ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心,若f (x )=13x 3-12x 2+3x -512,根据这一发现可得:(1)函数f (x )=13x 3-12x 2+3x -512的对称中心为________. (2)计算f ⎝ ⎛⎭⎪⎫17+f ⎝ ⎛⎭⎪⎫27+f ⎝ ⎛⎭⎪⎫37+f ⎝ ⎛⎭⎪⎫47+f ⎝ ⎛⎭⎪⎫57+f ⎝ ⎛⎭⎪⎫67=________.解析:(1)依题意,f ′(x )=x 2-x +3, ∴f ″(x )=2x -1, 由2x -1=0得x =12,又f ⎝ ⎛⎭⎪⎫12=13×18-12×14+3×12-512=1,∴函数f (x )的对称中心为⎝ ⎛⎭⎪⎫12,1.(2)由f (x )的对称中心为⎝ ⎛⎭⎪⎫12,1,得f ⎝ ⎛⎭⎪⎫17+f ⎝ ⎛⎭⎪⎫67=2,f ⎝ ⎛⎭⎪⎫27+f ⎝ ⎛⎭⎪⎫57=2,f ⎝ ⎛⎭⎪⎫37+f ⎝ ⎛⎭⎪⎫47=2, ∴f ⎝ ⎛⎭⎪⎫17+f ⎝ ⎛⎭⎪⎫27+f ⎝ ⎛⎭⎪⎫37+f ⎝ ⎛⎭⎪⎫47+f ⎝ ⎛⎭⎪⎫57+f ⎝ ⎛⎭⎪⎫67=6. 答案:(1)⎝ ⎛⎭⎪⎫12,1 (2)6三、解答题(本大题共6小题,共70分)17.(10分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解:(1)选择②式,计算如下: sin 215°+cos 215°-sin 15°cos 15° =1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 证法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.18.(12分)(1)已知x 2-y 2+2xy i =2i ,求实数x ,y 的值;(2)关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,求实数a 的值.解:(1)∵x 2-y 2+2xy i =2i ,x ,y ∈R , ∴⎩⎨⎧ x 2-y 2=0,2xy =2,解得⎩⎨⎧ x =1,y =1或⎩⎨⎧x =-1,y =-1.(2)∵关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,且a ∈R , ∴⎩⎪⎨⎪⎧3x 2-a 2x -1=0,10-x -2x 2=0,解得⎩⎨⎧x =2,a =11或⎩⎪⎨⎪⎧x =-52,a =-715.19.(12分)已知数列{a n }的前n 项和为S n ,a 1=-23,满足S n +1S n+2=a n (n ≥2),(1)求S 2,S 3,S 4;(2)根据(1)猜想S n 的表达式,并用数学归纳法证明.解:(1)由a 1=-23,及S n +1S n+2=a n (n ≥2)可算得S 1=-23,S 2=-34,S 3=-45,S 4=-56.(2)由此猜想S n 的表达式是S n =-n +1n +2.下面用数学归纳法证明:①由a 1=S 1=-23=-1+11+2知,当n =1时,等式成立; ②当n ≥2时,假设n =k (k ≥1)时等式成立,即S k =-k +1k +2,那么,当n =k +1时,由S n +1S n +2=a n (n ≥2)得 S k +1+1S k +1+2=a k +1,得-1S k +1=(S k +1-a k +1)+2,而S k =S k +1-a k +1,∴-1S k +1=S k +2=-k +1k +2+2=k +3k +2, ∴S k +1=-k +2k +3=-(k +1)+1(k +1)+2. 所以当n =k +1时,等式成立.综合①②可知,对任意的正整数n ,有S n =-n +1n +2成立. 20.(12分)已知非零实数a ,b ,c 成等差数列,且公差d ≠0,求证:1a ,1b ,1c 不可能是等差数列.证明:假设1a ,1b ,1c 成等差数列,则1a +1c =2b ,又∵a ,b ,c 成等差数列,∴a +c =2b ,∴b =a +c 2,把b =a +c 2代入1a +1c =2b ,得(a -c )2=0,∴a =c ,∴c -a =2d =0,这与公差d ≠0矛盾,∴1a ,1b ,1c 不可能是等差数列.21.(12分)(2019·乾安中学高三模拟)在各项为正的数列{a n }中,数列的前n项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n . (1)求a 1,a 2,a 3;(2)由(1)猜想到数列{a n }的通项公式,并用数学归纳法证明你的猜想.解:(1)由S 1=a 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,得a 21=1,因为a n >0,所以a 1=1.由S 2=a 1+a 2=12⎝ ⎛⎭⎪⎫a 2+1a 2, 得a 22+2a 2-1=0,所以a 2=2-1,由S 3=a 1+a 2+a 3=12⎝ ⎛⎭⎪⎫a 3+1a 3, 得a 23+22a 3-1=0,所以a 3=3- 2.(2)猜想a n =n -n -1(n ∈N +).证明:①当n =1时,a 1=1-0=1,命题成立;②假设n =k (k ≥1,k ∈N +)时,a k =k -k -1成立,则n =k +1时,a k +1=S k +1-S k=12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k , 即a k +1=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12k -k -1+1k -k -1=12⎝⎛⎭⎪⎫a k +1+1a k +1-k , 所以a 2k +1+2ka k +1-1=0.所以a k +1=k +1-k ,则n =k +1时,命题成立.由①②知,n ∈N +,a n =n -n -1.22.(12分)(2019·长庆高中高三阶段测试)设函数f (x )=a e x ln x +b e x -1x ,曲线y=f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b x e x -1.由题意可得f (1)=2,f ′(1)=e.故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e . 设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e .所以g (x )≥-1e ≥h (x ),又因为等号无法同时取到,所以g (x )>h (x ),即f (x )>1.。
高中数学选修2-2模块测试试题(北师大)
金陵寺中学2013-2014学年度第二学期上半学期高二数学(选修2-2)模块测试试题说明:1.本试卷分第I 卷和第II 卷两部分,第I 卷50分,第II 卷100分,共150分;答题时间120分钟.2.试题作答要卷面整齐,书写在规定位置。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.)1.复数73ii -=+( )A.2i +B.2i -C.2i -+D.2i --2. 曲线2x y =在(1,1)处的切线方程是( )A. 230x y ++=B. 032=--y xC. 210x y ++=D. 012=--y x 3.22(cos sin )x x dx ππ-+⎰的值是( )A .0B .4πC .4D .24.一物体运动方程为2()323s t t t =-+,那么物体在 3t =秒末的瞬时速度为()A .8B .10C . 16D . 245.曲线212y x =在点1(1,)2处切线的倾斜角为( )A .4π- B .1 C .4πD .34π6.设21sin x y x -=,则'y =( )A .x x x x x 22sin cos )1(sin 2---B .x xx x x 22sin cos )1(sin 2-+-C .x x x x sin )1(sin 22-+-D .x x x x sin )1(sin 22---7.函数32()29121f x x x x =-++的单调减区间为( )A .(1,2)B .(,1)-∞C .(2,)+∞D .(,1),(2,)-∞+∞8.函数23()(1)1f x x =-+在1x =-处( )A .有极大值B .有极小值C .无极值D .无法确定极值情况9.函数32()26187f x x x x =---在区间[1,4]上的最小值为( )A .-64B .-61C .-51D . -5610.已知函数1213243'''()sin ,()(),()(),()(),f x x f x f x f x f x f x f x ====,1'()(),n n f x f x -=则2009()f x 等于( )A .cos x -B .sin x -C .cos xD .sin x 第Ⅱ卷(非选择题 共100分)二.填空题(本大题共5小题,每小题5分,共25分,把答案填写在答题纸中的横线上)11.观察下面的几个算式,找出规律。
(完整版)数学选修2-2练习题及答案
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
高中数学 模块综合评价(二)(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试题
模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(1+i)16-(1-i)16=() A .-256B .256i C .0 D .256解析:(1+i)16-(1-i)16=[(1+i)2]8-[(1-i)2]8=(2i)8-(-2i)8=0. 答案:C2.已知函数f (x )=ln x -x ,则函数f (x )的单调递减区间是() A .(-∞,1) B .(0,1)C .(-∞,0),(1,+∞)D .(1,+∞)解析:f ′(x )=1x -1=1-xx,x >0.令f ′(x )<0,解得x >1.答案:D3.设f (x )=10x+lg x ,则f ′(1)等于( ) A .10 B .10ln 10+lg e C.10ln 10+ln 10 D .11ln 10解析:f ′(x )=10x ln 10+1x ln 10,所以f ′(1)=10ln 10+1ln 10=10ln 10+lg e. 答案:B4.若函数f (x )满足f (x )=e xln x +3xf ′(1)-1,则f ′(1)=() A .-e 2B .-e3C .-eD .e解析:由已知可得f ′(x )=e xln x +exx+3f ′(1),令x =1,则f ′(1)=0+e +3f ′(1),解得f ′(1)=-e2.答案:A5.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除解析:因为“至少有一个”的否定为“一个也没有”. 答案:B6.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析:因为f ′(x )=12x 2-2ax -2b ,又因为在x =1处有极值,所以a +b =6,因为a >0,b >0,所以ab ≤⎝⎛⎭⎪⎫a +b 22=9,当且仅当a =b =3时取等号,所以ab 的最大值等于9.答案:D7.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,按此规律,则第100项为( ) A .10B .14C .13D .100解析:设n ∈N *,则数字n 共有n 个,所以n (n +1)2≤100,即n (n +1)≤200,又因为n ∈N *,所以n =13,到第13个13时共有13×142=91项,从第92项开始为14,故第100项为14.答案:B8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.故选D.答案:D8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.答案:D10.证明不等式n 2+n ≤n +1(n ∈N *),某学生的证明过程如下: (1)当n =1时,12+1≤1+1,不等式成立;(2)假设n =k (k ∈N *且k ≥1)时,不等式成立,即 k 2+k ≤k +1,则当n =k +1时,(k +1)2+(k +1)= k 2+3k +2≤k 2+3k +2+(k +2)=(k +2)2=(k +1)+1.所以当n =k +1时,不等式成立.上述证法( ) A .过程全都正确 B .n =1时验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析:验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而是通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.答案:D11.已知函数f (x )满足f (0)=0,导函数f ′(x )的图象如图所示,则f (x )的图象与x 轴围成的封闭图形的面积为( )A.13B.43 C .2D.83解析:由f ′(x )的图象知,f ′(x )=2x +2, 设f (x )=x 2+2x +c ,由f (0)=0知,c =0, 所以f (x )=x 2+2x ,由x 2+2x =0得x =0或x =-2. 故所求面积S =-∫0-2(x 2+2x )d x =-⎝ ⎛⎭⎪⎫13x 3+x 2|0-2=43.答案:B12.已知定义在R 上的奇函数f (x ),设其导数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值X 围为()A .(-1,2) B.⎝⎛⎭⎪⎫-1,12C.⎝ ⎛⎭⎪⎫12,2D .(-2,1) 解析:因为f (x )是奇函数,所以不等式xf ′(x )<f (-x )等价于xf ′(x )<-f (x ),即xf ′(x )+f (x )<0,即F ′(x )<0.当x ∈(-∞,0]时,函数F (x )单调递减;由于F (x )=xf (x )为偶函数,所以F (x )在[0,+∞)上单调递增.所以F (3)>F (2x -1)等价于F (3)>F (|2x -1|), 即3>|2x -1|,解得-1<x <2. 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 解析:因为z =(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5. 答案:514.在△ABC 中,D 为边BC 的中点,则AO →=12(AB →+AC →).将上述命题类比到四面体中去,得到一个类比命题:_______________.解析:将“△ABC ”类比为“四面体A BCD ”,将“D 为边BC 的中点”类比为“△BCD 的重心”,于是有类比结论:在四面体A BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →).答案:在四面体A BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →)15.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =____________.解析:f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,令f ′(x )=0,则x 2+2x -a =0,x ≠-1.又f (x )在x =1处取得极值,所以x =1是x 2+2x -a =0的根,所以a =3.答案:316.下列四个命题中,正确的为________(填上所有正确命题的序号). ①若实数a ,b ,c 满足a +b +c =3,则a ,b ,c 中至少有一个不小于1; ②若z 为复数,且|z |=1,则|z -i|的最大值等于2; ③对任意x ∈(0,+∞),都有x >sin x ; ④定积分∫π0π-x 2d x =π24.解析:①若实数a ,b ,c 满足a +b +c =3,则用反证法证明,假设a ,b ,c 都小于1,则a +b +c <3,与已知矛盾,故可得a ,b ,c 中至少有一个不小于1,故①正确;②若z 为复数,且|z |=1,则由|z -i|≤|z |+|-i|=2,可得|z -i|的最大值等于2,故②正确;③令y =x -sin x ,其导数为y ′=1-cos x ,y ′≥0,所以y =x -sin x 在R 上为增函数,当x =0时,x -sin x =0,所以对任意x ∈(0,+∞),都有x -sin x >0,故③正确.④定积分∫π0π-x 2d x 表示以原点为圆心,π为半径的圆的面积的四分之一,故④正确.答案:①②③④三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a ∈R,问复数z =(a 2-2a +4)-(a 2-2a +2)i 所对应的点在第几象限?复数z 对应点的轨迹是什么?解:由a 2-2a +4=(a -1)2+3≥3. -(a 2-2a +2)=-(a -1)2-1≤-1. 知z 的实部为正数,虚部为负数, 所以复数z 的对应点在第四象限.设z =x +y i(x ,y ∈R),则⎩⎪⎨⎪⎧x =a 2-2a +4,y =-(a 2-2a +2), 因为a 2-2a =(a -1)2-1≥-1, 所以x =a 2-2a +4≥3,消去a 2-2a ,得y =-x +2(x ≥3), 所以复数z 对应点的轨迹是一条射线, 其方程为y =-x +2(x ≥3). 18.(本小题满分12分)设函数f (x )=1x +2,a ,b ∈(0,+∞). (1)用分析法证明:f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23;(2)设a +b >4,求证:af (b ),bf (a )中至少有一个大于12.证明:(1)要证明f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23,只需证明1a b+2+1b a+2≤23, 只需证明b a +2b +ab +2a ≤23,即证b 2+4ab +a 22a 2+5ab +2b 2≤23,即证(a -b )2≥0,这显然成立,所以f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23.(2)假设af (b ),bf (a )都小于或等于12,即a b +2≤12,b a +2≤12,所以2a ≤b +2,2b ≤a +2,两式相加得a +b ≤4, 这与a +b >4矛盾,所以af (b ),bf (a )中至少有一个大于12.19.(本小题满分12分)已知函数f (x )=ex +2(x 2-3).(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数y =f (x )的极值. 解:(1)函数f (x )=e x +2(x 2-3),则f ′(x )=ex +2(x 2+2x -3)=ex +2(x +3)(x -1),故f ′(0)=-3e 2,又f (0)=-3e 2,故曲线y =f (x )在点(0,f (0))处的切线方程为y +3e 2=-3e 2(x -0),即3e 2x +y +3e 2=0.(2)令f ′(x )=0,可得x =1或x =-3, 如下表:↗↘↗所以当x =-3时,函数取极大值,极大值为f (-3)=e ,当x =1时,函数取极小值,极小值为f (1)=-2e 3.20.(本小题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )在[1,e]上的最大值,最小值;(2)求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x )=23x 3图象的下方.解:(1)由f (x )=12x 2+ln x 有f ′(x )=x +1x ,当x ∈[1,e]时,f ′(x )>0,所以f (x )max =f (e)=12e 2+1.f (x )min =f (1)=12.(2)设F (x )=12x 2+ln x -23x 3,则F ′(x )=x +1x -2x 2=(1-x )(1+x +2x 2)x,当x ∈[1,+∞)时,F ′(x )<0,且F (1)=-16<0故x ∈[1,+∞)时F (x )<0,所以12x 2+ln x <23x 3,得证.21.(本小题满分12分)已知函数f (x )=12x 2+(1-a )x -a ln x .(1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <a 时,f (a +x )<f (a -x ); (3)设x 1,x 2是f (x )的两个零点,证明:f ′⎝ ⎛⎭⎪⎫x 1+x 22>0.解:(1)f (x )的定义域为(0,+∞),由已知,得f ′(x )=x +1-a -a x =x 2+(1-a )x -ax=(x +1)(x -a )x.若a ≤0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增. 若a >0,则令f ′(x )=0,得x =a .当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0.此时f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)令g (x )=f (a +x )-f (a -x ),则g (x )=12(a +x )2+(1-a )(a +x )-a ln(a +x )- [12(a -x )2+(1-a )(a -x )-a ln(a -x )]=2x -a ln(a +x )+a ln(a -x ).所以g ′(x )=2-a a +x -aa -x =2x2x 2-a 2.当0<x <a 时,g ′(x )<0,所以g (x )在(0,a )上是减函数. 而g (0)=0,所以g (x )<g (0)=0.故当0<x <a 时,f (a +x )<f (a -x ).(3)由(1)可知,当a ≤0时,函数f (x )至多有一个零点, 故a >0,从而f (x )的最小值为f (a ),且f (a )<0. 不妨设0<x 1<x 2,则0<x 1<a <x 2,所以0<a -x 1<a . 由(2)得f (2a -x 1)<f (x 1)=0=f (x 2), 从而x 2>2a -x 1,于是x 1+x 22>a .由(1)知,f ′⎝⎛⎭⎪⎫x 1+x 22>0.22.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *). (1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)用数学归纳法证明你的猜想,并求出a n 的表达式. 解:(1)因为a n =S n -S n -1(n ≥2) 所以S n =n 2(S n -S n -1),所以S n =n 2n 2-1S n -1(n ≥2) 因为a 1=1,所以S 1=a 1=1. 所以S 2=43,S 3=32=64,S 4=85,猜想S n =2n n +1(n ∈N *). (2)①当n =1时,S 1=1成立.②假设n =k (k ≥1,k ∈N *)时,等式成立,即S k =2k k +1, 当n =k +1时,S k +1=(k +1)2·a k +1=a k +1+S k =a k +1+2k k +1, 所以a k +1=2(k +2)(k +1),所以S k +1=(k +1)2·a k +1=2(k +1)k +2=2(k +1)(k +1)+1.所以n =k +1时等式也成立,得证.所以根据①、②可知,对于任意n ∈N *,等式均成立. 由S n =n 2a n ,得2n n +1=n 2a n ,所以a n =2n (n +1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合检测一、选择题1.“金导电、银导电、铜导电、锡导电,所以一切金属都导电”.此推理方法是( ) A.完全归纳推理 B.归纳推理 C.类比推理 D.演绎推理 答案 B解析 由特殊到一般的推理为归纳推理.故选B.2.复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( ) A.2+i B.2-i C.5+i D.5-i 答案 D解析 由(z -3)(2-i)=5得,z -3=52-i =2+i ,∴z =5+i ,∴z =5-i.3.设f (x )=10x +lg x ,则f ′(1)等于( ) A.10 B.10ln 10+lg e C.10ln 10+ln 10 D.11ln 10答案 B解析 ∵f ′(x )=10x ln 10+1x ln 10,∴f ′(1)=10ln 10+lg e ,故选B. 4.如图,在复平面内,向量OP →对应的复数是1-i ,若将OP →向左平移1个单位长度后得到O 0P 0→,则点P 0对应的复数为( )A.-iB.1-2iC.-1-iD.1-i 答案 A解析 ∵O 0P 0→=OP →,OO 0→对应的复数是-1,∴点P 0对应的复数,即OP 0→对应的复数是-1+(1-i)=-i.5.已知n 为正偶数,用数学归纳法证明:1-12+13-14+…+1n -1-1n =2(1n +2+1n +4+…+12n )时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要利用归纳假设再证( ) A.n =k +1时等式成立 B.n =k +2时等式成立 C.n =2k +2时等式成立 D.n =2(k +2)时等式成立 答案 B解析 由k ≥2且k 为偶数知选B.6.函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则a ,b 的值为( )A.⎩⎪⎨⎪⎧ a =3b =-3或⎩⎪⎨⎪⎧a =-4b =11 B.⎩⎪⎨⎪⎧ a =-4b =11 C.⎩⎪⎨⎪⎧a =-1b =5 D.以上都不对 答案 B解析 ∵f ′(x )=3x 2-2ax -b ,∴⎩⎪⎨⎪⎧ 3-2a -b =0,1-a -b +a 2=10,解得⎩⎪⎨⎪⎧ a =3,b =-3或⎩⎪⎨⎪⎧a =-4,b =11.经检验a =3,b =-3不合题意,应舍去.7.下列三句话按三段论的模式排列顺序正确的是( )①z 1,z 2不能比较大小;②虚数不能比较大小;③z 1,z 2是虚数. A.①②③ B.②①③ C.②③① D.③②①答案 C解析 ②是大前提,③是小前提,①是结论.8.设f (x )=13x 3+ax 2+5x +6在区间[1,3]上为单调函数,则实数a 的取值范围是( )A.[-5,+∞)B.[-∞,-3]C.(-∞,-3]∪[-5,+∞)D.[-5,5] 答案 C解析 因f ′(x )=x 2+2ax +5,若f (x )在[1,3]上为单调函数且单调递增,则x ∈[1,3]时,x 2+2ax+5≥0恒成立,即2a ≥-⎝⎛⎭⎫x +5x ,而x ∈[1,3],x +5x≥25, ∴-⎝⎛⎭⎫x +5x ≤-25,∴2a ≥-25,a ≥-5,若f (x )在[1,3]上单调递减,则x ∈[1,3]时,x 2+2ax +5≤0恒成立,即2a ≤-⎝⎛⎭⎫x +5x ,而x ∈[1,3]时,记h (x )=x +5x ,h max =h (1)=6,∴-⎝⎛⎭⎫x +5x ≥-6,∴2a ≤-6,a ≤-3,∴a 的取值范围是(-∞,-3]∪[-5,+∞).9.已知结论:“在正三角形ABC 中,若D 是BC 的中点,G 是三角形ABC 的重心,则|AG ||GD |=2”.若把该结论推广到空间,则有结论:在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则|AO ||OM |等于( )A.1B.2C.3D.4 答案 C解析 面的重心类比几何体的重心,平面类比空间,|AG ||GD |=2类比|AO ||OM |=3,故选C. 10.已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ) A.f (x 1)>0,f (x 2)>-12B.f (x 1)<0,f (x 2)<-12C.f (x 1)>0,f (x 2)<-12D.f (x 1)<0,f (x 2)>-12答案 D解析 函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则f ′(x )=ln x -2ax +1有两个零点,即方程ln x =2ax -1有两个根,由数形结合易知0<a <12且0<x 1<1<x 2.因为在(x 1,x 2)上f (x )递增,所以f (x 1)<f (1)<f (x 2),即f (x 1)<-a <f (x 2),所以f (x 1)<0,f (x 2)>-12.故选D.二、填空题11.若实数x ,y 满足(1-i)x +(1+i)y =2,则xy 的值是 . 答案 1解析 由(1-i)x +(1+i)y =2得(x +y )+(-x +y )i =2,∴⎩⎪⎨⎪⎧ x +y =2,-x +y =0,解得⎩⎪⎨⎪⎧x =1,y =1,∴xy =1.12.由抛物线y =12x 2,直线x =1,x =3和x 轴所围成的图形的面积是________.答案133解析 如图所示,S =⎠⎛1312x 2d x =16x 3⎪⎪⎪31=16(33-13)=133. 13.已知函数f (x )=x 3+2bx 2+cx +1有两个极值点x 1,x 2,且x 1∈[-2,-1],x 2∈[1,2],则f (-1)的取值范围是________. 答案 [3,12]解析 因为f (x )有两个极值点x 1,x 2,所以f ′(x )=3x 2+4bx +c =0有两个根x 1,x 2,且x 1∈[-2,-1],x 2∈[1,2], 所以⎩⎪⎨⎪⎧ f ′(-2)≥0,f ′(-1)≤0,f ′(1)≤0,f ′(2)≥0,即⎩⎪⎨⎪⎧12-8b +c ≥0,3-4b +c ≤0,3+4b +c ≤0,12+8b +c ≥0,画出可行域如图所示.因为f (-1)=2b -c ,由图知经过点A (0,-3)时,f (-1)取得最小值3,经过点C (0,-12)时,f (-1)取得最大值12,所以f (-1)的取值范围为[3,12].14.如图所示的数阵中,第20行第2个数字是________.答案1191解析 设第n (n ≥2且n ∈N *)行的第2个数字为1a n ,其中a 1=1,则由数阵可知a n +1-a n =n ,∴a 20=(a 20-a 19)+(a 19-a 18)+…+(a 2-a 1)+a 1=19+18+…+1+1=19×202+1=191,∴1a 20=1191. 三、解答题15.(1)已知z ∈C ,且|z |-i =z +2+3i(i 为虚数单位),求复数z2+i 的虚部.(2)已知z 1=a +2i ,z 2=3-4i(i 为虚数单位),且z 1z 2为纯虚数,求实数a 的值.解 (1)设z =x +y i(x ,y ∈R ),代入方程|z |-i =z +2+3i , 得出x 2+y 2-i =x -y i +2+3i =(x +2)+(3-y )i ,故有⎩⎨⎧x 2+y 2=x +2,3-y =-1,解得⎩⎪⎨⎪⎧x =3,y =4.∴z =3+4i ,复数z2+i =3+4i 2+i =2+i ,虚部为1.(2)z 1z 2=a +2i 3-4i =3a -8+(4a +6)i 25,且z 1z 2为纯虚数, 则3a -8=0,且4a +6≠0,解得a =83.16.已知a ,b ,c >0,且a +b +c =1,求证: (1)a 2+b 2+c 2≥13;(2)a +b +c ≤ 3.证明 (1)∵a 2+19≥23a ,b 2+19≥23b ,c 2+19≥23c ,∴⎝⎛⎭⎫a 2+19+⎝⎛⎭⎫b 2+19+⎝⎛⎭⎫c 2+19≥23a +23b +23c =23.∴a 2+b 2+c 2≥13. (2)∵a ·13≤a +132,b ·13≤b +132,c ·13≤c +132,三式相加得a 3+b 3+c 3≤12(a +b +c )+12=1,∴a +b +c ≤ 3.17.已知数列{a n }满足S n +a n =2n +1. (1)写出a 1,a 2,a 3,并推测a n 的表达式; (2)用数学归纳法证明所得的结论.(1)解 S n +a n =2n +1,当n =1时,S 1=a 1,∴a 1+a 1=2×1+1,得a 1=32.当n =2时,S 2=a 1+a 2,则a 1+a 2+a 2=5,将a 1=32代入得a 2=74,同理可得a 3=158.∴a n =2n +1-12n=2-12n . (2)证明 当n =1时,结论成立.假设当n =k (k ∈N *)时,命题成立,即a k =2-12k .当n =k +1时,S n +a n =2n +1,则a 1+a 2+…+a k +2a k +1=2(k +1)+1.∵a 1+a 2+…+a k =2k +1-a k ,∴2a k +1=4-12k ,a k +1=2-12k +1成立.∴根据上述知对任意n ∈N *,结论成立.18.已知函数f (x )=ln |x |(x ≠0),函数g (x )=1f ′(x )+af ′(x )(x ≠0).(1)当x ≠0时,求函数y =g (x )的表达式;(2)若a >0,函数y =g (x )在(0,+∞)上的最小值是2,求a 的值;(3)在(2)的条件下,求直线y =23x +76与函数y =g (x )的图象所围成图形的面积.解 (1)∵f (x )=ln |x |,∴当x >0时,f (x )=ln x ,当x <0时,f (x )=ln(-x ),∴当x >0时,f ′(x )=1x ,当x <0时,f ′(x )=1-x·(-1)=1x ,∴当x ≠0时,函数y =g (x )=x +a x . (2)由(1)知当x >0时,g (x )=x +ax ,∴当a >0,x >0时,g (x )≥2a ,当且仅当x =a 时取等号,∴函数y =g (x )在(0,+∞)上的最小值是2a ,∴2a =2, ∴a =1.(3)由⎩⎨⎧y =23x +76,y =x +1x,得⎩⎨⎧x 1=32,y 1=136,或⎩⎪⎨⎪⎧x 2=2,y 2=52, ∴直线y =23x +76与函数y =g (x )的图象所围成图形的面积S =232271()()36x x x ⎡⎤+-+⎢⎥⎣⎦⎰dx =724+ln 3-2ln 2.。