高中数学选修2-2导数及其应用单元测试卷
(压轴题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)
![(压轴题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)](https://img.taocdn.com/s3/m/fada1fdf453610661fd9f4ef.png)
一、选择题1.已知函数x y a =(1a >)与log ay x =(1a >)的图象有且仅有两个公共点,则实数a 的取值范围是( )A .1e 1e a << B .1e a <<C .1e e e a <<D .e a >2.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .3.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或154.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为( ) A .1,4⎛⎫-∞-⎪⎝⎭ B .1,4⎛⎫-+∞ ⎪⎝⎭ C .1,8⎛⎫-+∞ ⎪⎝⎭D .1,8⎛⎫-∞- ⎪⎝⎭5.若1201x x ,则( )A .2121ln ln xxe e x x ->- B .2121ln ln x x e e x x -<-C .1221xxx e x e > D .1221xxx e x e <6.已知可导函数()f x 的定义域为(,0)-∞,其导函数()'f x 满足()2()0xf x f x '->,则不等式2(2020)(2020)(1)0f x x f +-+-<的解集为( ) A .(,2021)-∞- B .(2021,2020)-- C .(2021,0)-D .(2020,0)-7.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.内接于半径为R 的球且体积最大的圆柱体的高为( ) A 23B 3C 33D 3 9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .11.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( )A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞ ⎪⎝⎭D .11,26a ⎛⎫∈- ⎪⎝⎭二、填空题13.已知函数()2e 2=++xf x ax a ,若不等式()()1≥+f x ax x 对任意[]2,5x ∈恒成立,则实数a 的取值范围是____________.14.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.15.已知关于x 的方程20--=x e x k 有2个不相等的实数根,则k 的取值范围是___________.16.已知函数()2xe f x ax x =-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________. 17.321313y x x x =--+的极小值为______. 18.已知函数2()f x x a =+,ln ()2e xg x x x=+,其中e 为自然对数的底数,若函数()y f x =与函数()y g x =的图象有两个交点,则实数a 的取值范围是________.19.设()22,0ln ,0x mx x f x x mx x ⎧-+<=⎨->⎩,若方程()f x x =恰有三个零点,则实数m 的取值范围为______.20.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________.三、解答题21.已知函数()2f x x ax b =++,不等式()0f x ≤的解集为[]1,3-.(1)求函数()f x 的解析式; (2)求方程()4ln f x x x =根的个数. 22.已知函数()()2ln 1f x ax x =-+()0a ≠.(1)讨论()f x 的极值点的个数;(2)当0a >时,设()f x 的极值点为0x ,若()()00121f x x >-+,求a 的取值范围.23.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;24.已知函数()2(1)xf x x e ax =--,(a R ∈).(1)若12a =,求()f x 的极值; (2)若0x ≥时,()0f x ≥,求实数a 的取值范围. 25.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 26.已知函数()22x bg x ax +=+,()1,1x ∈-,从下面三个条件中任选一个条件,求出,a b的值,并解答后面的问题.①已知函数()3f x b x a=+-,满足()()220f x f x -++=;②已知函数()()0,1xf x a b a a =+>≠在[]1,2上的值域为[]2,4③已知函数()24f x x ax =-+,若()1f x +在定义域[]1,1b b -+上为偶函数.(1)证明()g x 在()1,1-上的单调性; (2)解不等式()()120g t g t -+<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 将问题转化为()1xy a a =>的图象与y x =有两个公共点,即ln ln xa x=有两解,再构造新函数()ln xf x x=,根据()f x 的单调性和取值分析ln a 的取值即可得到结果. 【详解】因为函数()()1,log 1xa y aa y x a =>=>的图象关于直线y x =对称,所以两个图象的公共点在y x =上,所以()1xy a a =>的图象与y x =有两个公共点,即x x a =有两解,即ln ln x x a =有两解,即ln ln xa x=有两解, 令()ln x f x x =,所以()21ln xf x x -'=, 当()0,x e ∈时,()0f x '>,()f x 单调递增,当(),x e ∈+∞时,()0f x '<,()f x 单调递减,()f x 大致图象如下图所示:所以()10ln a f e e<<=,所以11e a e <<, 故选:A. 【点睛】结论点睛:函数图象的交点个数、方程根的数目、函数的零点个数之间的关系: 已知()()()h x f x g x =-,则有()h x 的零点个数⇔方程()()f x g x =根的数目⇔函数()f x 与函数()g x 的图象的交点个数. 2.B解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.C解析:C 【分析】 由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.4.C解析:C 【分析】先假设函数()f x 不存在增区间,则()f x 单调递减,利用()f x 的导数恒小于零列不等式,将不等式分离常数后,利用配方法求得常数a 的取值范围,再取这个取值范围的补集,求得题目所求实数a 的取值范围. 【详解】若函数()f x 不存在增区间,则函数()f x 单调递减, 此时()1210f x ax x'=+-≤在区间()0,∞+恒成立, 可得2112a x x ≤-,则22111111244x x x ⎛⎫-=--≥- ⎪⎝⎭,可得18a ≤-,故函数存在增区间时实数a 的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.故选C. 【点睛】本小题主要考查利用导数研究函数的单调性,考查不等式恒成立问题的求解策略,属于中档题.5.C解析:C 【分析】令()x e f x x=,(01)x <<,()()ln 01xg x e x x =-<<,求出函数的导数,通过讨论x的范围,求出函数的单调区间,从而判断结论. 【详解】令()x e f x x =,(01)x <<,则2(1)()0x e x f x x-'=<, 故()f x 在(0,1)递减,若1201x x ,则12()()f x f x >,故1212x x e e x x >,即1221x xx e x e >,故C 正确,D 不正确;令()()ln 01xg x e x x =-<<,则11()x xxe g x e x x-'=-=,令()1x h x xe =-,可知()h x 在()0,1单调递增,且(0)10,(1)10h h e =-<=->,则存在()00,1x ∈,使得0()0h x =, 则当()00,x x ∈时,()0h x <,即()0g x '<,()g x 在()00,x 单调递减, 当()0,1x x ∈时,()0h x >,即()0g x '>,()g x 在()0,1x 单调递增, 所以()g x 在()0,1不单调,故A ,B 错误. 故选:C. 【点睛】本题考查了函数的单调性问题,考查导数的应用,是一道中档题.6.B解析:B 【分析】由题可得当(,0)x ∈-∞时,()2()0xf x f x '->,进而构造函数2()()f x g x x =,可判断()g x 在(,0)-∞上的单调性,进而可将不等式转化为(2020)(1)g x g +<-,利用()g x 的单调性,可求出不等式的解集. 【详解】解:构造2()()(0)f x g x x x =<,则243()2()()2()()x f x x f x xf x f x g x x x''⋅-⋅-'==,因为()2()0xf x f x '->,则()0g x '<∴函数()g x 在(,0)-∞上是减函数,∵不等式2(2020)(2020)(1)0f x x f +-+-<,且()2(1)(1)(1)1f g f --==--,等价于()()()()()2220201120201f x f g x +-<=-+-,即为(2020)(1)g x g +<-,所以2020120200x x +>-⎧⎨+<⎩,解得20212020x -<<-.故选:B 【点睛】本题考查函数单调性的应用,构造函数2()()f x g x x =是解决本题的关键,属于中档题. 7.C解析:C 【解析】构造函数1ln ,0,10y x x x y x+='=>+> ,故函数ln y x x =+在0,上单调递增,即由“0a b >>” 可得到“ln ln a a b b +>+”,反之,由“ln ln a a b b +>+”亦可得到“0a b >>” 选C8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得2303h R <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭.即当23h =时,圆柱的体积最大.故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数. 由()3,2f π=-故可得22h π⎛⎫=-⎪⎝⎭, 又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.C解析:C 【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-, 当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<,所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x ,即x →+∞时,()0f x >,则D 错误. 故选:C. 【点睛】本题考查了函数图象的识别,属于中档题.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<, 所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.C解析:C 【分析】本题首先可根据题意得出2241ax ax fxx,令2241g xax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果. 【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调, 令2241g xax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点,当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-,易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞ ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.二、填空题13.【分析】原不等式可化为当时该不等式恒成立当时不等式可化为从而构造函数求导并判断单调性可求出令即可【详解】由题意不等式可化为当时恒成立;当时不等式可化为令则求导得所以在上单调递减在上单调递增所以则综上 解析:(3,e ⎤-∞⎦【分析】原不等式可化为()e 2xa x ≥-,当2x =时,该不等式恒成立,当(]2,5x ∈时,不等式可化为e 2x a x ≥-,从而构造函数()e 2xg x x =-,求导并判断单调性,可求出()min g x ,令()min g x a ≥即可.【详解】由题意,不等式()2e 21x ax a ax x ++≥+可化为()e 2xa x ≥-,当2x =时,()e 2xa x ≥-恒成立;当(]2,5x ∈时,不等式可化为e 2xa x ≥-, 令()e 2xg x x =-,(]2,5x ∈,则()min g x a ≥,求导得()()()2e 32x x g x x -'=-,所以()g x 在()2,3上单调递减,在[]3,5上单调递增,所以()()3min 3e g x g ==,则3e a ≤,综上所述,实数a 的取值范围是(3,e ⎤-∞⎦. 故答案为:(3,e ⎤-∞⎦.【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为e 2xa x ≥-,通过构造函数()e 2xg x x =-,令()min g x a ≥,可求出a 的取值范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.14.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.15.【分析】把关于x 的方程有2个不相等的实数根转化为与函数的图象有两个不同的交点利用导数求得函数的单调性与极值即可求解【详解】由题意关于x 的方程有2个不相等的实数根即函数与函数的图象有两个不同的交点设则 解析:(22ln2,)-+∞【分析】把关于x 的方程20--=x e x k 有2个不相等的实数根,转化为y k =与函数2x y e x =-的图象有两个不同的交点,利用导数求得函数()2x f x e x =-的单调性与极值,即可求解. 【详解】由题意,关于x 的方程20--=x e x k 有2个不相等的实数根, 即函数y k =与函数2x y e x =-的图象有两个不同的交点,设()2x f x e x =-,则()2x f x e '=-,令()20x f x e '=-=,解得ln 2x =, 所以函数的减区间为(,ln 2)-∞,增区间为(ln 2,)+∞, 所以函数()f x 的最小值为(ln 2)22ln 2f =-,且当x →-∞时,()f x →+∞,当x →∞时,()f x →+∞, 要使得2x e x k -=有2个不相等的实数根,所以22ln 2k >-. 即实数k 的取值范围是(22ln2,)-+∞. 故答案为:(22ln2,)-+∞. 【点睛】本题主要考查了利用导数研究方程的根,其中解答中把方程根的个数转化为两个函数的图象的交点的个数,利用导数求得函数的单调性与极值是解答的关键,着重考查转化思想,以及运算与求解能力.16.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当解析:2,12e ⎛⎤-∞ ⎥⎝⎦【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立, 所以()()g x xf x =,在()0,x ∈+∞上是增函数, 所以()230xg x e ax '=-≥,在()0,x ∈+∞上是恒成立,即23xe a x ≤,在()0,x ∈+∞上是恒成立,令2()3xe h x x=,所以()32()3x e x h x x-'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e,所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦.故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦.【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.17.【分析】求导根据导数正负得到函数单调区间得到函数的极小值为计算得到答案【详解】则当和时函数单调递增;当时函数单调递减故函数极小值为故答案为:【点睛】本题考查了利用导数求极值意在考查学生的计算能力和应 解析:8-【分析】求导,根据导数正负得到函数单调区间得到函数的极小值为()3f ,计算得到答案. 【详解】()321313y f x x x x ==--+,则()()()2'2331f x x x x x =--=-+, 当()3,x ∈+∞和(),1x ∈-∞-时,()'0f x >,函数单调递增; 当()1,3x ∈-时,()'0f x <,函数单调递减, 故函数极小值为()32313333183f ⨯--⨯+=-=. 故答案为:8-. 【点睛】本题考查了利用导数求极值,意在考查学生的计算能力和应用能力.18.【分析】将已知等价转化为函数与函数的图象有两个交点分别作出图象观察其只需满足二次函数顶点低于函数的顶点从而构建不等式解得答案【详解】函数与函数的图象有两个交点等价于函数与函数的图象有两个交点对函数求解析:21,e e ⎛⎫-∞+ ⎪⎝⎭【分析】将已知等价转化为函数22y x ex a =-+与函数ln xy x=的图象有两个交点,分别作出图象,观察其只需满足二次函数顶点低于函数ln xy x=的顶点,从而构建不等式,解得答案. 【详解】函数()y f x =与函数()y g x =的图象有两个交点, 等价于函数22y x ex a =-+与函数ln xy x=的图象有两个交点, 对函数ln x y x =求导,得21ln xy x-'=,()0,x e ∈,0y '>, 函数ln xy x=单调递增;(),x e ∈+∞,0y '<, 函数ln xy x =单调递减,在x e =处取得极大值,也是最大值为1e, 对二次函数22y x ex a =-+,其对称轴为x e =,顶点坐标为()2,e a e -分别作出图象,其若要有两个交点,则2211a e a e e e-<⇒<+故答案为:21,e e ⎛⎫-∞+ ⎪⎝⎭【点睛】本题考查由函数图象的交点个数求参数的取值范围,属于中档题.19.【分析】将问题转化为与图像交点个数有3个的问题利用导数研究函数单调性和最值数形结合即可求得结果【详解】当时等价于;当时等价于;令则方程恰有三个零点等价于与直线有三个交点当时则令解得故该函数在区间单调 解析:221m <-【分析】将问题转化为()2,0,0x x xh x lnx x x⎧+<⎪⎪=⎨⎪>⎪⎩与1y m =+图像交点个数有3个的问题,利用导数研究函数单调性和最值,数形结合即可求得结果. 【详解】当0x <时,22y x mx x =-+=,等价于21x m x+=+; 当0x >时,y lnx mx x =-=,等价于1lnxm x=+; 令()2,0,0x x xh x lnx x x ⎧+<⎪⎪=⎨⎪>⎪⎩,则方程()f x x =恰有三个零点,等价于()y h x =与直线1y m =+有三个交点. 当lnx y x =时,则21lnx y x-=',令0y '=,解得x e =, 故该函数在区间()0,e 单调递增,在(),e +∞单调递减. 且x e =时,1y e=;又x e >时,0y >; 而当2y x x=+时,由对勾函数性质,容易知: 当2x =-时,函数取得最大值22y =-. 故()h x 的图像如下所示:数形结合可知,要满足题意,只需122m +<-, 解得221m <-. 故答案为:221m <-. 【点睛】本题考查由方程根的个数求参数范围,涉及利用导数研究函数单调性,对勾函数,属综合中档题.20.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围. 【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-, 当1a ≥时,令2'()330f x ax =-=解得x =,且1>-<①当1x -<<()0,()f x f x '>为递增函数, ②当x <<()0,()f x f x '<为递减函数, ③1x <<时,()f x 为递增函数.所以()010f f ⎧≥⎪⎨⎝⎭⎪-≥⎩,即3320320a a ⎧⎪-+≥⎨⎝⎭⎝⎭⎪-++≥⎩, 解得15a ≤≤. 故答案为:15a ≤≤. 【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.三、解答题21.(1)()223f x x x =--;(2)有且只有一个根.【分析】(1)根据不等式的解集与方程根的对应关系,列出关于,a b 的方程组,从而求解出,a b 的值,则()f x 的解析式可求; (2)将问题转化为求方程34ln 20x x x---=根的数目,构造新函数()34ln 2g x x x x=---,利用导数分析()g x 的单调性和极值,由此判断出()g x 的零点个数,从而方程()4ln f x x x =根的个数可确定.【详解】解:(1)∵不等式()0f x ≤的解集为[]1,3-, ∴20x ax b ++=的两个根分别为1-和3. ∴()()1313a b ⎧-=-+⎪⎨=-⨯⎪⎩.即2a =-,3b =-,故函数()f x 的解析式为()223f x x x =--.(2)由(1),设()22334ln 4ln 2x x g x x x x x x--=-=---,∴()g x 的定义域为()0,∞+,()()()2213341x x g x x x x--'=+-=, 令()0g x '=,得11x =,23x =.当x 变化时,()g x ',()g x 的取值变化情况如下表:当03x <≤时,140g x g ≤=-<, 当3x >时,()55553ee202212290eg =--->--=>. 又因为()g x 在()3,+∞上单调递增,因而()g x 在()3,+∞上只有1个零点, 故()g x 仅有1个零点.即方程()4ln f x x x =有且只有一个根. 【点睛】思路点睛:利用导数分析方程根的个数的思路: (1)将方程根的个数问题转化为函数零点的个数问题;(2)将原方程变形,构造新函数,分析新函数的单调性、极值、最值;(3)根据新函数的单调性、极值、最值得到新函数的零点个数,则方程根的个数可确定.22.(1)答案见解析;(2)⎛⎫⎪+∞⎪⎭. 【分析】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+-,分两种情况讨论,判断方程()0g x =根的个数即可;(2)由(1)知()00g x =,即202210ax ax +-=,()20012a x x =+,先求得01x ,进而可得答案即可.【详解】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+- 当0a >时,由()10g -<知,()g x 在()1,-+∞有唯一零点, 故()f x 在()1,-+∞有一个极值点;当0a <时,()10g -<,()g x 的对称轴为12x =-,若方程()0g x =的0∆>,即2480a a +>,2a <-时,()g x 在()1,-+∞有两个零点,()f x 在()1,-+∞有两个极值点;若方程()0g x =的0∆≤,即2480a a +≤,20a -≤<时,()0g x ≤,()f x 在()1,-+∞上单减,无极值点.(2)由(1)知()00g x =,即2002210ax ax +-=,()20012a x x =+……(*) 由0a >且010x +>得00x >,又∵()()00121f x x >-+,∴()()20001ln 121ax x x -+>-+代入(*)式,()()()00001ln 12121x x x x -+>-++, 即()01ln 102x -+>解得01x <,∴001x <<, ∴.()20012a x x ⎛⎫⎪=∈+∞⎪+⎭. 【点睛】求函数()f x 极值的步骤:(1) 确定函数的定义域;(2) 求导数fx ;(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查fx 在0fx的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. 23.(1)答案见解析;(2)[)1,+∞. 【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果. 【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x ah x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>;()h x ∴在(上单调递减,在)+∞上单调递增.(2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2at x x x'=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200ax x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max21x x -+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用. 24.(1)极大值是112e-,()f x 的极小值是0(2)1a ≤ 【分析】(1)()()2112xx f x e x =--,求导()()()110x f x x e '=+-=,判断()f x ',()f x 变化求得极值;(2)解法一:分离a,求最值得a 的范围,解法二: ()xf x e a '=-,讨论a 的范围得解 【详解】 (1)当12a =时,()()2112xx f x e x =-- ()()()110x f x x e '=+-=时,则1x =-,0x =.当x 变化时,()f x ',()f x 变化状态如下表:所以()f x 的极大值是()12f e-=-,()f x 的极小值是()00f = (2))等价于当0x ≥时,()()10xf x x e ax =--≥恒成立解法一: 当0x =,等号成立,当x>0,()10x e f x a x -≥⇔≤,设()1x e g x x-=()min a g x ≤,由经典不等式1x e x >+ ∴1a ≤或者()21x x xe e g x x-+'=,()1x x x xe e ϕ=-+,()0x x x xx e xe e xe ϕ='+-=> ()x ϕ↑,()()00ϕϕ>=x ∴()0g x '>,()g x ↑,又()0,1x g x →→ ∴1a ≤解法二: ()xf x e a '=-,0x ≥,1x e ≥若1a ≤,则()0xf x e a ='-≥,()f x ↑,∴()()00f x f ≥=,即不等式恒成立.(充分性)若1a >,()0xf x e a '=-= ∴0ln 0x a =>()00,x x ∈,()0f x '<,()f x ↓,()()00f x f ≤=,这与当0x ≥时,()10xf x e ax =--≥恒成立相矛盾(必要性)【点睛】本题考查函数与导数的极值,考查不等式恒成立,考查转化化归能力,考查计算能力,是中档题25.(1)230x e y e +-=(2)(,0]-∞ 【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题(1)根据题意可得,()2f e e=, ()2ln 'xf x x -=,所以()22ln 1'e f e e e -==-,即21k e =-, 所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a x f x x x x-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥,所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增, 所以()()10g x g ≥=, 所以不等式()()21a x f x x->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛ ⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减,21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+,()222111'10a a h a a a a-+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-<⎪⎝⎭,所以存在10g a ⎛⎫< ⎪⎝⎭, 所以102a <<不符合题意; ②当12a ≥1≤ ()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤= 显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤26.选法见解析;2a =,0b =;(1)证明见解析;(2)103t <<. 【分析】(1)根据函数的对称性,定义域和值域,奇偶性计算得到2a =,0b =,再求导证明单调性.(2)利用函数的奇偶性和单调性解不等式得到答案. 【详解】(1)①由()()220f x f x -++=得()f x 对称中心为()2,0即得2a =,0b =; ②(i )当1a >时,()xf x a b =+在[]1,2上单调递增,则有224a b a b +=⎧⎨+=⎩得220a a --=, 得2a =,0b =;(ii )当01a <<时,()xf x a b =+在[]1,2上单调递减,则242a b a b +=⎧⎨+=⎩得220a a -+=,无解,所以2a =,0b =;③由()24f x x ax =-+得()()2125f x x a x a +=+-+-,因为()1f x +在[]1,1b b -+上是偶函数,则202a -=,且()()110b b -++=, 所以2a =,0b =; 由①或②或③得()222xg x x =+,()1,1x ∈-,()()222121x g x x -'=+, 由11x -<<得()0g x '>,则()g x 在()1,1-上单调递增. (2)因为()()222xg x g x x --==-+,则()g x 为奇函数.由()()120g t g t -+<即()()21g t g t <-又因为()g x 在()1,1-上单调递增,则121,111,21,t t t t -<<⎧⎪-<-<⎨⎪<-⎩解得103t <<.【点睛】本题考查了函数对称性,奇偶性,单调性,函数的定义域和值域,解不等式,意在考查学生对于函数知识的综合应用.。
高中数学选修22:第一章导数及其应用单元测试题.doc
![高中数学选修22:第一章导数及其应用单元测试题.doc](https://img.taocdn.com/s3/m/41ed374558fb770bf68a5500.png)
数学选修 2-2 第一章单元测试题一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点()A.1 个B.2 个C.3 个D.4 个1 12.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在1同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是()C.8D.423.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( )ππ3A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π)3 π 3C.[ 4π,π ) D.[ 2,4π]14.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()3 3A.m≥2 B.m>23 3C.m≤2 D.m<2x2 25.函数f ( x) =cos x-2cos 2的一个单调增区间是 ()f x 0+3 -f x 06.设f ( x) 在x=x0 处可导,且lim Δx=1,Δx→0则 f ′(x0)等于( )A.1 B.0C.3x+97.经过原点且与曲线y=x+5相切的切线方程为()A.x+y=0B.x+25y=0C.x+y= 0 或x+25y=0D.以上皆非8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0 时,f ( x) 是()A.增函数B.减函数C.常数D.既不是增函数也不是减函数13 29.若a>2,则方程3x -ax +1=0 在(0,2) 上恰好有 ()A.0 个根B.1 个根C.2 个根D.3 个根1 10.一点沿直线运动,如果由始点起经过t s 后距离为s=4t 4-53t 3+2t 2,那么速度为零的时刻是( )A.1 s 末B.0 sC.4 s 末D.0,1,4 s 末x2,x∈[0,1],2f(x) d x 等于 () 11.设f ( x) =则2-x,x∈ 1,2] ,0D.不存在sin x sin x1 sin x2 12.若函数 f(x) =x,且 0<x1<x2 <1,设 a=x1 ,b=x2 ,则 a,b 的大小关系是 ( )A.a>b B.a<bC.a=b D.a、b的大小不能确定二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上 )1 3 213.若 f(x) =3x -f ′(1)x +x+5,则 f ′(1) = ________.π π14.已知函数 f(x) 满足 f(x) =f( π-x) ,且当 x∈ -2,2 时,f(x) =x+sin x,设a=f(1) ,b=f(2) ,c=f(3) ,则a、b、c 的大小关系是 ________.15.已知函数f(x) 为一次函数,其图像经过点(2,4) ,且1f(x) d x=3,则函数f(x) 的解析式为________.16.(2010 ·江苏卷) 函数2y=x(x>0)的图像在点 2(a k,a k) 处的切线与x 轴的交点的横坐标为a k+1,其中k∈N*. 若a1=16,则a1+a3+a5的值是________.三、解答题 ( 本大题共 6 小题,共 70 分,解答应出写文字说明、证明过程或演算步骤 )17.(10 分) 如图,直线y=kx分抛物线y=x-x2与x轴所围成图形为面积相等的两部分,求k 的值.18.(12 分) 已知函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 上单调递增,在区间 [1,2) 上单调递减.(1)求 a 的值;(2)若点 A(x0,f(x0)) 在函数 f(x) 的图像上,求证:点 A关于直线x=1 的对称点 B 也在函数 f(x) 的图像上.19.(12 分) 设 x=- 2 与 x=4 是函数 f(x) =x3+ax2+bx 的两个极值点.(1)求常数 a,b;(2)试判断 x=- 2,x= 4 是函数 f(x) 的极大值还是极小值,并说明理由.20.(12 分) 已知 f(x) =ax3-6ax2+b,x∈[ -1,2] 的最大值为 3,最小值为- 29,求 a,b 的值.21.(12 分)(2010 ·重庆卷 ) 已知函数 f(x) =ax3+x2+ bx( 其中常数a,b∈R) ,g( x) =f ( x) +f′(x) 是奇函数.(1)求 f ( x)的表达式;(2)讨论 g( x)的单调性,并求 g( x)在区间[1,2]上的最大值与最小值.1-x22.(12 分) 已知函数f ( x) =ln( ax+1) +1+x,x≥0,其中a>0.(1)若 f ( x)在 x=1处取得极值,求 a 的值;(2)求 f ( x)的单调区间;(3)若 f ( x)的最小值为1,求 a 的取值范围.参考答案1.答案 A解析设极值点依次为 x1,x2,x3且 a<x1<x2<x3<b,则 f ( x) 在( a,x1) ,( x2,x3) 上递增,在 ( x1,x2) ,( x3,b) 上递减,因此,x1、x3是极大值点,只有x2是极小值点.2.答案 D3.答案 B4.答案 A1解析因为函数 f ( x)=2x4-2x3+3m,所以 f ′(x)=2x3-6x2.令 f ′(x)=0,得 x=0或 x=3,经检验知 x=3是函数的一个最27小值点,所以函数的最小值为 f (3)=3m-2.不等式 f ( x)+9≥0恒成27 3立,即 f ( x)≥-9恒成立,所以3m-2≥-9,解得 m≥2.5.答案 A解析 f ( x)=cos2x-cos x-1,∴f′(x)=-2sin x·cos x+sin x=sin x·(1-2cos x).令 f ′(x)>0,结合选项,选A.6. 答案 D7. 答案 D8. 答案 A9. 答案 B解析 1 3 2设 f ( x ) =3x -ax +1,则2f ′(x )=x -2ax =x ( x -2a ) ,当 x ∈(0,2) 时, f ′(x )<0,f ( x ) 在(0,2) 上为减函数,又 f (0) f (2) =8 111 3-4a +1 = 3 -4a <0,f ( x ) =0 在(0,2) 上恰好有一个根,故选 B.10. 答案 D11. 答案 C解析 数形结合,如图.2f(x) d x = 1x 2d x + 2(2 -x) d x0 11 3 11 22= 3x+ 2x -2x11 1= 3+(4 -2-2+2)5= 6,故选 C .12. 答案Af ′(x) =x cos x -sin x解析 x 2, 令 g(x) =x cos x -sin x ,则g ′(x) =- x sin x +cos x -cos x =- x sin x.∵0<x<1,∴ g ′(x)<0 ,即函数 g(x) 在 (0,1) 上是减函数,得 g(x)<g(0) =0,故 f ′(x)<0 ,函数 f(x) 在(0,1) 上是减函数,得 a>b ,故选A .213. 答案 32 2解析 f ′(x) = x -2f ′(1)x + 1,令 x=1,得 f ′(1) =3.14. 答案 c<a<b解析f(2) = f( π-2) , f(3) = f( π- 3) ,因为 f ′(x) = 1+π ππcos x≥0,故f(x)在-2,2上是增函数,∵2 >π-2>1>π-3>0,∴f( π-2)>f(1)>f( π-3) ,即 c<a<b.2815.答案 f(x) =3x+3解析设函数 f(x) =ax+b(a ≠0) ,因为函数 f(x) 的图像过点(2,4) ,所以有 b=4-2a.∴1 f(x) d x= 1 (ax +4-2a) d x0 01 2 1 1=[ ax +(4 -2a)x] | 0=a+4-2a=1.2 22 8 2 8∴a=3. ∴b=3. ∴f(x) =3x+3.16. 答案21解析2 2∵y′=2x,∴过点( a k,a k)处的切线方程为y-a k=2a k( x1-a k),又该切线与 x 轴的交点为( a k+1,0),所以 a k+1=2a k,即数列{ a k}1是等比数列,首项a1=16,其公比q=2,∴ a3=4,a5=1,∴ a1+a3 +a5=21.17. 解析抛物线 y =x -x 2 与 x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与 x 轴所围图形面积 S = 12) d x =x 2 x 3 11 (x -x 2 -3 0=2-1 13=6.y =x -x 2,又 由此可得抛物线 y =x -x 2 与 y =kx 两交点的横y =kx ,S- 2 x 3 -坐标 x 3= , 4= - ,所以 = 1-k (x - x 2 kx) d x =1 k x - 1k -0 x 1 k 2 02313=6(1 -k) .3又 S = ,所以 (1 -k) 3=1,∴ k =1- 4.622118. 解析 (1) 由函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 单调递增,在区间 [1,2) 单调递减,∴x =1 时,取得极大值,∴ f ′(1) = 0.又 f ′(x) = 4x3-12x2+2ax ,∴4-12+2a = 0? a = 4.(2) 点 A(x0,f(x0)) 关于直线 x =1 的对称点 B 的坐标为 (2 -x0, f(x0)) ,f(2 -x0) =(2 -x0)4 -4(2 -x0)3 +4(2 -x0)2 -1= (2 -x0)2[(2 -x0) -2]2 -1= x 40-4x30+ ax20- 1=f(x0) ,∴A 关于直线 x =1 的对称点 B 也在函数 f(x) 的图像上.19.解析 f ′(x) =3x2+2ax+b.(1) 由极值点的必要条件可知:12-4a+b=0,f ′( - 2) =f ′(4) = 0,即48+8a+b=0,解得 a=- 3,b=- 24.或f ′(x) = 3x2+2ax+b=3(x +2)(x -4)=3x2-6x-24,也可得 a=- 3,b=- 24.(2) 由 f ′(x) = 3(x +2)(x -4) .当 x<- 2 时, f ′(x) > 0,当- 2<x<4 时, f ′(x) < 0. ∴x=- 2 是极大值点,而当x>4 时, f ′(x) > 0,∴x=4 是极小值点.20.解析 a≠0( 否则 f(x) =b 与题设矛盾 ) ,由f ′(x) = 3ax2-12ax=0 及 x∈[ - 1,2] ,得 x=0. (1) 当 a>0 时,列表:x ( -1,0) 0 (0,2)f ′(x) +0 -f(x) 增极大值 b 减由上表知, f(x) 在[ - 1,0] 上是增函数,f(x) 在[0,2] 上是减函数.则当 x=0 时, f(x) 有最大值,从而b=3.又f( -1) =- 7a+3,f(2) =- 16a+3,∵a>0,∴ f( -1) >f(2) .从而 f(2) =- 16a+3=- 29,得a=2.(2)当 a<0 时,用类似的方法可判断当 x=0 时 f(x) 有最小值.当x=2 时, f(x) 有最大值.从而 f(0) =b=- 29, f(2)=-16a-29=3,得a=- 2.综上, a= 2,b=3 或 a=- 2,b=- 29.21.解析 (1) 由题意得f′(x) = 3ax2+2x+b. 因此g( x) =f ( x) +f′(x)=ax3+(3 a+1) x2+( b+2) x+b.因为函数 g( x)是奇函数,所以g(-x)=- g( x),即对任意实数x,有 a(- x)3+(3 a+1)(-x)2+( b +2)( -x) +b=- [ ax3+(3 a+1) x2+( b+2) x+b] ,从而 3a+1=0,b=0,解得a=-1,b=0,因此f ( x) 的解析式为f ( x) =-x3+x2. 331(2)由(1) 知g( x) =-1x3+2x,所以g′(x) =-x2+2. 3令g′(x)=0,解得x1=-2,x2=2,则当x<-2或x> 2时,g′(x)<0,从而 g( x)在区间(-∞,-2],[ 2,+∞)上是减函数;当- 2<x< 2时,g′(x)>0 ,从而g( x) 在[ - 2, 2] 上是增函数.由前面讨论知, g( x)在区间[1,2] 上的最大值与最小值只能在x=1,2,2 时取得,而g(1)5=3,g( 2) =4 23,g(2)4=3. 因此g( x)在区间 [1,2] 上的最大值为g( 2) =4 2,最小值为3g(2)4=3.22. 分析解答本题,应先正确求出函数 f ( x)的导数f ′(x),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.a 2 ax2+a-2解析 (1) f′(x) =ax+1-1+x 2=ax+1 1+x 2,∵f ( x)在 x=1处取得极值,2∴f ′(1)=0,即 a·1+a-2=0,解得 a=1.(2) f′(x) =ax2+a-22,ax+1 1+x∵x≥0, a>0,∴ ax+1>0.①当 a≥2时,在区间[0,+∞)上, f ′(x)>0,∴f( x)的单调增区间为[0,+∞).②当 0<a<2 时,由 f ′(x)>0,解得 x> 2-a a.由 f ′(x)<0,解得 x< 2-a a.∴f ( x)的单调减区间为(0, 2-a 2-a a ) ,单调增区间为 ( a,+∞ ) .(3) 当a≥2时,由 (2) ①知,f ( x) 的最小值为f (0) =1;当 0<a<2,由 (2) ②知,f ( x) 在x=2-aa 处取得最小值,且2-af ( a )< f (0) =1.综上可知,若 f ( x)的最小值为1,则 a 的取值范围是[2,+∞).。
(2021年整理)高二数学选修2-2导数及其应用测试题(含答案)
![(2021年整理)高二数学选修2-2导数及其应用测试题(含答案)](https://img.taocdn.com/s3/m/a17277dd0740be1e640e9a56.png)
(完整)高二数学选修2-2导数及其应用测试题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高二数学选修2-2导数及其应用测试题(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高二数学选修2-2导数及其应用测试题(含答案)的全部内容。
高二数学选修2—2导数及其应用测试题一、 选择题(本大题共12小题,每小题5分,共60分)1.设xx y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .xx x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .xx x x sin )1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ).A .54B .52C .51D .53 3.已知2)3(',2)3(-==f f ,则3)(32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在4.曲线3x y =在点)8,2(处的切线方程为( ).A .126-=x yB .1612-=x yC .108+=x yD .322-=x y5.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ⋅的值为( )A .4B .5C .6D .不确定6.在R 上的可导函数c bx ax x x f +++=22131)(23,当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则12--a b 的取值范围是( ). A .)1,41( B .)1,21( C .)41,21(- D .)21,21(- 7.函数)cos (sin 21)(x x e x f x +=在区间]2,0[π的值域为( ). A .]21,21[2πe B .)21,21(2πe C .],1[2πe D .),1(2πe 8.076223=+-x x 在区间)2,0(内根的个数为 ( )A .0B .1C .2D .39.1. 已知函数)(x f y =在0x x =处可导,则h h x f h x f h )()(lim 000--+→等于 ( ) A .)(0/x f B .2)(0/x f C .-2)(0/x f D .010.如图是导函数/()y f x =的图象,那么函数()y f x =在下面哪个区间是减函数( )A 。
(必考题)高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(2)
![(必考题)高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(2)](https://img.taocdn.com/s3/m/2f1b2f91ddccda38366baf2c.png)
一、选择题1.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .2.已知函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点,则a 的取值范围是( ) A .(,]e -∞-B .(,1] -∞-C .[1,) -+∞D .[,)e3.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞4.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或155.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞ D .()8,+∞6.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞C .()1,+∞D .()+∞7.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞8.已知定义在R 上的可导函数()f x 的导函数为'()f x ,满足()'()f x f x >,且(0)1f =,则不等式()x e f x >(e 为自然对数的底数)的解集为( )A .(1,)-+∞B .(0,)+∞C .(1,)+∞D .(,0)-∞9.设函数()f x 在R 上存在导数()f x ',对任意的x ∈R ,有()()2f x f x x +-=,且在[)0,+∞上有()f x x '>.若()()222f k f k k --≥-,则k 的取值范围是( )A .(],0-∞B .(],1-∞C .1,22⎡⎤⎢⎥⎣⎦D .50,2⎡⎤⎢⎥⎣⎦10.内接于半径为R 的球且体积最大的圆柱体的高为( )A .3R B .3R C .2R D .2R 11.设函数()'f x 是函数()()f x x R ∈的导函数,当0x ≠时,3()()0f x f x x'+<,则函数31()()g x f x x =-的零点个数为( ) A .3 B .2 C .1D .012.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .12二、填空题13.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫=⎪⎝⎭,其导函数是()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.14.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.15.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.16.已知函数()2xe f x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________. 17.已知函数()321213f x x x ax =+-+,若函数()f x 在()2,2-上有极值,则实数a 的取值范围为______. 18.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 19.已知在正四棱锥P ABCD -中,4PA =,则当该正四棱锥的体积最大时,它的高h 等于______.20.已知()2sin cos f x x x x x =++,则不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>的解集为______.三、解答题21.已知函数()cos x f x e x x =-,()(sin 1)g x x x =-. (1)讨论()f x 在区间(,0)2π-上的单调性;(2)判断()()f x g x -在区间[,]22ππ-上零点的个数,并给出证明. 22.已知函数()()3exf x xx a =-+,a R ∈.(1)当2a =-时,求()f x 在[]1,2-上的最大值和最小值; (2)若()f x 在()1,+∞上单调,求a 的取值范围.23.已知函数432()f x ax x bx =++(),a b ∈R ,()()()g x f x f x '=+是偶函数. (1)求函数()g x 的极值以及对应的极值点. (2)若函数43221()()(1)4h x f x x c x x cx c =++--++,且()h x 在[]2,5上单调递增,求实数c 的取值范围. 24.设函数()()21xf x ea x =-+.(1)讨论()f x 的单调性;(2)若()0f x >对x ∈R 恒成立,求a 的取值范围.25.已知函数21(),()ln 2f x xg x a x ==. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)若[]1,e 上存在一点x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.26.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.B解析:B 【分析】根据题中条件,得到方程1ln xa e ex x x ⎛⎫=--++⎪⎝⎭有解,令1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域,对函数()h x 求导,判定其单调性,研究其值域,即可得出结果. 【详解】函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点, 即方程1ln 0xe ex a x x -+++=有解,即方程1ln x a e ex x x ⎛⎫=--++ ⎪⎝⎭有解,令1()ln xh x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域, 因为()22111()xx x h x e e e e x x x -⎛⎫⎡⎤'=--+-=--+ ⎪⎢⎥⎝⎭⎣⎦, 所以当1x =时,()0h x '=; 当01x <<时,0x e e -<,210x x -<,所以()21()0xx h x e e x -⎡⎤'=--+>⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递增;当1x >时,0x e e ->,210x x ->,所以()21()0xx h x e e x -⎡⎤'=--+<⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递减;所以max ()(1)1h x h ==-, 画出函数()h x 的大致图像如下,由图像可得,()(],1h x ∈-∞-, 所以a 的取值范围(],1-∞-. 故选:B. 【点睛】本题主要考查导数的方法研究方程根的问题,考查函数与方程的应用,将问题转化为两函数交点的问题是解题的关键,属于常考题型.3.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.4.C解析:C 【分析】由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.5.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max 182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-,故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.6.B解析:B 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+≥即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4xx x f x ex a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e >04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立 当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444πππ⎛⎫+∈- ⎪⎝⎭xsin 4x π⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.7.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.8.B解析:B 【解析】令()()()()()0,(0)1x xf x f x f xg x g x g e e-=∴=<'=' 所以()xe f x >()1(0)0g x g x ⇒=⇒ ,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等9.B解析:B 【分析】构造函数()()212g x f x x =-,可得()g x 在[)0,+∞上单调递增,利用奇偶性的定义知()g x 是奇函数,进而求解不等式即可.【详解】由题意当0x ≥时,()f x x '>,构造函数()()212g x f x x =-, 则()()'0g x f x x '=->,得()g x 在[)0,+∞上单调递增, 又由条件()()2f x f x x +-=得()()0g x g x +-=.所以()g x 是奇函数,又()g x 在[)0,+∞上单调递增且()00g =,所以()g x 在R 上单调递增,由()()222f k f k k --≥-,得()()20k g k g --≥,即()()2g k g k -≥, 根据函数()g x 在R 上单调递增,可得2k k -≥,解得1k ≤. 故选:B 【点睛】本题考查导数在函数单调性中的应用,考查函数的奇偶性,属于中档题.10.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-, 故圆柱的体积()23214h r h h R h πππ=⨯=-+, 故可得()223,(02)4V h h R h R ππ<'=-+<, 令()0V h '>,解得230h <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭. 即当23h =时,圆柱的体积最大. 故选:A .【点睛】 本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.11.D解析:D【分析】构造函数3()()1F x x f x =-,可得出3()()F x g x x=,利用导数研究函数()y F x =的单调性,得出该函数的最大值为负数,从而可判断出函数()y F x =无零点,从而得出函数3()()F x g x x =的零点个数. 【详解】设3()()1F x x f x =-,则3233()()()3()()f x F x x f x x f x x f x x '''⎡⎤=+=+⎢⎥⎣⎦. 当0x ≠时,3()()0f x f x x'+<, 当0x >时,30x >,故()0F x '<,所以,函数()y F x =在(0,)+∞上单调递减; 当0x <时,30x <,故()0F x '>,所以,函数()y F x =在(,0)-∞上单调递增. 所以max ()(0)10F x F ==-<,所以,函数()y F x =没有零点, 故331()()()F x g x f x x x=-=也没有零点. 故选:D .【点睛】本题考查函数零点个数的判断, 解题的关键就是要结合导数不等式构造新函数,并利用导数分析函数的单调性与最值,必要时借助零点存在定理进行判断,考查分析问题和解决问题的能力,属于中档题. 12.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.二、填空题13.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x '-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫⎪⎝⎭. 【点睛】 关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.14.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33 【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值.【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=,所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+2(2)4x x =+-3(2)(2),02x x x =+-<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+,(0,1),()0,()x h x h x ∈'>单调递增,(1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值33故答案为:33【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.15.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论 解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.16.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当 解析:2,12e ⎛⎤-∞ ⎥⎝⎦ 【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立,所以()()g x xf x =,在()0,x ∈+∞上是增函数,所以()230x g x e ax '=-≥,在()0,x ∈+∞上是恒成立, 即23xe a x≤,在()0,x ∈+∞上是恒成立, 令2()3xe h x x=, 所以()32()3x e x h x x-'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e , 所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦. 故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦. 【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.17.【分析】求出函数的导数利用函数的极值点转化列出不等式求解即可【详解】解:可得导函数的对称轴为x =﹣1f (x )在(﹣22)上有极值可得或可得或解得故答案为:【点睛】本题考查函数的导数的应用函数的极值的 解析:1,42⎛⎫- ⎪⎝⎭【分析】求出函数的导数,利用函数的极值点,转化列出不等式求解即可.【详解】解:()321213f x x x ax =+-+, 可得()'222f x x x a =+-,导函数的对称轴为x =﹣1,f (x )在(﹣2,2)上有极值,可得(2)0(1)0f f >⎧⎨-<''⎩或(2)0(1)0f f ->⎧⎨-<''⎩, 可得44201220a a +->⎧⎨--<⎩或44201220a a -->⎧⎨--<⎩, 解得1,42a ⎛⎫∈- ⎪⎝⎭. 故答案为:1,42⎛⎫-⎪⎝⎭. 【点睛】本题考查函数的导数的应用,函数的极值的求法,考查转化思想以及计算能力. 18.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范 解析:[]0,1e -【分析】先求出()21ln x f x x-'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案.【详解】由函数()ln x f x x =有()()2ln 1ln 0x x f x x x x -'==> 由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减,又函数()ln x f x x =在(),1a a +上单调递增,则()(),10a a e +⊆, 则01a a e≥⎧⎨+≤⎩ ,解得:01a e ≤≤-.故答案为:[]0,1e -【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.19.【分析】设正四棱锥的底面边长为即可由表示出和的等量关系进而表示出正四棱锥的体积利用导函数判断单调性由单调性即可求得最值并求得取最值时的高的值【详解】设正四棱锥的底面边长为因为所以即所以正四棱锥的体积【分析】设正四棱锥P ABCD -的底面边长为a ,即可由4PA =表示出a 和h 的等量关系,进而表示出正四棱锥P ABCD -的体积.利用导函数,判断单调性,由单调性即可求得最值,并求得取最值时的高h 的值.【详解】设正四棱锥P ABCD -的底面边长为a ,因为4PA =,所以22162a h +=, 即22322a h =-,所以正四棱锥P ABCD -的体积()2313220333V a h h h h ==->, 可得232'23V h =-,令'0V =,解得h =当03h <<,可得'0V >,可知V 在03h <<内单调递增,当h >'0V <,可知V 在h >所以当h =P ABCD -的体积取得最大值,即16322313V ⎛⎫-⨯ =⎪⎝⎭=【点睛】本题考查了正四棱锥的性质与应用,四棱锥的体积公式,利用导数求函数的最值及取最值时的自变量,属于中档题.20.【分析】先判断函数为偶函数再利用导数判断函数在递增从而将不等式转化为进一步可得不等式解对数不等式即可得答案【详解】的定义域为且即有即为偶函数;又时则在递增不等式即为即有可得即有即或解得或则解集为故答 解析:()10,100,100⎛⎫+∞ ⎪⎝⎭【分析】先判断函数为偶函数,再利用导数判断函数在0x >递增,从而将不等式转化为()()lg 2f x f >,进一步可得不等式lg 2x >,解对数不等式即可得答案.【详解】()2sin cos f x x x x x =++的定义域为R ,且()()()()()22sin cos sin cos f x x x x x x x x x -=--+-+-=++, 即有()()f x f x -=,即()f x 为偶函数;又0x >时,()()sin cos sin 22cos 0f x x x x x x x x '=+-+=+>,则()f x 在0x >递增,不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>, 即为()()()lg lg 22f x f x f +->, 即有()()lg 2f x f >, 可得()()lg 2f x f >, 即有lg 2x >,即lg 2x >或lg 2x <-,解得100x >或10100x <<, 则解集为()10,100,100⎛⎫+∞ ⎪⎝⎭. 故答案为:()10,100,100⎛⎫+∞ ⎪⎝⎭.【点睛】 本题考查函数奇偶性、单调性的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意偶函数(||)()f x f x =这一性质的应用.三、解答题21.(1)()f x 在(,0)2π-上单调递减;(2)有且仅有2个零点. 证明见解析.【分析】(1)求出函数的导数,根据导函数的单调性判断即可;(2)令()()()cos sin x F x f x g x e x x x =-=-,求出函数的导数,通过讨论x 的范围,求出函数的单调区间,从而求出函数的零点个数即可证明结论成立.【详解】(1)()cos sin 1cos()14x x x f x e x e x x π⎛⎫=--=+- ⎪⎝⎭',()cos sin 44x x f x x x ππ⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭'⎭⎝'⎝⎭ 2cos()2sin 2x x e x e x π=+=-.(,0)2x π∈-,sin 0x ∴<,()0f x ''∴>,所以()'f x 在(,0)2π-上单调递增,()(0)0f x f ''<=, ()f x ∴在(,0)2π-上单调递减.(2)()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 证明:令()()()cos sin x F x f x g x e x x x =-=-,所以()()()cos sin cos sin x F x ex x x x x '=--+, ①当,02x ⎡⎤∈-⎢⎥⎣⎦π时, 因为()()cos sin 0,cos sin 0x x x x x ->-+>,()()0,F x F x '∴>在02π⎡⎤-⎢⎥⎣⎦,单调递增, 又()010,022F F ππ⎛⎫=>-=-< ⎪⎝⎭. ()F x ∴在02π⎡⎤-⎢⎥⎣⎦,上有一个零点; ②当0,4x π⎛⎤∈ ⎥⎝⎦时,cos sin 0,0x x x e x ≥>>>,()cos sin sin sin sin ()0x x x F x e x x x e x x x x e x ∴=-≥-=->恒成立.()F x ∴在04π⎛⎤ ⎥⎝⎦,上无零点;③当,42x ππ⎛⎤∈ ⎥⎝⎦时, 0cos sin x x <<, ()()()cos sin cos sin 0x F x e x x x x x '∴=--+<,()F x ∴在42ππ⎛⎤ ⎥⎝⎦,上单调递减;又40,022424F F e πππππ⎫⎛⎫⎛⎫=-<=->⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()F x ∴在42ππ⎛⎤ ⎥⎝⎦,上必存在一个零点; 综上,()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.22.(1)最大值为24e ,最小值为2e -;(2)[)2,-+∞.【分析】(1)2a =-代入()f x ,对函数求导,利用导数正负确定单调性即可;(2)先利用极限思想进行估值x →+∞时()0f x '>,来确定()f x 在()1,+∞上单增,()0f x '≥,再对32310x x a x -++-≥分离参数,研究值得分布即得结果.【详解】(1)()()3231x f x e x x a x '=-++-当2a =-时,()()()()()3233311x x f x e x x x e x x x '=+--=+-+∴()f x '在()3,1--和()1,+∞上为正,在(),3-∞-和()1,1-上为负,∴()f x 在()3,1--和()1,+∞上单增,在(),3-∞-和()1,1-上单减,有()21f e-=-,()224f e =,()12f e =-,故()f x 在[]1,2-上的最大值为24e ,最小值为2e -;(2)由()()3231x f x e x x x a '=+-+-知,当x →+∞时,()0f x '>,若()f x 在()1,+∞上单调则只能是单增,∴()0f x '≥在()1,+∞恒成立,即32310x x a x -++-≥∴3231a x x x ≥--++,令()3231g x x x x =--++,1x >,则()23610g x x x '=--+<,∴()g x 在()1,+∞递减,()()12g x g <=-,∴[)2,a ∈-+∞.【点睛】(1)利用导数研究函数()f x 的最值的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性;③利用单调性判断极值点,比较极值和端点值得到最值即可.(2)函数()f x 在区间I 上递增,则()0f x '≥恒成立;函数()f x 在区间I 上递减,则()0f x '≤恒成立.(3)解决恒成立问题的常用方法:①数形结合法;②分离参数法;③构造函数法.23.(1)函数()g x的一个极大值点为,对应的极大值为9,另一个极大值点为9;函数()g x 极小值点为0,对应的极小值为0;(2)4,13⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求出()g x 的表达式,结合函数的奇偶性即可求出140a b ⎧=-⎪⎨⎪=⎩,从而可确定()g x 的解析式,求出导数即可求出函数的极值点和极值.(2)结合第一问可得()h x 的解析式,从而可求出2()32h x cx x c '=-+,由()h x 的单调性可得213c x x ≥+在[]2,5上恒成立,设()13m x x x =+,利用导数求出()m x 在[]2,5上的最小值,从而可求出实数c 的取值范围.【详解】解:(1)∵432()f x ax x bx =++,∴32()432f x ax x bx '=++,∴432()()()(41)(3)2g x f x f x ax a x b x bx '=+=+++++,因为()g x 为偶函数,∴41020a b +=⎧⎨=⎩,解得140a b ⎧=-⎪⎨⎪=⎩,∴431()4f x x x =-+,则421()34g x x x =-+,∴3()6(g x x x x x x '=-+=-,由()0g x '>,解得x <或0x <<()0g x '<,解得>x0x <<; ∴()g x在(,-∞,(单调递增;在(),)+∞单调递减.∴函数()g x的一个极大值点为(9g =,9g =; 函数()g x 极小值点为0,对应的极小值为()00g =.(2)由(1)知431()4f x x x =-+,∴43221()()(1)4h x f x x c x x cx c =++--++322cx x cx c =-++,∴2()32h x cx x c '=-+,因为函数()h x 在[]2,5上单调递增,∴2320cx x c -+≥在[]2,5上恒成立,即 2221313x c x x x≥=++在[]2,5上恒成立,设()13m x x x =+,令()22213130x m x x x -'=-==,解得[]2,5x =, 当[]2,5x ∈时,()0m x '>,所以()13m x x x=+在[]2,5上单调递增, 则()()1322m x m ≥=,所以24=13132c ≥. 【点睛】方法点睛:已知奇偶性求函数解析式时,常用方法有:一、结合奇偶性的定义,若已知偶函数,则()()f x f x -=,若已知奇函数,则()()f x f x -=-,从而可求出函数解析式;二、由奇偶性的性质,即偶函数加偶函数结果也是偶函数,奇函数加奇函数结果也是奇函数. 24.(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞⎪⎝⎭上单调递增,在1,ln22a ⎛⎫-∞ ⎪⎝⎭上单调递减;(2)20,e ⎡⎫⎪⎢⎣⎭. 【分析】(1)分别在0a ≤和0a >两种情况下,根据()f x '的正负可确定()f x 的单调性;(2)根据(1)的结论可确定0a <不合题意;当0a =时,根据指数函数值域可知满足题意;当0a >时,令()min 0f x >,由此构造不等式求得结果.【详解】(1)由题意得:()22xf x e a '=-, 当0a ≤时,()0f x '>,()f x ∴在R 上单调递增;当0a >时,令()0f x '=得:1ln 22a x =. 当1ln 22a x <时,()0f x '<,()f x ∴在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减; 当1ln 22a x >时,()0f x '>,()f x ∴在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减. (2)由(1)可知:当0a <时,()f x 在R 上单调递增,当x →-∞时,20x e →,()1a x +→+∞,此时()0f x <,不合题意;当0a =时,2()0x f x e =>恒成立,满足题意.当0a >时,()f x 在1ln 22a x =处取最小值,且1ln ln 22222a a a a f ⎛⎫=-- ⎪⎝⎭, 令ln 0222a a a -->,解得:20a e <<,此时()0f x >恒成立. 综上所述:a 的取值范围为20,e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论,将问题转化为函数最小值大于零的问题,由此构造不等式求得结果.25.(1)2a =-(2)21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭【分析】(1)将(),()f x g x 的解析式代入曲线()()y f x g x =-,根据导数几何意义及垂直直线的斜率关系即可求得a 的值;(2)将0x 代入导函数(),()f x g x '',并代入不等式中化简变形,构造函数1()ln a m x x a x x+=-+,求得()m x '并令()0m x '=,对a 分类讨论即可确定满足题意的a 的取值范围.【详解】(1)由21()()ln 2y f x g x x a x =-=-, 得()a y x x x'=-.在2x =处的切线斜率为22a -, 直线370x y +-=的斜率为13-, 由垂直直线的斜率关系可知232a -=, 解得2a =-.(2)21(),()ln 2f x xg x a x ==, 则(),()a f x x g x x '='=, 不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln a x a x x x +<-. 整理得0001ln 0a x a x x +-+<. 构造函数1()ln a m x x a x x +=-+, 由题意知,在[]1,e 上存在一点0x ,使得()00m x <.22221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+'=--==. 因为0x >,所以10x +>,令0mx '=(),得1x a =+. ①当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增.只需()120m a =+<,解得2a <-.②当11a e <+≤即01a e <≤-时,()m x 在1x a =+处取最小值.令(1)1ln(1)10m a a a a +=+-++<即11ln(1)a a a ++<+, 可得11ln(1)(*)a a a++<+. 令1t a =+,即1t e <≤,不等式(*)可化为1ln 1t t t +<-: 因为1t e <≤,所以不等式左端大于1,右端小于等于1,所以不等式不能成立. ③当1a e +>,即1a e >-时,()m x 在[]1,e 上单调递减, 只需1()0a m e e a e +=-+<,解得211e a >e +-.综上所述,实数的取值范围是21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭. 【点睛】本题考查了导数的几何意义及由垂直关系求参数,导函数在解不等式中的应用,构造函数法分析函数的单调性、最值的综合应用,属于中档题.26.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ)=8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2),则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+. 令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.。
数学选修2-2第一章导数及其应用
![数学选修2-2第一章导数及其应用](https://img.taocdn.com/s3/m/d9ae5ab3960590c69ec37697.png)
数学选修2-2第一章导数及其应用1.一质点的运动方程是253s t =-,则在一段时间[11]t +∆,内相应的平均速度为( ) A.3()6t ∆+ B.3()6t -∆+ C.3()6t ∆- D.3()6t -∆-2.下列说法正确的是( )A.函数的极大值就是最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.闭区间上的连续函数一定存在最值3.抛物线214y x =在点(21)Q ,处的切线方程( ) A.10x y -++= B.30x y +-= C.10x y -+= D.10x y +-=4.设21()(1)f x x =-,则(0)f '等于( ) A.2-B.1- C.1 D.25.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( )A 充分不必要条件B 必要不充分条件C 充要条件 (D )非充分非必要条件6.曲线y=x 3+x-2 在点P 0处的切线平行于直线y=4x ,则点P 0的坐标是( ) A .(0,1) B.(1,0) C.(-1,-4)或(1,0) D.(-1,-4)7.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是( ) A .5 , -15 B.5 , 4 C.-4 , -15 D.5 , -168.已知201()212x x f x x x ⎧⎪=⎨-<⎪⎩,,,, ≤≤ ≤则20()f x dx =⎰( )A.56 B.76 C.43 D.53 9.设()f x '是函数()f x 的导函数,()y f x '=的图象如图所示,则()y f x =的图象最有可能的是( )10.设313y x ax c =-+在()-+,∞∞上单调递增,则( ) A.0a <且0c = B.0a >且c 是任意实数 C.0a <且c 是任意实数 D.0a <且0c ≠11.从边长为10cm 16cm ⨯的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为( ) A.312cmB.372cmC.3144cmD.3160cm12.如图,由曲线32y x x =-与2y x =所围图形的面积为( ) A.512B.3712C.94 D.8313.若对于任意x ,有3()4(1)1f x x f '==-,,则此函数解析式为 . 14.函数32x x y -=的单调增区间为 ,单调减区间为__________________; 15.函数()323922y x x x x =---<<有极大值 ,极小值 ;16.若()sin cos f x x α=-,则'()f α等于 ;17、已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是 18.设321()252f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的取值范围为 ; 19.计算下列定积分。
(典型题)高中数学高中数学选修2-2第三章《导数应用》测试卷(含答案解析)
![(典型题)高中数学高中数学选修2-2第三章《导数应用》测试卷(含答案解析)](https://img.taocdn.com/s3/m/4ab76fb83b3567ec112d8ae7.png)
一、选择题1.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( )A .()1,+∞B .[)3,+∞C .(],1-∞D .(],3-∞2.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( )A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞3.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞D .()8,+∞4.若曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e5.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .6.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞7.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B 3C 3D .r8.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃9.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e) 10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .1212.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln2+ D .ln21-二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫= ⎪⎝⎭()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.15.已知函数()211020x e x x x ef x lnx x x⎧--+≤⎪⎪=⎨⎪⎪⎩,,>,若方程f (x )﹣m =0恰有两个实根,则实数m 的取值范围是_____.16.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .17.函数()()21xf x x =-的最小值是______.18.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.19.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;22.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为 (米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升). (1)求y 关于v 的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v 取什么值时,总用氧量最少. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.设函数21()2x f x x e =. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.25.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计? 26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.2.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x=-,则()()21ln ln x g x x -=′, 令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减, ∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 3.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-, 故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.4.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由xy e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>. ∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.5.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.6.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立, 即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.7.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=,得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.8.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.9.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】 由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x=有两个交点, 又由()312ln xg x x-'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.12.A解析:A【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论.【详解】设函数()()()2ln 0=-=->y f x g x x x x , ()212120-'∴=-=>x y x x x x, 令0y '<,0x,02∴<<x,函数在2⎛⎫ ⎪⎝⎭上为单调减函数; 令0y '>,0x,∴>x,函数在⎫+∞⎪⎪⎝⎭上为单调增函数.2x ∴=时,函数取得极小值,也是最小值为111ln ln 22222-=+. 故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+.故选:A.【点睛】本题主要考查利用导数研究函数的最值,属于中档题.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m > 【分析】 转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果.【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点,当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m >【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x'-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()6sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.15.【分析】通过求导得出分段函数各段上的单调性从而画出图像若要方程f (x )﹣m=0恰有两个实根只需y=m 与y=f (x )恰有两个交点即可从而得出的取值范围【详解】(1)x≤0时f′(x )=ex ﹣x ﹣1易知解析:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭, 【分析】通过求导,得出分段函数各段上的单调性,从而画出图像.若要方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点即可,从而得出m 的取值范围.【详解】(1)x ≤0时,f ′(x )=e x ﹣x ﹣1,易知f ′(0)=0,而f ″(x )=e x ﹣1<0,所以f ′(x )在(﹣∞,0]上递减,故f ′(x )≥f ′(0)=0,故f (x )在(﹣∞,0]上递增, 且f (x )≤f (0)11e=+,当x →﹣∞时,f (x )→﹣∞. (2)x >0时,()21'lnx f x x-=,令f ′(x )>0,得0<x <e ;f ′(x )<0得x >e ; 故f (x )在(0,e )上递增,在(e ,+∞)递减, 故x >0时,()1()max f x f e e==;x →0时,f (x )→﹣∞;x →+∞时,f (x )→0. 由题意,若方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y =m 在图示①,②位置时,与y =f (x )有两个交点,所以m 的范围是:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 故答案为:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 【点睛】本题考查了方程根的问题转化为函数图像交点问题,以及利用导数求函数单调性.考查了转化思想和数形结合,属于中档题.16.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可.【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为22GE x = cm , 因为302x AE AH -== cm ,2A π∠=,所以包装盒的底面边长为2=(30)2HE x - cm , 所以包装盒的体积为232222()[(30)](60900)224V x x x x x x =-⋅=-+,030x <<, 则22()(3120900)4V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.17.【分析】对求导利用导数即可求得函数单调性和最小值【详解】因为故可得令解得;故当时单调递减;当时单调递增;当时单调递减且当趋近于1时趋近于正无穷;当趋近于正无穷时趋近于零函数图像如下所示:故的最小值为解析:14- 【分析】对()f x 求导,利用导数即可求得函数单调性和最小值,【详解】因为()()21xf xx=-,故可得()()311xf xx---'=,令()0f x'=,解得1x=-;故当(),1x∈-∞-时,()f x单调递减;当()1,1x∈-时,()f x单调递增;当()1,x∈+∞时,()f x单调递减.且()114f-=-,当x趋近于1时()f x趋近于正无穷;当x趋近于正无穷时,()f x趋近于零.函数图像如下所示:故()f x的最小值为14-.故答案为:14-.【点睛】本题考查利用导数研究函数的最值,属综合基础题.18.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln,0()log,0xxf x xx x+⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m的取值范围.【详解】当0x >时,2ln ()x f x x'=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →; 作出函数21ln ,0()log ,0x x f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<; 故答案为:1(0,)2.【点睛】 本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.19.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x +=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】 ()1ln 2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-. ∴ln 1x a x+=在0x >时有两个根,令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==- 当01x <<时,'()0g x >,当1x >时,'()0g x <, ∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<.【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导 解析:18a ≥ 【分析】依题意可得()210a f x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210a f x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x = 所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题. 三、解答题21.(1)答案见解析;(2)[)1,+∞.【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果.【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x a h x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>; ()h x ∴在(上单调递减,在)+∞上单调递增. (2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2a t x x x '=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200a x x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max 21x x-+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】 关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22.(1)见解析;(2)若c<3102,则当v =3102时,总用氧量最少;若c≥3102,则当v =c 时,总用氧量最少.【分析】(1)结合题意可得y 关于v 的函数关系式.(2)由(1)中的函数关系,求导后得到当0<v<3102时,函数单调递减;当v>3102时,函数单调递增.然后再根据c 的取值情况得到所求的速度. 【详解】(1)由题意,下潜用时 (单位时间),用氧量为×=+ (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时= (单位时间),用氧量为×1.5= (升), 因此总用氧量232409,(0)50v y v v=++>. (2)由(1)得232409,(0)50v y v v=++>, ∴y′=-=,令y′=0得v =32当0<v<3102y′<0,函数单调递减;当v>32y′>0,函数单调递增.①若c<32 ,则函数在(c ,32上单调递减,在(310215)上单调递增, ∴ 当v =32②若c≥32,则y 在[c ,15]上单调递增,∴ 当v =c 时,总用氧量最少.【点睛】(1)在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.(2)用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)(,2)(0,)()f x -∞-+∞和为的增区间,(2,0)()f x -为的减区间.(2)m <0 .【详解】解:(1)21()(2)22xxx e f x xe x e x x '=+=+ 令(2)0,02,(,2)(0,)()2xe x x x xf x +>><-∴-∞-+∞或和为的增区间, (2)0,20,(2,0)()2xe x x xf x +<-<<∴-为的减区间. (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min ()f x >m, 令:21()(2)022xxx e f x xe x e x x =+'=+= ∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点2222(2),(2)2,(0)0,()[0,2]f f e f f x e e-===∴∈, ∴m <0 25.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+- 因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题. 26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,.【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x ≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122m x x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解.【详解】(1)()f x 的定义域为(0,)+∞,∵()f x 在(0,)+∞上单调递增, ∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=, ∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122m x x +=,121x x ⋅=, ∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+ ()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+- 2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x ---+--=-+='=<, ∴()g x 在1,12⎛⎫ ⎪⎝⎭上为减函数, 又1111544ln 4ln 22424g ⎛⎫=-+=- ⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。
高二数学选修2-2导数单元测试题(有答案)
![高二数学选修2-2导数单元测试题(有答案)](https://img.taocdn.com/s3/m/58cd49d877232f60dccca12b.png)
导数复习一.选择题(1) 函数13)(23+-=x x x f 是减函数的区间为( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( )A .34y x =-B 。
32y x =-+C 。
43y x =-+D 。
45y x =- a(3) 函数y =a x 2+1的图象与直线y =x 相切,则a = ( )A . 18B .41C .21D .1(4) 函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4D .5(5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3()1f x ax x =++有极值的充要条件是 ( )A .0a >B .0a ≥C .0a <D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( )A . 12B . -1C .0D .1(8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002C 、200D 、100!(9)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( )A.19 B.29 C.13 D.23.10设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++=12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个D . 4个 13. y =e sin xcos(sin x ),则y ′(0)等于( ) A.0B.1C.-1D.214.经过原点且与曲线y =59++x x 相切的方程是( ) A.x +y =0或25x +y =0B.x -y =0或25x +y =0 C.x +y =0或25x -y =0D.x -y =0或25x -y =0 15.设f (x )可导,且f ′(0)=0,又xx f x )(lim 0'→=-1,则f (0)( )A.可能不是f (x )的极值B.一定是f (x )的极值C.一定是f (x )的极小值D.等于016.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0B.1C.n n)221(+-D.1)2(4++n n n 17、函数y=(x 2-1)3+1在x=-1处( )A 、 有极大值B 、无极值C 、有极小值D 、无法确定极值情况18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( )A 、310 B 、313 C 、316 D 、31919.过抛物线y=x 2上的点M (41,21)的切线的倾斜角是( )A 、300B 、450C 、600D 、90020.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( )abxy)(x f y ?=OA 、(0,1)B 、(-∞,1)C 、(0,+∞)D 、(0,21)21.函数y=x 3-3x+3在[25,23-]上的最小值是( )A 、889 B 、1C 、833 D 、522、若f(x)=x 3+ax 2+bx+c ,且f(0)=0为函数的极值,则( ) A 、c ≠0 B 、当a>0时,f(0)为极大值 C 、b=0 D 、当a<0时,f(0)为极小值23、已知函数y=2x 3+ax 2+36x-24在x=2处有极值,则该函数的一个递增区间是( ) A 、(2,3) B 、(3,+∞) C 、(2,+∞) D 、(-∞,3)24、方程6x 5-15x 4+10x 3+1=0的实数解的集合中( ) A 、至少有2个元素 B 、至少有3个元素 C 、至多有1个元素 D 、恰好有5个元素二.填空题25.垂直于直线2x+6y +1=0且与曲线y = x 3+3x -5相切的直线方程是 。
(压轴题)高中数学高中数学选修2-2第三章《导数应用》检测卷(包含答案解析)(2)
![(压轴题)高中数学高中数学选修2-2第三章《导数应用》检测卷(包含答案解析)(2)](https://img.taocdn.com/s3/m/3a8d1457f524ccbff0218483.png)
一、选择题1.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( ) A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫--⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭2.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( )A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>3.函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .4.已知函数()3ln f x x x =-与()3g x x ax =-的图像上存在关于x 轴的对称点,则实数a的取值范围为( ) A .()e -∞,B .1e ⎛⎤-∞ ⎥⎝⎦,C .(]e -∞, D .1e ⎛⎫-∞ ⎪⎝⎭,5.函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .(1,)+∞6.函数()f x 是定义在R 上的奇函数,且()10f =,当0x >时,有()()2xf x f x x '->恒成立,则不等式()0f x >的解集为( ) A .()()1,01,-⋃+∞ B .()()1,00,1-⋃ C .()(),11,-∞-⋃+∞ D .()(),10,1-∞-7.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B .32r C 3 D .r8.已知函数()y f x =在R 上可导且()02f =,其导函数()f x '满足()()02f x f x x '>--,对于函数()()x f x g x e=,下列结论错误..的是( ). A .函数()g x 在()2,+∞上为单调递增函数 B .2x =是函数()g x 的极小值点 C .0x ≤时,不等式()2xf x e ≤恒成立D .函数()g x 至多有两个零点9.已知可导函数()f x 的定义域为(,0)-∞,其导函数()'f x 满足()2()0xf x f x '->,则不等式2(2020)(2020)(1)0f x x f +-+-<的解集为( ) A .(,2021)-∞-B .(2021,2020)--C .(2021,0)-D .(2020,0)-10.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃11.函数()21ln 2f x x x =-在区间()0,2上的最大值为( ) A .12-B .0C .12D .无最大值12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.已知函数()2e 2=++x f x ax a ,若不等式()()1≥+f x ax x 对任意[]2,5x ∈恒成立,则实数a 的取值范围是____________.15.已知函数()2x e f x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________.16.已知数列()*4n n b n N =∈.记数列{}n b 的前n 项和为n T .若对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立,则实数k 的取值范围为______.17.已知函数2()f x x a =+,ln ()2e xg x x x=+,其中e 为自然对数的底数,若函数()y f x =与函数()y g x =的图象有两个交点,则实数a 的取值范围是________.18.函数()()21xf x x =-的最小值是______.19.已知函数()3223121x x f x x =+--在[],1m 上的最大值为17,则m =______.20.若函数()2122f x x x aInx =-+有两个不同的极值点,则实数a 的取值范围是__________.三、解答题21.已知函数()()ln 0af x x a a x=-+>. (1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值; (2)求函数()f x 在区间()1,e 上的零点个数;(3)若1x ∀、()21,x e ∈,()()()12120x x f x f x ⎡⎤-->⎣⎦,试写出a 的取值范围.(只需写出结论)22.已知函数21()2(2)2ln x f x a x a x =+-+(1)当1a =时,求函数()f x 的极值; (2)求()f x 的单调区间.23.已知函数()xf x ax e =-(a R ∈,e 为自然对数的底数).(1)讨论()f x 的单调性;(2)当1x ≥-,()232f x a x ≤--恒成立,求整数a 的最大值.24.已知函数f(x)=12x 2+lnx. (1)求函数f(x)的单调区间; (2)求证:当x>1时,12 x 2+lnx<23x 3. 25.已知函数()2xf x e x a =-+,x ∈R ,曲线()y f x =的图象在点()()0,0f 处的切线方程为y bx =.(1)求,a b ,并证明()2f x x x ≥-+;(2)若()f x kx >对任意的()0,x ∈+∞恒成立,求实数k 的取值范围. 26.已知函数ln xy x=(0x >). (1)求这个函数的单调区间;(2)求这个函数在区间21,e e ⎡⎤⎢⎥⎣⎦的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3x y xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-, 则152x -=,152x +=;令()3x g x xe kx k =-+ 结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D【点睛】关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.2.A解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数;()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.3.B解析:B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x--≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4.B解析:B【分析】由题中对称知f (x )=﹣g (x )有解,即lnx a x =在(0,+∞)有解,令()lnxh x x=,求函数导数,分析单调性可得值域,进而可得解. 【详解】函数f (x )=lnx ﹣x 3与g (x )=x 3﹣ax 的图象上存在关于x 轴的对称点, ∴f (x )=﹣g (x )有解, ∴lnx ﹣x 3=﹣x 3+ax , ∴lnx =ax ,即lnxa x=在(0,+∞)有解, 令()lnx h x x =,则()1'lnxh x x-=. 当()()()0,,0,?x e h x h x >'∈单调递增; ()()(),,0?x e h x h x ∈+'∞<,单调递减.()()1max h x h e e==,且()0,x h x →→-∞,所以1a e≤. 故选B. 【点睛】本题主要考查了利用导数研究方程的根,涉及函数对称的处理,考查了计算能力,属于中档题.5.A解析:A 【分析】首先对函数求导,将函数在给定区间上单调增,转化为其导数在相应区间上大于等于零恒成立,构造新函数,利用导数研究其最值,求得结果. 【详解】()2ln 1f x ax x '=--,若函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增, 则()0f x '≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 则ln 12x a x +≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 令ln 11(),[,)2x g x x x e+=∈+∞,则2222ln 2ln ()42x xg x x x --'==-,可以得出01x <<时()0g x '>,当1x >时()0g x '<,所以函数()g x 在1[,1]e上单调递增,在[1,)+∞上单调递减, 所以max 1()(1)2g x g ==,所以12a ≥, 故选:A. 【点睛】该题考查的是与导数有关的问题,涉及到的知识点为根据函数在给定区间上单调增,确定参数的取值范围,属于中档题目.6.A解析:A 【分析】 构造函数()()(0)f x g x x x=≠,可得()g x 在定义域内为偶函数,并得到()g x 在(0,)+∞ 上单调递增,则在(,0)-∞上单调递减,且(1)0g =,(1)0g -=,结合函数的大致图像分析即可得到()0f x >的解集. 【详解】 构造函数()()(0)f x g x x x =≠,则()()2()xf x f x g x x'-'= 由于()f x 是定义在R 上的奇函数,则()()()()()f x f x f x g x g x x x x---====--, 故()g x 在定义域内为偶函数,图像关于y 轴对称;()10f =,则(1)0g =,(1)0g -=;又0x >时,有()()20xf x f x x '->恒成立,故()0g x '>在(0,)+∞上恒成立,即()g x 在(0,)+∞ 上单调递增;根据偶函数的对称性可得()g x 在(,0)-∞上单调递减, 所以()g x 的大致图像如下图:()0f x >,即为当0x <时,()0<g x ,当0x >时,()0>g x 的解集,所以()0f x >,则10x -<<或1x >; 即()0f x >的解集为()()1,01,-⋃+∞ 故选:A. 【点睛】本题考查奇偶函数的定义,根据导数符号判断函数单调性,根据函数单调性解不等式,考查学生数形结合的思维能力,属于中档题目.7.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=, 得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.8.C解析:C 【分析】由()()02f x f x x '>--,利用导数求出函数()g x 的单调区间以及函数的极值,根据单调性、极值判断每个选项,从而可得结论. 【详解】()()xf xg x e =, 则()()()xf x f xg x e '-'=,2x >时,()()0f x f x '->,故()y g x =在(2,)+∞递增,A 正确;2x <时,()()0f x f x '-<,故()y g x =在(,2)-∞递减,故2x =是函数()y g x =的极小值点,故B 正确; 若g (2)0<,则()y g x =有2个零点, 若g (2)0=,则函数()y g x =有1个零点, 若g (2)0>,则函数()y g x =没有零点,故D 正确; 由()y g x =在(,2)-∞递减,则()y g x =在(,0)-∞递减, 由0(0)(0)2f g e ==,得0x 时,()(0)g x g , 故()2xf x e,故()2x f x e ≥,故C 错误; 故选:C . 【点睛】本题考查了利用导数研究函数的单调性、极值、零点问题,考查了构造函数法的应用,是一道综合题.9.B解析:B 【分析】由题可得当(,0)x ∈-∞时,()2()0xf x f x '->,进而构造函数2()()f x g x x =,可判断()g x 在(,0)-∞上的单调性,进而可将不等式转化为(2020)(1)g x g +<-,利用()g x 的单调性,可求出不等式的解集. 【详解】解:构造2()()(0)f x g x x x =<,则243()2()()2()()x f x x f x xf x f x g x x x ''⋅-⋅-'==,因为()2()0xf x f x '->,则()0g x '<∴函数()g x 在(,0)-∞上是减函数,∵不等式2(2020)(2020)(1)0f x x f +-+-<,且()2(1)(1)(1)1f g f --==--,等价于()()()()()2220201120201f x f g x +-<=-+-,即为(2020)(1)g x g +<-,所以2020120200x x +>-⎧⎨+<⎩,解得20212020x -<<-.故选:B 【点睛】本题考查函数单调性的应用,构造函数2()()f x g x x =是解决本题的关键,属于中档题. 10.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.11.A解析:A 【分析】利用导数分析函数()f x 在区间()0,2上的单调性,由此可求得该函数在区间()0,2上的最大值. 【详解】()21ln 2f x x x =-,()211x f x x x x-'∴=-=.当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当12x <<时,()0f x '<,此时,函数()f x 单调递减. 所以,当()0,2x ∈时,()()max 112f x f ==-. 故选:A. 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数()f x 在区间[],a b 上单调,则()f a 与f b 一个为最大值,另一个为最小值;(2)若函数()f x 在区间[],a b 内有极值,则要求先求出函数()f x 在区间[],a b 上的极值,再与()f a 、f b 比大小,最大的为最大值,最小的为最小值;(3)若函数()f x 在区间[],a b 上只有唯一的极大点,则这个极值点就是最大(最小)值点,此结论在导数的实际应用中经常用到.12.A解析:A先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx x f x x x x x e f x e-=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m >【分析】转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果.因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点, 当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m > 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】原不等式可化为当时该不等式恒成立当时不等式可化为从而构造函数求导并判断单调性可求出令即可【详解】由题意不等式可化为当时恒成立;当时不等式可化为令则求导得所以在上单调递减在上单调递增所以则综上 解析:(3,e ⎤-∞⎦【分析】原不等式可化为()e 2xa x ≥-,当2x =时,该不等式恒成立,当(]2,5x ∈时,不等式可化为e 2x a x ≥-,从而构造函数()e 2xg x x =-,求导并判断单调性,可求出()min g x ,令()min g x a ≥即可. 【详解】由题意,不等式()2e 21x ax a ax x ++≥+可化为()e 2xa x ≥-, 当2x =时,()e 2xa x ≥-恒成立;当(]2,5x ∈时,不等式可化为e 2xa x ≥-, 令()e 2xg x x =-,(]2,5x ∈,则()min g x a ≥,求导得()()()2e 32x x g x x -'=-,所以()g x 在()2,3上单调递减,在[]3,5上单调递增,所以()()3min 3e g x g ==,则3e a ≤,综上所述,实数a 的取值范围是(3,e ⎤-∞⎦. 故答案为:(3,e ⎤-∞⎦.【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为e 2xa x ≥-,通过构造函数()e 2xg x x =-,令()min g x a ≥,可求出a 的取值范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.15.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当解析:2,12e ⎛⎤-∞ ⎥⎝⎦【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立, 所以()()g x xf x =,在()0,x ∈+∞上是增函数, 所以()230xg x e ax '=-≥,在()0,x ∈+∞上是恒成立,即23xe a x≤,在()0,x ∈+∞上是恒成立,令2()3xe h x x=,所以()32()3x e x h x x-'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e,所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦.故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦.【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.16.【分析】先求得然后利用分离常数法通过构造函数法结合导数求得的取值范围【详解】由于公比为所以所以对任意的不等式恒成立即恒成立即对任意的恒成立构造函数则令解得而所以所以在上递增在上递减令所以故故答案为: 解析:34k ≥【分析】先求得n T ,然后利用分离常数法,通过构造函数法,结合导数,求得k 的取值范围. 【详解】由于14,4nn b b ==,公比为4,所以()()141441441414333n n n n T +-==-=--, 所以对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立, 即114843n k n +⋅≥-恒成立,即124126344n nn n k +--≥=对任意的*n N ∈恒成立. 构造函数()()6314x x f x x -=≥,则()()'6ln 43ln 464xx f x -⋅++=, 令'0f x解得041log 2x e =+. 而4411log log 2122e +>+=,44113log log 4222e +<+=, 所以012x <<.所以()f x 在[)01,x 上递增,在()0,x +∞上递减.令634n nn a -=,1239,416a a ==,12a a >. 所以134n a a ≤=,故34k ≥. 故答案为:34k ≥ 【点睛】本小题主要考查等比数列前n 项和公式,考查不等式恒成立问题的求解,考查数列的单调性和最值的判断,属于难题.17.【分析】将已知等价转化为函数与函数的图象有两个交点分别作出图象观察其只需满足二次函数顶点低于函数的顶点从而构建不等式解得答案【详解】函数与函数的图象有两个交点等价于函数与函数的图象有两个交点对函数求解析:21,e e ⎛⎫-∞+ ⎪⎝⎭【分析】将已知等价转化为函数22y x ex a =-+与函数ln xy x=的图象有两个交点,分别作出图象,观察其只需满足二次函数顶点低于函数ln xy x=的顶点,从而构建不等式,解得答案. 【详解】函数()y f x =与函数()y g x =的图象有两个交点, 等价于函数22y x ex a =-+与函数ln xy x=的图象有两个交点, 对函数ln x y x =求导,得21ln xy x-'=,()0,x e ∈,0y '>, 函数ln xy x=单调递增;(),x e ∈+∞,0y '<, 函数ln xy x =单调递减,在x e =处取得极大值,也是最大值为1e, 对二次函数22y x ex a =-+,其对称轴为x e =,顶点坐标为()2,e a e -分别作出图象,其若要有两个交点,则2211a e a e e e-<⇒<+故答案为:21,e e ⎛⎫-∞+ ⎪⎝⎭【点睛】本题考查由函数图象的交点个数求参数的取值范围,属于中档题.18.【分析】对求导利用导数即可求得函数单调性和最小值【详解】因为故可得令解得;故当时单调递减;当时单调递增;当时单调递减且当趋近于1时趋近于正无穷;当趋近于正无穷时趋近于零函数图像如下所示:故的最小值为 解析:14-【分析】对()f x 求导,利用导数即可求得函数单调性和最小值, 【详解】 因为()()21xf x x =-,故可得()()311x f x x ---'=,令()0f x '=,解得1x =-;故当(),1x ∈-∞-时,()f x 单调递减; 当()1,1x ∈-时,()f x 单调递增; 当()1,x ∈+∞时,()f x 单调递减. 且()114f -=-, 当x 趋近于1时()f x 趋近于正无穷;当x 趋近于正无穷时,()f x 趋近于零.函数图像如下所示:故()f x 的最小值为14-. 故答案为:14-. 【点睛】本题考查利用导数研究函数的最值,属综合基础题.19.【分析】利用导数得到的单调性和极值由极大值与比较得到【详解】函数所以令得所以时单调递增时单调递减所以时取极大值为因为在处取得最大值为所以解得(舍)(舍)故答案为:【点睛】本题考查利用导数研究函数的单 解析:32-【分析】利用导数得到()f x 的单调性和极值,由极大值与17比较,得到()17f m = 【详解】函数()3223121x x f x x =+--,所以()26612f x x x '=+-,令()0f x '=,得2x =-,1x =,所以(),2x ∈-∞-时,()0f x '>,()f x 单调递增,()2,1x ∈-时,()0f x '<,()f x 单调递减,所以2x =-时,()f x 取极大值,为()21917f -=>, 因为()f x 在x m =处取得最大值为17, 所以21m -<<,()322312117f m m m m =+--=,解得32m =-,6m =6m =-.故答案为:32-. 【点睛】本题考查利用导数研究函数的单调性、极值和最值,根据函数的最大值求自变量的值,属于中档题.20.【分析】对函数求导要满足题意只需导函数在定义域内有两个零点数形结合即可求得【详解】由可得函数定义域为且若满足有两个不同的极值点则需要满足有两个不同的实数根即在区间上有两个不同的实数根也即直线与函数有 解析:()0,1【分析】对函数求导,要满足题意,只需导函数在定义域内有两个零点,数形结合即可求得. 【详解】 由()2122f x x x aInx =-+可得函数定义域为()0,∞+且()2a f x x x=+-' 若满足()f x 有两个不同的极值点, 则需要满足()20af x x x=-'+=有两个不同的实数根, 即22a x x =-+在区间()0,∞+上有两个不同的实数根,也即直线y a =与函数()22,0,y x x x =-+∈+∞有两个交点,在直角坐标系中作图如下:数形结合可知,故要满足题意,只需()0,1a ∈. 故答案为:()0,1. 【点睛】本题考查由函数极值点的个数,求参数范围的问题,属基础题;本题也可转化为二次函数在区间()0,∞+上有两个实数根,从而根据二次函数根的分布进行求解.三、解答题21.(1)1a =;(2)答案见解析;(3)(][)0,1,e +∞.【分析】(1)由题意可得()10f '=,由此可解得实数a 的值; (2)求得()2x af x x -'=,对实数a 的取值进行分类讨论,分析函数()f x 在区间()1,e 上的单调性,结合零点存在定理可得出结论; (3)根据(2)中的讨论可写出实数a 的取值范围. 【详解】(1)()221a x a f x x x x'-=-=, 因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =, 所以()110f a '=-=,解得1a =. 经检验1a =符合题意; (2)由(1)知()2x af x x -'=,令()0f x '=,得x a =. (i )当01a <≤时,()1,x e ∈,()0f x '>,函数()f x 在区间()1,e 上单调递增, 所以()()10f x f >=, 所以函数()f x 在区间()1,e 上无零点;(ii )当1a e <<时,若1x a <<,则()0f x '<,若a x e <<,则()0f x '>. 函数()f x 在区间()1,a 上单调递减,在区间(),a e 上单调递增, 且()10f =,()1ea f e a =-+. 当()10af e a e=-+>,即11e a e <<-时,函数()f x 在区间()1,e 上有一个零点;当()10a f e a e=-+≤时,即当ee e 1a <-≤时,函数()f x 在区间()1,e 上无零点; (iii )当a e ≥时,()1,x e ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减, 所以()()10f x f <=, 所以函数()f x 在区间()1,e 上无零点. 综上:当01a <≤或ee 1a ≥-时,函数()f x 在区间()1,e 上无零点; 当11ea e <<-时,函数()f x 在区间()1,e 上有一个零点. (3)01a <≤或a e ≥. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.22.(1)极大值为()512f =-,极小值为()22ln 24f =-;(2)详见解析. 【分析】(1)由导函数的正负可确定()f x 的单调性,进而确定极大值为()1f ,极小值为()2f ,代入可求得结果;(2)求得()f x '后,分别在0a ≤、02a <<、2a =和2a >四种情况下确定()f x '的正负,由此可得单调区间.【详解】(1)当1a =时,()212ln 32f x x x x =+-, ()()()()21223230x x x x f x x x x x x---+'∴=+-==>, ∴当()0,1x ∈和()2,+∞时,()0f x '>;当()1,2x ∈时,()0f x '<,()f x ∴在()0,1,()2,+∞上单调递增,在()1,2上单调递减,()f x ∴在1x =处取得极大值,在2x =处取得极小值,()f x ∴极大值为()512f =-,极小值为()22ln 24f =-.(2)由题意得:()()()()()()2222220x a x a x a x a f x x a x x x x-++--'=+-+==>, ①当0a ≤时,当()0,2x ∈时,()0f x '<;当()2,x ∈+∞时,()0f x '>,()f x ∴的单调递减区间为()0,2,单调递增区间为()2,+∞;②当02a <<时,当()0,x a ∈和()2,+∞时,()0f x '>;当(),2x a ∈时,()0f x '<,()f x ∴的单调递减区间为(),2a ,单调递增区间为()0,a ,()2,+∞;③当2a =时,()0f x '≥在()0,∞+上恒成立,()f x ∴的单调递增区间为()0,∞+,无单调递减区间;④当2a >时,当()0,2x ∈和(),a +∞时,()0f x '>;当()2,x a ∈时,()0f x '<,()f x ∴的单调递减区间为()2,a ,单调递增区间为()0,2,(),a +∞;综上所述:当0a ≤时,()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞;当02a <<时,()f x 的单调递减区间为(),2a ,单调递增区间为()0,a ,()2,+∞;当2a =时,()f x 的单调递增区间为()0,∞+,无单调递减区间;当2a >时,()f x 的单调递减区间为()2,a ,单调递增区间为()0,2,(),a +∞.【点睛】本题考查导数在研究函数中的应用,涉及到利用导数求解函数的极值、讨论含参数函数的单调性的问题;讨论含参数函数单调性的关键是能够通过导函数的零点所处的范围进行分类讨论,由此确定导函数的正负.23.(1)见解析;(2)1.【分析】(1)按照0a ≤、0a >分类,结合导函数的正负即可得解;(2)转化条件为2231ex x ax a ++-≤在[)1,-+∞上恒成立,令()223,1x x ax a g x x e++-=≥-,按照4a ≥、4a <分类,结合导数确定函数()g x 的最大值即可得解.【详解】(1)当0a ≤时,()f x 在R 上单调递减;当0a >时,()xf x a e '=-, 故当ln x a <时,有()0f x '>,所以()f x 在(),ln a -∞单调递增;当ln x a >时,有()0f x '<,所以()f x 在()ln ,a +∞上单调递减;所以当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞上单调递增,在()ln ,a +∞上单调递减;(2)因为当1x ≥-时,()232f x a x ≤--恒成立, 所以2231ex x ax a ++-≤在[)1,-+∞上恒成立, 令()223,1x x ax a g x x e++-=≥-, 则()()()()22313e ex x x a x a x x a g x ⎡⎤-+-+--++-⎣⎦'==, ①当31a -≤-即4a ≥时,()0g x '≤,()g x 在[)1,-+∞单调递减,则要使()()121g a e -=-≤,解得12a e ≤+(不合题意); ②当31a ->-即4a <时, 则当()1,3x a ∈--时,()0g x '>,函数()g x 单调递增;当()3,x a ∈-+∞时,()0g x '<,函数()g x 单调递减;则要使()()()()233max 3323631a a a a a a a g x g a e e---+-+--=-==≤ 令31t a =->-,3a t =-,设()3,1t t h t t e +=>-,则要使()1h t ≤, 因为()20et t h t --'=<,所以()h t 在()1,-+∞单调递减, 而()11h >,()21h <,所以整数t 的最小值为2,故整数a 的最大值为1.【点睛】本题考查了利用导数研究函数的单调性及解决不等式恒成立问题,考查了运算求解能力与逻辑推理能力,属于中档题.24. (1) f(x)的单调增区间为(0,+∞) (2)略【分析】(1)对函数求导,根据定义域,即可判断其单调性,从而知单调区间.(2)证明当x>1时,2312ln 23x x x +<,只需证当x>1时,3221ln 032x x x -->, 可设3221()ln 32g x x x x =--,只需证明1x >时,()0>g x ,因此,利用导数研究()g x 的单调性,得出()(1)0g x g >>,结论得证.【详解】(1)依题意知函数的定义域为{x|x>0},∵f′(x)=x +,故f′(x)>0,∴f(x)的单调增区间为(0,+∞).(2)设g(x)=x 3-x 2-lnx ,∴g′(x)=2x 2-x -,∵当x>1时,g′(x)=>0,∴g(x)在(1,+∞)上为增函数,∴g(x)>g(1)=>0,∴当x>1时, x 2+lnx<x 3.【点睛】(1)求函数的单调区间,首先要考虑函数的定义域,然后求导,导函数大于0,可求单调递增区间,导函数小于0,可求单调递减区间.对于单调函数只需说明导函数大于0(小于0)即可.(2)证明不等式一般是证明与函数有关的不等式在某个范围内成立,解题时可转化为求函数最值(或值)的问题处理.25.(1)1a =-,1b =,证明见解析;(2)(),2e -∞-.【分析】(1)先求出()21x f x e x =--,则()()21xg x f x x x e x =+-=--,利用导数求出()()min 00g x g ==,不等式即得证;(2)价于()f x k x >对任意的0,恒成立,令()()f x x xϕ=,0x >,求出函数()y x ϕ=的最小值即得解.【详解】(1)根据题意,函数()2x f x e x a =-+,则()2x f x e x '=-,则()01f b '==,由切线方程y bx =可得切点坐标为()0,0,将其代入()y f x =,解得1a =-, 故()21x f x e x =--,则()()21xg x f x x x e x =+-=--, 则()10xg x e '=-=,得0x =, 当(),0x ∈-∞,0g x,函数y g x 单调递减; 当()0,x ∈+∞,0g x ,函数y g x 单调递增;所以()()min 00g x g ==,所以()2f x x x ≥-+.(2)由()f x kx >对任意的当()0,x ∈+∞恒成立等价于()f x k x >对任意的0,恒成立,令()()f x x xϕ=,0x >, 得()()()()()()()22222111x x x x e x e x x e x xf x f x x x x xϕ-------'-'===, 由(1)可知,当()0,x ∈+∞时,10x e x -->恒成立,令()0ϕ'>x ,得1x >;()0ϕ'<x ,得01x <<,所以()y x ϕ=的单调增区间为1,,单调减区间为0,1,故()()min 12x e ϕϕ==-,所以()min 2k x e ϕ<=-.所以实数k 的取值范围为(),2e -∞-.【点睛】本题主要考查利用导数求函数的最值,考查利用导数研究不等式的恒成立问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平.26.(1)函数ln x y x =在()0,e 单调递增;在(),e +∞单调递减;(2)最大值1e,最小值e -.【分析】(1)对函数进行求导得()21ln x y f x x -''==,解不等式,即可得答案; (2)求出端点的函数值和极值,再进行比较,即可得答案;【详解】(1)()21ln x y f x x -''==, 解()0f x '=得x e =, 当0x e <<时,()0f x '>,所以函数ln x y x =在()0,e 单调递增; 当x e >时,()0f x '<,所以函数ln x y x =在(),e +∞单调递减. (2)由(1)知,()ln x y f x x ==在区间1,e e ⎡⎤⎢⎥⎣⎦单调递增,在区间2,e e ⎡⎤⎣⎦单调递减, 所以最大值为()1f e e =,而1f e e ⎛⎫=- ⎪⎝⎭;()222f e e =. 因为()21f f ee ⎛⎫< ⎪⎝⎭,所以,ln x y x =在区间21,e e ⎡⎤⎢⎥⎣⎦的最大值1M e =,最小值m e =-. 【点睛】本题考查利用导数研究函数的单调性和极值,考查函数与方程思想,考查运算求解能力,属于基础题.。
(易错题)高中数学高中数学选修2-2第三章《导数应用》检测卷(有答案解析)(1)
![(易错题)高中数学高中数学选修2-2第三章《导数应用》检测卷(有答案解析)(1)](https://img.taocdn.com/s3/m/a55965effc4ffe473268ab26.png)
一、选择题1.已知函数()ln f x x ax =-有两个零点,则实数a 的取值范围为( )A .1a e<B .0a <C .0a ≤D .10a e<<2.已知函数()32f x x bx cx =++的图象如图所示,则2212x x +等于( )A .23B .43C .83D .1633.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a 的取值范围为( )A .11,27⎛⎫-∞-⎪⎝⎭B .1,C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭4.以下不等式不成立的是( ) A .sin x x >,0,2x π⎛⎫∈ ⎪⎝⎭B .1ln x x -≥,()0,x ∈+∞C .10x e x --≥,x ∈RD .ln 10x x e +->,()0,x ∈+∞5.函数()ln sin f x x x =+(x ππ-≤≤且0x ≠)的大致图像是( )A .B .C .D .6.若1201x x ,则( )A .2121ln ln xxe e x x ->- B .2121ln ln x x ee x x -<-C .1221xxx e x e > D .1221xxx e x e <7.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃8.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞9.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .1 B .2 C .e D .2e10.已知函数()2x f x e =+,2()21g x x x =-+,若存在123,,,[0,1]n x x x x ∈,使得*122-1122-1()()()()+()()()()()+(),N n n n n n n f x f x f x g x g x g x g x g x f x f x n --++++=++++∈成立,则n 的最大值为( )(注:=2.71828e 为自然对数的底数)A .9B .8C .7D .611.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<12.已知函数()22ln f x x x =-,若关于x 的不等式()0f x m -≥在[]1,e 上有实数解,则实数m 的取值范围是( ) A .()2,2e -∞-B .(2,2e ⎤-∞-⎦C .(],1-∞D .(),1-∞二、填空题13.已知函数()24f x x ax =++(a ∈R ),()ln 2xg x x=+,若方程()0f g x ⎡⎤=⎣⎦有三个实根1x 、2x 、3x ,且123x x x <<,则2312123ln ln ln 222x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为______.14.函数()()2ln 23f x x x =++在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为____________.15.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有(1)()'()0x f x xf x -+>成立,且()1y f x e =+-是奇函数,则不等式()0x xf x e ->的解集是_________.16.已知函数()e e xxf x -=-,有以下命题:①()f x 是奇函数; ②()f x 单调递增函数;③方程()22f x x x =+仅有1个实数根;④如果对任意(0,)x ∈+∞有()f x kx >,则k 的最大值为2. 则上述命题正确的有_____________.(写出所有正确命题的编号) 17.已知函数2()f x x a =+,ln ()2e xg x x x=+,其中e 为自然对数的底数,若函数()y f x =与函数()y g x =的图象有两个交点,则实数a 的取值范围是________.18.某生产厂家生产一种产品的固定成本为1万元,并且每生产1百台产品需增加投入0.5万元.已知销售收入()R x (万元)满足()32191882R x x x x =-++(其中x 是该产品的月产量,单位:百台,08x <<),假定生产的产品都能卖掉,则当公司每月产量为______百台时,公司所获利润最大.. 19.已知函数21()ln 2f x x a x =+,若对任意两个不等的正实数1x ,2x 都有()()12122f x f x x x ->-恒成立,则实数a 的取值范围是____20.已知函数2()2ln af x x x=+,其中0a >,若()2f x ≥恒成立,则实数a 的取值范围为________.三、解答题21.设函数()()()ln 10f x x x =+≥,()()()101x x a g x x x ++=≥+.(1)证明:()2f x x x ≥-. (2)若()()f x xg x +≥恒成立,求a 的取值范围; (3)证明:当*n ∈N 时,()2121ln 149n n n-+>+++. 22.已知函数()ln 1x f x ae x =--.(1)设2x =是()f x 的极值点,求()f x 的单调区间; (2)证明:当1a e≥时,()0f x ≥. 23.已知函数2()f x alnx bx =-,a ,b R ∈.若()f x 在1x =处与直线12y 相切. (1)求a ,b 的值;(2)求()f x 在1[e,]e 上的最大值.24.定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“YZ 函数”. (1)判断函数()1x xf x e=-是否为“YZ 函数”,并说明理由; (2)若函数()()ln g x x mx m R =-∈是“YZ 函数”,求实数m 的取值范围; (3)已知()32111323h x x ax bx b =++-,()0,x ∈+∞,a 、b R ∈,求证:当2a ≤-,且01b <<时,函数()h x 是“YZ 函数”.25.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计? 26.已知函数ln xy x=(0x >). (1)求这个函数的单调区间;(2)求这个函数在区间21,e e⎡⎤⎢⎥⎣⎦的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出()f x 的导数,可得0a ≤时函数单调递增,不满足题意,0a >时,利用()max 0f x >可得.【详解】可知()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=, 当0a ≤时,()0f x '≥恒成立,()f x 单调递增,则()f x 不可能有两个零点; 当0a >时,10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增;1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减,则()f x 在1x a=处取得极大值即最大值11ln 1f a a ⎛⎫=- ⎪⎝⎭,要满足()ln f x x ax =-有两个零点,则1ln 10a ->,解得10a e<<, 综上,10a e<<. 故选:D. 【点睛】方法点睛:本题考查利用导数研究函数的零点,根据零点个数求参数,一般如下步骤: (1)求出函数的定义域,求出函数的导数;(2)先讨论参数范围(以明显使得导数为正或负为参数界点讨论); (3)利用导数正负讨论函数单调性,得出极值或最值; (4)以极值或最值列出满足条件的等式或不等式,即可求出.2.C解析:C 【分析】先利用函数的零点,计算b 、c 的值,确定函数解析式,再利用函数的极值点为x ,xz ,利用导数和一元二次方程根与系数的关系计算所求值即可 【详解】由图可知,()0f x =的3个根为0,1,2,()()110,28420f b c f b c ∴=++==++=,解得3,2b c =-=,又由图可知,12,x x 为函数f (x )的两个极值点,()23620f x x x ∴=-+='的两个根为12,x x ,121222,3x x x x ∴+==, ()222121212482433x x x x x x ∴+=+-=-=, 故选:C 【点睛】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法.3.C解析:C 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.4.D解析:D 【分析】针对ABC 选项中的不等式构造函数,然后利用导数研究函数的单调性,由此判断出不等式成立,利用特殊值判断出D 选项不等式不成立. 【详解】A.令()sin x x x f -=,0,2x π⎛⎫∈ ⎪⎝⎭,由()cos 10x x f '=->,则()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递增,则()()00sin 0sin f x f x x x x >=⇒->⇒>,不等式成立 B.令()1ln f x x x =--,()0,x ∈+∞,由()111x f x x x-'=-=,当()0,1x ∈,()0f x '<,()f x 单调递减,当()1,x ∈+∞,()0f x '>,()f x 单调递增,则()()101ln 01ln f x f x x x x ≥=⇒--≥⇒-≥,不等式成立C.令()1xf x e x =--,x ∈R ,由()1xf x e '=-,当(),0x ∈-∞,()0f x '<,()f x 单调递减,当()0,x ∈+∞,()0f x '>,()f x 单调递增, 则()()0010xf x f e x =⇒--≥≥,不等式成立D.令()ln 1xf x x e =+-,()0,x ∈+∞,当1x =时,()110f e =-<,所以不等式不成立.故选:D 【点睛】本小题主要考查利用导数证明不等式,属于中档题.5.D解析:D 【分析】利用函数的奇偶性排除选项,能过导数求解函数极值点的个数,求出()f π的值,从而可判断选项 【详解】解:因为()ln sin()ln sin ()f x x x x x f x -=-+-=+=, 所以()f x 为偶函数,故排除B当0πx <≤时,()ln sin f x x x =+,则'1()cos f x x x=+, 令'()0f x =,则1cos x x=-, 作出1,cos y y x x==-的图像如图,可知两个函数图像有一个交点,就是函数的极值点,所以排除A 因为()ln 1f ππ=>,所以排除C ,当0x x =时,'0()0f x =,故0(0,)x x ∈时,函数()f x 单调递增,当0(,)x x π∈时,函数()f x 单调递减,所以D 满足. 故选:D 【点睛】此题考查了与三角函数有关的函数图像识别,利用了导数判断函数的单调性,考查数形结合的思想,属于中档题6.C解析:C 【分析】令()x e f x x=,(01)x <<,()()ln 01xg x e x x =-<<,求出函数的导数,通过讨论x的范围,求出函数的单调区间,从而判断结论. 【详解】令()x e f x x =,(01)x <<,则2(1)()0x e x f x x-'=<, 故()f x 在(0,1)递减,若1201x x ,则12()()f x f x >,故1212x x e e x x >,即1221x xx e x e >,故C 正确,D 不正确; 令()()ln 01xg x e x x =-<<,则11()x xxe g x e x x-'=-=,令()1x h x xe =-,可知()h x 在()0,1单调递增,且(0)10,(1)10h h e =-<=->,则存在()00,1x ∈,使得0()0h x =, 则当()00,x x ∈时,()0h x <,即()0g x '<,()g x 在()00,x 单调递减, 当()0,1x x ∈时,()0h x >,即()0g x '>,()g x 在()0,1x 单调递增, 所以()g x 在()0,1不单调,故A ,B 错误. 故选:C. 【点睛】本题考查了函数的单调性问题,考查导数的应用,是一道中档题.7.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.8.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e'-'=∴=<∴单调递减 (1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D9.C解析:C【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论. 【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()xf x e '=,切线方程为000()-=-xx y e e x x ,切线过原点,∴000x x ee x -=-⋅,01x =,∴(1)kf e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.10.D解析:D 【分析】构造函数()()()h x f x g x =-,利用导数研究函数的单调性,求出函数的值域即可求解. 【详解】 由122-1()()()()+()n n n f x f x f x g x g x -++++*122-1()()()()+(),N n n n g x g x g x f x f x n -=++++∈,变形为:()()()()()()112222n n f x g x f x g x f x g x ---+-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()()11n n n n f x g x f x g x --=-+-⎡⎤⎡⎤⎣⎦⎣⎦,设()()()h x f x g x =-,则()()()()()1122n n n h x h x h x h x h x --+=+++,()()()()2222121x x h x f x g x e x x e x x =-=+--+=-++,()22'=-+x h x e x ,当[]0,1x ∈时,()0h x '>,所以[]0,1x ∈时,()h x 单调递增,()22h x e ∴≤≤+,()()()122n h x h x h x -∴++的值域为()()()22,22n e n -+-⎡⎤⎣⎦, 若存在123,,,[0,1]nx x x x ∈,使得()()()()()1122n n n h x h x h x h x h x --+=+++,则()42224n e ≤-≤+,44n e ∴≤≤+,且n *∈N ,n ∴的最大值为6.故选:D 【点睛】关键点点睛:本题考查了导数研究函数方程的根,解题的关键是构造函数()()()h x f x g x =-,考查了运算能力、分析能力. 11.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.12.B解析:B【分析】由题意可得()max m f x ≤,利用导数求出函数()f x 在区间[]1,e 上的最大值,由此可求得实数a 的取值范围.【详解】由题意可知,存在[]1,3x ∈,使得()m f x ≤,则()max m f x ≤.()22ln f x x x =-,则()()()22112222x x x f x x x x x -+-'=-==, 当[]1,3x ∈时,()0f x '≥,所以,函数()f x 在区间[]1,e 上单调递增,则()()2max 2f x f e e ==-,22m e ∴≤-, 因此,实数m 的取值范围是(2,2e ⎤-∞-⎦. 故选:B.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题13.16【分析】利用导数画出函数的大致图象数形结合可得有两个不等实根满足且即可得解【详解】因为所以令得所以当时函数单调递增;当时函数单调递减又故可画出函数的大致图象如图所示:因为方程有三个实根故有两个不 解析:16【分析】利用导数画出函数()g x 的大致图象,数形结合可得()0f x =有两个不等实根,满足124t t =、121022t t e<<<<+,且111ln 2x t x =+,32223ln ln 22x x t x x =+=+,即可得解. 【详解】因为()ln 2x g x x=+,()0,x ∈+∞,所以()21ln x g x x-'=,令()0g x '=得x e =, 所以当()0,x e ∈时,()0g x '>,函数()g x 单调递增;当(),x e ∈+∞时,()0g x '<,函数()g x 单调递减,又()12g e e =+, 故可画出函数()g x 的大致图象,如图所示:因为方程()0f g x =⎡⎤⎣⎦有三个实根,故()0f x =有两个不等实根,不妨设两根为1t ,2t ,且12t t <,则124t t =,所以121022t t e <<<<+, 则111ln 2x t x =+,32223ln ln 22x x t x x =+=+, 所以()22223121212123ln ln ln 22216x x x t t t t x x x ⎛⎫⎛⎫⎛⎫+++=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:16.【点睛】本题考查了函数的零点与方程的根的关系,考查了利用导数研究函数的单调性和极值,属于中档题.14.【分析】利用导数求得函数的单调性进而求得极值和区间端点处的函数值值找出函数的最大值和最小值即可【详解】解:由题得的定义域为由得或因为所以时单调递增;时单调递减;所以为极小值点且又因为又所以所以所以故 解析:5ln 716+【分析】利用导数求得函数的单调性,进而求得极值和区间端点处的函数值值,找出函数的最大值和最小值即可.【详解】解:由题得()f x 的定义域为3,2⎛⎫-+∞ ⎪⎝⎭, ()22(1)(21)22323x x f x x x x ++'=+=++ 由()0f x '=得,1x =-或12x =-,因为31,44x ⎡⎤∈-⎢⎥⎣⎦所以11,24⎛⎤- ⎥⎝⎦时,()0f x '>,()f x 单调递增; 31,42x ⎡⎤∈--⎢⎥⎣⎦时,()0f x '<,()f x 单调递减; 所以12x =-为极小值点,且11ln 224f ⎛⎫-=+ ⎪⎝⎭, 又因为339ln 4216f ⎛⎫-=+ ⎪⎝⎭,171ln 4216f ⎛⎫=+ ⎪⎝⎭ 又13711ln ln 2044322f f ⎛⎫⎛⎫--=->-> ⎪ ⎪⎝⎭⎝⎭,所以max 171()ln 4216f x f ⎛⎫==+ ⎪⎝⎭ 所以()min 11ln 224f x f ⎛⎫=-=+ ⎪⎝⎭. 所以max min 7115()()lnln 2ln 7216416f x f x +=+++=+. 故答案为:5ln 716+. 【点睛】 本题主要考查用导数求函数的最值,属于中档题.15.【分析】将问题转化为解不等式令根据函数的单调性以及奇偶性求出的范围即可【详解】由可得令则故在上单调递增又是奇函数故故解得:故答案为:【点睛】本题主要考查了函数的单调性问题考查导数的应用以及函数的奇偶 解析:()1,+∞【分析】将问题转化为解不等式()1x xf x e >,令()()x xf x g x e =,根据函数的单调性以及奇偶性求出x 的范围即可.【详解】由()0x xf x e ->可得()1x xf x e >,令()()x xf x g x e =,则()()()()10xx f x xf x g x e -+''=>,故()g x 在R 上单调递增, 又()1y f x e =+-是奇函数,故()1f e =,()11g =,故()()1g x g >,解得:1x >,故答案为:()1,+∞.【点睛】本题主要考查了函数的单调性问题,考查导数的应用以及函数的奇偶性,属于中档题. 16.①②④【分析】根据题意依次分析4个命题对于①由奇函数的定义分析可得①正确;对于②对函数求导分析可得分析可得②正确;对于③分析可得即方程有一根进而利用二分法分析可得有一根在之间即方程至少有2跟故③错误解析:①②④【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数()x x f x e e -=-求导,分析可得()0f x '>,分析可得②正确;对于③、2()2x x g x e e x x -=---,分析可得(0)0g =,即方程2()2f x x x =+有一根0x =,进而利用二分法分析可得()g x 有一根在(3,4)之间,即方程2()2f x x x =+至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案.【详解】解:根据题意,依次分析4个命题:对于①、()x x f x e e -=-,定义域是R ,且()()x x f x e e f x --=-=-,()f x 是奇函数;故①正确;对于②、若()x x f x e e -=-,则()0x x f x e e -'=+>,故()f x 在R 递增;故②正确; 对于③、2()2f x x x =+,令2()2x x g x e e x x -=---,令0x =可得,(0)0g =,即方程2()2f x x x =+有一根0x =,()3313130g e e =--<,()4414200g e e =-->, 则方程2()2f x x x =+有一根在(3,4)之间,故③错误;对于④、如果对任意(0,)x ∈+∞,都有()f x kx >,即0x x e e kx --->恒成立, 令()x x h x e e kx -=--,且(0)0h =,若()0h x >恒成立,则必有()0x x h x e e k -'=+->恒成立,若0x x e e k -+->,即1x x x xk e e e e -<+=+恒成立,而12x xe e +,若有2k <, 故④正确;综合可得:①②④正确;故答案为:①②④.【点睛】本题考查函数的奇偶性、单调性的判定,以及方程的根与恒成立问题的综合应用,③关键是利用二分法,属于中档题.17.【分析】将已知等价转化为函数与函数的图象有两个交点分别作出图象观察其只需满足二次函数顶点低于函数的顶点从而构建不等式解得答案【详解】函数与函数的图象有两个交点等价于函数与函数的图象有两个交点对函数求 解析:21,e e ⎛⎫-∞+ ⎪⎝⎭ 【分析】将已知等价转化为函数22y x ex a =-+与函数ln x y x =的图象有两个交点,分别作出图象,观察其只需满足二次函数顶点低于函数ln x y x =的顶点,从而构建不等式,解得答案. 【详解】函数()y f x =与函数()y g x =的图象有两个交点,等价于函数22y x ex a =-+与函数ln x y x =的图象有两个交点, 对函数ln x y x =求导,得21ln x y x -'=,()0,x e ∈,0y '>, 函数ln x y x =单调递增;(),x e ∈+∞,0y '<, 函数ln x y x =单调递减,在x e =处取得极大值,也是最大值为1e, 对二次函数22y x ex a =-+,其对称轴为x e =,顶点坐标为()2,e a e - 分别作出图象,其若要有两个交点,则2211a e a e e e-<⇒<+故答案为:21,e e ⎛⎫-∞+ ⎪⎝⎭ 【点睛】本题考查由函数图象的交点个数求参数的取值范围,属于中档题.18.6【分析】设销售利润为利用导数求出的最大值即可【详解】设销售利润为依题意可得当时当时所以在单调递增在单调递减所以时取得极大值也是最大值所以当公司每月生产6百台时获得利润最大故答案为:6【点睛】本题考 解析:6【分析】 设销售利润为1(),()()12g x g x R x x =--,利用导数求出()g x 的最大值即可. 【详解】设销售利润为()g x ,依题意可得, 3232191119()11,(0,8)882288g x x x x x x x x =-++--=-+-∈, 2393()(6)848g x x x x x '=-+=--, 当(0,6)x ∈时,()0g x '>,当(6,8)x ∈时,()0g x '<,所以()g x 在(0,6)单调递增,在(6,8)单调递减,所以6x =时,()g x 取得极大值,也是最大值,所以当公司每月生产6百台时,获得利润最大.故答案为:6.【点睛】本题考查函数应用问题以及运用导数求最值,考查数学建模、数学计算能力,属于中档题. 19.【分析】由条件不妨设恒成立即为恒成立构造函数只需在上为增函数即可即求恒成立时的取值范围【详解】依题意不妨设恒成立恒成立设即在上为增函数恒成立只需的取值范围是故答案为:【点睛】本题考查函数的单调性求参 解析:[1,)+∞【分析】由条件不妨设12x x >,()()12122f x f x x x ->-恒成立,即为()()112222f x x f x x ->-恒成立,构造函数()()2g x f x x =-,只需()g x 在(0,)+∞上为增函数即可,即求()0g x '≥恒成立时a 的取值范围.【详解】依题意,不妨设12x x >,()()12122f x f x x x ->-恒成立, ()()112222f x x f x x ->-恒成立,设()()2g x f x x =-即12()(),()g x g x g x >在(0,)+∞上为增函数,2()2,()1220ln a g x x g x x x a x x'=-+-+=≥, 22,(0,)a x x x ≥-+∈+∞恒成立, 只需2max (2)1,(0,)a x x x ≥-+=∈+∞,a ∴的取值范围是[1,)+∞.故答案为:[1,)+∞.【点睛】本题考查函数的单调性求参数范围,构造函数把问题等价转化为函数的单调性是解题的关键,属于中档题.20.【分析】恒成立只需即可求出得出单调区间进而求出求解即可得出结论【详解】由得又函数的定义域为且当时;当时故是函数的极小值点也是最小值点且要使恒成立需则∴的取值范围为故答案为:【点睛】本题考查应用导数求 解析:[),e +∞【分析】()2f x ≥恒成立,只需min ()2f x ≥即可,求出()f x ',得出单调区间,进而求出min ()f x ,求解即可得出结论.【详解】 由2()2ln a f x x x =+,得()233222()x a a f x x x x-'=-+=, 又函数()f x 的定义域为(0,)+∞且0a >,当0x <<()0f x '<;当x ()0f x '>,故x =()f x 的极小值点,也是最小值点,且ln 1f a =+,要使()2f x ≥恒成立,需ln 12a +≥,则a e ≥,∴a 的取值范围为[),e +∞.故答案为:[),e +∞.【点睛】本题考查应用导数求函数的最值,恒成立问题等价转化为函数的最值,考查计算求解能力,属于中档题.三、解答题21.(1)证明见解析;(2)(],1-∞;(3)证明见解析.【分析】(1)令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞,利用导数判断函数单调递增,从而可得()()00h x h ≥=,即证.(2)令()()ln 11ax m x x x=+-+,转化为()0m x ≥恒成立,利用导数求出()()11x a m x x +-'=+,讨论a 的取值,判断函数的单调性,求出()()()min 100m x m a m =-<=,即求.(3)由(1)()2ln 1x x x +≥-,令1x n =,*n ∈N ,整理可得()21ln 1ln n n n n -+->,然后将不等式相加即可证明.【详解】(1)证明:令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞, ()21221011x x h x x x x+'=+-=≥++, 所以()h x 为单调递增函数,()()00h x h ≥=,故()2ln 1x x x +≥-. (2)()()f x x g x +≥,即为()ln 11ax x x +≥+, 令()()ln 11ax m x x x=+-+,即()0m x ≥恒成立, ()()()()2111111a x ax x a m x x x x +-+-'=-=+++,令()0m x '>,即10x a +->,得1x a >-. 当10a -≤,即1a ≤时,()m x 在[)0,+∞上单调递增,()()00m x m ≥=,所以当1a ≤时,()0m x ≥在[)0,+∞上恒成立;当10a ->,即1a >时,()m x 在()1,a -+∞上单调递增,在[]0,1a -上单调递减, 所以()()()min 100m x m a m =-<=,所以当1a >,()0m x ≥不恒成立.综上所述:a 的取值范围为(],1-∞.(3)证明:由(1)知()2ln 1x x x +≥-, 令1x n=,*n ∈N ,(]0,1x ∈, 211lnn n n n+->,即()21ln 1ln n n n n -+->, 故有ln 2ln10->, 1ln 3ln 24->, …… ()21ln 1ln n n n n-+->, 上述各式相加可得()2121ln 149n n n -+>+++. 【点睛】本题考查了利用导数证明不等式、利用导数研究不等式恒成立,考查了转化与划归的思想,属于中档题.22.(1)在()0,2上单调递减,在(2,)+∞上单调递增;(2)证明见解析.【分析】(1)由()20f '=可得212a e =,由导函数的符号可得函数的单调区间; (2)当1a e 时,()ln 1x e f x x e--()g x =,利用导数证明()0g x ≥即可. 【详解】(1)()f x 的定义域为1(0,),()e x f x a x'+∞=-. 由题设知,()20f '=,所以212a e =.从而22111()ln 1,()22x x f x e x f x e e e x'=--=-. 当02x <<时,()0f x <′;当2x >时,()0f x >′.所以()f x 在()0,2上单调递减,在(2,)+∞上单调递增.(2)证明:当1a e 时,()ln 1x e f x x e --. 设()ln 1x e g x x e =--,则1()x e g x e x'=-为(0,)+∞上的增函数, 当01x <<时,()0(1)g g x '<'=;当1x >时,()(1)0g x g ''>=.所以()g x 在(0,1)上递减,在(1,)+∞上递增,所以1x =是()g x 的最小值点.故当0x >时,()()10g x g ≥=.因此,当1ae时,()()0f x g x ≥≥. 【点睛】本题考查了由函数的极值点求参数,考查了利用导数求函数的单调区间,考查了利用导数证明不等式,属于中档题. 23.(1)112a b =⎧⎪⎨=⎪⎩;(2)12- . 【分析】(1)对()f x 进行求导,先利用导数求出在1x =处的导函数值,再结合导数的几何意义即可求出切线的斜率.列出关于a ,b 的方程求得a ,b 的值.(2)判定函数的单调性,可得函数的极大值就是最大值,求出函数的极值可确定出最大值.【详解】(1)函数2()(0)f x alnx bx x =->,()2a f x bx x ∴'=-, 函数()f x 在1x =处与直线12y相切, ∴(1)201(1)2f a b f b '=-=⎧⎪⎨=-=-⎪⎩,解得112a b =⎧⎪⎨=⎪⎩; (2)21()2f x lnx x =-,21()x f x x-'=, 当1x e e 时,令()0f x '>得:11x e <,令()0f x '<,得1x e <,()f x ∴在1[e,1],上单调递增,在[1,]e 上单调递减,所以函数的极大值就是最大值, ()max f x f ∴=(1)12=-. 【点睛】本小题主要考查函数单调性的应用、利用导数研究曲线上某点切线方程、导数在最大值、最小值问题中的应用考查运算求解能力、化归与转化思想.属于中档题.24.(1)()f x 是“YZ 函数”,理由见解析;(2)1,e ⎛⎫+∞ ⎪⎝⎭;(3)证明见解析. 【分析】(1)利用导数求出函数()y f x =的极大值,结合题中定义判断即可;(2)分0m ≤和0m >两种情况讨论,利用导数分析函数()y g x =的单调性,利用题中定义得出关于m 的不等式,进而可解得实数m 的取值范围;(3)求出函数()y h x =的导数()2h x x ax b =++',利用导数分析函数()y h x =的单调性,设函数()y h x =的极值点分别为1x 、2x ,可知1x 、2x 是方程()0h x '=的两根,进而可列出韦达定理,结合韦达定理证明出函数()y h x =的极大值为负数,由此可证得结论.【详解】(1)函数()1x x f x e =-是“YZ 函数”,理由如下: 因为()1x x f x e =-,则()1x x f x e='-, 当1x <时,()0f x '>;当1x >时,()0f x '<,所以函数()1x x f x e =-的极大值()1110f e =-<,故函数()1x x f x e=-是“YZ 函数”; (2)函数()ln g x x mx =-的定义域为()0,+∞,()1g x m x '=-. 当0m ≤时,()10g x m x-'=>,函数()y g x =单调递增,无极大值,不满足题意; 当0m >时,当10x m <<时,()10g x m x -'=>,函数单调递增, 当1x m>时,()10g x m x -'=<,函数单调递减, 所以函数()y g x =的极大值为111ln ln 1g m m m m m ⎛⎫=-⋅=--⎪⎝⎭,易知1ln 10g m m ⎛⎫=--< ⎪⎝⎭,解得1m e >, 因此,实数m 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭;(3) ()2h x x ax b =++',因为2a ≤-,01b <<,则240a b ∆=->, 所以()20h x x ax b =++='有两个不等实根,设为1x 、2x , 因为121200x x a x x b +=->⎧⎨=>⎩,所以1>0x ,20x >,不妨设120x x <<, 当10x x <<时,()0h x '>,则函数()y h x =单调递增;当12x x x <<时,()0h x '<,则函数()y h x =单调递减.所以函数()y h x =的极大值为()321111111323h x x ax bx b =++-, 由()21110h x x ax b =++='得()3211111x x ax b ax bx =--=--,因为2a ≤-,01b <<,所以()()322211111111111111323323h x x ax bx b ax bx ax bx b =++-=--++- ()()22211111121121111063333333ax bx b x bx b x b b b =+-≤-+-=--+-<. 所以函数()y h x =是“YZ 函数”.【点睛】本题考查函数的新定义“YZ 函数”的应用,考查利用导数求函数的极值、利用极值求参数,同时也考查了利用导数证明不等式,考查推理能力与运算求解能力,属于中等题. 25.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+-因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题. 26.(1)函数ln x y x =在()0,e 单调递增;在(),e +∞单调递减;(2)最大值1e ,最小值e -.【分析】(1)对函数进行求导得()21ln x y f x x-''==,解不等式,即可得答案; (2)求出端点的函数值和极值,再进行比较,即可得答案;【详解】(1)()21ln x y f x x -''==, 解()0f x '=得x e =, 当0x e <<时,()0f x '>,所以函数ln x y x =在()0,e 单调递增; 当x e >时,()0f x '<,所以函数ln x y x =在(),e +∞单调递减. (2)由(1)知,()ln x y f x x ==在区间1,e e ⎡⎤⎢⎥⎣⎦单调递增,在区间2,e e ⎡⎤⎣⎦单调递减, 所以最大值为()1f e e =,而1f e e ⎛⎫=- ⎪⎝⎭;()222f e e =. 因为()21f f ee ⎛⎫< ⎪⎝⎭,所以,ln x y x =在区间21,e e ⎡⎤⎢⎥⎣⎦的最大值1M e =,最小值m e =-. 【点睛】本题考查利用导数研究函数的单调性和极值,考查函数与方程思想,考查运算求解能力,属于基础题.。
汉寿一中数学选修2-2第一章导数及其应用练习卷四
![汉寿一中数学选修2-2第一章导数及其应用练习卷四](https://img.taocdn.com/s3/m/2b59a18902d276a200292e76.png)
汉寿一中数学选修2-2第一章导数及其应用练习卷四(单元检测)一、选择题:1.设'0()2f x =,则000()()lim 2k f x k f x k®--=( ) A .1- B .2- C .1 D .12 2.过原点作曲线x y e =的切线,则切点坐标是( )A .(1,)eB .(0,)eC .(,1)eD .(,0)e3.sin ()cos(sin )x f x e x =,则'(0)f =( )A .0B .1C .1-D .24.若曲线()y h x =在点(,())P a h a 处的切线方程为210x y ++=,那么( )A .'()0h a <B .'()0h a >C .'()0h a =D .'()h a 的符号无法确定5.定积分21(30x dx +ò等于( ) A .44ln 33- B .42ln 3+ C .44ln 33-- D .42ln 3-+ 6.sin cos 0t x e tdt =ò( ) A .cos 1x e - B .sin sin 1x e x - C .sin cos 1x e x - D .sin 1x e -7.函数4()4f x x x =-在[1,2]-上的最大、最小值分别为( )A .(1)f 与(1)f -B .(1)f 与(2)fC .(1)f -与(2)fD .(2)f 与(1)f -8.对于函数3()x f x xì=íî (0)(0)x x <³,下列说法正确的是( ) A .在(,)-¥+¥上单调递增 B .在(,)-¥+¥上单调递减C .在0x =处无意义D .(0,)x Î+¥时单调递增,(,0)x Î-¥时单调递减9.已知2'()2(1)f x x xf =+,则'(0)f =( )A .0B .2-C .4-D .210.函数()(4)0x f x t t dt =-ò在[1,5]-上( ) A .有最大值,无最小值 B .有最大值和最小值C .有最小值,无最大值D .无最值11.在半径为r 的半圆内作一个内接梯形,使其底为直径,其他三边为半圆的弦,则当梯形面积最大时,其上底长为( )A .2rB .2rC .3r D .r 12.关于函数32()3f x x x =-,给出下列命题:①()f x 在R 上单调递增,无极值;②()f x 在R 上单调递减,无极值;③()f x 的单调递增区间为(,0)-¥和(2,)+¥,单调递减区间为(0,2);④(0)0f =是极大值,(2)4f =-是极小值。
选修2-2《导数及其应用》测试题
![选修2-2《导数及其应用》测试题](https://img.taocdn.com/s3/m/cfc8f61d6c175f0e7cd13754.png)
人教B 版选修2-2《导数及其应用》测试题 姓名 得分 一.选择题:(只有一个结论正确,每小题4分,共60分) 1.曲线123-+=x x y 在点P (-1,-1)处的切线方程是 ( )A .1-=x yB .2-=x yC .x y =D .1+=x y2. 曲线f (x )= x 3+x -2在P 0点处的切线平行于直线y = 4x -1,则P 0点的坐标为 ( ) A .(1,0) B .(2,8) C .(1,0)和(-1,-4) D .(2,8)和(-1,-4)3.已知函数x x y 33-=,则它的单调递减区间是 ( ) A.)0,(-∞ B.)1,1(- C. ),0(+∞ D.)1,(--∞及),1(+∞4.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0= ( ) A .e 2B .e C.ln 22D .ln 25. .设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a = ( )A .2B . 2-C . 12-D.126已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+x 2,则f ′(1)= ( ) A .-1 B .-2 C .1 D .27. 下列求导运算正确的是 ( )xx x D e C x x B x x x A x x sin 2)cos (.log 3)3(.2ln 1)(log .11)1(.2322-='='='+='+ 8. 函数)2ln()(2--=x x x f 的单调递增区间是 ( )),和(∞+-+∞---∞2)21,1(.),2(.)21,1(.)1,(.D C B A 9. 设)()(),()(),()(,sin )(112010x f x f x f x f x f x f x x f n n '='='==+, ,)(N n ∈则=')(2005x f ( ) x D x C x B x A cos .cos .sin .sin .--10.已知函数y = f (x )在区间(a ,b )内可导,且x 0∈(a ,b ),则000()()limh f x h f x h h→+--= ( )A .f ′(x 0)B .2f ′(x 0)C .-2f ′(x 0)D .011. 设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))((0,0x f x P 处切线的倾角的取值范围为]4,0[π,则P 点到曲线)(x f y =对称轴距离的取值范围为 ( )ab D ab C aB aA21,0[.]2,0[.]21,0[.]1,0[- 12.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)= ( ) A .26B .29C .212D .215二.填空题:(每小4分,共20分)13.若过原点作曲线y =e x的切线,则切点的坐标为________,切线的斜率为________. 14.设函数f (x )=x (e x+1)+12x 2,则函数f (x )的单调增区间为________.15.函数f (x )=x 3-3x 2+1在x =________处取得极小值. 16.如果函数y=f(x)的导函数的图像如右图所示, 给出下列判断:(1) 函数y=f(x)在区间(3,5)内单调递增; (2) 函数y=f(x)在区间(-1/2,3)内单调递减;(3) 函数y=f(x)在区间(-2,2)内单调递增;(4) 当x= -1/2时,函数y=f(x)有极大值; (5) 当x=2时,函数y=f(x)有极大值;则上述判断中正确的是 .三.解答题:17.求下列函数的导数.(1)y =x 2sin x ; (2)y =log 2(2x 2+3x +1).18.设x x a x f ln 6)5()(2+-=,其中R a ∈,曲线)(x f 在点(1,f(1))处切线与y 轴交于点(0,6). (1)确定a 的值;(2)求函数)(x f 的单调区间.19.若函数xe xf x=)(在c x =处的导数值与函数值互为相反数,求c 的值.20.已知二次函数f (x )满足:①在x =1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x +y =0平行. ⑴求f (x )的解析式;⑵求函数g (x )=f (x 2)的单调递增区间.21.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值。
(完整版)高二数学选修2-2导数单元测试题(有答案)
![(完整版)高二数学选修2-2导数单元测试题(有答案)](https://img.taocdn.com/s3/m/48e53923e009581b6ad9eb69.png)
2
(1)当 a 2 时,求函数 f ( x) 极小值;( 2)试讨论曲线 y
f (x) 与 x 轴公共点的个数。
为 1 ,则 a _________ 。 6
2
39.已知 x 1 是函数 f ( x) mx3 3(m 1)x2 nx 1的一个极值点, 其中 m,n R, m 0 ,
( I )求 m 与 n 的关系式;
A、(2,3) B、(3,+∞)
C、(2,+∞)
24、方程 6x 5-15x 4+10x3+1=0 的实数解的集合中 ( )
D、(- ∞, 3)
A、至少有 2 个元素 B 、至少有 3 个元素 C、至多有 1 个元素 D 、恰好有 5 个元素
二.填空题
25.垂直于直线 2x+6y+1=0 且与曲线 y = x 3+ 3x-5 相切的直线方程是
A、 有极大值 B 、无极值 C 、有极小值
D、无法确定极值情况
18.f(x)=ax 3+3x2+2, f ’ (-1)=4 ,则 a=( )
A、 10 B 、 13
3
3
C 、 16
3
D
、 19
3
19. 过抛物线 y=x2 上的点 M( 1 , 1 )的切线的倾斜角是 (
)
24
A、300
B 、450 C 、600
解得
x1 1 2 , x2 1 2.
当 x 1 2,或 x 1 2时 , f (x) 0; 当
1 2 x 1 2时, f (x) 0. 故 f ( x) x 3 3x 2 3x 2在 ( ,1 2) 内 是 增 函 数 , 在
因 f ( x0 )
3( x02 1) ,故切线的方程为 y
2020年高中数学选修2-2导数及其应用单元检测卷(含答案解析)
![2020年高中数学选修2-2导数及其应用单元检测卷(含答案解析)](https://img.taocdn.com/s3/m/5d93817fdd3383c4ba4cd2c6.png)
10. 某商场从生产厂家以每件 20 元购进一批商品,若该商品零售价定为
p 元,销售量为 Q件,
2
则销售量 Q与零售价 p 有如下关系: Q=8300- 170p-p . 则最大毛利润为 ( 毛利润 =销售收入
-进货支出 )(
)
A. 30 元
B
. 60 元
C .28 000 元
D
. 23 000 元
23. 已知 f(x)=x 3+ ax2+bx+ c 在 x=1 与 x=-2 时都取得极值. (1) 求 a, b 的值; 11 (2) 若 x∈ [-3,2] 时都有 f(x)> c- 2恒成立,求 c 的取值范围.
第 4 页 共 10 页
第 5 页 共 10 页
答案解析
1. 答案为: B;
三、解答题
2
17. 已知曲线 y=2x -7 在点 P 处的切线方程为 8x- y- 15=0,求切点 P 的坐标.
18. 求下列函数的导数. (1)y=(2 018-8x) 8; (2)y=
2x ;
sin x
(3)y=x
1+x 2; (4)y=cos x ·sin 3x.
19. 已知函数 f(x)=x 3+ (1-a)x 2-a(a + 2)x + b(a , b∈ R) . (1) 若函数 f(x) 的图象过原点,且在原点处的切线斜率为 -3 ,求 a, b 的值; (2) 若曲线 y=f(x) 存在两条垂直于 y 轴的切线,求 a 的取值范围.
)
3π A. 4
π
π
π
B.
3
C.
4
D.
6
6. 已知函数 f(x)=x + ln x ,则 f ′(1) 的值为 ( )
第一章导数及其应用单元测试_A———高中数学选修2-2
![第一章导数及其应用单元测试_A———高中数学选修2-2](https://img.taocdn.com/s3/m/366e00aff524ccbff121847a.png)
第一章导数及其应用单元测试(A)参考答案
第 4 页 共 8 页
一、选择题(共 12 小题,每小题 5 分,共 60 分) 题号 1 2 3 4 5 6 答案 C A D A C B
第 3 页 共 8 页
21. (本小题满分 12 分)已知函数 f ( x) = x - 3 x.
3
(1)求曲线 y = f ( x ) 在点 x = 2 处的切线方程; (2)若过点 A(1, m) ( m ¹ -2) 可作曲线 y = f ( x ) 的三条切线,求实数 m 的取值范围.
a2 , g ( x ) = x + ln x ,其中 a > 0 . 22. (本小题满分14分)已知函数 f ( x ) = x + x (1)若 x = 1 是函数 h ( x ) = f ( x ) + g ( x ) 的极值点,求实数 a 的值;
第一章导数及其应用单元测试(A)
一、选择题(共 12 小题,每小题 5 分,共 60 分) 1. f ( x) = x , f '( x0 ) = 6 ,则 x0 = (
3
) D. ±1
b
A. 2 2.设连续函数
B. - 2
C. ± 2
f ( x) > 0 ,则当 a < b 时,定积分 òa f ( x )dx 的符号
2 3 21.解(1) f ¢( x ) = 3 x - 3, f ¢(2) = 9, f (2) = 2 - 3 ´ 2 = 2
………………………2 分
高二数学选修2-2导数及其应用测试题(含答案)(可编辑修改word版)
![高二数学选修2-2导数及其应用测试题(含答案)(可编辑修改word版)](https://img.taocdn.com/s3/m/d605db2819e8b8f67d1cb942.png)
x 2 + 1 1 高二数学选修 2-2 导数及其应用测试题一、 选择题(本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1 - x2 1. 设 y = sin x,则 y ' = ().- 2x sin x - (1 - x 2 ) cos xA .sin 2x - 2x sin x + (1 - x 2 )-2x sin x + (1 - x 2 ) cos xB .sin 2 x - 2x sin x - (1 - x 2 )C.D .sin xsin x2.设 f (x ) = ln ,则 f '(2) = ( ).4 2 13 A.B .C .D .55552x - 3 f (x ) 3.已知 f (3) = 2, f '(3) = -2 ,则limx →3x - 3的值为( ).A. - 4B. 0C . 8D .不存在4. 曲线 y = x 3 在点(2,8) 处的切线方程为( ).A . y = 6x - 12 C . y = 8x + 10B . y = 12x - 16 D . y = 2x - 325. 已知函数 f (x ) = ax 3 + bx 2+ cx + d 的图象与 x 轴有三个不同交点(0,0),(x ,0), (x ,0) ,且 f (x ) 在 x = 1, x = 2 时取得极值,则 x 1 ⋅ x 2 的值为( )A .4B .5C .6D .不确定6. 在 R 上的可导函数 f (x ) =1 x 3 + 1 ax 2+ 2bx + c ,当 x ∈ (0,1) 取得极大值,当 x ∈ (1,2) 3 2b - 2取得极小值,则的取值范围是( ).a - 1A. ( 1 4,1)B. ( 1 2,1)C. (- 1 , 1 )2 4D. (- 1 , 1 )2 27.函数 f (x ) = 1 e x(sin x + cos x ) 在区间 2 [0, ]的值域为( ).2A .[ 1, 2 1e 2 ]2B . ( 1 , 1 2 2e 2 )C .[1, e 2 ]D . (1, e 2)23 4V a42 n8.积分⎰-a a 2-x2dx=().A.1a24x 2 y 2B.1a22C.a2D.2a29.由双曲线-a 2b 2积为()= 1,直线y =b, y =-b 围成的图形绕y 轴旋转一周所得旋转体的体A.8ab23B.8a2b3C.4a2b3D.4ab2310.由抛物线y 2= 2x 与直线y =x - 4 所围成的图形的面积是().38 16A.18 B.C.D .163 311.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为().A.3V B.32V C.D.23V12.某人要剪一个如图所示的实心纸花瓣,纸花瓣的边界由六段全等的正弦曲线弧y = sin x(0 ≤x ≤) 组成,其中曲线的六个交点正好是一个正六边形的六个顶点,则这个纸花瓣的面积为().A.6 + 3 32B.12 +3 3 22C.6+2D.6 +3 3 22第Ⅱ卷(非选择题,共90 分)二、填空题(每小题4 分,共16 分。
(完整版)数学选修2-2练习题及答案
![(完整版)数学选修2-2练习题及答案](https://img.taocdn.com/s3/m/d6076d9e52ea551810a687ac.png)
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
(必考题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)
![(必考题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)](https://img.taocdn.com/s3/m/1461482049649b6649d747d0.png)
一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞3.已知定义域为R 的偶函数()f x ,其导函数为fx ,对任意[)0,x ∈+∞,均满足:()()2xf x f x >-'.若()()2g x x f x =,则不等式()()21g x g x <-的解集是( )A .(),1-∞-B .1,3⎛⎫-∞ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭4.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >5.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB的最小值为() A .1B .2C D 6.若函数1()ln f x x a x =-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) A .01a <<B .11a e<< C .111a e-<< D .111a e+<< 7.函数y =x 3+x 的递增区间是( )A .(0,+∞)B .(-∞,1)C .(-∞,+∞)D .(1,+∞)8.内接于半径为R 的球且体积最大的圆柱体的高为( ) ABCD9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤11.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.14.若函数()()2212ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是______.15.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.16.已知函数()()2ln 2f x x x g x x x a ==-++,,若∀x 1,x 2∈(0,+∞),f (x 1)≥g(x 2)恒成立,则实数a 的取值范围为__________17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.设函数()'f x 是偶函数()(0)f x x ≠的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是__________.19.已知函数()1ln f x x a x x=-+,存在不相等的常数m ,n ,使得()()''0f m f n ==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.20.设函数()2()1xf x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.设函数3222ln 11(),()28a x x f x g x x x x +==-+. (1)若曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,求函数()f x 的解析式;(2)如果对于任意的1213,[,]22x x ∈,都有112()()x f x g x ⋅≥成立,试求实数a 的取值范围.22.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.已知函数22()ln a f x a x x x=⋅++(0a ≠).(1)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,求实数a 的值;(2)讨论函数()f x 的单调性;(3)当(,0)a ∈-∞时,记函数()f x 的最小值为()g a ,求证:21()2g a e ≤. 25.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.26.已知函数ln xy x=(0x >). (1)求这个函数的单调区间;(2)求这个函数在区间21,e e⎡⎤⎢⎥⎣⎦的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.3.C解析:C 【解析】试题分析:[)0,x ∈+∞时()()()()()22(2)0g x xf x x f x x f x xf x =+='+'>',而()()2g x x f x =也为偶函数,所以()()()()21212121321013g x g x g x g x x x x x x <-⇔<-⇔<-⇔+-<⇔-<<,选C.考点:利用函数性质解不等式【方法点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等4.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1xx xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.5.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B . 【点睛】本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.6.C解析:C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】由题得211()0f x x x '=+>在区间()1,e 上恒成立, 所以函数1()ln f x x a x=-+在区间()1,e 上为增函数, 所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<<. 故选:C. 【点睛】本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【解析】y ′=3x 2+1>0对于任何实数都恒成立.8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得0h <<,故此时()V h 单调递增,令()0V h '<2h R <<,故此时()V h 单调递减.故()maxV h V ⎫=⎪⎪⎝⎭.即当3h R =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数.由()3,2f π=-故可得22h π⎛⎫=- ⎪⎝⎭,又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x =+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x =+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 11.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >;当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.14.或【分析】首先求出函数的导函数当时可得在定义域上单调递减再根据零点存在性定理可得在上存在唯一的零点当时由导数可得函数的单调性及最小值为令利用导数说明的单调性即可求出参数的值;【详解】解:因为定义域为解析:0a ≤或1a = 【分析】首先求出函数的导函数,当0a ≤时,可得()f x 在定义域上单调递减,再根据零点存在性定理可得()f x 在()0,1上存在唯一的零点,当0a >时,由导数可得函数()f x 的单调性及最小值为()min 1112ln f x f a a a ⎛⎫==+-⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞利用导数说明()g a 的单调性,即可求出参数a 的值; 【详解】解:因为()()2212ln 1f x ax a x x =+---,定义域为()0,∞+,所以()()()()()222122112221ax a x ax x f x ax a x x x+---+'=+--== 当0a ≤时,()0f x '<恒成立,即()f x 在定义域上单调递减,()()1310f a =-<,当0x +→时,20ax →,()210a x -→,2ln x -→+∞,所以()f x →+∞,所以()f x 在()0,1上存在唯一的零点,满足条件; 当0a >时,令()()()2110ax x f x x -+'=>,解得1x a >即函数在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()()()2110ax x f x x-+'=<,解得10x a <<即函数在10,a ⎛⎫⎪⎝⎭上单调递减,则()f x 在1x a =取值极小值即最小值,()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭, 令()112ln g a a a =+-,()0,a ∈+∞,则()2221210a g a a a a +'=+=>恒成立,即()112ln g a a a=+-在定义域上单调递增,且()112ln110g =+-=, 所以要使函数()()2212ln 1f x ax a x x =+---只有一个零点,则()min 1112ln 0f x f a a a ⎛⎫==+-= ⎪⎝⎭,解得1a =,综上可得0a ≤或1a =; 故答案为:0a ≤或1a = 【点睛】本题考查利用导数研究函数的零点问题,考查分类讨论思想,属于中档题.15.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数解析:2 【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=, 所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去). 所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--, 所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内, 所以2m =. 故答案为:2 【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.【分析】求导后即可求得根据二次函数的性质可得再由恒成立问题的解决方法可得即可得解【详解】求导得则当时函数单调递减;当时函数单调递增;所以;函数为开口向下对称轴为的二次函数所以当时;由题意可知即故答案解析:11a e≤--【分析】求导后即可求得()()11f x f ee --≥=-,根据二次函数的性质可得()()11g x g a ≤=+,再由恒成立问题的解决方法可得11a e -+≤-,即可得解. 【详解】求导得()ln 1f x x '=+,则当()10,x e -∈时,()0f x '<,函数()f x 单调递减;当()1,x e -∈+∞时,()0f x '>,函数()f x 单调递增;所以()()11f x f e e--≥=-;函数()22g x x x a =-++为开口向下,对称轴为1x =的二次函数,所以当()0,x ∈+∞时,()()11g x g a ≤=+; 由题意可知11a e -+≤-即11a e -≤--. 故答案为:11a e -≤--. 【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x x g -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增;又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <,∴2a ≥.故答案为:2a ≥. 【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】构造函数讨论单调性和奇偶性结合特殊值即可求解【详解】设函数是偶函数所以函数是奇函数且当时即当时单调递减所以当时当时是偶函数所以当时当时所以使得成立的的取值范围是故答案为:【点睛】此题考查利用解析:()()1,00,1-⋃【分析】 构造函数()()f x F x x=,讨论单调性和奇偶性,结合特殊值即可求解. 【详解】 设函数()()f x F x x =,()f x 是偶函数,()()()()f x f x F x F x x x--=-=-=-, 所以函数()F x 是奇函数,且()()()()1110,10F f f F ==-=-=, 当0x >时,()2()()0xf x f x F x x'-'=<, 即当0x >时,()F x 单调递减,()01F =, 所以当01x <<时,()()0f x F x x=>,()0f x >, 当1x >时,()()0f x F x x=<,()0f x <, ()f x 是偶函数,所以当10x -<<时,()0f x >,当1x <-时,()0f x <,所以使得()0f x >成立的x 的取值范围是()()1,00,1-⋃. 故答案为:()()1,00,1-⋃ 【点睛】此题考查利用导函数讨论函数的单调性解决不等式相关问题,关键在于准确构造函数,需要在平常的学习中多做积累,常见的函数构造方法.19.【分析】求出由已知可得为的两根求出关系并将用表示从而把表示为关于的函数设为利用的单调性即可求解【详解】因为的定义域为令即因为存在使得且即在上有两个不相等的实数根且所以∴令则当时恒成立所以在上单调递减解析:4e【分析】求出()f x ',由已知可得,m n 为()0f x '=的两根,求出,,m n a 关系,并将,n a 用m 表示,从而把()()f m f n -表示为关于m 的函数设为()h m ,利用()h m 的单调性,即可求解. 【详解】 因为()1ln f x x a x x=-+的定义域为()0,∞+, ()22211'1a x ax x x xf x ++=++=, 令()'0f x =,即210x ax ++=,()0,x ∈+∞,因为存在m ,n ,使得()()''0f m f n ==,且10,m e⎛⎤∈ ⎥⎝⎦,即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根m ,n , 且m n a +=-,1⋅=m n ,所以1n m =,1a m m=--, ∴()()11111ln ln f m f m m m m m m m m m m n ⎛⎫⎛⎫=-+---+--- ⎪ ⎪-⎝⎭⎝⎭ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=,令()112ln h m m m m m m ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦, 则()()()22211121ln l 'n m m m m h m m m -+⎛⎫=-=⎪⎝⎭, 当10,m e⎛⎤∈ ⎥⎝⎦时,()'0h m <恒成立, 所以()h m 在10,m e ⎛⎤∈ ⎥⎝⎦上单调递减,∴()min 14h m h e e ⎛⎫== ⎪⎝⎭,即()()f m f n -的最小值为4e. 故答案为:4e. 【点睛】本题考查最值问题、根与系数关系、函数的单调性,应用导数是解题的关键,意在考查逻辑推理、计算求解能力,属于中档题.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围. 【详解】函数()2()1xf x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x xx e x =--+⋅≥,令'0f x,解得01x (负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f=,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(1)21ln ()x x f x x+=;(2)12a ≥. 【分析】 (1)求导3ln 4()x x x a f x x --'=,由已知得(1)1f '=-,求出12a =得解(2)求导2()34g x x x '=-得到()g x 在(12)32, 上的最大值为1()12g = 转化11()1,x f x ⋅≥ 得到1112ln a x x x ≥-在113[,]22x ∈恒成立.构造函数1111()ln ,h x x x x =-求得1()h x 的最大值为(1)1h =,得解【详解】 (1)3ln 4()x x x af x x --'=,∵曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,∴(1)1f '=-, 12a ∴=.21ln ()x x f x x +∴= (2)2()34g x x x '=-,∴14(,)23x ∈,()0g x '<,43(,)32x ∈,()0g x '>,∴()g x 在14(,)23上递减,在43(,)32上递增, ∴()g x 在14(,)23上的最大值为131()1,()224g g ==较大者,即()1g x ≤, ∵对于任意的113[,]22x ∈,都有112()()x f x g x ⋅≥成立, ∴11()1,x f x ⋅≥ 1112ln 1,a x x x +∴≥ 即对任意的111113(,),2ln 22x a x x x ∈≥-成立. 令1111()ln ,h x x x x =-,11()ln h x x '=-,∴11(,1)2x ∈,1()0h x '>,13(1,)2x ∈,1()0h x '<,∴1()h x 在1(,1)2上递增,在3(1,)2上递减,1()h x 的最大值为(1)1h =, ∴21a ≥,12a ≥. 【点睛】本题考查函数导数几何意义及利用导数研究函数最值及不等式恒成立求参数范围.属于基础题.22.(1)230x e y e +-=(2)(,0]-∞ 【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题(1)根据题意可得,()2f e e=, ()2ln 'xf x x -=,所以()22ln 1'e f e e e -==-,即21k e=-, 所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a x f x x x x-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥,所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增, 所以()()10g x g ≥=, 所以不等式()()21a x f x x->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛ ⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减,21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+,()222111'10a a h a a a a-+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-<⎪⎝⎭, 所以存在10g a ⎛⎫< ⎪⎝⎭, 所以102a <<不符合题意;②当12a ≥1≤ ()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤= 显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤ 23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e >【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)1a =-或32a =;(2)答案不唯一,具体见解析;(3)证明见解析. 【分析】(1)利用导数几何意义列方程解得结果;(2)先求导函数,再根据a 的正负分类讨论,对应确定导函数符号,进而确定单调性; (3)根据(2)单调性确定()g a 解析式,再利用导数求()g a 最大值,即证得结果.【详解】(1)()f x 的定义域为(0,)+∞,222()1a a f x x x =-+', 根据题意有(1)2f '=-,则2230a a --=,解得1a =-或32a =; (2)22222222()(2)()1a a x ax a x a x a f x x x x x+--+=-'+==,①当0a >时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得x a >,由()0f x '<得()(2)0x a x a -+<,解得0x a <<,∴()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,②当0a <时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得2x a >-, 由()0f x '<得()(2)0x a x a -+<,解得02x a <<-,∴()f x 在(2,)a -+∞上单调递增,在(0,2)a -上单调递减,(3)证明:由(2)知,当(,0)a ∈-∞时()f x 的最小值为(2)-f a , 即22()(2)ln(2)2ln(2)32a g a f a a a a a a a a=-=⋅-+-=⋅---, 2()ln(2)3ln(2)22g a a a a a -=-+⋅=-'---,令()0g a '=,得212a e =-, 当21(,)2a e ∈-∞-时()0g a '>,当21(,0)2a e ∈-时()0g a '<, 则212a e =-是()g a 在(,0)-∞上的唯一极值点,且是极大值点, 从而也是()g a 的最大值点, ∴22222max 11111()()ln[2()]3()22222g a g e e e e e =-=-⋅-⨯--⨯-=, ∴当(,0)a ∈-∞时,21()2g a e ≤恒成立. 【点睛】本题考查导数几何意义、利用导数求单调性、利用导数求函数最值与证不等式,考查综合分析求解与论证能力,属中档题.25.(1)210x y -+=;(2)4927. 【分析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末检测一、选择题1.设f (x )为可导函数,且满足lim x →f (1)-f (1-2x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( ) A.2 B.-1 C.1 D.-2答案 B 解析 lim x →f (1)-f (1-2x )2x =lim x →0 f (1-2x )-f (1)-2x=-1,即y ′|x =1=-1,则y =f (x )在点(1,f (1))处的切线斜率为-1.2.函数y =x 4-2x 2+5的单调减区间为( ) A.(-∞,-1)和(0,1) B.(-1,0)和(1,+∞) C.(-1,1) D.(-∞,-1)和(1,+∞)答案 A解析 y ′=4x 3-4x =4x (x 2-1),令y ′<0得x 的范围为(-∞,-1)∪(0,1),故选A. 3.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向做直线运动,则由x =1运动到x =2时F (x )做的功为( ) A. 3 J B.233 JC.433 J D.2 3 J答案 C解析 由于F (x )与位移方向成30°角.如图:F 在位移方向上的分力F ′=F ·cos 30°,W =⎠⎛12(5-x 2)·cos 30°d x =32⎠⎛12(5-x 2)d x =32⎝⎛⎭⎫5x -13x 3⎪⎪⎪21=32×83=433(J). 4.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x 等于( )A.-1B.-13C.13D.1答案 B解析 ∵f (x )=x 2+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =(13x 3+2x ⎠⎛01f (x )d x )⎪⎪⎪10 =13+2⎠⎛01f (x )d x , ∴⎠⎛01f (x )d x =-13.5.已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( ) A.(-∞,-3) B.[-3,3] C.(3,+∞) D.(-3,3) 答案 B解析 f ′(x )=-3x 2+2ax -1≤0在(-∞,+∞)恒成立,Δ=4a 2-12≤0⇒-3≤a ≤ 3. 6.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( ) A.e 2 B.ln 2 C.ln 22 D.e答案 D解析 ∵f ′(x )=x (ln x )′+(x )′·ln x =1+ln x , ∴f ′(x 0)=1+ln x 0=2, ∴ln x 0=1,∴x 0=e.7.设函数f (x )=13x -ln x (x >0),则y =f (x )( )A.在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B.在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C.在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点D.在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点 答案 C解析 由题意得f ′(x )=x -33x ,令f ′(x )>0得x >3;令f ′(x )<0得0<x <3;令f ′(x )=0得x =3,故知函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)为增函数,在点x =3处有极小值1-ln 3<0;又f (1)=13>0,f (e)=e3-1<0,f ⎝⎛⎭⎫1e =13e +1>0.8.已知一物体在力F (x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1 m 处运动到x =3 m 处,则力F (x )所做的功为( ) A.10 J B.12 J C.14 J D.16 J 答案 C解析 力F (x )所做的功W =⎠⎛13F (x )d x =⎠⎛13(4x -1)d x =(2x 2-x )⎪⎪⎪31=14(J). 9.由x 轴和抛物线y =2x 2-x 所围成的图形的面积为( ) A.⎠⎛05(2x 2-x )d xB.⎠⎛05(x -2x 2)d xC.⎠⎜⎛012 (x -2x 2)d xD.⎠⎜⎛012 (x +2x 2)d x答案 C解析 先计算出抛物线与x 轴的交点的横坐标,分别为x 1=0,x 2=12,且在0<x <12内,函数图象在x 轴下方,则由定积分的几何意义可知,所求图形面积的积分表达式为⎠⎜⎛012 (x -2x 2)d x .10.函数f (x )=x e x -e x +1的单调递增区间是( )A.(-∞,e)B.(1,e)C.(e ,+∞)D.(e -1,+∞)答案 D解析 f ′(x )=e x +x e x -e x +1=(x -e +1)e x ,由f ′(x )>0,得x >e -1.故选D.二、填空题11.若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k = . 答案 -1解析 求导得y ′=k +1x,依题意k +1=0,所以k =-1.12.已知函数f (x )=-x 3+ax 在区间(-1,1)上是增函数,则实数a 的取值范围是 . 答案 a ≥3解析 由题意应有f ′(x )=-3x 2+a ≥0在区间(-1,1)上恒成立,则a ≥3x 2在x ∈(-1,1)时恒成立,故a ≥3.13.已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),给出以下说法:①函数f (x )在区间(1,+∞)上是增函数; ②函数f (x )在区间(-1,1)上无单调性; ③函数f (x )在x =-12处取得极大值;④函数f (x )在x =1处取得极小值. 其中正确的说法有 . 答案 ①④解析 从图象上可以发现,当x ∈(1,+∞)时,xf ′(x )>0,于是f ′(x )>0,故f (x )在区间(1,+∞)上是增函数,故①正确;当x ∈(-1,1)时,f ′(x )<0,所以函数f (x )在区间(-1,1)上是减函数,②错误,③也错误; 当0<x <1时,f (x )在区间(0,1)上是减函数,而在区间(1,+∞)上是增函数,所以函数f (x )在x =1处取得极小值,故④正确.14.设曲线y =x n +1(n ∈N *)在(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2 015x 1+log 2 015x 2+…+log 2 015x 2 014的值为 . 答案 -1解析 ∵y ′|x =1=n +1,∴切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =nn +1.∴log 2 015x 1+log 2 015x 2+…+log 2 015x 2 014 =log 2 015(x 1·x 2·…·x 2 014)=log 2 015⎝⎛⎭⎫12·23·…·2 0142 015=log 2 01512 015=-1. 三、解答题15.设函数f (x )=2x 3-3(a +1)x 2+6ax +8,其中a ∈R .已知f (x )在x =3处取得极值. (1)求f (x )的解析式;(2)求f (x )在点A (1,16)处的切线方程. 解 (1)f ′(x )=6x 2-6(a +1)x +6a . ∵f (x )在x =3处取得极值,∴f ′(3)=6×9-6(a +1)×3+6a =0, 解得a =3.∴f (x )=2x 3-12x 2+18x +8.(2)A 点在f (x )上,由(1)可知f ′(x )=6x 2-24x +18, f ′(1)=6-24+18=0, ∴切线方程为y =16.16.设23<a <1,函数f (x )=x 3-32ax 2+b (-1≤x ≤1)的最大值为1,最小值为-62,求常数a ,b .解 令f ′(x )=3x 2-3ax =0, 得x 1=0,x 2=a . f (0)=b ,f (a )=-a 32+b,f (-1)=-1-32a +b ,f (1)=1-32a +b .因为23<a <1,所以1-32a <0,故最大值为f (0)=b =1,所以f (x )的最小值为f (-1)=-1-32a +b =-32a ,所以-32a =-62,所以a =63.故a =63,b =1. 17.已知函数f (x )=(x +1)ln x -x +1.(1)若xf ′(x )≤x 2+ax +1,求a 的取值范围; (2)求证(x -1)f (x )≥0.(1)解 f ′(x )=x +1x +ln x -1=ln x +1x ,xf ′(x )=x ln x +1,而xf ′(x )≤x 2+ax +1等价于ln x-x ≤a .令g (x )=ln x -x ,则g ′(x )=1x -1,当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.x =1是g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-1. 综上可知,a 的取值范围是[-1,+∞).(2)证明 由(1)知,g (x )≤g (1)=-1,即ln x -x +1≤0.当0<x <1时,f (x )=(x +1)ln x -x +1=x ln x +(ln x -x +1)≤0;当x ≥1时,f (x )=ln x +(x ln x -x +1)=ln x +x ⎝⎛⎭⎫ln x +1x -1=ln x -x ⎝⎛⎭⎫ln 1x -1x +1≥0.∴(x -1)f (x )≥0.18.已知函数f (x )=-13x 3+2ax 2-3a 2x +b (a >0).(1)当f (x )的极小值为-73,极大值为-1时,求函数f (x )的解析式;(2)若f (x )在区间[1,2]上为增函数,在区间[6,+∞)上为减函数,求实数a 的取值范围. 解 (1)f ′(x )=-x 2+4ax -3a 2=-(x -a )(x -3a ),令f ′(x )≥0,得a ≤x ≤3a ,令f ′(x )≤0,得x ≥3a 或x ≤a ,∴f (x )在(-∞,a ]上是减函数,在[a,3a ]上是增函数,在[3a ,+∞)上是减函数,∴f (x )在x =a 处取极小值,在x =3a 处取极大值.由已知有⎩⎪⎨⎪⎧f (a )=-73,f (3a )=-1,即⎩⎨⎧-13a 3+2a 3-3a 3+b =-73,-13×27a 3+18a 3-9a 3+b =-1,解得⎩⎪⎨⎪⎧a =1,b =-1,∴f (x )=-13x 3+2x 2-3x -1.(2)由(1)知f (x )在(-∞,a ]上是减函数,在[a,3a ]上是增函数,在[3a ,+∞)上是减函数,∴要使f (x )在区间[1,2]上为增函数,在区间[6,+∞)上是减函数,则必须有⎩⎪⎨⎪⎧a ≤1,3a ≥2,3a ≤6,解得23≤a ≤1.。