椭圆常见性质

合集下载

数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结

数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结

数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结
椭圆的焦距与长轴长之比叫做椭圆的离心率。

椭圆的性质:
1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。

2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。

3、焦点:F1(-c,0),F2(c,0)。

4、焦距:。

5、离心率:;
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。

利用椭圆的几何性质解题:
利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。

椭圆中求最值的方法:
求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。

(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.
椭圆中离心率的求法:
在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,高考物理,从而求离心率或离心率的取值范围.。

椭圆知识点与性质大全

椭圆知识点与性质大全

椭圆与方程【知识梳理】 1、椭圆的定义平面内,到两定点1F 、2F 的距离之和为定长()1222,0a F F a a <>的点的轨迹称为椭圆,其中两定点1F 、2F 称为椭圆的焦点,定长2a 称为椭圆的长轴长,线段12F F 的长称为椭圆的焦距.此定义为椭圆的第一定义. 2、椭圆的简单性质3、焦半径椭圆上任意一点P 到椭圆焦点F 的距离称为焦半径,且[],PF a c a c ∈-+,特别地,若00(,)P x y 为椭圆()222210x y a b a b +=>>上的任意一点,1(,0)F c -,2(,0)F c 为椭圆的左右焦点,则10||PF a ex =+,20||PF a ex =-,其中ce a=. 4、通径过椭圆()222210x y a b a b +=>>焦点F 作垂直于长轴的直线,交椭圆于A 、B 两点,称线段AB 为椭圆的通径,且22b AB a=.P 为椭圆()222210x y a b a b+=>>上的任意一点,1(,0)F c -,2(,0)F c 为椭圆的左右焦点,称12PF F ∆为椭圆的焦点三角形,其周长为:1222F PF C a c ∆=+,若12F PF θ∠=,则焦点三角形的面积为:122tan 2F PF S b θ∆=.6、过焦点三角形直线l 过椭圆()222210x y a b a b+=>>的左焦点1F ,与椭圆交于11(,)A x y 、22(,)B x y 两点,称2ABF ∆为椭圆的过焦点三角形,其周长为:24ABF C a ∆=,面积为212y y c S ABF -=∆.7、点与椭圆的位置关系()00,P x y 为平面内的任意一点,椭圆方程为22221(0)x y a b a b +=>>:若2200221x y a b +=,则P 在椭圆上;若2200221x y a b +>,则P 在椭圆外;若2200221x y a b+<,则P 在椭圆内.8、直线与椭圆的位置关系直线:0l Ax By C ++=,椭圆Γ:22221(0)x y a b a b+=>>,则l 与Γ相交22222a A b B C ⇔+>;l 与Γ相切22222a A b B C ⇔+=;l 与Γ相离22222a A b B C ⇔+<.9、焦点三角形外角平分线的性质(*)点(,)P x y 是椭圆22221(0)x y a b a b+=>>上的动点,12,F F 是椭圆的焦点, M 是12F PF ∠的外角平分线上一点,且【推广2】设直线()110l y k x m m =+≠:交椭圆()222210x y a b a b +=>>于C D 、两点,交直线22l y k x =:于点E .若E 为CD 的中点,则2122b k k a=-.11、中点弦的斜率()()000,0M x y y ≠为椭圆()222210x y a b a b +=>>内的一点,直线l 过M 与椭圆交于,A B 两点,且AM BM =,则直线l 的斜率2020ABb x k a y =-.12、相互垂直的半径倒数的平方和为定值若A 、B 为椭圆C :()222210x y a b a b+=>>上的两个动点,O 为坐标原点,且OA OB ⊥.则2211||||OA OB +=定值2211ab+.【典型例题】例1、直线1y kx =+与椭圆2215x y m+=恒有公共点,则m 的取值范围是__________. 【变式1】已知方程13522-=-+-k y k x 表示椭圆,则k 的取值范围__________. 【变式2】椭圆12222=-++m x m y 的两个焦点坐标分别为__________.【变式1】已知圆()11:221=++y x O ,圆()91:222=+-y x O ,动圆M 分别与圆1O 相外切,与圆2O 相内切.求动圆圆心M 所在的曲线的方程.【变式2】已知ABC ∆的两个顶点坐标为(4,0),(4,0)A B -,ABC ∆的周长为18,则顶点C 的轨迹方程为__________.【变式3】已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆的圆心P 的轨迹方程.例3、若P 是椭圆13422=+y x 上的点,1F 和2F 是焦点,则 (1)21PF PF ⋅的取值范围为__________. (2)12PF PF ⋅的取值范围为__________.(3)2212PF PF +的取值范围为__________.【变式1】点(,)P x y 是椭圆22194x y +=上的一点,12,F F 是椭圆的焦点,M 是1PF 的中点,且12PF =,O 为坐标原点,则OM =_______.【变式2】点(,)P x y 是椭圆22221(0)x y a b a b+=>>上的动点,12,F F 是椭圆的焦点,M 是12F PF ∠的外角平分线上一点,且20F M MP ⋅=,则动点M 的轨迹方程为________.例4、已知椭圆2212516x y +=内有一点()2,1A ,F 为椭圆的左焦点,P 是椭圆上动点,求PA PF +的最大值与最小值__________.【变式】若椭圆171622=+y x 的左、右两个焦点分别为1F 、2F ,过点1F 的直线l 与椭圆相交于A 、B 两点,则B AF 2∆的周长为__________.例5、12,F F 是椭圆221x y +=的焦点,点P 为其上动点,且1260F PF ∠=︒,则12F PF ∆的面积是__________.【变式】焦点在轴x 上的椭圆方程为2221(0)x y a a +=>,1F 、2F 是椭圆的两个焦点,若椭圆上存在点B ,使得122F BF π∠=,那么实数a 的取值范围是________.例6、已知椭圆2212x y +=, (1)求过点1122P ⎛⎫⎪⎝⎭,且被P 平分的弦所在的直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过(21)A ,引椭圆的割线,求截得的弦的中点的轨迹方程.(4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.例7、已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.例8、已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.例9、已知定点()2,0A -,动点B 是圆64)2(:22=+-y x F (F 为圆心)上一点,线段AB 的垂直平分线交BF于P .(1)求动点P 的轨迹方程; (2)直线13+=x y 交P 点的轨迹于,M N 两点,若P 点的轨迹上存在点C ,使,OC m ON OM ⋅=+求实数m的值;例10、已知椭圆12222=+b y a x (0>>b a ),过点(),0A a -,()0,B b 的直线倾斜角为6π,原点到该直线的距离为23.(1)求椭圆的方程;(2)斜率大于零的直线过()1,0D -与椭圆交于E ,F 两点,若DF ED 2=,求直线EF 的方程;(3)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点(1,0)D -?若存在,求出k 的值;若不存在,请说明理由.例11、若AB是经过椭圆2212516x y+=中心的一条弦点,12,F F分别为椭圆的左、右焦点,求1F AB∆的面积的最大值.【变式1】已知直线l与椭圆2213xy+=交于A B、两点,坐标原点O到直线l的距离为2,求AOB∆的面积的最大值.【变式3】已知定点)0,(a A 和椭圆8222=+y x 上的动点),(y x P(1)若2=a 且223||=PA ,计算点P 的坐标; (2)若30<<a 且||PA 的最小值为1,求实数a 的值.【变式4】如图,椭圆的中心在原点,()()2,0,0,1A B 是它的两个顶点,直线(0)y kx k =>交线段AB 于点D ,交椭圆于,E F 两点.(1)若6ED DF =,求直线的斜率k ;D(2)求四边形AFBE 的面积S 的最大值.【变式5】椭圆()222104x y b b +=>的一个焦点是()1,0F - (1)求椭圆的方程;(2)已知点P 是椭圆上的任意一点,定点M 为x 轴正半轴上的一点,若PM 的最小值为85,求定点M 的坐标; (3)若过原点O 作互相垂直两条直线,交椭圆分别于,A C 与,B D 两点,求四边形ABCD 面积的取值范围.【变式6】在平面直角坐标系xOy中,动点P到定点()),的距离之和为4,设点P的轨迹为曲线C,直E-,且与曲线C交于,A B两点.线l过点(1,0)(1)求曲线C的方程;(2)以AB为直径的圆能否通过坐标原点?若能通过,求此时直线l的方程,若不能,说明理由.∆的面积是否存在最大值?若存在,求出面积的最大值,以及此时的直线方程,若不存在,请说明理由.(3)AOB例12、已知椭圆2222(0)x y a a +=>的一个顶点和两个焦点构成的三角形的面积为4. (1)求椭圆C 的方程;(2)已知直线)1(-=x k y 与椭圆C 交于A 、B 两点,试问,是否存在x 轴上的点(),0M m ,使得对任意的k R ∈,MA MB ⋅为定值,若存在,求出M 点的坐标,若不存在,说明理由.【变式1】过椭圆22182x y +=长轴上某一点(),0S s (不含端点)作直线l (不与x 轴重合)交椭圆于,M N 两点,若点(),0T t 满足:8OS OT ⋅=,求证:MTS NTS ∠=∠.【变式2】已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为4,且点⎛ ⎝⎭在椭圆C 上. (1)求椭圆C 的方程;(2)设P 是椭圆C 长轴上的一个动点,过P 作方向向量()2,1d =的直线l 交椭圆C 于A 、B 两点,求证:22PA PB +为定值.【变式3】如图,A 为椭圆()2222+10x y a b a b =>>上的一个动点,弦,AB AC.当AC x ⊥轴时,恰好123AF AF =(1)求ca的值 (2)若111AF F B λ=,222AF F C λ=,试判断12λλ+是否为定值?若是,求出定值;若不是,说明理由.【变式4】线段,A B 分别在x 轴,y 轴上滑动,且3AB =,M 为线段AB 上的一点,且1AM =,M 随,A B 的滑动而运动(1)求动点M 的轨迹方程E ;(2)过N 的直线交曲线E 于,C D 两点,交y 轴于P ,1PC CN λ=,2PD DN λ=,试判断12λλ+是否为定值?若是,求出定值;若不是,说明理由.2F 1F【变式5】如图,已知椭圆C :22221x y a b+=,其左右焦点为()11,0F -及()21,0F ,过点1F 的直线交椭圆C 于,A B 两点,线段AB 的中点为G ,AB 的中垂线与x 轴和y轴分别交于,D E 两点,且1AF 、12F F 、2AF 构成等差数列.(1)求椭圆C 的方程;(2)记△1GF D 的面积为1S ,△OED (O 为原点)的面积为2S .试问:是否存在直线AB ,使得12S S =?说明理由.xyO A B1F D GE2F【变式6】已知椭圆C 的方程为22212x y a +=(0)a >,其焦点在x 轴上,点Q 为椭圆上一点. (1)求该椭圆的标准方程;(2)设动点P 00(,)x y 满足2OP OM ON =+,其中M 、N 是椭圆C 上的点,直线OM 与ON的斜率之积为12-,求证:22002x y +为定值; (3)在(2)的条件下探究:是否存在两个定点,A B ,使得PA PB +为定值?若存在,给出证明;若不存在,请说明理由.例13、椭圆的一个顶点(0,1)A -,焦点在x 轴上,右焦点到直线0x y -+的距离为3.(1)求椭圆的方程;(2)设椭圆与直线(0)y kx m k =+≠相交于不同两点,M N ,当AM AN =时,求实数m 的取值范围.【变式1】已知A 、B 、C 是椭圆()222210x y a b a b+=>>上的三点,其中()A ,BC 过椭圆的中心,且0AC BC ⋅=,2BC AC =.(1)求椭圆的方程;(2)过点()0,M t 的直线l (斜率存在时)与椭圆交于两点,P Q ,设D 为椭圆与y 轴负半轴的交点,且DP DQ =.求实数t 的取值范围.。

椭圆的几何性质(简单性质)

椭圆的几何性质(简单性质)

3
则 C 的离心率为 3
.
y
BF 2FD
B
(c, b) 2( x c, y)
x
3 2
c,
y
b 2
.
OF
x
D
(
3 2
c
a2
)2
(
b 2
)2
b2
1,
c2 a2
1 3
,
e
3 3
.
主页
【4】(09·江苏)如图,在平面直角坐标系
xOy中, A1, A2, B1, B2为椭圆
x2 a2
y2 b2
1 (a>b>0)的四
PF1 PF2 ,求离心率的取值范围.
y
P
解:当点 P 在椭圆短轴端点时, F1PF2 最大.
F1
o
F2
x
≥ 45 sin ≥
2 2
c a
sin

2 2
又0e1
2 2

e
1
主页
例 3.已知 P 是椭圆上一点, F1, F2 分别是椭圆的左右焦点,且 PF1 PF2 ,求离心率的取值范围.
(Ⅱ)设 PF1 m, PF2 n , 构造方程、不等式
解解解解:::易:易易易知知知知aaa=a解===2:22,易,2,,b知bb===ba1=1=1,,,12cc,=c,==cb==333,,,1,3,c= 3, 所所所所以以以以FFFF11(1(1-(-(-所-3以33,,3,F0,00)1),(),0-,)FF,F22(23(F(,3233,(,0,)03,00),).).F.02().3,0). 设设设设PPP((x((xx,x,,,yy)y设)y,),,),P(x,y),

有关椭圆的所有知识点

有关椭圆的所有知识点

有关椭圆的所有知识点
1. 椭圆的定义:椭圆是一种特殊的抛物线,它是二维平面上的曲线,其中两条轴的长度不相等,椭圆的方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
2. 椭圆的性质:
(1)椭圆的对称轴是两个相交的线段,其中一个线段的长度大于另一个,称为长轴,另一个线段称为短轴;
(2)椭圆的中心点是两个对称轴的交点;
(3)椭圆的长轴和短轴的长度分别为a和b,椭圆的面积为S=πab;
(4)椭圆的边界是一个抛物线,称为椭圆弧,可以用参数方程表示:$$x=a\cos t,
y=b\sin t$$
3. 椭圆的标准方程:
(1)椭圆的标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
(2)椭圆的中心在原点时,标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
(3)椭圆的中心在(h,k)处时,标准方程为:$$\frac{(x-h)^2}{a^2}+\frac{(y-
k)^2}{b^2}=1$$
4. 椭圆的对称性:
(1)椭圆是一种具有对称性的曲线,其对称轴是两个相交的线段,其中一个线段的长度大于另一个,称为长轴,另一个线段称为短轴;
(2)椭圆的对称性可以用参数方程表示:$$x=a\cos t,y=b\sin t$$
(3)椭圆的对称性可以用参数方程表示:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
5. 椭圆的离心率:椭圆的离心率是椭圆的一个重要参数,它可以表示椭圆的形状,它的定义是:椭圆的离心率等于椭圆的长轴与短轴之比,即:$$e=\frac{a-b}{a}$$。

椭圆知识点归纳总结

椭圆知识点归纳总结

椭圆知识点归纳总结椭圆的定义可以用数学表达式表示为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中a和b分别表示椭圆的主轴长度和次轴长度,椭圆的标准方程为椭圆定点到F1、F2的距离之和等于常数2a的定点轨迹的数学描述。

椭圆是一种非常基本的几何图形,具有许多独特的性质和特点。

本文将对椭圆的性质、参数方程、焦点、直径、离心率、焦距、渐近线、面积等方面进行归纳总结。

第一部分:椭圆的基本性质1.1 椭圆的定义和参数1.2 椭圆的性质1.3 椭圆的对称性1.4 椭圆的离心率和焦点第二部分:椭圆的参数方程和一般方程2.1 参数方程和一般方程的含义2.2 椭圆的参数方程2.3 椭圆的一般方程第三部分:椭圆的焦点、直径和离心率3.1 椭圆的焦点特点3.2 椭圆的直径特点3.3 椭圆的离心率特点第四部分:椭圆的焦距和渐近线4.1 椭圆的焦距含义4.2 椭圆的渐近线含义4.3 椭圆的焦距和渐近线的性质第五部分:椭圆的面积和周长5.1 椭圆的面积公式5.2 椭圆的周长公式5.3 椭圆的面积和周长的计算方法第六部分:椭圆的相关定理和实例分析6.1 椭圆的凸性定理和实例分析6.2 椭圆的垂直切线定理和实例分析6.3 椭圆的切线与法线定理和实例分析结论部分:椭圆的应用和拓展7.1 椭圆在日常生活中的应用7.2 椭圆的拓展和推广第一部分:椭圆的基本性质1.1 椭圆的定义和参数椭圆是平面上到两个定点F1、F2的距离之和等于常数2a的点P的轨迹。

这两个定点称为焦点,常数2a称为椭圆的主轴长度。

椭圆的主轴长度决定了椭圆的大小和形状。

椭圆的参数包括主轴长度a、次轴长度b、焦距2c、离心率e等。

其中焦距2c和主轴长度a之间有关系:c^2 = a^2 - b^2。

离心率e的计算公式为:e = c/a。

主轴长度a和次轴长度b决定了椭圆的形状,焦距2c和离心率e描述了椭圆与焦点之间的距离关系。

1.2 椭圆的性质椭圆具有许多特殊的性质,如平行轴定理、离心角定理、矩形椭圆定理等。

椭圆的简单几何性质

椭圆的简单几何性质

椭圆的简单几何性质椭圆是一种重要的几何图形,它具有一些独特的性质和特征。

在本文档中,我们将介绍一些椭圆的简单几何性质,包括定义、方程、焦点与准线、长轴和短轴、离心率以及切线等内容。

1. 定义椭圆是平面上的一个闭合曲线,其定义如下:对于给定的两个点F₁ 和F₂ 以及一条固定长度的线段 2a(长轴),满足到椭圆上任意一点的两个焦点到该点的距离之和始终等于 2a(F₁P + F₂P = 2a,其中 P 为椭圆上任意一点)。

2. 方程一般来说,椭圆的方程可以表示为:(x - h)²/a² + (y - k)²/b² = 1其中 (h, k) 为椭圆的中心坐标,a 和 b 分别为长轴和短轴的长度。

3. 焦点与准线椭圆的焦点是定义椭圆的两个特殊点,记作F₁ 和F₂。

它们位于椭圆的长轴上,且到椭圆中心的距离为 c(c² = a² - b²,对于椭圆来说,c < a)。

准线是垂直于长轴且通过中心的直线,可表示为 x = h ± a/e,其中 e 为离心率。

4. 长轴和短轴椭圆的长轴为横坐标轴的长度,并且它是离心率 e 的倒数(2a = 1/e)。

短轴则为纵坐标轴的长度,且它与长轴的关系为 b² = a² - c²。

5. 离心率离心率 e 描述了椭圆形状的独特特征。

在数值上,离心率是一个小于 1 的正实数,可以通过以下公式计算:e = c / a离心率越接近0,椭圆形状越接近于圆形;离心率越接近1,椭圆形状越扁平。

6. 切线椭圆上任意一点的切线是与该点相切且仅与椭圆相交于此点的直线。

切线的斜率可通过直线与椭圆方程联立解得。

一般来说,椭圆有两条切线与其相切。

结论椭圆作为一种重要的几何图形,具有许多简单而重要的性质。

从定义到方程,再到焦点与准线、长轴和短轴、离心率以及切线,椭圆的性质非常丰富。

通过研究这些性质,我们可以更好地理解椭圆的形状和特征,为后续的几何学习奠定基础。

椭圆的简单几何性质

椭圆的简单几何性质

椭圆的简单几何性质引言椭圆是几何学中常见的曲线,具有许多有趣和重要的性质。

在本文档中,我们将讨论椭圆的一些基本几何性质,包括定义、形状、焦点和直径等方面。

通过了解这些性质,我们将更好地理解椭圆的特点及其在现实世界中的应用。

定义椭圆是一个平面上的闭合曲线,其定义为到两个给定点(称为焦点)的距离之和等于到一定长度(称为主轴长度)的定点(称为短轴长度)的距离。

换句话说,椭圆是一个点对的加权平均轨迹,并且总距离恒定。

形状椭圆的形状由其焦点之间的距离和主轴的长度确定。

较大的焦点之间的距离,或较短的主轴长度,将导致一个更扁平的椭圆,而较小的焦点之间的距离,或较长的主轴长度,将导致一个更靠近圆形的椭圆。

焦点和直径椭圆的定义中提到了焦点,它们在椭圆的构造中起着重要的作用。

对于任何给定的椭圆,焦点的数量是固定的,通常为两个。

这些焦点位于椭圆的主轴上,并且距离椭圆中心的距离等于椭圆的短轴长度。

椭圆的直径是经过椭圆中心的任意两点之间的线段。

一个有趣的性质是,椭圆的任何直径都会通过椭圆的两个焦点之一。

这个性质与其他几何形状,如圆或矩形不同,因此是椭圆独特的特点之一。

离心率离心率是一个用来度量椭圆形状的参数。

它定义为椭圆的焦距之间的比值与主轴的长度的比值。

离心率越接近零,椭圆的形状越接近于圆形;离心率越接近于一,椭圆的形状越扁平。

离心率是椭圆形状的一个重要特征,它对于许多应用领域具有重要意义,比如天文学中行星轨道的研究,或物理学中的电子轨道模型等。

弦在椭圆中,一条弦是连接椭圆上任意两点的线段。

一个有趣的性质是,通过椭圆上两个给定点的弦的长度之和是恒定的。

这个性质可以通过椭圆的定义和三角形的性质进行证明。

弦的垂直性质椭圆还具有一个有趣的性质,即通过椭圆上两个给定点的弦和通过这两个点的切线之间的夹角是直角。

这个性质称为弦的垂直性质,它对于椭圆的建模和分析非常有用。

总结椭圆作为几何学中的重要曲线,在许多领域都具有广泛的应用。

通过了解椭圆的基本几何性质,我们可以更好地理解和应用椭圆,从而在实际问题中得到更准确和有意义的结果。

椭圆常见性质

椭圆常见性质

椭圆常见性质1.11||1PF e d =< 2、P T平分12PF F ∆在点P处的外角,则焦点在直线PT 上的射影H 点的轨迹就是以长轴为直径的圆,除去长轴的两个端点.3、以焦点弦PQ 为直径的圆必与对应准线相离、4、以焦点半径1PF 为直径的圆必与长轴为直径的圆内切.5、设12,A A 为椭圆的左,右顶点,则12PF F ∆在边2PF (或1PF )上的旁切圆,必与12A A 所在的直线切与2A (或1A ).6.椭圆焦点三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点、7.椭圆两焦点到椭圆焦点三角形旁切圆的切线长为定值a+c 与a -c.8.椭圆焦点三角形的非焦顶点到其内切圆的切线长为定值a-c 、9、椭圆焦点三角形中,内心将内点与非焦顶点连线段分成定比c 、10、椭圆焦点三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.11、椭圆焦三角形中,过任一焦点向非焦顶点的外角引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长、12、椭圆焦三角形中,过任一焦点向非焦顶点的外角引垂线,垂足就就是垂足同侧焦半径为直径的圆的与椭圆长轴为直径的圆的切点.13、椭圆22221(0)x y a b a b+=>>的焦半径公式: 1020||,||.PF a ex PF a ex =+=-(0x 就是P点横坐标).14、设P 点就是椭圆22221(0)x y a b a b+=>>上异于长轴端点的任一点,12,F F 为其焦点.记12F PF θ∠=,则1222122(1)||||;(2)tan .1cos 2PF F b PF PF S b θθ∆==+ 15、若P 为椭圆22221(0)x y a b a b+=>>上异于长轴端点的任一点, 12,F F 为其焦点,1221,PF F PF F αβ∠=∠=,则tan tan .22a c a c αβ-=+ 16.设椭圆22221(0)x y a b a b+=>>的两个焦点为12,F F ,P(异于长轴端点)为椭圆上任意一点,在12PF F ∆中,记121212,,,F PF PF F F F P αβλ∠=∠=∠=则有sin sin sin e αβλ=+、 17.椭圆22221(0)x y a b a b+=>>的两个顶点12(,0),(,0)A a A a -,与y轴平行的直线交椭圆于12,P P 时,11A P 与22A P 交点的轨迹方程就是22221x y a b-=、 18、若00(,)P x y 在椭圆22221x y a b +=上,则过P 点的椭圆的切线方程就是00221xx yy a b+=、 19、AB 就是椭圆22221x y a b +=的不平行于对称轴的弦,M 为A B的中点,则22OM AB b k k a⋅=-、 20、若00(,)P x y 在椭圆22221x y a b+=内,则被P 所平分的中点弦的方程就是2200002222xx yy x y a b a b+=+、 21.若00(,)P x y 在椭圆22221x y a b+=内,则过P 的弦中点的轨迹方程就是22002222xx yy x y a b a b+=+、 22、已知椭圆22221(0)x y a b a b+=>>,O 为坐标原点,P,Q为椭圆上两动点,且OP OQ ⊥, (1)22221111||||OP OQ a b +=+;(2)22||||OP OQ +的最大值为22224a b a b+; (3)OPQ S ∆的最小值就是2222a b a b+、 23、若椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F ,左准线为l,则当11e ≤<时,可在椭圆上求一点P,使得1PF 就是P 到对应准线距离的d 与2PF 的比例中项。

椭圆方程的基本性质及其应用

椭圆方程的基本性质及其应用

椭圆方程的基本性质及其应用椭圆方程是数学中一个重要的概念,它在不同领域的问题中都有着广泛的应用。

本文将介绍椭圆方程的基本性质以及其在实际问题中的应用。

一、椭圆方程的基本性质椭圆方程是指形如 $ax^2 + bxy + cy^2 + dx + ey + f =0$ 的二次方程,其中 $a,b,c,d,e,f$ 都是实数且 $a,b,c$ 不全为零。

其图像是一个椭圆或一个退化的椭圆,例如两条直线。

椭圆方程的基本性质包括:1. 椭圆方程的系数矩阵是一个实对称矩阵。

(这个可以通过对称性来证明)2. 椭圆方程对应的椭圆可以通过平移、旋转、缩放三个基本变换得到。

3. 椭圆方程的解法可以通过配方法,化为标准形式后求出$x$ 和 $y$ 的值。

4. 椭圆方程的根的个数在不同条件下是有区别的。

当它有两个不同实根时,对应的椭圆方程图像是两条直线;当它有两个共轭复根时,对应的椭圆方程图像是一个退化的椭圆;当它有两个不同实根和一个共轭复根时,对应的椭圆方程图像是一个椭圆。

二、椭圆方程的应用椭圆方程在各个领域的问题中都有着广泛的应用,下面仅列出一些典型的例子。

1. 机械工程:在机械运动学中,椭圆方程可以用于描述转矩传递的行为。

例如,当一个椭圆形轮廓的齿轮与一个圆形轮廓的齿轮啮合时,它们之间的传递角速度可以通过椭圆方程来计算。

2. 电磁学:在电磁场中,椭圆方程可以用于描述电场和磁场的分布。

例如,当一个二元球对称的电场在两个直接相交的平面上被截面后,这两个截面形成的几何形状是一个椭圆。

3. 经济学:在经济学中,椭圆方程可以用于描述生产生态系统的生物量和体积之间的关系。

例如,如果一个生态系统中的物种的生物量是椭圆形的,那么它们之间的相互影响可以通过椭圆方程来描述。

4. 物理学:椭圆方程在物理学中也有着广泛的应用。

例如,当一个由两个质点组成的系统的轨迹是椭圆形时,它们之间的相互作用可以用椭圆方程来计算。

三、总结椭圆方程作为数学中一个重要的概念,在各个领域的问题中都有着广泛的应用。

椭圆的性质与分类解析

椭圆的性质与分类解析

椭圆的性质与分类解析椭圆是我们学习数学时经常遇到的一种几何图形,具有许多独特的性质和分类方法。

在本文中,我们将深入探讨椭圆的性质与分类,并逐一进行解析。

1. 椭圆的定义与基本性质椭圆可以被定义为平面上到两个给定点距离之和等于常数的点的轨迹。

这两个给定点被称为焦点,而等于这两个距离之和的常数则被称为椭圆的离心率。

椭圆的性质之一是其离心率小于1,因此椭圆是一个有限的闭合曲线。

另外,椭圆还具有以下基本性质:- 椭圆的中心点是焦点连线的中点。

- 焦点和椭圆上的任意一点的距离之和等于椭圆的长轴长度。

- 椭圆的长轴是椭圆的最长直径,而短轴是椭圆的最短直径。

- 椭圆的两条焦点与椭圆的中心点在同一条直线上,并且与该直线上的任意一点的距离之和等于椭圆的长轴长度。

2. 椭圆的参数方程与标准方程椭圆的参数方程描述了椭圆上每个点的坐标,其形式为:x = a * cos(θ)y = b * sin(θ)其中,a和b分别表示椭圆的半长轴和半短轴长度,而θ表示椭圆上每个点对应的角度。

椭圆的标准方程则是以中心为原点的坐标系下,椭圆上每个点的坐标满足的方程,其形式为:(x^2 / a^2) + (y^2 / b^2) = 13. 椭圆的分类根据椭圆的长轴与短轴之间的长度关系,我们可以将椭圆分为以下几种类型:- 当椭圆的长轴与短轴长度相等时,即a=b,此时椭圆为一个圆。

圆是椭圆的特殊情况,其性质与椭圆相似,但圆上的每个点到圆心的距离都相等。

- 当椭圆的长轴大于短轴长度时,即a>b,此时椭圆的形状更接近于一个水平拉长的圆形。

- 当椭圆的长轴小于短轴长度时,即a<b,此时椭圆的形状更接近于一个垂直拉长的圆形。

4. 椭圆的应用椭圆在日常生活和科学领域中有许多应用。

以下是一些典型的应用场景:- 天体轨道:行星和其他天体的运动轨道可以被建模为椭圆,其中太阳处于焦点之一。

这一模型对研究天体力学和预测天体运动具有重要意义。

- 平面建筑:椭圆的形状常常被应用在许多建筑设计中,如公园中的喷泉、广场与花坛的装饰等。

高中椭圆二级结论总结可打印文档

高中椭圆二级结论总结可打印文档

高中椭圆二级结论总结可打印文档椭圆是高中数学中常见的概念之一,它在几何形状和数学应用中都有重要的作用。

在高中数学中,我们学习了许多与椭圆相关的知识,其中包括一些重要的二级结论。

本文将对这些二级结论进行总结和归纳,以便更好地理解椭圆的性质和应用。

一、椭圆的定义与性质椭圆是平面上到两个固定点的距离之和等于常数的点的集合。

这两个固定点称为焦点,距离之和称为焦距。

椭圆具有以下性质:1. 椭圆的离心率小于1,且离心率为0时为圆;2. 椭圆的中心为两个焦点的中垂线的交点;3. 椭圆的长轴和短轴分别是焦距的2倍和焦距的2倍除以离心率;4. 椭圆的离心率与长轴和短轴的关系为:离心率的平方等于1减去短轴的平方除以长轴的平方。

二、椭圆的标准方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1,其中a和b分别为椭圆的长轴和短轴的长度。

根据标准方程,可以得到一些重要的二级结论:1. 椭圆的顶点和焦点坐标关系:顶点坐标为(±a, 0),焦点坐标为(±c, 0),其中c^2 = a^2 - b^2;2. 椭圆的离心率与长短轴之间的关系:离心率e = c/a;3. 椭圆的参数方程:x = a*cosθ,y = b*sinθ,其中θ为参数;4. 椭圆的切线与法线方程:椭圆上任意点P(x, y),切线方程为xx1/a^2 + yy1/b^2 = 1,法线方程为xx1/a^2 - yy1/b^2 = 1。

三、椭圆的性质与应用椭圆具有许多重要的性质和应用,其中包括:1. 曲线与直线的位置关系:直线与椭圆相切时,切点在椭圆上;直线与椭圆相交时,交点在椭圆内;直线与椭圆没有交点时,直线与椭圆的距离等于焦距;2. 椭圆的面积和周长:椭圆的面积为πab,周长近似为2π√(a^2 + b^2/2);3. 椭圆的焦点与直线的关系:直线与椭圆的焦点之间的距离等于焦距的两倍;4. 椭圆的离心率与轨道形状的关系:离心率越小,椭圆越扁;离心率越大,椭圆越瘦长;5. 椭圆的光学性质:椭圆是反射焦点的曲线,根据椭圆反射定律,入射光线从一个焦点射入椭圆后,会经过另一个焦点。

椭圆基本性质

椭圆基本性质

椭圆基本性质
椭圆是由椭圆方程式所定义的曲线,且它是一种特殊的抛物线。

它以具有常见特征的椭圆形状采用二维平面上的形状。

从几何学的角度来看,椭圆是一种有两条轴线的椭圆曲线,这两条轴线的形状是一样的,中间的主要特征是椭圆的形状,这也是椭圆与抛物线的区别。

首先,椭圆的特征是它的两个矩形轴,它的长轴称为椭圆的长轴,而短轴则称为椭圆的短轴。

其次,椭圆的中心可以是任意位置的点,如果这两个轴的垂直位置是不同的。

椭圆的形状可能是压扁的或扁立方体的形状,而且这也是椭圆和抛物线的不同之处。

此外,还有另外一些有趣的椭圆特征,比如椭圆所描绘的方向,以及椭圆形状的“聚焦点”。

这两点表示任何光线从一聚焦点穿过以一定速度,会经过另一聚焦点,同时这两个点连接椭圆的两个端点。

总之,椭圆的基本性质是它的两个轴,中心,形状,以及它的聚焦点。

它与抛物线的形状也有很大的不同。

椭圆是一种极其重要的曲线,几何学中有很多应用,它是圆柱体,球面,和光线运动等方面的基础。

椭圆的方程与像

椭圆的方程与像

椭圆的方程与像椭圆是一种常见的几何图形,具有独特的形状和性质。

在数学中,我们可以通过方程来描述椭圆,并通过解析几何方法来研究它的性质。

本文将探讨椭圆的方程以及与之相关的像。

一、椭圆的方程椭圆的方程通常可以表示为:(x/a)² + (y/b)² = 1其中,a和b分别是椭圆的长半轴和短半轴。

该方程表达了椭圆上任意一点距离两个焦点的距离和到两个焦点连线之间的比例关系。

二、椭圆的性质椭圆具有多个重要性质,包括离心率、焦点、直径和面积等。

1. 离心率: 椭圆的离心率定义为e=c/a,其中c表示焦点到准线的距离。

离心率的取值范围是0<e<1,当离心率为0时,椭圆退化成一个圆。

2. 焦点: 椭圆有两个焦点,分别位于椭圆的长轴上,与中心点的距离为c。

焦点是椭圆性质中的关键要素之一,也是椭圆的独特之处。

3. 直径: 椭圆的直径是通过椭圆中心点,并且两个端点都在椭圆上的线段。

椭圆的长轴即为直径,而短轴是椭圆的一个直径,且与长轴垂直。

4. 面积: 椭圆的面积公式为S=πab,其中S表示椭圆的面积,a和b 分别是椭圆的长轴和短轴。

根据面积公式,我们可以通过椭圆方程中的a和b的值来计算椭圆的面积。

三、椭圆的像在光学中,椭圆的像是指通过光线的反射或折射形成的图像。

当光线照射到椭圆形状的物体上时,经过反射或折射会形成一个椭圆形状的图像。

1. 平面镜反射像: 当光线照射到一个平面镜上,并以特定角度入射时,会形成一个椭圆形状的反射像。

反射后的光线会集中在一个焦点上,而形成的反射像则是一个以该焦点为中心的椭圆。

2. 透镜折射像: 当光线通过透镜并以特定角度入射时,会发生折射现象。

根据透镜的形状和焦距,光线会聚或发散,形成一个椭圆形状的折射像。

这个椭圆是以透镜的焦点为中心的。

通过对椭圆方程和像的研究,我们可以更好地理解和运用椭圆的特点。

椭圆作为数学和几何中的重要概念,广泛应用于科学、工程和艺术等领域。

【高中数学】椭圆的100条经典性质及证明

【高中数学】椭圆的100条经典性质及证明

921.122PF PF a+= 2.标准方程22221x y a b+= 3.111PF e d =<4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相离.7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.椭圆22221x y a b+=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.10.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.11.若000(,)P x y 在椭圆22221x y a b+=外,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则22OM AB b k k a⋅=-.13.若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.14.若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b +=+.15.若PQ 是椭圆22221x y a b +=(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=+==.16.若椭圆22221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1)222211A B a b +=+;(2)22222a A b B L a A b B =+.17.给定椭圆1C :222222b x a y a b +=(a >b >0),2C :222222222()a b b x a y ab a b-+=+,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 2222002222(,)a b a b x y a b a b ---++.(ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为椭圆(或圆)C:22221x y a b+=(a >0,.b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1,PP 2斜率存在,记为k 1,k 2,则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a+⋅=-⋅-.19.过椭圆22221x y a b +=(a >0,b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).20.椭圆22221x y a b+=(a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的21.若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1,F 2是焦点,12PF F α∠=,21PF F β∠=,则tan tan 22a c a c αβ-=+.22.椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c ,00(,)M x y ).23.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当11e -≤<时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2122||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.25.椭圆22221x y a b +=(a >b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()a b x a b k -≤+.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是椭圆cos sin x a y b ϕϕ=⎧⎨=⎩(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是2211sin e ϕ=+.29.设A,B 为椭圆2222(0,1)x y k k k a b +=>≠上两点,其直线AB 与椭圆22221x y a b+=相交于,P Q ,则AP BQ =.30.在椭圆22221x y a b +=中,定长为2m (o <m≤a )的弦中点轨迹方程为()2222222221(cos sin x y m a b a b αα⎡⎤=-++⎢⎥⎣⎦,其中tan bx ayα=-,当0y =时,90α=.31.设S 为椭圆22221x y a b+=(a >b >0)的通径,定长线段L 的两端点A,B 在椭圆上移动,记|AB|=l ,00(,)M x y 是AB中点,则当l S ≥Φ时,有20max ()2a l x c e =-222(c a b =-,c e a =);当l S <Φ时,有0max ()x =0min ()0x =.32.椭圆22221x y a b+=与直线0Ax By C ++=有公共点的充要条件是22222A aB bC +≥.33.椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.34.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.35.经过椭圆222222b x a y a b +=(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则21122||||P A P A b ⋅=.36.已知椭圆22221x y a b +=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b+=+;(2)|OP|2+|OQ|2的最小值为22224a b a b +;(3)OPQ S ∆的最小值是2222a ba b +.37.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则.38.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP MN ⊥,则2222111||||a MN OP a b+=+.39.设椭圆22221x y a b+=(a >b >0),M(m,o)或(o,m)为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1,A 2为对称轴上的两顶点)的交点N 在直线l :2a x m =(或2b y m=)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q,A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设椭圆方程22221x y a b +=,则斜率为k(k≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=-.43.设A 、B 、C 、D 为椭圆22221x y a b+=上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P,且P 不在椭圆上,则22222222cos sin cos sin PA PB b a PC PD b a ββαα⋅+=⋅+.44.已知椭圆22221x y a b+=(a >b >0),点P 为其上一点F 1,F 2为椭圆的焦点,12F PF ∠的外(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a y b x x c c y a y b x c ⎡⎤+±⎣⎦=+±).45.设△ABC 内接于椭圆Γ,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与椭圆Γ相切的充要条件是D 为EF 的中点.46.过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.47.设A (x 1,y 1)是椭圆22221x y a b +=(a >b >0)上任一点,过A 作一条斜率为2121b x a y -的直线L ,又设d 是原点到直线L的距离,12,r r 分别是A ab =.48.已知椭圆22221x y a b +=(a >b >0)和2222x y a bλ+=(01λ<<),一直线顺次与它们相交于A 、B 、C 、D 四点,则│AB│=|CD│.49.已知椭圆22221x y a b+=(a >b >0),A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x ,则22220a b a b x a a---<<.50.设P 点是椭圆22221x y a b +=(a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2)122tan 2PF F S b θ∆=.51.设过椭圆的长轴上一点B (m,o )作直线与椭圆相交于P 、Q 两点,A 为椭圆长轴的左顶点,连结AP 和AQ 分别交相应于过H 点的直线MN :x n =于M ,N 两点,则()222290()a n m a m MBN a m b n a --∠=⇔=++.52.L 是经过椭圆221a b+=(a >b >0)长轴顶点A 且与长轴垂直的直线,E 、F 是椭圆两个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||PH b =时取等号).53.L 是椭圆22221x y a b+=(a >b >0)的准线,A 、B 是椭圆的长轴两顶点,点P L ∈,e 是离心率,EPF α∠=,H 是L与X 轴的交点c 是半焦距,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||abPH c=时取等号).54.L 是椭圆22221x y a b+=(a >b >0)的准线,E 、F 是两个焦点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且2sin e α≤或2sin arc e α≤(当且仅当||PH =.55.已知椭圆22221x y a b+=(a >b >0),直线L 通过其右焦点F 2,且与椭圆相交于A 、B 两点,将A 、B 与椭圆左焦点F 1连结起来,则2222112(2)||||a b b F A F B a-≤⋅≤(当且仅当AB ⊥x 轴时右边不等式取等号,当且仅当A 、F 1、B 三点共线时左边不等式取等号).56.设A 、B 是椭圆22221x y a b+=(a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αα=-.(2)2tan tan 1e αβ=-.(3)22222cot PAB a b S b aγ∆=-.57.设A 、B 是椭圆22221x y a b+=(a >b >0)长轴上分别位于椭圆内(异于原点)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与这椭圆相交于P 、Q 两点,则180PAB QAB ∠+∠=.58.设A 、B 是椭圆22221x y a b+=(a >b >0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,(若B P 交椭圆于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与这椭圆相交于P 、Q 两点,且180PAB QAB ∠+∠= ,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是椭圆22221x y a b+=的长轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ 与''AQ 的交点P 的轨迹是双曲线22221x y a b-=.60.过椭圆22221x y a b +=(a >b >0)的左焦点F 作互相垂直的两条弦AB 、CD 则2222282()||||ab a b AB CD a b a+≤+≤+.61.到椭圆22221x y a b+=(a >b >0)两焦点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222()x a y b ±+=.62.到椭圆22221x y a b+=(a >b >0)的长轴两端点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222(()a b x y e e±+=.63.到椭圆22221x y a b +=(a >b >0)的两准线和x 轴的交点的距离之比为a cb -(c 为半焦距)的动点的轨迹是姊妹圆22222(()a bx y e e±+=(e 为离心率).64.已知P 是椭圆221a b +=(a >b >0)上一个动点,',A A 是它长轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a+=.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆22221x y a b +=(a >b >0)长轴的端点为',A A ,11(,)P x y 是椭圆上的点过P 作斜率为2121b x a y -的直线l ,过',A A 分别作垂直于长轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''MAA M 面积的最小值是2ab .67.已知椭圆22221x y a b+=(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且//BC x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆2222()1x a y a b-+=(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab a b +.(2)以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()a b a b x y a b a b-+=++(0)x ≠.69.(,)P m n 是椭圆2222()1x a y a b-+=(a >b >0)上一个定点,P A 、P B 是互相垂直的弦,则(1)直线AB 必经过一个定点2222222222()()(,)ab m a b n b a a b a b +--++.(2)以P A 、P B 为直径的两圆的另一个交点Q 的轨迹方程是22224222222222222[()]()()()ab a m b n a b n a b x y a b a b a b ++--+-=+++(x m ≠且y n ≠).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)212d d b >,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)212d d b <,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆22221x y a b+=(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是222241(0)x y y a b+=≠.72.设点00(,)P x y 为椭圆22221x y a b +=(a >b >0)的内部一定点,AB 是椭圆22221x y a b+=过定点00(,)P x y 的任一弦,当弦AB 平行(或重合)于椭圆长轴所在直线时22222200max 2()(||||)a b a y b x PA PB b-+⋅=.当弦AB 垂直于长轴所在直线时,22222200min 2()(||||)a b a y b x PA PB a -+⋅=.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c 与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆22221(0,0)x y a b a b +=>>(包括圆在内)上有一点P ,过点P 分别作直线b y x a =及by x a=-的平行线,与x 轴于,M N ,与y 轴交于,R Q .,O 为原点,则:(1)222||||2OM ON a +=;(2)222||||2OQ OR b +=.90.过平面上的P 点作直线1:b l y x a =及2:bl y x a=-的平行线,分别交x 轴于,M N ,交y 轴于,R Q .(1)若222||||2OM ON a +=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.(2)若222||||2OQ OR b +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>.91.点P 为椭圆22221(0,0)x y a b a b+=>>(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a =-于,Q R ,记OMQ ∆与ONR ∆的面积为12,S S ,则:122abS S +=.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线by x a=-于,Q R ,记OMQ∆与ONR ∆的面积为12,S S ,已知122abS S +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>.椭圆性质92条证明1.椭圆第一定义。

椭圆性质大全(92条-含证明)

椭圆性质大全(92条-含证明)

椭圆的92条性质及证明1.122PF PF a +=2.标准方程22221x y a b += 3.111PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.椭圆22221x y a b+=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.10.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.11.若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则22OM AB b k k a⋅=-.13.若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.14.若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.15.若PQ 是椭圆22221x y a b +=(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=+==.16.若椭圆22221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 222211A B a b +=+;(2)L =17.给定椭圆1C :222222b x a y a b +=(a >b >0), 2C :222222222()a b b x a y ab a b-+=+,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 222202222(,)a b a b x y a b a b---++. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为椭圆(或圆)C:22221x y a b+= (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1, PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a+⋅=-⋅-. 19.过椭圆22221x y a b += (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).20.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan 2F PF S b γ∆=,2(tan )2b P c γ± . 21.若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan tan 22a c a c αβ-=+. 22.椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c ,00(,)M x y ).23.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当11e ≤<时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2122||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.25.椭圆22221x y a b +=(a >b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()a b x a b k-≤+. 26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是椭圆cos sin x a y b ϕϕ=⎧⎨=⎩(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是2211sin e ϕ=+. 29.设A,B 为椭圆2222(0,1)x y k k k a b +=>≠上两点,其直线AB 与椭圆22221x y a b+=相交于,P Q ,则AP BQ =.30.在椭圆22221x y a b +=中,定长为2m (o <m≤a )的弦中点轨迹方程为()2222222221()cos sin x y m a b a b αα⎡⎤=-++⎢⎥⎣⎦,其中tan bxayα=-,当0y =时, 90α=.31.设S 为椭圆22221x y a b+=(a >b >0)的通径,定长线段L 的两端点A,B 在椭圆上移动,记|AB|=l ,00(,)M x y 是AB中点,则当l S ≥Φ时,有20max ()2a l x c e =-222(c a b =-,c e a =);当l S <Φ时,有0max ()x =0min ()0x =.32.椭圆22221x y a b+=与直线0Ax By C ++=有公共点的充要条件是22222A aB bC +≥.33.椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++. 34.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.35.经过椭圆222222b x a y a b +=(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则21122||||PA P A b ⋅=.36.已知椭圆22221x y a b +=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最小值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +. 37.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP MN ⊥,则2222111||||a M N O P a b+=+. 39.设椭圆22221x y a b+=(a >b >0),M(m,o) 或(o, m)为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为对称轴上的两顶点)的交点N 在直线l :2a x m =(或2b y m=)上.40.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设椭圆方程22221x y a b +=,则斜率为k(k≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=-.43.设A 、B 、C 、D 为椭圆22221x y a b+=上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P,且P 不在椭圆上,则22222222cos sin cos sin PA PB b a PC PD b a ββαα⋅+=⋅+. 44.已知椭圆22221x y a b+=(a >b >0),点P 为其上一点F 1, F 2为椭圆的焦点,12F PF ∠的外(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a y b x x c c y a y b x c ⎡⎤+±⎣⎦=+±). 45.设△ABC 内接于椭圆Γ,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与椭圆Γ相切的充要条件是D 为EF 的中点.46.过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.47.设A (x 1 ,y 1)是椭圆22221x y a b +=(a >b >0)上任一点,过A 作一条斜率为2121b x a y -的直线L ,又设d 是原点到直线 L的距离, 12,r r 分别是Aab =.48.已知椭圆22221x y a b +=( a >b >0)和2222x y a bλ+=(01λ<< ),一直线顺次与它们相交于A 、B 、C 、D 四点,则│AB│=|CD│.49.已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.50.设P 点是椭圆22221x y a b +=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b θ∆=.51.设过椭圆的长轴上一点B (m,o )作直线与椭圆相交于P 、Q 两点,A 为椭圆长轴的左顶点,连结AP 和AQ 分别交相应于过H 点的直线MN :x n =于M ,N 两点,则()222290()a n m a m MBN a mb n a --∠=⇔=++. 52.L 是经过椭圆22221x y a b+=( a >b >0)长轴顶点A 且与长轴垂直的直线,E 、F 是椭圆两个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||PH b =时取等号).53.L 是椭圆22221x y a b+=( a >b >0)的准线,A 、B 是椭圆的长轴两顶点,点P L ∈,e 是离心率,EPF α∠=,H 是L与X 轴的交点c 是半焦距,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||abPH c=时取等号).54.L 是椭圆22221x y a b+=( a >b >0)的准线,E 、F 是两个焦点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且2sin e α≤或2sin arc e α≤(当且仅当||PH =.55.已知椭圆22221x y a b+=( a >b >0),直线L 通过其右焦点F 2,且与椭圆相交于A 、B 两点,将A 、B 与椭圆左焦点F 1连结起来,则2222112(2)||||a b b F A F B a-≤⋅≤(当且仅当AB ⊥x 轴时右边不等式取等号,当且仅当A 、F 1、B 三点共线时左边不等式取等号).56.设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αα=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b aγ∆=-. 57.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与这椭圆相交于P 、Q 两点,则180PAB QAB ∠+∠=.58.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,(若B P 交椭圆于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与这椭圆相交于P 、Q 两点,且180PAB QAB ∠+∠=,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是椭圆22221x y a b+=的长轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ 与''AQ 的交点P 的轨迹是双曲线22221x y a b-=. 60.过椭圆22221x y a b+=( a >b >0)的左焦点F 作互相垂直的两条弦AB 、CD 则2222282()||||ab a b AB CD a b a +≤+≤+.61.到椭圆22221x y a b +=( a >b >0)两焦点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222()x a y b ±+=.62.到椭圆22221x y a b +=( a >b >0)的长轴两端点的距离之比等于a cb -(c 为半焦距)的动点M 的轨迹是姊妹圆222()()a b x y e e±+=.63.到椭圆22221x y a b +=( a >b >0)的两准线和x 轴的交点的距离之比为a cb -(c 为半焦距)的动点的轨迹是姊妹圆22222()()a bx y e e±+=(e 为离心率).64.已知P 是椭圆22221x y a b +=( a >b >0)上一个动点,',A A 是它长轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a+=.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆22221x y a b +=( a >b >0)长轴的端点为',A A ,11(,)P x y 是椭圆上的点过P 作斜率为2121b x a y -的直线l ,过',A A 分别作垂直于长轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''MAA M 面积的最小值是2ab .67.已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且//BC x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆2222()1x a y a b-+=( a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab a b +.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y a b a b-+=++(0)x ≠. 69.(,)P m n 是椭圆2222()1x a y a b-+=(a >b >0)上一个定点,P A 、P B 是互相垂直的弦,则(1)直线AB 必经过一个定点2222222222()()(,)ab m a b n b a a b a b +--++.(2)以P A 、P B 为直径的两圆的另一个交点Q 的轨迹方程是 22224222222222222[()]()()()ab a m b n a b n a b x y a b a b a b ++--+-=+++(x m ≠且y n ≠).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)212d d b >,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)212d d b <,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆22221x y a b+=(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是222241(0)x y y a b+=≠.72.设点00(,)P x y 为椭圆22221x y a b +=( a >b >0)的内部一定点,AB 是椭圆22221x y a b+=过定点00(,)P x y 的任一弦,当弦AB 平行(或重合)于椭圆长轴所在直线时22222200max 2()(||||)a b a y b x PA PB b -+⋅=.当弦AB 垂直于长轴所在直线时,22222200min2()(||||)a b a y b x PA PB a-+⋅=. 73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切. 74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点. 75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c 与a-c. 76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例. 81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行. 83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长. 84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e. 86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线. 87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89. 已知椭圆22221(0,0)x y a b a b +=>>(包括圆在内)上有一点P ,过点P 分别作直线b y x a =及by x a=-的平行线,与x 轴于,M N ,与y 轴交于,R Q .,O 为原点,则:(1)222||||2OM ON a +=;(2)222||||2OQ OR b +=.90. 过平面上的P 点作直线1:b l y x a =及2:bl y x a=-的平行线,分别交x 轴于,M N ,交y 轴于,R Q .(1)若222||||2OM ON a +=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.(2)若222||||2OQ OR b +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>. 91. 点P 为椭圆22221(0,0)x y a b a b+=>>(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a =-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,则:122abS S +=.92. 点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线by x a=-于,Q R ,记 OMQ∆与ONR ∆的面积为12,S S ,已知122abS S +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>.椭圆性质92条证明1.椭圆第一定义。

关于椭圆的相关知识点

关于椭圆的相关知识点

2023年椭圆的相关知识点椭圆是平面几何中的一种特殊曲线,在数学和物理中都有广泛的应用。

它是一个闭合的曲线,由一个动点和两个固定点以及与这两个固定点的距离之和相等的所有点构成。

本文将介绍椭圆的定义、性质、方程以及一些常见的应用。

一、定义椭圆是平面上与两个固定点F1和F2的距离之和为常数2a的所有点的集合。

这两个固定点称为椭圆的焦点,而常数2a称为椭圆的长轴的长度。

椭圆的中心是焦点连线的中点,而短轴则是焦点连线的垂直平分线。

二、性质1. 椭圆的离心率:椭圆的离心率是一个表示椭圆形状的重要参数,它等于焦点距离与长轴长度的比值,即e=c/a,其中c是焦距,a是长轴的一半。

离心率的取值范围在0到1之间,当离心率为0时,椭圆退化成一个圆;当离心率接近于1时,椭圆变得更加扁平。

2. 椭圆的拉伸变形:如果将椭圆的长轴拉伸或缩短,那么椭圆的形状也会随之改变。

当长轴与短轴的比值变大时,椭圆会变得更加扁平;当比值变小时,椭圆则变得更加圆形。

3. 椭圆的焦点性质:对于椭圆上的任意一点P,焦点F1和F2到点P的距离之和等于固定值2a。

这个性质被广泛应用于天文学中的开普勒定律和定点式定位系统的原理中。

4. 椭圆的切线性质:椭圆上的每一点都有且只有一条与椭圆相切的切线。

这个性质对于曲线的研究和计算具有重要意义。

三、方程椭圆的标准方程可以表示为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a是长轴的一半,b是短轴的一半。

根据椭圆的长轴与短轴的方向,我们可以得到不同形式的方程。

1. 椭圆的水平形式:当椭圆的长轴与x轴平行时,其标准方程为(x-h)²/a² + (y-k)²/b² = 1。

此时,a表示椭圆的半长轴长度,b表示椭圆的半短轴长度。

2. 椭圆的垂直形式:当椭圆的长轴与y轴平行时,其标准方程为(x-h)²/b² + (y-k)²/a² = 1。

椭圆知识点性质大全

椭圆知识点性质大全

椭圆知识点性质大全1.122PF PF a +=2.标准方程22221x y a b += 3.111PF e d =<4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.椭圆22221x y a b +=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.10.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则22OM ABb k k a⋅=-.13.若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 14.若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b+=+.15.若PQ 是椭圆22221x y a b+=(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 222211A B a b +=+;(2) L =. 17.给定椭圆1C :222222b x a y a b +=(a >b >0), 2C :222222222()a b b x a y ab a b-+=+,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M2222002222(,)a b a b x y a b a b---++. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为椭圆(或圆)C:22221x y a b+= (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1, PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a +⋅=-⋅-. 19.过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BCb x k a y =(常数). 20.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan2F PF S b γ∆=,2(tan )2b Pc γ± . 21.若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点,12PF F α∠=, 21PF F β∠=,则tan tan 22a c a c αβ-=+. 22.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c ,00(,)M x y ).23.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当11e ≤<时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2122||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.25.椭圆22221x y a b +=(a >b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()a b x a b k-≤+. 26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是椭圆cos sin x a y b ϕϕ=⎧⎨=⎩(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是2211sin e ϕ=+.29.设A,B 为椭圆2222(0,1)x y k k k a b +=>≠上两点,其直线AB 与椭圆22221x y a b+=相交于,P Q ,则AP BQ =.30.在椭圆22221x y a b +=中,定长为2m (o <m ≤a )的弦中点轨迹方程为()2222222221()cos sin x y m a b a b αα⎡⎤=-++⎢⎥⎣⎦,其中tan bxay α=-,当0y =时, 90α=.31.设S 为椭圆22221x y a b+=(a >b >0)的通径,定长线段L 的两端点A,B 在椭圆上移动,记|AB|=l ,00(,)M x y 是AB 中点,则当l S ≥Φ时,有20max()2a lx c e=-222(c a b =-,c e a =);当l S <Φ时,有0max ()x =0min ()0x =. 32.椭圆22221x y a b +=与直线0A x B yC ++=有公共点的充要条件是22222A a B b C +≥.33.椭圆220022()()1x x y y a b--+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.34.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.35.经过椭圆222222b x a y a b +=(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则21122||||PA P A b ⋅=.36.已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最小值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b+.37.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP MN ⊥,则2222111||||a MN OP a b+=+. 39.设椭圆22221x y a b+=(a >b >0),M(m,o) 或(o, m)为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为对称轴上的两顶点)的交点N 在直线l :2a x m =(或2b y m=)上.40.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设椭圆方程22221x y a b +=,则斜率为k(k ≠0)的平行弦的中点必在直线l :y kx=的共轭直线'y k x =上,而且2'2b kk a=-.43.设A 、B 、C 、D 为椭圆22221x y a b+=上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P,且P 不在椭圆上,则22222222cos sin cos sin PA PBb a PC PD b a ββαα⋅+=⋅+. 44.已知椭圆22221x y a b+=(a >b >0),点P 为其上一点F 1, F 2为椭圆的焦点,12F PF ∠的外(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a y b x x c c y a y b x c ⎡⎤+±⎣⎦=+±). 45.设△ABC 内接于椭圆Γ,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与椭圆Γ相切的充要条件是D 为EF 的中点.46.过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 47.设A (x 1 ,y 1)是椭圆22221x y a b +=(a >b >0)上任一点,过A 作一条斜率为2121b x a y -的直线L ,又设d 是原点到直线 L 的距离, 12,r r 分别是A 到椭圆两焦点的距离,ab =.48.已知椭圆22221x y a b +=( a >b >0)和2222x y a bλ+=(01λ<< ),一直线顺次与它们相交于A 、B 、C 、D 四点,则│AB │=|CD │.49.已知椭圆22221x y a b +=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<. 50.设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b θ∆=.51.设过椭圆的长轴上一点B (m,o )作直线与椭圆相交于P 、Q 两点,A 为椭圆长轴的左顶点,连结AP 和AQ 分别交相应于过H 点的直线MN :x n =于M ,N 两点,则()222290()a n m a m MBN a m b n a --∠=⇔=++. 52.L 是经过椭圆22221x y a b+=( a >b >0)长轴顶点A 且与长轴垂直的直线,E 、F 是椭圆两个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||PH b =时取等号).53.L 是椭圆22221x y a b +=( a >b >0)的准线,A 、B 是椭圆的长轴两顶点,点P L ∈,e 是离心率,EPF α∠=,H 是L 与X 轴的交点c 是半焦距,则α是锐角且sin eα≤或sin arc e α≤(当且仅当||abPH c=时取等号).54.L 是椭圆22221x y a b+=( a >b >0)的准线,E 、F 是两个焦点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且2sin e α≤或2sin arc e α≤(当且仅当||PH =时取等号). 55.已知椭圆22221x y a b +=( a >b >0),直线L 通过其右焦点F 2,且与椭圆相交于A 、B 两点,将A 、B 与椭圆左焦点F 1连结起来,则2222112(2)||||a b b F A F B a-≤⋅≤(当且仅当AB ⊥x 轴时右边不等式取等号,当且仅当A 、F 1、B 三点共线时左边不等式取等号).56.设A 、B 是椭圆22221x y a b +=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αα=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b aγ∆=-. 57.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与这椭圆相交于P 、Q 两点,则180PAB QAB ∠+∠=.58.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,(若B P 交椭圆于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与这椭圆相交于P 、Q 两点,且180PAB QAB ∠+∠=,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是椭圆22221x y a b+=的长轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ 与''AQ 的交点P 的轨迹是双曲线22221x y a b-=.60.过椭圆22221x y a b +=( a >b >0)的左焦点F 作互相垂直的两条弦AB 、CD 则2222282()||||ab a b AB CD a b a+≤+≤+.61.到椭圆22221x y a b+=( a >b >0)两焦点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222()x a y b ±+=.62.到椭圆22221x y a b +=( a >b >0)的长轴两端点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222()()a bx y e e±+=.63.到椭圆22221x y a b+=( a >b >0)的两准线和x 轴的交点的距离之比为a c b -(c为半焦距)的动点的轨迹是姊妹圆22222()()a b x y e e ±+=(e 为离心率). 64.已知P 是椭圆22221x y a b +=( a >b >0)上一个动点,',A A 是它长轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a+=.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆22221x y a b+=( a >b >0)长轴的端点为',A A ,11(,)P x y 是椭圆上的点过P 作斜率为2121b x a y -的直线l ,过',A A 分别作垂直于长轴的直线交l 于',M M ,则(1)''2||||AM AM b =.(2)四边形''MAA M 面积的最小值是2ab .67.已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且//BC x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆2222()1x a y a b -+=( a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab a b +.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y a b a b-+=++(0)x ≠.69.(,)P m n 是椭圆2222()1x a y a b -+=(a >b >0)上一个定点,P A 、P B 是互相垂直的弦,则(1)直线AB 必经过一个定点2222222222()()(,)ab m a b n b a a b a b +--++.(2)以P A 、P B 为直径的两圆的另一个交点Q 的轨迹方程是22224222222222222[()]()()()ab a m b n a b n a b x y a b a b a b ++--+-=+++(x m ≠且y n ≠). 70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)212d d b >,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)212d d b <,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆22221x y a b+=(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是222241(0)x y y a b +=≠. 72.设点00(,)P x y 为椭圆22221x y a b +=( a >b >0)的内部一定点,AB 是椭圆22221x y a b+=过定点00(,)P x y 的任一弦,当弦AB 平行(或重合)于椭圆长轴所在直线时22222200max2()(||||)a b a y b x PA PB b -+⋅=.当弦AB 垂直于长轴所在直线时,22222200min2()(||||)a b a y b x PA PB a-+⋅=. 73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切. 74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点. 75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c 与a-c. 76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线. 87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两11 交点为直径的圆必过两焦点.89. 已知椭圆22221(0,0)x y a b a b+=>>(包括圆在内)上有一点P ,过点P 分别作直线b y x a =及b y x a=-的平行线,与x 轴于,M N ,与y 轴交于,R Q .,O 为原点,则:(1)222||||2OM ON a +=;(2)222||||2OQ OR b +=.90. 过平面上的P 点作直线1:b l y x a =及2:b l y x a=-的平行线,分别交x 轴于,M N ,交y 轴于,R Q .(1)若222||||2OM ON a+=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.(2)若222||||2OQ OR b +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>. 91. 点P 为椭圆22221(0,0)x y a b a b+=>>(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a=-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,则:122ab S S +=. 92. 点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a =-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,已知122ab S S +=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.。

高考椭圆的知识点

高考椭圆的知识点

高考椭圆的知识点椭圆是高中数学中常见的一个几何图形,也是高考数学中的重点内容之一。

下面将详细介绍高考椭圆的知识点。

一、椭圆的定义椭圆可以定义为平面上到两个定点的距离之和等于常数的点的轨迹。

这两个定点称为焦点,两个焦点之间的距离称为焦距。

椭圆的形状由焦距和常数决定。

二、椭圆的基本要素1. 焦点和直径:椭圆有两个焦点,焦点的位置决定了椭圆的形状和大小。

椭圆的长轴是通过两个焦点的直线,它的长度称为椭圆的长径;椭圆的短轴是垂直于长轴的直线,它的长度称为椭圆的短径。

2. 中心:椭圆的中心是长轴和短轴的交点,也是椭圆的对称中心。

3. 长径和短径:椭圆的中心到椭圆上任意一点的距离称为椭圆半径,椭圆的长径是指长轴的一半,短径是指短轴的一半。

4. 离心率:椭圆的离心率是一个0到1之间的实数,它表示椭圆的扁平程度。

离心率为0时,椭圆退化为一个点;离心率为1时,椭圆变为一条直线。

三、椭圆的方程1. 标准方程:椭圆的标准方程可以表示为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h, k)是椭圆的中心坐标,a是长轴的一半,b是短轴的一半。

2. 参数方程:椭圆的参数方程可以表示为x = h + a*cosθ,y = k + b*sinθ,其中(h, k)是椭圆的中心坐标,a是长轴的一半,b是短轴的一半,θ是参数。

四、椭圆的性质1. 对称性:椭圆具有两个对称轴,分别是长轴和短轴,以中心为对称中心。

2. 焦点性质:椭圆上任意一点到两个焦点的距离之和等于常数(焦距)。

3. 切线性质:椭圆上任意一点的切线和从该点出发指向焦点的直线的夹角等于切线斜率的相反数。

4. 弦长性质:椭圆上任意一条弦的长度等于焦点到弦中点的距离与焦距之和。

5. 面积性质:椭圆的面积可以用公式S = πab表示,其中a是长轴的一半,b是短轴的一半。

五、椭圆在高考中的应用1. 椭圆的参数方程可以用来描述物体在椭圆轨道上的运动。

2. 椭圆的性质可以应用于建筑结构中的设计和力学分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆常见性质 1.
11
||
1PF e d =< 2.PT 平分12PF F ∆在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3.以焦点弦PQ 为直径的圆必与对应准线相离.
4.以焦点半径1PF 为直径的圆必与长轴为直径的圆内切.
5.设12,A A 为椭圆的左,右顶点,则12PF F ∆在边2PF (或1PF )上的旁切圆,必与12A A 所在的直线切与2A (或1A ).
6.椭圆焦点三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.
7.椭圆两焦点到椭圆焦点三角形旁切圆的切线长为定值a+c 与a -c .
8.椭圆焦点三角形的非焦顶点到其内切圆的切线长为定值a -c .
9.椭圆焦点三角形中,内心将内点与非焦顶点连线段分成定比c .
10.椭圆焦点三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.
11.椭圆焦三角形中,过任一焦点向非焦顶点的外角引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.
12.椭圆焦三角形中,过任一焦点向非焦顶点的外角引垂线,垂足就是垂足同侧焦半径为直径的圆的和椭圆长轴为直径的圆的切点.
13.椭圆22
221(0)x y a b a b +=>>的焦半径公式:
1020||,||.PF a ex PF a ex =+=-(0x 是P 点横坐标).
14.设P 点是椭圆22
221(0)x y a b a b +=>>上异于长轴端点的任一点,12,F F 为其焦点.记
12F PF θ∠=,则1222122(1)||||;(2)tan .1cos 2
PF F b PF PF S b θ
θ∆==+
15.若P 为椭圆22
221(0)x y a b a b +=>>上异于长轴端点的任一点, 12,F F 为其焦点,
1221,PF F PF F αβ∠=∠=,则
tan tan .22
a c a c αβ
-=+ 16.设椭圆22
221(0)x y a b a b
+=>>的两个焦点为12,F F ,P(异于长轴端点)为椭圆上任意一点,
在12PF F ∆中,记121212,,,F PF PF F F F P αβλ∠=∠=∠=则有
sin sin sin e α
βλ
=+.
17.椭圆22
221(0)x y a b a b
+=>>的两个顶点12(,0),(,0)A a A a -,与y 轴平行的直线交椭圆于
12,P P 时,11A P 与22A P 交点的轨迹方程是22
221x y a b
-=.
18.若00(,)P x y 在椭圆22221x y a b +=上,则过P 点的椭圆的切线方程是00221xx yy
a b +=.
19.AB 是椭圆22
221x y a b
+=的不平行于对称轴的弦,M 为AB 的中点,则22OM AB b k k a ⋅=-.
20.若00(,)P x y 在椭圆22
221x y a b
+=内,则被P 所平分的中点弦的方程是
22
0000
2222xx yy x y a b a b
+=+. 21.若00(,)P x y 在椭圆22
221x y a b +=内,则过P 的弦中点的轨迹方程是22002222xx yy x y a b a b +=+.
22.已知椭圆22
221(0)x y a b a b +=>>,O 为坐标原点,P,Q 为椭圆上两动点,且OP OQ ⊥,
(1)22
221111||||OP OQ a b +=+;(2)22
||||OP OQ +的最大值为2222
4a b a b +; (3)OPQ S ∆的最小值是22
22
a b a b +.
23.若椭圆22
221(0)x y a b a b
+=>>的左右焦点分别为12,F F ,左准线为l ,11
e ≤<时,可在椭圆上求一点P ,使得1PF 是P 到对应准线距离的d 与2PF 的比例中项。

24.P 为椭圆22
221(0)x y a b a b +=>>上任一点,12,F F 为左右焦点,A 为椭圆内一定点,则
212||||2||a AF PA a AF -≤≤+,当且仅当2,,A F P 三点共线时,等号成立。

25.椭圆22
221(0)x y a b a b
+=>>上存在两点关于直线0:()l y k x x =-对称的充要条件是
222
20
222
()a b x a b k -<+.
26.设A,B 为椭圆椭圆2222(0,1)x y k k k a b +=>≠上两点,其直线AB 与椭圆22
221x y a b
+=相交
于P,Q,则AP=BQ .
27.椭圆22
221(0)x y a b a b +=>>与直线0Ax By C ++=有公共点的充要条件是
22222A a B b C +≥.
28.MN 是过椭圆22
221(0)x y a b a b
+=>>焦点的任意弦.若AB 是经过椭圆中心且平行于MN
的弦,则2
||2||AB a MN =.
29. .MN 是过椭圆22
221(0)x y a b a b
+=>>焦点的任意弦.若过椭圆中心O 的半弦OP MN ⊥,

222
2111||||a MN OP a b +=+.
30.设11(,)A x y 是椭圆22221(0)x y a b a b +=>>上任一点,过A 作一条斜率为21
21
b x a y -的直线l,
又设d 是原点到直线l 的距离,12,r r 分别是A 到椭圆两焦点的距离,
ab =.
31.过椭圆22
221(0)x y a b a b +=>>,A,B 是椭圆上两点,线段AB 的垂直平分线与想轴相交于点
0(,0)P x ,则2222
0a b a b x a a
---<<.
32. 过椭圆22
221(0)x y a b a b +=>>的左焦点F 作互相垂直的两条弦AB,CD,则
2222282()||||ab a b AB CD a b a
+≤+≤+.
33.已知椭圆22221(0)x y a b a b +=>>(包括圆在内)上有一点P,过P 点分别作直线b
y x a =及
b
y x a
=-
的平行线,分别交x 轴于M,N,交y 轴与R,Q.则: (1)2
2
2
||||2OM ON a +=;(2) 2
2
2
||||2OR OQ b += 34.过平面上的P 点作直线1:b l y x a =
及2:b
l y x a
=-的平行线,分别交x 轴于M,N,交y 轴与R,Q.(1)若2
2
2
||||2OM ON a +=,则P 的轨迹方程是22
221(0)x y a b a b +=>>.(2) 若
2
2
2
||||2OR OQ b +=,则P 的轨迹方程是22
221(0)x y a b a b
+=>>.。

相关文档
最新文档