中考数学证明角相等
中考数学专题测试-四边形的证明与计算(答案解析)
【考点分析】一、证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
二、证明两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等三、证明两直线平行1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四、证明两直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
中考数学复习指导:聚焦中位线定理的运用
聚焦中位线定理的运用中位线定理是三角形一个重要定理.有一个特点,在同一个题设下有两个结论:一个结论是表明两条线段的位置关系(平行),另一个结论是表明两条线段的数量关系(一半).在应用这个定理时,不一定同时需要两个结论,有时需要平行,有时需要倍分关系.可以根据具体情况,按需选用.现举例说明中位线定理的运用.一、用于证明平行例1 在△ABC 中,BD 平分∠ABC ,A D ⊥BD,垂足为D ,AE=EC. 求证:DE ∥BC.图1CFEDBA证明:延长AD 交BC 于点F. 因为BD 平分∠ABC , 所以∠ABD =∠CBD. 因为A D ⊥BD,所以∠BDA =∠BDF=900. 又BD=BD,所以△BDA ≌△BDF(ASA). 所以AD=DF.又因为AE=EC,所以DE ∥FC,即DE∥BC(三角形的中位线定理).二、用于证明角相等例2 如图2,四边形ABCD中,对角线AC、BD相交于O,已知AC=BD,M,N分别是AD、BC 的中点,MN与AC、BD分别交于E、F点.求证:∠AEN=∠BFM.图24312FEBAP NMC D分析:可取CD或AB的中点构造中位线. 证明:可取AB的中点P,连接PM、PN. 因为AM=MD,AP=BP,BN=NC,所以MPBD21,PNAC21(三角形中位线定理).所以∠1=∠3,∠2=∠4.又因为AC=BD,所以MP=NP,∠3=∠4,所以∠1=∠2.所以∠AEN=∠BFM(等角的补角相等).三、用于证明线段相等例3如图3,△ABC的AB、AC向形外作正三角形ABD和ACE,分别取BD、BC、CE的中点P、M、Q.求证:PM=QM.图3M D分析:中点P 、M 所在线段DB 、CB 有公共端点B ,若连接它们的另一端D 、C ,则PM 使成为△BCD 的中位线,同理连接BE 之后MQ 也成为△BEC 的中位线,通过中位线定理的传递,问题转化为证明DC 与BE 相等.证明过程由同学们自己完成! 四、用于证明线段的特殊关系例4 如图4,已知四边形ABCD 中,E 、F 、G 、H 分别为AB 、CD 、AC 、BD 的中点,且E 、F 、G 、H 不在同一条直线上,求证:EF 和GH 互相平分.分析:要证明EF 和GH 互相平分,可证明四边形EGFH 是平行四边形;有中点,可考虑利用中位线定理.图4GHBE ACFD证明:连接EG 、GF 、FH 、HE. 因为AE=EB, BH=HD,所以EH AD 21.同理FG AD 21.所以EHFG.所以四边形EGFH 是平行四边形. 所以EF 和GH 互相平分.。
2020年中考数学专题24相似三角形判定与性质
【答案】见解析。 【解析】根据平行四边形的性质得到 AD∥CD,AD=BC,得到△EBF∽△EAD,根据相似三角形的性质证明即 可;根据相似三角形的性质列式计算即可. (1)证明:∵四边形 ABCD 是平行四边形, ∴AD∥CD,AD=BC, ∴△EBF∽△EAD, ∴ = =,
∴BF= AD= BC, ∴BF=CF; (2)∵四边形 ABCD 是平行四边形, ∴AD∥CD,
C.4
D.
【答案】B 【解析】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形 的判定与性质等知识点. 由 S△ABC=16.S△A′EF=9 且 AD 为 BC 边的中线知 S△A′DE= S△A′EF= ,S△ABD= S△ABC=8,根据△
DA′E∽△DAB 知(
专题 24 相似三角形判定与性质
专题知识回顾
1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似多边形对应边的比叫做 相似比。 2.三角形相似的判定方法: (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相 似。 (3)判定定理 1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似, 可简述为两角对应相等,两三角形相似。 (4)判定定理 2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两 个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。 (5)判定定理 3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似, 可简述为三边对应成比例,两三角形相似。 3.直角三角形相似判定定理: ①以上各种判定方法均适用 ②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 4. 相似三角形的性质: (1)相似三角形的对应角相等,对应边成比例 (2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比 (3)相似三角形周长的比等于相似比 (4)相似三角形面积的比等于相似比的平方。
2021届中考数学专题复习训练——二次函数 专题13.1二次函数综合之角度相等、45°角、二倍角
二次函数角度问题 (角相等,45°角,二倍角)【经典例题1——角度相等】通过平行线,等腰等角,相似求解抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方.(1)如图1,若P (1,-3)、B (4,0), ① 求该抛物线的解析式;② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标;【解析】(1)①将P(1,−3),B(4,0)代入y=ax 2+c ,得⎩⎨⎧-=+=+3016c a c a ,解得⎪⎪⎩⎪⎪⎨⎧-==51651c a ,∴抛物线的解析式为y=51x 2−516;②如图1,当点D 在OP 左侧时,由∠DPO=∠POB ,得DP ∥OB , ∴D 与P 关于y 轴对称,且P(1,−3), ∴D(−1,−3);当点D 在OP 右侧时,延长PD 交x 轴于点G. 作PH ⊥OB 于点H ,则OH=1,PH=3. ∵∠DPO=∠POB , ∴PG=OG.设OG=x ,则PG=x ,HG=x −1.在Rt △PGH 中,由x 2=(x −1)2+32,得x =5. ∴点G(5,0).∴直线PG 的解析式为y=43x −415,∴MF=1,BF=2, ∴M (2,1)…(5分) ∵MN 是BC 的垂直平分线, ∴CN=BN ,设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0).设直线DE 的解析式为y=kx +b ,依题意,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k .∴直线DE 的解析式为y=2x -3. 解法二:如图2,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点C 作CF ∥x 轴交DE 于F . ∵MN 是BC 的垂直平分线, ∴CN=BN ,CM=BM . 设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0). ∴BN=4-23=25.∵CF ∥x 轴,∴∠CFM=∠BNM . ∵∠CMF=∠BMN ,∴△CMF ≌△BMN .∴CF=BN .∴F (25,2).设直线DE 的解析式为y=kx +b ,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k∴直线DE 的解析式为y=2x -3.(3)由(1)得抛物线解析式为y=21x 2-25x +2,【解析】(1)∵y=−x2+(a+1)x−a解得x 1=a ,x 2=1由图象知:a <0 ∴A(a ,0),B(1,0) ∵S △ABC =6 ∴21(1−a )(−a )=6 解得:a =−3,(a =4舍去); (2)如图①,∵A(−3,0),C(0,3), ∴OA=OC ,∴线段AC 的垂直平分线过原点, ∴线段AC 的垂直平分线解析式为:y=−x , ∵由A(−3,0),B(1,0), ∴线段AB 的垂直平分线为x =−1 将x=−1代入y=−x , 解得:y=1∴△ABC 外接圆圆心的坐标(−1,1)(3)如图②,作PM ⊥x 轴交x 轴于M ,则S △BAP =21AB ⋅PM=21×4d ∵S △PQB =S △PAB∴A 、Q 到PB 的距离相等, ∴AQ ∥PB设直线PB 解析式为:y=x +b ∵直线经过点B(1,0)所以:直线PB 的解析式为y=x −1 联立y=−x 2−2x +3;y=x −1. 解得:x =−4;y=−5. ∴点P 坐标为(−4,−5) 又∵∠PAQ=∠AQB ,∴∠BPA=∠PBQ ,∴AP=QB , 在△PBQ 与△BPA 中,AP=QB ,∠BPA=∠PBQ ,PB=BP , ∴△PBQ ≌△ABP(SAS), ∴PQ=AB=4设Q(m ,m+3)由PQ=4得:(m+4)2+(m+3+5)2=42解得:m=−4,m=−8(当m=−8时,∠PAQ ≠∠AQB ,故应舍去) ∴Q 坐标为(−4,−1).练习1-1如下图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x 轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式.(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由练习1-2.如图,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0)、点B(6,0),与y轴交于点C.(1)求该抛物线的函数解析式;(2)点D(4,m)在抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;练习1-3.(2019泰安)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,-2),且过点C(2,-2).(1)求二次函数解析式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M 到y轴的距离;若不存在,请说明理由.练习1-4.抛物线322++-=x x y 与x 轴交于点A ,B (A 在B 的左侧),与y 轴交于点C .(1)求直线BC 的解析式;(2)抛物线的对称轴上存在点P ,使∠APB=∠ABC ,利用图1求点P 的坐标; (3)点Q 在y 轴右侧的抛物线上,利用图2比较∠OCQ 与∠OCA 的大小,并说明理由.练习1-5如图(1),直线y=−34x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y=32x 2+bx +c 经过点A ,交y 轴于点B(0,−2).点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m. (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图(2),将△BDP 绕点B 逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC ,且点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标。
中考数学证明角相等
一.证明角相等
1.余角、补角的性质:同角(或等角)的余角 (补角)相等.
2
1
3
∠1+∠2=90º ∠1+∠3=90º
∠2 =∠3
1.余角、补角的性质:同角(或等角)的余角 (补角)相等. 2.对顶角相等. 3.平行线的性质:两直线平行同位角(内错角)相等. 4.三角形外角定理:三角形外角等于和它 不相邻的内角之和. 5.全等三角形的性质:全等三角形对应角相等. 6.等腰三角形的性质:等边对等角;三线合一. 7.直角三角形的性质:在直角三角形中,如果一条直角边是斜
角都等于它的内对角. 16.弦切角定理:弦切角等于所夹弧所对的圆周角 17:两个弦切角所夹的弧相等,这两个弦切角相等. 18.三角形的内心的性质:三角形的内心与角顶点的连线平分这个角.
19.正多边形的性质:正多边形的外角等于它的中心角.
例1:已知 I 为ABC的内心,延长AI 交BC于D,作IE ⊥BC. 求证:∠BID=∠CIE
边的一半,则这条直角边所对的角是 30°.
8.角平分线的性质定理的逆定理:到一个角两边距离相等的 点在这个角的平分 线上.
9.平行四边形的性质:平行四边形的对角 相等.
10.菱形的性质:菱形的对角线互相垂直平 分,并且每一条对 角线平分一组对角.
11.等腰梯形的性质定理:等腰梯形同一底上 的两个角相等.
例4:AB是 ⊙O的直径,弦CD⊥AB于E,M是上任意 一点。延长AM与DC的延长线交于F。求证: ∠FMC=∠AMD
分析:
已知条件有直径与弦互相垂直, 可考虑用垂径定理。
要证∠FMC=∠AMD 而∠FMC 是圆内接四边形ABCM的外角, 所以∠FMC=∠ABC
∠AMD与∠ABC所对的弧
中考数学 考点系统复习 第四章 三角形 方法技巧突破(四) 全等三角形之六大模型
得对应边相等
2.(2021·泸州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求
证:BD=CE. 证明:在△ABE与△ACD中,
∠A=∠A,
AB=AM,
在△ABN 和△AMC 中,∠BAN=∠MAC, AN=AC,
∴△ABN≌△AMC(SAS),∴BN=MC.
6.如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE 与 BD 交于点 F.
(1)求证:AE=BD; 证明:∵AC⊥BC, DC⊥EC, ∴∠ACB=∠DCE=90°, ∴∠ACB+∠BCE=∠DCE+∠BCE, 即∠ACE=∠BCD.在△ACE 和△BCD 中, AC=BC,
证明:∵ BF=EC,
∴EF= BC,
在△BCA与△EFD中,
AB=DE,
∠B=∠E, BC=EF, ∴△BCA≌△FED(SAS), ∴∠A=∠D,
模型二:轴对称型 【模型归纳】
有公 模型 共边 展示 有公共
顶点Leabharlann 模型 所给图形沿公共边所在直线或者经过公共顶点的某条直线 特点 折叠,两个三角形能完全重合
5.如图,在△ABC 中,分别以 AB,AC 为边向外作等边三角形 ABM 与等边 三角形 ACN,连接 MC,BN.求证:BN=MC.
证明:∵△ABM 和△ACN 是等边三角形, ∴AB=AM,AN=AC,∠BAM=∠NAC=60°, 又∵∠BAN=∠BAC+∠NAC, ∠CAM=∠BAC+∠BAM, ∴∠BAN=∠MAC,
= 43BD2
解题 常过顶点作角两边的垂线,构造全等三角形,或旋转一定的角
2021届中考数学专题复习训练——二次函数 专题13.1二次函数综合之角度相等、45°角、二倍角
二次函数角度问题 (角相等,45°角,二倍角)【经典例题1——角度相等】通过平行线,等腰等角,相似求解抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方.(1)如图1,若P (1,-3)、B (4,0), ① 求该抛物线的解析式;② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标;【解析】(1)①将P(1,−3),B(4,0)代入y=ax 2+c ,得⎩⎨⎧-=+=+3016c a c a ,解得⎪⎪⎩⎪⎪⎨⎧-==51651c a ,∴抛物线的解析式为y=51x 2−516;②如图1,当点D 在OP 左侧时,由∠DPO=∠POB ,得DP ∥OB , ∴D 与P 关于y 轴对称,且P(1,−3), ∴D(−1,−3);当点D 在OP 右侧时,延长PD 交x 轴于点G. 作PH ⊥OB 于点H ,则OH=1,PH=3. ∵∠DPO=∠POB , ∴PG=OG.设OG=x ,则PG=x ,HG=x −1.在Rt △PGH 中,由x 2=(x −1)2+32,得x =5. ∴点G(5,0).∴直线PG 的解析式为y=43x −415,∴MF=1,BF=2, ∴M (2,1)…(5分) ∵MN 是BC 的垂直平分线, ∴CN=BN ,设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0).设直线DE 的解析式为y=kx +b ,依题意,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k .∴直线DE 的解析式为y=2x -3. 解法二:如图2,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点C 作CF ∥x 轴交DE 于F . ∵MN 是BC 的垂直平分线, ∴CN=BN ,CM=BM . 设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得:x =23,∴N (23,0). ∴BN=4-23=25.∵CF ∥x 轴,∴∠CFM=∠BNM . ∵∠CMF=∠BMN ,∴△CMF ≌△BMN .∴CF=BN .∴F (25,2).设直线DE 的解析式为y=kx +b ,得:⎪⎩⎪⎨⎧=+=+02312b k b k ,解得:⎩⎨⎧-==32b k∴直线DE 的解析式为y=2x -3.(3)由(1)得抛物线解析式为y=21x 2-25x +2,【解析】(1)∵y=−x2+(a+1)x−a解得x 1=a ,x 2=1由图象知:a <0 ∴A(a ,0),B(1,0) ∵S △ABC =6 ∴21(1−a )(−a )=6 解得:a =−3,(a =4舍去); (2)如图①,∵A(−3,0),C(0,3), ∴OA=OC ,∴线段AC 的垂直平分线过原点, ∴线段AC 的垂直平分线解析式为:y=−x , ∵由A(−3,0),B(1,0), ∴线段AB 的垂直平分线为x =−1 将x=−1代入y=−x , 解得:y=1∴△ABC 外接圆圆心的坐标(−1,1)(3)如图②,作PM ⊥x 轴交x 轴于M ,则S △BAP =21AB ⋅PM=21×4d ∵S △PQB =S △PAB∴A 、Q 到PB 的距离相等, ∴AQ ∥PB设直线PB 解析式为:y=x +b ∵直线经过点B(1,0)所以:直线PB 的解析式为y=x −1 联立y=−x 2−2x +3;y=x −1. 解得:x =−4;y=−5. ∴点P 坐标为(−4,−5) 又∵∠PAQ=∠AQB ,∴∠BPA=∠PBQ ,∴AP=QB , 在△PBQ 与△BPA 中,AP=QB ,∠BPA=∠PBQ ,PB=BP , ∴△PBQ ≌△ABP(SAS), ∴PQ=AB=4设Q(m ,m+3)由PQ=4得:(m+4)2+(m+3+5)2=42解得:m=−4,m=−8(当m=−8时,∠PAQ ≠∠AQB ,故应舍去) ∴Q 坐标为(−4,−1).练习1-1如下图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x 轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式.(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由练习1-2.如图,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0)、点B(6,0),与y轴交于点C.(1)求该抛物线的函数解析式;(2)点D(4,m)在抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;练习1-3.(2019泰安)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,-2),且过点C(2,-2).(1)求二次函数解析式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M 到y轴的距离;若不存在,请说明理由.练习1-4.抛物线322++-=x x y 与x 轴交于点A ,B (A 在B 的左侧),与y 轴交于点C .(1)求直线BC 的解析式;(2)抛物线的对称轴上存在点P ,使∠APB=∠ABC ,利用图1求点P 的坐标; (3)点Q 在y 轴右侧的抛物线上,利用图2比较∠OCQ 与∠OCA 的大小,并说明理由.练习1-5如图(1),直线y=−34x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y=32x 2+bx +c 经过点A ,交y 轴于点B(0,−2).点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m. (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图(2),将△BDP 绕点B 逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC ,且点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标。
相似三角形的判定和性质-备战2023年中考数学考点微专题
考向5.6 相似三角形的判定和性质【知识要点】1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。
说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。
2、相似比:相似三角形对应边的比k,叫做相似比(或叫做相似系数)。
3、相似三角形的基本定理:平分于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础。
4、三角形相似的判定定理:(1)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么就两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
(2)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单说成:两边对应成比例且夹角相等,两三角形相似。
(3)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简单说成:三边对应成比例,两三角形相似。
(4)直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。
第一:顶角(或底角)相等的两个等腰三角形相似。
第二:腰和底对应成比例的两个等腰三角形相似。
第三:有一个锐角相等的两个直角三角形相似。
第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形.相似。
5、相似三角形的性质:(1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。
中考数学圆周角相等知识点
中考数学圆周角相等知识点在中考数学中,我们经常会遇到关于圆周角相等的题目。
了解圆周角相等的知识点对于解题非常重要。
本文将带你一步一步了解圆周角相等的概念和相关性质。
1. 圆周角的定义首先,我们需要了解什么是圆周角。
圆周角是指以圆心为顶点的角。
当我们在一个圆的周长上选择两个非邻接的点,这两个点和圆心之间形成的角就是圆周角。
2. 圆周角相等的概念当两个圆周角的度数相等时,我们称它们为“圆周角相等”。
换句话说,如果两个圆周角的度数相同,它们就是相等的。
3. 圆周角相等的性质了解圆周角相等的性质对于解题非常有帮助。
以下是圆周角相等的一些重要性质:•若两个角为圆周角,则它们的度数相等。
•若两个圆周角的度数相等,则它们是相等的。
4. 圆周角相等的证明为了证明两个圆周角相等,我们可以使用各种方法和定理。
以下是一些常见的证明方法:•利用等弧长弧所对的圆周角相等的性质进行证明。
•利用同一个圆上的两个弦所对的圆周角相等的性质进行证明。
•利用圆心角与所对弧的关系进行证明。
5. 圆周角相等的应用了解圆周角相等的概念和性质,我们可以将其应用于解题过程中。
以下是一些常见的应用场景:•利用圆周角相等的性质求解未知角度的大小。
•利用已知角度与圆周角相等的性质求解其他未知角度的大小。
•利用圆周角相等的性质解决几何问题,如证明两条弧相等、判断两个角是否相等等。
6. 练习题为了更好地掌握圆周角相等的知识,以下是一些练习题供你练习:1.已知圆的半径为3cm,弧AB的长度为4cm,求角AOB的度数。
2.若两个圆周角的度数相等,它们的角度是否一定相等?请给出证明或反例。
3.在一个半径为5cm的圆中,弧XY的度数为120°,求角XOY的度数。
7. 总结通过本文的介绍,我们了解了圆周角相等的概念和性质,并学会了如何运用这些知识解题。
希望通过不断练习和应用,你能够熟练掌握圆周角相等的相关知识,提高数学解题的能力。
初中数学 如何判断两个角是否相等
初中数学如何判断两个角是否相等
在初中数学中,判断两个角是否相等是一个基本的概念。
下面是一些关于判断两个角是否相等的方法和步骤:
1. 了解相等角的定义:相等角是指两个角的度数相等。
在一个平面内,如果两个角的度数相等,那么它们是相等角。
2. 观察两个角的度数:观察两个角的度数,看它们是否相等。
如果两个角的度数相等,那么它们是相等角。
3. 利用相等角的性质:利用相等角的性质来判断两个角是否相等。
相等角的度数是相等的。
如果两个角的度数相等,那么它们是相等角。
4. 比较两个角的度数:比较两个角的度数,看它们是否相等。
可以使用量角器或者其他工具来测量角的度数,然后比较它们的数值。
如果两个角的度数相等,那么它们是相等角。
通过以上步骤,我们可以判断两个角是否相等。
如果它们的度数相等,或者它们的度数相等,那么它们是相等角。
总结起来,判断两个角是否相等需要观察它们的度数,比较它们的度数,以及利用相等角的性质。
如果两个角的度数相等,或者它们的度数相等,那么它们是相等角。
理解和应用这些方法,可以帮助我们准确地判断两个角是否相等。
中考数学解答题之四边形的有关证明与计算
考点 4
平行四边形、特殊的平行四边形
【例 4】 (梅州)如图,在△ABC 中,点 P 是边 AC 上的一个动点,过点 P 作直线 MN∥BC,设 MN 交∠BCA 的平分线于 点 E,交∠BCA 的外角平分线于点 F. (1)求证:PE=PF; (2)当点 P 在边 AC 上运动时,四边形 BCFE 可能是菱形吗?说明理由; (3)若在 AC 边上存在点 P,使四边形 AECF 是正方形,且 AP 3 = .求此时∠A 的大小. BC 2 A E P F
重点、难点
2.线角的证明与计算. 难点:证明与计算的综合运用
考点及考试要求
会解决中考之第 20 或 21 题---有关于四边形的有关证明与计算(以及三角形)
教学内容
【考点链接】
一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 二、证明两角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。
中考数学:相似三角形的判定和判定方法
中考数学:相似三角形的判定和判定方法
2019年中考数学:相似三角形的判定和判定方
法
相似三角形的判定
1.两个三角形的两个角对应相等
2.两边对应成比例,且夹角相等
3.三边对应成比例
4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
相似三角形的判定方法
根据相似图形的特征来判断。
(对应边成比例,对应边的夹角相等)
1.平行于三角形一边的直线和其他两边(或两边的延长线)
相交,所构成的三角形与原三角形相似;
(这是相似三角形判定的引理,是以下判定方法证明的基础。
这个引理的证明方法需要平行线分线段成比例的证明)
2.如果一个三角形的两个角与另一个三角形的两个角对应
相等,那么这两个三角形相似;
3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;
4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
5.对应角相等,对应边成比例的两个三角形叫做相似三角形
三角形的对应部分成比例,那么这两个三角形相似。
人教版八年级上册数学专题复习证明三角形全等的常见题型
证明三角形全等的常见题型全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习。
而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等。
在辅导时可以抓住以下几种证明三角形全等的常见题型,进行分析。
一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等。
例1已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。
证明∵BE=CF(已知),∴BE+ EF=CF+EF,即 BF=CE。
在△ABF和△DCE中,∴△ABF≌△DCE(SAS)。
∴ AF=DE(全等三角形对应边相等)。
2.证已知边的另一邻角对应相等,再用ASA证全等。
例2已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。
求证:AE=CE。
证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等)。
在△ADE和△CFE中,∴△ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等。
例3(同例2).证明∵ FC∥AB(已知),∴∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(AAS).∴ AE=CE(全等三角形对应边相等)。
二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等。
例4已知:如图3,AD=AE,点D、E在BCBD=CE,∠1=∠2。
求证:△ABD≌△ACE.证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等。
例5已知:如图4,点A、C、B、D在同一直线AC=BD,AM=CN, BM=DN。
中考数学解答题压轴题突破 重难点突破八 几何综合题 类型四:与角度有关的几何问题
(2)如图②,当点D在△ABC外部ห้องสมุดไป่ตู้,连接AE,F为AE的中点,连接FD并延 长到点G,连接EG,若EG=EB,求证:∠EGF=∠FDA;
(2)证明:延长GF到点H,使FH=FD,连接EH. ∵EF=AF,∠EFH=∠AFD,∴△EFH≌△AFD(SAS), ∴∠FDA=∠H,AD=EH. ∵AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS), ∴AD=BE.∵BE=EG,∴EH=EG,∴∠EGF=∠H,∴∠EGF=∠FDA.
(3)如图③,当点D在△ABC中线CF上时,在线段BF上取一点Q(不与点F重 合),连接DQ,将△FDQ沿DQ翻折得到△F′DQ,连接BF′,EF′,若CD =2,AC=3 2,当BF′最小时,求△DEF′的面积.
(3)解:连接BD,∵△ABC是等腰直角三角形,CF是中线,∴CF⊥AB,
∵AC=3 2,∴CF=BF=3,∵CD=2,∴DF=1,DE=2 2,
②判断∠DEC和∠EDC的数量关系,并说明理由; ②解:∠DEC+∠EDC=90°,理由:∵DB=DC,DA⊥BC, ∴∠BDA=12∠BDC=30°,∵△BAD≌△BEC,∴∠BCE=∠BDA=30°, 在等边三角形BCD中,∠BCD=60°,∴∠DCE=∠BCE+∠BCD=90°, ∴∠DEC+∠EDC=90°.
∴∠BDA=∠CDA=12∠BDC=30°,在△BDA中,DB=DA, 180°-∠BDA
∴∠BAD= 2 =75°,在△DAC中,DA=DC, 180°-∠ADC
∴∠DAC= 2 =75°, ∴∠BAC=∠BAD+∠DAC=75°+75°=150°;
②当点A在线段DF上时, ∵以点B为旋转中心,把BA顺时针方向旋转60°至BE,∴BA=BE, ∠ABE=60°,在等边三角形BDC中,BD=BC,∠DBC=60°, ∴∠DBC=∠ABE,∠DBC-∠ABC=∠ABE-∠ABC,即∠DBA=∠EBC, ∴△DBA≌△CBE,∴DA=CE,在Rt△DFC中,∠DFC=90°,∴DF<DC, ∵DA<DF,DA=CE,∴CE<DC, 由②可知△DCE为直角三角形,∴∠DEC≠45°.
中考数学证明角相等
凤凰城彩票总代理
[单选,A2型题,A1/A2型题]下列哪类微生物是非细胞型微生物()A.细菌B.放线菌C.真菌D.病毒E.立克次体 [单选,A1型题]提出“风从外入,令人振寒,汗出头捕,身重恶寒”的医著是()。A.《黄帝内经》B.《难经》C.《金匮要略》D.《伤寒论》E.《诸病源候论》 [填空题]复杂高层结构包括(),(),(),()。 [单选]对于不同系列的烃类,在相对分子质量相近的情况下,其氢碳原子比大小顺序是()。A、烷烃>环烷烃>芳香烃B、烷烃>芳香烃>环烷烃C、芳香烃>环烷烃>烷烃D、芳香烃>烷烃>环烷烃 [单选]VCO电路中,通过改变回路电抗元件参数改变频率,此可变器件为()。A.电感B.电容C.变容二极管 [单选]()金字塔前的狮身人面像是埃及最大、最古老的室外雕刻巨像。A.胡夫B.哈夫拉C.孟卡尔D.左塞尔 [单选]下列各项中,不会引起事业结余发生增减变动的是()。A.从事经营活动取得的收入B.附属单位按规定缴纳的款项C.开展专业业务活动取得的收入D.外单位捐赠未限定用途的财物 [单选]道德存在于人们的内心当中,具有及时性和超前的警示性、()的特点,可以随时调控人的不良行为。A、启示性B、防范性C、总结性D、暗示性 [填空题]油品的沸程是指()温度范围。 [单选]对于大型人员密集场所或特殊工程外的一般建设工程,其消防验收方式为()。A.施工单位应当向公安机关消防机构申请消防验收B.建设单位应当先行备案后进行消防验收C.可以不经消防验收,由公安机关消防机构进行抽查D.在验收后应当报公安机关消防机构备案 [问答题,案例分析题]背景材料:某道路改建工程A合同段,道路正东西走向,全长973.5m,车行道宽度15m,两边人行道各3m与道路中心线平行且向北,需新建DN800mm雨水管道973m。新建路面结构为150mm厚砾石砂垫层,350mm厚二灰混合料基层,80mm厚中粒式沥青混凝土,40mm厚SMA改性沥青混 [判断题]如果某档位的动力传动路线上有单向离合器工作,则该档位没有发动机制动。()A.正确B.错误 [单选]慢性消化性溃疡穿孔多见于()A.胃前壁溃疡B.胃后壁溃疡C.十二指肠球前壁溃疡D.十二指肠球后壁溃疡E.十二指肠球后溃疡 [单选,A1型题]首次产前检查的内容不包括()A.血、尿常规检查B.心肺检查C.测量基础血压D.常规妇科检查E.常规胸片检查 [问答题,简答题]简述汽油机和柴油机的着火和燃烧方式。 [单选times;×医院关于要求改变拨款方式的报告B.××省财政厅关于同意××大学新建教学楼的批示C.××大学关于举行春季运动会决定的通知D.××市人民政府关于开展财务大检查的通知 [单选,A2型题,A1/A2型题]关于湿热类温病证论述,正确的是?()A.多由于风热、燥热等病邪所致B.病理特点为温邪犯表,肺卫失宣C.辨证要点为发热、咳嗽、头痛、无汗D.不可采用汗法治疗E.病变层次表浅,病情一般较轻 [问答题,简答题]为什么巴比妥C5次甲基上的两个氢原子必须全被取代才有疗效? [单选,A2型题,A1/A2型题]抗着丝点抗体对何种自身免疫病的诊断具有很高的敏感性和特异性()。A.CREST综合征B.进行性系统性硬化症C.硬皮症D.混合性结缔组织病E.干燥综合征 [单选]下列关于校对在出版工作中的作用和地位的表述正确的是()。A.校对工作是编辑工作的重要先决条件B.为提高效率,校对工作也可由作者负责C.校对不包括从事校对工作的专业人员D.校对工作是出版物内在质量的把关环节之一 [单选,共用题干题]患者,女,29岁,白化病。欲与一患白化病男性结婚,婚前前来进行咨询。如已结婚并妊娠,以下恰当的处理是()。A.产前诊断B.男胎、女胎均可保留C.建议终止妊娠D.保留男胎E.保留女胎 [单选]常规神经传导速度检查要求皮肤温度为()A.26℃B.28℃C.34℃D.20℃E.无要求 [单选]男性,40岁,多年咳嗽、咳脓痰史,5小时前突然大咯血,考虑病因可能为()A.胸腔积液B.支气管扩张症C.肺炎D.肺癌E.胸膜增厚 [单选]下列对于狂犬病的叙述中,错误的是()A.狂犬病病毒是有包膜的RNA病毒B.内基小体有诊断意义C.及时接种减毒活疫苗可预防发病D.患病动物为传染源E.病死率几乎达100% [问答题]一架装载如下的飞机的地板的最小承载限制是多少?货盘尺寸-长98.7宽78.9货盘重量-161磅系留装置-54磅货物重量-9,681.5磅 [单选]机舱失火,现场指挥是()。A.轮机长B.大副C.大管轮D.二管轮 [多选]施工单位取得《许可证》后,当()发生变化时,须重新申请、办理新的《许可证》。A.作业项目B.作业地点C.作业范围D.作业单位E.施工作业人员 [单选,A2型题,A1/A2型题]关于疼痛康复治疗叙述不正确的是()A.药物治疗是疼痛治疗中最基本、最常用方法B.物理治疗是疼痛治疗中最基本、最常用方法C.神经病理性疼痛是急性疼痛中治疗较差的疼痛D.神经病理性疼痛需要合并使用抗痉厥药和三环类抗抑郁药E.镇痛药是主要作用于中枢神经 [填空题]安全生产的“三同步”是指安全生产与经济建设、()、()、同步发展、同步实施。 [单选,A1型题]与矿物、金石类药物同用,赋形并助消化的药物是()A.麦芽B.山楂C.神曲D.莱菔子E.鸡内金 [问答题,简答题]哪些设备的抽空气管排至凝汽器? [单选,A2型题,A1/A2型题]下列哪种蛋白不是由肝细胞合成的().A.白蛋白B.凝血酶原C.免疫球蛋白D.纤维蛋白原E.前白蛋白 [单选]下列各项中,属于行政责任的是()。A.停止侵害B.罚款C.返还财产D.支付违约金 [单选]图示圆弧曲梁MK(内侧受拉为正)影响线在C点的竖标为:()A.0B.4mC.(8-4×1.732)mD.4×(1-1.732)m [单选]确诊气胸最有价值的项目是()A.胸部X线或CTB.症状C.体征D.病史E.动脉血气分析 [名词解释]分乘 [单选]电动机的多地控制,其线路上控制按钮的连接原则是()。A.启动按钮要并联B.停止按钮要并联C.启动按钮要串联D.都可以 [名词解释]备用信用证 [单选,A2型题,A1/A2型题]护理管理实施控制应注意的问题包括()A.建立完善的护理质量控制系统B.控制方法应具有科学性、实用性C.质量控制应标准化、数据化D.加强综合、系统地控制,实行全程质量控制E.以上都是 [单选]带蒂的子宫浆膜下肌瘤常易误诊为()A.子宫腺肌瘤B.阔韧带肿瘤C.双子宫D.卵巢肿瘤E.残角子宫
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东莞公司注册https:///
低血钾的典型心电图表现为。A.QT间期延长B.QRS波增宽C.u波倒置D.ST段压低,T波低平及u波增高E.T波倒置 患者,因服毒昏迷不醒,入急诊室抢救,其家属不能准确地说出毒物的名称及性质,观察患者双侧瞳孔缩小。护士应给患者摆放的体位是()A.端坐位B.半坐位C.仰卧位D.右侧卧位E.左侧卧位 下列病变均可发生营养不良性钙化,除外A.胰腺炎时的脂肪坏死B.结核病时的干酪样坏死C.结缔组织的透明变性D.血吸虫病时的虫卵结节E.维生素D摄入过多的胃黏膜 我行接受委托,按照一定的程序、办法和标准,对委托人履行经济承诺的能力及其可信任程度进行调查、审核和测定,确定委托人资信状况的业务叫?A、资信评级B、资信证明C、资信调查D、信息咨询 康复医学是一门()A.研究残疾人和患者的行为学B.研究残疾人和患者的社会心理学C.是一门语言矫治学D.是一门以促进残疾人及患者恢复身体、精神和社会生活功能为目标的学科E.是一门有关促进残疾人恢复的特殊教育学 矿业工程项目办理竣工验收的条件包括。A.矿井施工准备完成,人员已进点B.矿井生产系统已形成,按移交标准确定的工程全部建成,并经质量认证C.井筒冻结壁已形成,强度满足要求D.建设项目在环保、消防、安全、工业卫生等方面达到设计标准,验收合格,试运转正常E.矿井施工的提升、通 空压站开工用压缩机使用的电源规格是, 霍乱的特点,下列哪项是错误的A.常有畏寒、发热等全身中毒症状B.大便初为稀便,后为水样便或米泔样便C.轻型及隐性感染者为重要传染源D.确诊须依靠粪便培养及血清抗体效价4倍增长E.补充液体和电解质是治疗的关键 腐蚀性胃炎的治疗,不正确的是A.给予蛋清或牛乳口服B.强碱所致者用酸中和C.保持呼吸道通畅D.剧痛时慎用吗啡E.静脉营养 根据对外贸易法律制度的规定,下列关于反倾销措施的表述中,不正确的是。A.商务部对倾销以及由倾销造成的损害作出肯定的初裁决定前,不得寻求或者接受价格承诺B.商务部可以向出口经营者提出价格承诺的建议,但不得强迫出口经营者作出价格承诺C.在任何情形下,反倾销税税额不超过终 油库清罐作业中,须防静电,清罐作业人员严禁穿着服装。不得使用绳索及抹布等,气体检测人员必须穿着服及鞋。 @只有在隔板中心经过调整或挂耳松动重新固定后,才需要对隔板挂耳的间隙进行测量和调整,隔板或隔板套接合面不严密与挂耳间隙无关A.正确B.错误 票据的范围: 下列各项中,不属于湿热下注型前庭大腺炎特点的是。A.外阴一侧肿胀B.烦躁易怒C.带下色黄质稠D.腰酸耳鸣E.舌苔黄腻 下列说法不正确的有()。A、当计息周期为一年时,名义利率与有效年利率相等B、当计息周期短于一年时,有效年利率小于名义利率C、当计息周期长于一年时,有效年利率大于名义利率D、当计息周期长于一年时,有效年利率小于名义利率 A厂委托B厂加工一批应税消费品(高档化妆品),A厂提供的原材料成本为54000元,B厂收取(不含税)加工费9000元,该应税消费品适用税率为30%,受托的B厂没有同类消费品的销售价格。A厂将委托加工的已税消费品收回后,领用一半用于继续生产最终应税消费品(高档化妆品)后销售,取得 属于语言性交流的是A.手势B.眼神交流C.倾诉D.面部表情E.专业性皮肤接触 2岁1个月患儿,因不会讲话、不能独走而就诊,经常患肺炎。体温37.3℃,脉搏108次/分,身长78cm,双眼距宽,双眼外侧上斜,耳廓小,鼻梁低,四肢短,肌张力低下,双手第5指只有一条褶纹,胸骨左缘第3~4肋间Ⅲ级收缩期杂音,腕部X线片示一个骨化中心。为确诊应选择哪项检查A.血清 在客户服务中心品质监控中管理者在采用随机监听这种方式进行服务质量管理时需要特别遵守的原则是:、客观性原则、、交互性原则。 商业银行资本中最稳定、质量最高的部分是。A.核心资本B.附属资本C.扣除项D.优先股 男性,66岁。4个月前起刺激性咳嗽,右上胸痛,进行性加重。近2周来疼痛沿右肩向右上臂及前臂放射,并出现右额部不出汗、右眼难以睁开。体检:右侧瞳孔缩小,眼球内凹上睑下垂。右上肺叩浊音,听诊呼吸音降低。X线示右肺尖团块影,边缘不清。假如2个月后患者出现面部水肿,右颈部及 家庭功能不包括.A.满足家庭成员基本生理需要B.满足人们爱和被爱的情感需要C.传授社会技巧和知识D.经济收入公开,共同享用E.发展建立人际关系能力 通过双向动力转换组件A、只能由黄系统供压给绿系统B、黄系统可给绿系统增压,反之亦然C、只能由绿系统供压给黄系统 慢性肺心病患者提示右心功能不全的主要体征是A.双下肢水肿B.肝颈静脉回流征阳性C.心脏向左扩大D.肺动脉瓣区第二心音(P2)亢进E.肝大,触痛阳性 高速铁路实行天窗修制度,天窗应为垂直天窗,时间一般不少于.A.300minB.180minC.360minD.240min 拟定水利工程的管理机构,提出工程管理范围和保护范围以及主要管理设施,是阶段的主要内容之一。A.项目建议书B.预可行性研究C.可行性研究D.初步设计 智能建筑的楼宇自动化系统包括的内容有。A.电梯监控系统B.保安监控系统C.防盗报警系统D.给排水监控系统 Auer小体不见于下列哪种白血病A.急性早幼粒细胞白血病B.急性单核细胞白血病C.急性淋巴细胞白血病D.急性粒-单核细胞白血病E.急性原始粒细胞白血病 甘遂内服的正确用法是A.入汤剂B.入丸散剂C.先煎D.后下E.另煎 下列鉴别试验中属于司可巴比妥钠的鉴别反应是()A.亚硝酸钠反应B.硫酸反应C.戊烯二醛反应D.二硝基氯苯反应E.与高锰酸钾的反应 性能管理提供监视电路的当前及历史运行性能状态,修改设定电路的性能参数门限值,检测电路的等。 肱骨干中1/3骨折后,导致远断端移位的肌肉有A.胸大肌B.三角肌C.喙肱肌D.肱二头肌E.肱三头肌 微观层面的金融创新大致可以分为以下几种类型。A.信用创造型创新B.风险转移型创新C.增强流动性创新D.股权创造型创新E.金融市场的创新 关于循证医学的实质,以下哪种说法最为恰当A.循证医学就是进行系统综述和临床试验B.循证医学就是临床流行病学C.循证医学就是基于证据进行实践D.循证医学就是检索和评估文献E.以上所有选项 下列活动中,不属于项目管理过程组的是。A.项目可行性研究B.项目实施C.项目计划D.项目收尾 折断后有银白色胶丝的是A.藕节B.菟丝子C.杜仲D.败酱草E.柴胡 下列属于规范化癌症疼痛处理的目的是。A.缓解疼痛,规范医疗质量B.缓解疼痛,改善功能,延长生存时间C.缓解疼痛,改善功能,提高生活质量D.缓解疼痛,控制肿瘤生长,延长生存时间E.延长生存时间,改善生活质量 为土地注册登记、核发证书提供依据,是土地登记的法定程序,是土地登记的基础工作。A.地籍调查B.土地统计C.土地测量D.地籍信息系统管理 有关T细胞表位描述错误的是A.由TCR识别B.无需MHC分子的递呈C.多为线性表位D.可存在于抗原分子的任意部位E.化学性质多为肽类分子 高副的特点是。A.承载能力大B.能传递复杂运动C.磨损小D.寿命长