二次函数面积和周长最值问题
二次函数的最值问题——求线段,三角形周长及面积的最值

二次函数的最值问题——求线段,三角形周长及面积的最值摘要:二次函数作为初中最重要的函数,近几年来,中考拉分题常常利用二次函数求线段的最值、三角形周长的最小值及面积的最大值问题。
在解决二次函数的最值问题时,一般构建二次函数模型,通过数形结合把求三角形的周长、三角形面积的最值问题转化为求线段长度的问题。
关键词:二次函数;最值问题;轴对称;数形结合一、将军饮马“K”字形,两点之间线段最短问题1.二次函数与x轴交于点A(-1,0),B(3,0),与y轴交于点C(0,3).在抛物线的对称轴上是否存在一点P,使得的分析:由已知,可求得二次函数的对称轴为,又因为二次函数图像关于对称轴对称可知:A、B两点关于对称,,连接BC与对称轴的交点为所求P点,则,所以CH+EH的最小值为。
小结:利用二次函数求两线段和的最小值问题,我们通常是作其中一点关于对称轴的对称点,连接对称点与另一点得到的线段长度为我们所求的两线段和的最小值。
变式1.如问题1改为:的周长是否存在最小值?若存在,请求出的周长;若不存在,请说明理由。
分析:延伸1看起来跟问题1不一样,但实际上,万变不离其宗。
,已知A,C两点坐标,由勾股定理可得,,题目中要求周长的最小值可转化为求的最小值,也就转化为问题1,即:,问题2.如图,直线与抛物线交于点A(0,3),B(3,0) ,点F是线段AB上的动点,FE x轴,E在抛物线上,若点F的横坐标为m,请用含m的代数式表示EF的长并求EF的最大值。
分析:利用E、F分别在抛物线及一次函数上可得到,,因为,所以,可求得当时,EF的最大值为小结:利用二次函数求竖直线段的最大值,一般是通过设未知数表示出二次函数及一次函数图像上的两点,由横坐标相等,利用两点纵坐标相减可得到线段的长度,再利用二次函数求最值方法可求出线段的最大值。
变式1:问题2改为过E作,求的最大值是多少?分析:因为该一次函数,可知为等腰直角三角形,,要求的最大值只需求得的最大值,由此就转化为问题2,所以小结:求斜线段的最大值问题,一般转化为求平行于y轴线段的最值问题,再利用三角函数可求得斜线段的最大值。
二次函数周长面积最值问题

老师姓名学生姓名学管师学科名称年级上课时间月日_ _ :00-- __ :00 课题名称周长,面积最大问题教学重点教学过程【精讲精练】1.(2009永州)如图,在平面直角坐标系中,点A C、的坐标分别为(10)(03)--,、,,点B在x 轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线1x=,点P为直线BC 下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长.(3)求PBC△面积的最大值,并求此时点P的坐标.xyBFOACPx=1(第27题)2. (2009贵港)如图,抛物线y =ax 2+bx +c 与x 轴交于点A 和点B(-2,0),与y 轴的负半轴交于点C ,且线段OC 的长度是线段OA 的2倍,抛物线的对称轴是直线x =1. (1)求抛物线的解析式;(2)若过点(0,-5)且平行于x 轴的直线与该抛物线交于M 、N 两点,以线段MN 为一边抛物线上与M 、N 不重合的任意一点P(x ,y)为顶点作平行四边形,若平行四边形的面积为S ,请你求出S 关于点P 的纵坐标y 的函数解析式;(3)当0<x ≤ 103时,(2)中的平行四边形的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.A OB Cy xx =13. (2009本溪)如图所示,在平面直角坐标系中,抛物线y=ax 2+bx +c 经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D ,连接BD ,点P 是线段BD 上一个点(不与B 、D 重合),过点P 作y 轴的垂线,垂足为E ,连接BE .(1)求抛物线的解析式,并写出顶点D 的坐标;(2)如果P 点的坐标为(x,y),△PBE 的面积为S ,求S 与x 的函数关系式,写出自变量x 的取值范围,并求出S 的最大值;(3)在(2)的条件下,当S 取得最大值时,过点P 作x 的垂线,垂足为F ,连接EF ,把△PEF沿直线EF 折叠,点P 的对应点为P /,请直接写出P /点坐标,并判断点P /是否在该抛物线上.1- 1-2- 3- 1 2 3 3 1 DyC B AP2 Ex O4. 如图,在平面直角坐标系xoy 中,A 、B 两点的坐标分别为A (-3,0)、B (0,4),抛物线c x x y +-=310322经过B 点。
二次函数中面积的最值问题(六大题型)学生版-2024年中考数学压轴题专项训练

二次函数中面积的最值问题(六大题型)通用的解题思路:二次函数中的面积最值问题通常有以下3种解题方法:1)当所求图形的面积没有办法直接求出时,通常采用分割或补全图形的方法表示所求图形的面积,如下:一般步骤为:①设出要求的点的坐标;②通过割补将要求的图形转化成通过条件可以表示的图形面积和或差;③列出关系式求解;④检验是否每个坐标都符合题意.2)用铅垂定理巧求斜三角形面积的计算公式:三角形面积等于水平宽和铅锤高乘积的一半.3)利用平行线间的距离处处相等,根据同底等高,将所求图形的面积转移到另一个图形中,如图所示:一般步骤为:①设出直线解析式,两条平行直线k值相等;②通过已知点的坐标,求出直线解析式;③求出题意中要求点的坐标;④检验是否每个坐标都符合题意.题型01三角形面积最值问题1(2024·宁夏银川·一模)如图,二次函数y =-x 2+6x 的图象与x 轴的正半轴交于点A ,经过点A 的直线与该函数图象交于点B 1,5 ,与y 轴交于点C .(1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,且在直线AB 上方,过点P 作直线PE ⊥x 轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①当PD =12OC 时,求m 的值;②设△PAB 的面积为S ,求S 关于m 的函数表达式,并求出S 的最大值.2(2024·新疆克孜勒苏·二模)如图,抛物线y =x ²+bx +c (b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,A 2,0 ,AB =6,点P 为线段AB 上的动点,过P 作PQ ∥BC 交AC 于点Q .(1)求抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标.3(23-24九年级下·湖北武汉·开学考试)如图,抛物线y =ax 2-4ax +3a 交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴正半轴于点C ,OB =OC ,点P 在抛物线上.(1)求抛物线的解析式;(2)若tan∠ACP=2,求点P的横坐标.(3)平面上有两点M m,-m-3,求△PMN的面积的最小值.,N m+2,-m-54(23-24九年级下·辽宁沈阳·阶段练习)△ABC中,∠BAC=90°,AB=2,AC=4,点P从点C出发,沿射线CA方向运动,速度为每秒1个单位长度,同时点Q以相同的速度从点B出发,沿射线BA方向运动.设运动时间为x(x≠2且x≠4)秒,△APQ的面积为S.(1)当0<x<2时,如图①,求S与x的函数关系式;(2)当2<x<4时,如图②,求S的最大值;(3)若在运动过程中,存在两个时刻x1,x2,对应的点P和点Q分别记为P1,P2和Q1,Q2,对应的△AP1Q1和△AP2Q2的面积分别记为S1和S2,且当CP1=P1P2时,S1=S2,请求出x1的值.5(2023·山东聊城·二模)如图,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),点A 的坐标为-1,0,直线CD:y=2x-3与x轴交于点D.动点M在抛物线上运动, ,与y轴交于点C0,-3过点M作MP⊥x轴,垂足为点P,交直线CD于点N.(1)求抛物线的表达式;(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;(3)点M在运动过程中,能否使以C,N,M为顶点的三角形是以NM为腰的等腰直角三角形?若存在,请直接写出点M的坐标.6(2024·浙江宁波·模拟预测)如图,一次函数y=33x+3的图象与坐标轴交于点A、B,抛物线y=-33x2+bx+c的图象经过A、B两点.(1)求二次函数的表达式;(2)若点P为抛物线上一动点,在直线AB上方是否存在点P使△PAB的面积最大?若存在,请求出△PAB 面积的最大值及点P的坐标,请说明理由.7(2024·甘肃陇南·一模)如图,在平面直角坐标系xOy中,已知直线y=-x-3与x轴交于点A,与y轴交于点C,过A,C两点的抛物线y=ax2+bx+c与x轴交于另一点B1,0,抛物线对称轴为直线l.(1)求抛物线的解析式;(2)点M为直线AC下方抛物线上一点,当△MAC的面积最大时,求点M的坐标;(3)点P是抛物线上一点,过点P作l的垂线,垂足为D,E是l上一点.要使得以P,D,E为顶点的三角形与△BOC全等,请直接写出点P的坐标.8(2024·江苏盐城·模拟预测)已知抛物线y=x2+bx-3与x轴交于A,B(点A在点B的左侧),与y轴交于点C,且OB=OC.(1)求抛物线的解析式和点A的坐标;(2)如图1,点P为直线BC下方抛物线上一点,求△PBC的最大面积;(3)如图2,M、N是抛物线上异于B,C的两个动点,若直线BN与直线CM的交点始终在直线y=2x-9上,求证:直线MN必经过一个定点,并求该定点坐标.9(2024·四川广元·二模)如图,在平面直角坐标系中,抛物线y1=-x2+bx+c与x轴交于点B,A(-3, 0),与y轴交于点C(0,3).(1)求直线AC和抛物线的解析式.(2)若点M是抛物线对称轴上的一点,是否存在点M,使得以M,A,C三点为顶点的三角形是以AC为底的等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.(3)若点P是第二象限内抛物线上的一个动点,求△PAC面积的最大值.10(2024·安徽安庆·一模)如图,抛物线y=ax2+bx+3与x轴交于点A1,0两点,与y轴交于、B3,0点C.(1)求此抛物线对应的函数表达式;(2)点E为直线BC上的任意一点,过点E作x轴的垂线与此抛物线交于点F.①若点E在第一象限,连接CF、BF,求△CFB面积的最大值;②此抛物线对称轴与直线BC交于点D,连接DF,若△DEF为直角三角形,请直接写出E点坐标.11(2024·安徽合肥·一模)如图,直线y=x-3与x轴交于点B,与y轴交于点C,抛物线y=x2+bx+c 经过B、C两点,抛物线与x轴负半轴交于点A.(1)求抛物线的函数表达式;(2)直接写出当x-3>x2+bx+c时,x的取值范围;(3)点P是位于直线BC下方抛物线上的一个动点,过点P作PE⊥BC于点E,连接OE.求△BOE面积的最大值及此时点P的坐标.12(2024·天津西青·一模)已知抛物线y=-x2-4ax-12a(a<0)与x轴交于A,B两点(点A在点B左边),与y轴交于点C.(1)若点D4,12在抛物线上.①求抛物线的解析式及点A的坐标;②连接AD,若点P是直线AD上方的抛物线上一点,连接PA,PD,当△PAD面积最大时,求点P的坐标及△PAD面积的最大值;(2)已知点Q的坐标为-2a,-8a,连接QC,将线段QC绕点Q顺时针旋转90°,点C的对应点M恰好落在抛物线上,求抛物线的解析式.13(2024·山东临沂·二模)如图,抛物线y=ax2+32x+c与x轴交于点A和点B4,0,与y轴交于点C0,2,连接BC,点D在抛物线上.(1)求抛物线的解析式;(2)小明探究点D位置时发现:如图1,点D在第一象限内的抛物线上,连接BD,CD,△BCD面积存在最大值,请帮助小明求出△BCD面积的最大值;(3)小明进一步探究点D位置时发现:如图2,点D在抛物线上移动,连接CD,存在∠DCB=∠ABC,请帮助小明求出∠DCB=∠ABC时点D的坐标.14(2024·广东深圳·二模)如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与轴交于A,B 点,与y轴交于点C0,3,点B的坐标为3,0,点P是抛物线上一个动点.(1)求二次函数解析式;(2)若P点在第一象限运动,当P运动到什么位置时,△BPC的面积最大?请求出点P的坐标和△BPC面积的最大值;(3)连接PO,PC,并把△POC沿CO翻折,那么是否存在点P,使四边形POP C为菱形;若不存在,请说明理由.15(2024·湖北·模拟预测)如图,抛物线y=x-12+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C0,-3.设P点在抛物线上运动,横坐标为m.(1)求此抛物线的解析式;(2)当P点位于第四象限时,求△BCP面积的最大值,并求出此时P点坐标;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.① 求h关于m的函数解析式,并写出自变量m的取值范围;② 根据h的不同取值,试探索点P的个数情况.16(22-23九年级下·重庆·阶段练习)抛物线y=ax²+bx+5经过点A1,0和点B5,0.该抛物线与直线y=12x+5相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.(1)求该抛物线所对应的函数解析式;(2)连接PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;(3)连接PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.17(2024·江苏宿迁·一模)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+3与x轴分别相交于A、B两点,与y轴相交于点C,已知点A的坐标为(-1,0),点B的坐标为(3,0).(1)求出这条抛物线的函数表达式;(2)如图2,点D是第一象限内该抛物线上一动点,过点D作直线l∥y轴,直线l与△ABD的外接圆相交于点E.①仅用无刻度直尺找出图2中△ABD外接圆的圆心P.②连接BC、CE,BC与直线DE的交点记为Q,如图3,设△CQE的面积为S,在点D运动的过程中,S是否存在最大值?如果存在,请求出S的最大值;如果不存在,请说明理由.18(2024·新疆乌鲁木齐·一模)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m 从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C,点P与直线m同时停止运动,设运动时间为t秒t>0.(1)AH=,EF=(用含t的式子表示).(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.19(2024·重庆·模拟预测)如图,在平面直角坐标系中,抛物线y=ax2+bx+c过点(3,-4),交x轴于点A(-1,0),B两点,交y轴于点C(0,2).(1)求抛物线的表达式;(2)连接AC ,BC ,M 为线段AB 上一动点,过点M 作MD ∥BC 交直线AC 于点D ,连接MC ,求△MDC 面积的最大值及此时M 点的坐标;(3)在(2)中△MDC 面积取得最大值的条件下,将该抛物线沿射线BC 方向平移2个单位长度,P 是平移后的抛物线上一动点,连接CP ,当∠PCM 与△OBC 的一个内角相等时,请直接写出所有符合条件的点P 的坐标.20(2024·湖南衡阳·一模)如图,已知抛物线y =ax 2+bx +c 经过A 1,0 ,B -3,0 ,C 0,3 三点.(1)求抛物线的解析式;(2)若点D 为第二象限内抛物线上一动点,求△BCD 面积的最大值;(3)设点P 为抛物线的对称轴上的一个动点,求使△BPC 为直角三角形的点P 的坐标.21(2024·甘肃天水·一模)如图,在平面直角坐标系中,开口向下的抛物线与x 轴交于A ,B 两点,D 是抛物线的顶点.O 为坐标原点.A ,B 两点的横坐标分别是方程x 2-4x -12=0的两根,且cos ∠DAB =22.(1)求抛物线的函数解析式;(2)作AC ⊥AD ,AC 交抛物线于点C ,求点C 的坐标及直线AC 的函数解析式;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在一点P ,使△APC 的面积最大?如果存在,请求出点P 的坐标和△APC 的最大面积;如果不存在,请说明理由.22(2024·山东聊城·一模)在平面直角坐标系中,抛物线y =ax 2+bx -3与x 轴交于点A -1,0 和点B 3,0 ,与y 轴交于点C .(1)求抛物线的解析式及顶点坐标;(2)若点P 为第四象限内抛物线上一点,当△PBC 面积最大时,求点P 的坐标;(3)若点P 为抛物线上一点,点Q 是线段BC 上一点(点Q 不与两端点重合),是否存在以P 、Q 、O 为顶点的三角形是等腰直角三角形,若存在,请直接写出满足条件的点P 的坐标;若不存在,请说明理由.23(2024·吉林长春·一模)如图,在平面直角坐标系中,直线y =x +2分别交x 轴、y 轴于A 、B 两点,过点C 2,2 作x 轴垂线,垂足为D ,连接BC .现有动点P 、Q 同时从A 点出发,分别沿AB 、AD 向终点B 和终点D 运动,若点P 的运动速度为每秒2个单位长度,点Q 的运动速度为每秒2个单位长度.设运动的时间为t 秒.(1)求A、B两点的坐标;(2)当CQ∥AB时,t=;(3)设△CPQ的面积为y,写出y与t的函数关系式,并求△CPQ面积的最大值;(4)当△CPQ为轴对称图形时,直接写出t的值.24(2023·湖南娄底·中考真题)如图,抛物线y=x2+bx+c过点A-1,0,交y轴于点C.、点B5,0(1)求b,c的值.(2)点P x0,y0是抛物线上的动点0<x0<5①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.25(2024·河南安阳·模拟预测)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与抛物线y=-x2+x-1的形状相同,且与x轴交于点-1,0.直线y=kx+2分别与x轴、y轴交于点A,B,和4,0与y=ax2+bx+c于点C,D(点C在点D的左侧).(1)求抛物线的解析式;(2)点P是直线y=kx+2上方抛物线上的任意一点,当k=2时,求△PCD面积的最大值;(3)若抛物线y=ax2+bx+c与线段AB有公共点,结合函数图象请直接写出k的取值范围.26(2024·湖南长沙·一模)如图,抛物线y=x2-bx+c与x轴交于A-1,0两点,与y轴交于,B m,0点C0,-3,顶点为D,直线BD交y轴于点E.(1)求抛物线的解析式.(2)设点P为线段BD上一点(点P不与B,D两点重合),过点P作x轴的垂线与抛物线交于点F,连接DF,BF,求△BDF面积的最大值.(3)连接CD,在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.27(2024·江西萍乡·一模)如图,已知抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.已知A3,0,连接AC,BC.,C0,3(1)求抛物线的函数解析式;(2)在抛物线的对称轴上找一点P,使得以A、D、P为顶点的三角形与△OBC相似,求出点P的坐标;(3)若点M是抛物线上的一个动点,且位于第一象限内,连接MC,MA.设△ACM的面积为S,试求S的最大值.28(2024·四川广元·二模)如图1,抛物线y=ax²+bx+c与x轴交于A,B两点,且点B的坐标为5,0,与y轴交于点C,该抛物线的顶点坐标为(3,-4).(1)求抛物线和直线BC的解析式.(2)在抛物线上是否存在点M,使得△BCM是以BC为底边的等腰三角形?若存在,求出所有点M的坐标;若不存在,请说明理由.(3)如图2,以点B 为圆心,画半径为2的圆,点P 为⊙B 上的一个动点,连接AC ,求△ACP 面积的最大值.29(2023·山东青岛·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AB =10cm ,BD =45cm .动点P 从点A 出发,沿AB 方向匀速运动,速度为1cm/s ;同时,动点Q 从点A 出发,沿AD 方向匀速运动,速度为2cm/s .以AP ,AQ 为邻边的平行四边形APMQ 的边PM 与AC 交于点E .设运动时间为t s 0<t ≤5 ,解答下列问题:(1)当点M 在BD 上时,求t 的值;(2)连接BE .设△PEB 的面积为S cm 2 ,求S 与t 的函数关系式和S 的最大值;(3)是否存在某一时刻t ,使点B 在∠PEC 的平分线上?若存在,求出t 的值;若不存在,请说明理由.30(2023·湖南怀化·中考真题)如图一所示,在平面直角坐标系中,抛物线y =ax 2+bx -8与x 轴交于A (-4,0)、B (2,0)两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P 为第三象限内抛物线上一点,作直线AC ,连接PA 、PC ,求△PAC 面积的最大值及此时点P 的坐标;(3)设直线l 1:y =kx +k -354交抛物线于点M 、N ,求证:无论k 为何值,平行于x 轴的直线l 2:y =-374上总存在一点E ,使得∠MEN 为直角.31(2024·海南省直辖县级单位·一模)如图,已知抛物线y =ax 2+2x +c a ≠0 ,与x 轴交于点A -1,0 和点B 3,0 ,与y 轴交于点C ,E 为抛物线的顶点.图1图2(1)求该抛物线的函数表达式;(2)如图1,点P 是第一象限内抛物线上一动点,连接PC 、PB 、BC ,设点P 的横坐标为t .①当t 为何值时,△PBC 的面积最大?并求出最大面积;②当t 为何值时,△PBC 是直角三角形?(3)如图2,过E 作EF ⊥x 轴于F ,若M m ,0 是x 轴上一动点,N 是线段EF 上一点,若∠MNC =90°,请直接写出实数m 的取值范围.32(2024·四川成都·一模)如图,直线y =-x -4分别交x 轴,y 轴于A ,C 两点,点B 在x 轴正半轴上.抛物线y =15x 2+bx +c 过A ,B ,C 三点.(1)求抛物线的解析式;(2)过点B 作BD ∥AC 交y 轴于点D ,交抛物线于点F .若点P 为直线AC 下方抛物线上的一动点,连接PD 交AC 于点E ,连接EB ,求S △PEB 的最大值及最大值时点P 的坐标;(3)如图2,将原抛物线进行平移,使其顶点为原点,进而得到新抛物线,直线y =-2x 与新抛物线交于O ,G 两点,点H 是线段OG 的中点,过H 作直线RQ (不与OG 重合)与新抛物线交于R ,Q 两点,点R 在点Q 左侧.直线GR 与直线OQ 交于点T ,点T 是否在某条定直线上?若是,请求出该定直线的解析式,若不是,请说明理由.33(2024·江苏苏州·一模)如图,在平面直角坐标系中,抛物线y =ax 2-8ax +10a -1a <0 与x 轴的交点分别为A x 1,0 ,B x 2,0 ,其中(0<x 2<x 1),且AB =4,与y 轴的交点为C ,直线CD ∥x 轴,在x 轴上有一动点E t ,0 ,过点E 作直线l ⊥x 轴,与抛物线、直线CD 的交点分别为P 、Q .(1)求抛物线的解析式;(2)当0<t ≤8时,求△APC 面积的最大值;(3)当t >2时,是否存在点P ,使以C 、P 、Q 为顶点的三角形与△OBC 相似?若存在,求出此时t 的值;若不存在,请说明理由.题型02四边形面积最值问题1(2024·安徽阜阳·一模)如图,抛物线y =ax 2+bx +3与x 轴交于A -1,0 ,B 3,0 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点P ,使△PAC 的周长最小,求△PAC 的周长的最小值及此时点P 的坐标;(3)若M 为抛物线在第一象限内的一动点,求出四边形OCMB 的面积的最大值及此时点M 的坐标.2(2024·山东临沂·一模)如图,在平面直角坐标系中,抛物线y =-14x 2+bx +c 与x 轴交于点A (-2,0)和点B ,与y 轴交于点C (0,4),点P 是直线BC 上方的抛物线上一点(点P 不与点B ,C 重合),过点P 作PD ∥y 轴交直线BC 于点D .(1)求抛物线的函数表达式;(2)求线段PD 长的最大值;(3)连接CP ,BP ,请直接写出四边形ABPC 的面积最大值为.3(2024·山西运城·一模)综合与探究如图,抛物线y=ax2+bx-3a≠0与x轴交于A-1,0、B两点,与y轴交于点C,点D-2,9 2在抛物线上,点P是抛物线在第四象限内的一个动点,过点P作PQ∥y轴交直线BD于点Q,连接PA、PB、QA,设点P的横坐标为m.(1)求抛物线的函数表达式;(2)求四边形PAQB面积的最大值及此时点P的坐标;(3)若点M是抛物线上任意一点,是否存在点M,使得∠MAB=2∠ACO,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.4(2024·安徽合肥·一模)在平面直角坐标系中,点O是坐标原点.抛物线y=ax2+bx-3a≠0与x轴交于A,B两点,直线l:y=kx+2与抛物线交于A,C两点,且A-1,0,B3,0.(1)求a,b,k的值;(2)点M是线段OB上的动点,点N在x轴上,MN=2,且点N在M的左边.过点M作MP⊥x轴,交抛物线于点P.过点N作x轴的垂线,交抛物线于点Q,交直线l于点R.①当以P,Q,R,M为顶点的四边形是平行四边形时,求点M的坐标.②记以P,Q,R,M为顶点的四边形面积为S,求S的最大值.5(2024·安徽蚌埠·一模)如图1,已知直线y=-x+5与坐标轴相交于A、B,点C坐标是-1,0,抛物线经过A、B、C三点.点P是抛物线上的一点,过点P作y轴的平行线,与直线AB交于点D,与x轴相交于点F.(1)求抛物线的解析式;(2)当点P在第一象限时,连接CP交OA于点E,连接EF,如图2所示;①求AE+DF的值;②设四边形AEFB的面积为S,则点P在运动过程中是否存在面积S的最大值,若存在,请求出此时点P的坐标;若不存在,请说明理由.6(2024·安徽马鞍山·一模)如图,过原点的二次函数y=ax2+bx的图象与x轴正半轴交于点A,经过点A的直线与该函数交于B1,-3,与y轴交于点C0,-4.(1)分别求此二次函数与直线AB的解析式.(2)点P是第四象限内二次函数图象上的一个动点,过点P作直线PE⊥x轴于点E,与直线AB交于点D,设点P的横坐标为t.①当PD=12OC时,求t的值;②当点P在直线AB下方时,连接OP,过点B作BQ⊥x轴于点Q,BQ与OP交于点F,连接DF,求四边形FQED面积的最大值.7(2024·山东济南·一模)如图,直线y=-12x+3交y轴于点A,交x轴于点C,抛物线y=-14x2+bx+c经过点A,点C,且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P m,0顺时针旋转90°得到线段O A ,若线段O A 与抛物线只有一个公共点,请结合函数图象,求m的取值范围.8(2024·四川广元·二模)如图,二次函数y=ax2+bx+c的图象与x轴交于原点O和点A4,0,经过点A的直线与该函数图象交于另一点B1,3,与y轴交于点C.(1)求直线AB的函数解析式及点C的坐标.(2)点P是抛物线上位于直线AB上方的一个动点,过点P作直线PE⊥x轴于点E,与直线AB交于点D,过点B作BF⊥x轴于点F,连接OP,与BF交于点G,连接DG.求四边形GDEF面积的最大值.(3)抛物线上是否存在这样的点Q,使得∠BOQ=45°?若存在,请求出点Q的坐标;若不存在,请说明理由.9(2024·广东珠海·一模)如图,抛物线y=-x2+3x+4和直线y=x+1交于A-1,0点,点B,B3,4在直线x=3上,直线x=3与x轴交于点C.(1)求∠BAC的度数.(2)点P从点A出发,以每秒2个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒t>0.以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.10(2024·安徽宿州·二模)如图1,抛物线y=ax2+bx-3(a,b是常数且a>0)与x轴交于点A-1,0和点B(点B在点A的右侧),点D是抛物线的顶点,CD是抛物线的对称轴且交x轴于点C1,0.(1)求a,b的值;(2)点P是抛物线上一点且位于点A和点D之间.(i)如图2,连接AP,DP,BD,求四边形ABDP面积的最大值;(ii)如图3,连接AP并延长交CD延长线于点Q,连接BP交CD于点E,求CE+CQ的值.11(2024·安徽·二模)如图1,在平面直角坐标系中,抛物线y=ax2+bx-4交x轴于点A-1,0,B4,0,交y轴于点C,点M在该抛物线上,横坐标为m,将该抛物线M,C两点之间(包括M,C两点)的部分记为图象W.(1)求抛物线的解析式;(2)图象W的最大值与最小值的差为4时,求m的值;(3)如图2,若点M位于BC下方,过点A作AE∥BC交拋物线于点E,点D为直线AE上一动点,连接CM, CD,BM,BD,求四边形CDBM面积的最大值及此时点M的坐标.12(2024·四川广安·二模)如图,抛物线y=-x2+bx+c交x轴于A-4,0.,B两点,交y轴于点C0,4(1)求抛物线的函数解析式.(2)点D在线段OA上运动,过点D作x轴的垂线,与AC交于点Q,与抛物线交于点P,连接AP、CP,求四边形AOCP的面积的最大值.(3)在抛物线的对称轴上是否存在点M,使得以点A、C、M为顶点的三角形是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.13(23-24九年级上·重庆渝北·期末)二次函数y=ax2+bx+4经过点A-1,0,点C,点D,点B4,0分别二次函数与y轴的交点和顶点,点M为二次函数图象上第一象限内的一个动点.(1)求二次函数的解析式;(2)如图1,连接BC ,过点A 作BC 的平行线交二次函数于点E ,连接CM ,BM ,BE ,CE .求四边形CMBE 面积的最大值以及此时点M 的坐标;(3)如图2,过点M 作MN ∥y 轴,交BC 于点N (点M 不与点D 重合),过点D 作DH ∥y 轴,交BC 于点H ,当DM =HN 时,直接写出点M 的坐标.题型03面积比最值问题14(2024·安徽合肥·一模)在平面直角坐标系xOy 中,已知抛物线y =a x +1 x -4 与x 轴交于A 、 B 两点,与y 轴交于点C 0,-2 .(1)求a 的值;(2)点D 为第四象限抛物线上一点①求△BCD 的面积最大值②连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值;15(2023·四川遂宁·中考真题)在平面直角坐标系中,O 为坐标原点,抛物线y =14x 2+bx +c 经过点O (0,0),对称轴过点B (2,0),直线l 过点C 2,-2 ,且垂直于y 轴.过点B 的直线l 1交抛物线于点M 、N ,交直线l 于点Q ,其中点M 、Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线l 1下方的抛物线上一动点,连接PQ 、PO ,其中PO 交l 1于点E ,设△OQE 的面积为S 1,△PQE 的面积为S 2.求S2S 1的最大值.16(2024·湖北省直辖县级单位·一模)抛物线y =x 2-4x 与直线y =x 交于原点O 和点B ,与x 轴交于另一点A ,顶点为D .(1)求出点B 和点D 的坐标;(2)如图①,连接OD ,P 为x 轴的负半轴上的一点,当tan ∠PDO =12时,求点P 的坐标;(3)如图②,M 是点B 关于抛物线的对称轴的对称点,Q 是抛物线上的动点,它的横坐标为m 0<m <5 ,连接MQ ,BQ ,MQ 与直线OB 交于点E ,设△BEQ 和△BEM 的面积分别为S 1和S 2,求S1S 2的最大值.17(2023·湖南永州·中考真题)如图1,抛物线y =ax 2+bx +c (a ,b ,c 为常数)经过点F 0,5 ,顶点坐标为2,9 ,点P x 1,y 1 为抛物线上的动点,PH ⊥x 轴于H ,且x 1≥52.(1)求抛物线的表达式;(2)如图1,直线OP :y =y 1x 1x 交BF 于点G ,求S △BPG S △BOG的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于C ,且BC ⊥BE ,PH =FC ,求点P 的横坐标.18(2024·四川南充·一模)抛物线y =-38x 2+bx +c b >0 与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C 0,3 ,抛物线对称轴为x =1,点P 是抛物线在第一象限上动点,连接CB ,PB .(1)求抛物线和直线BC 的解析式;(2)如图,连接PA ,交BC 于点M ,设△ABM 的面积为S 1,△PBM 的面积为S 2,求S 1S 2的最小值及此时点P的坐标.19(2024·湖北孝感·一模)如图1,已知抛物线y=ax2+bx+3与x轴交于点A-1,0,B3,0,与y轴交于点C,连接BC.(1)求a,b的值及直线BC的解析式;(2)如图1,点P是抛物线上位于直线BC上方的一点,连接AP交BC于点E,过P作PF⊥x轴于点F,交BC于点G,(ⅰ)若EP=EG,求点P的坐标,(ⅱ)连接CP,CA,记△PCE的面积为S1,△ACE的面积为S2,求S1S2的最大值;(3)如图2,将抛物线位于x轴下方面的部分不变,位于x轴上方面的部分关于x轴对称,得到新的图形,将直线BC向下平移n个单位,得到直线l,若直线l与新的图形有四个不同交点,请直接写出n的取值范围.题型04面积和最值问题1(2024·吉林长春·一模)在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于点A(-1,0)、B(3,0),交y轴于点C,连结AC、BC.点D在该抛物线上,过点D作DE∥AC,交直线BC于点E,连结AD、AE、BD.设点D横坐标为m(m>0),△DAE的面积为S1,△DBE的面积为S2.(1)求a,b的值;(2)设抛物线上D、B两个点和它们之间的部分为图象G,当图象G的最高点的纵坐标与m无关时,求m的取值范围;(3)当点D在第一象限时,求S1+S2的最大值;(4)当S1:S2=2:1时,直接写出m的值.题型05面积差最值问题1(2024·安徽合肥·一模)如图1,在平面直角坐标系xOy中,抛物线y=x2+bx+c的对称轴为直线x=。
最全二次函数区间的最值问题(中考数学必考题型)

二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。
例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。
二次函数面积最值问题

如何求解二次函数中的面积最值问题二次函数中求面积最值问题常用方法:1.补形、割形法2.“铅垂高,水平宽”面积法3.切线法4.三角函数法如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.解答(1)抛物线解析式为y=-x2-2x+3;(2)Q(-1,2);下面着重探讨求第(3)小题中面积最大值的几种方法.一、补形、割形法几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形.方法一如图3,设P点(x,-x2-2x+3)(-3<x<0).方法二如图4,设P点(x,-x2-2x+3)(-3<x<0).(下略.)二、“铅垂高,水平宽”面积法如图5,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.根据上述方法,本题解答如下:解如图6,作PE⊥x轴于点E,交BC于点F.设P点(x,-x2-2x+3)(-3<x<0).∴点P坐标为(-,)三、切线法若要使△PBC的面积最大,只需使BC上的高最大.过点P作BC的平行线l,当直线l与抛物线有唯一交点(即点P)时,BC上的高最大,此时△PBC的面积最大,于是,得到下面的切线法.解如图7,直线BC的解析式是y=x+3,过点P作BC的平行线l,从而可设直线l的解析式为:y=x+b.=.四、三角函数法本题也可直接利用三角函数法求得.解如图8,作PE⊥x轴交于点E,交BC于点F,怍PM⊥BC于点M.设P点(x,-x2-2x+3)(-3<x<0),则F(x,x+3).从以上四种解法可以看到,本题解题思路都是过点P作辅助线,然后利用相关性质找出各元素之间的关系进行求解.如此深入挖掘一道题的多种解法,可使我们摆脱题海战术,提高解题能力.同时,善于总结一道题的多种解法能加快解题速度,提高解题效率,也有利于培养我们的钻研能力和创新精神.用分割面积法求二次函数动点面积最值考纲解读二次函数动点面积最值1. 二次函数在历年中考中都为重点内容,占分为40%。
二次函数的周长与面积(含最值问题)

【知识梳理】一.二次函数之周长因为平面直角坐标系中点的坐标的几何意义为点到轴的距离,即横平竖直的线段长,所以处理二次函数压轴题的核心思想即为斜线段转化为横平竖直的线段(“斜转直”).“斜转直”的几种处理思路:①斜线段转化为横平或竖直的线段;②计算有关周长或面积的问题其本质一般也可转化为计算线段,所以同样可利用“斜转直”来处理;③出现斜放的角时,一般也可根据该角构建直角三角形,来实现“斜转直”.二.二次函数之面积割补求面积——铅垂法:12APB B A S PM x x =⋅⋅- 12APB B A S PM x x =⋅⋅- Tips :①过动点作铅垂线;②铅垂线平行于y 轴或垂直于x 轴.二次函数之周长与面积(含最值问题)【经典例题】【例一】1.如图,在平面直角坐标系中,抛物线y =(x ﹣2)2与x 轴交于点A ,与y 轴交于点B .过点B 作BC ∥x 轴,交抛物线于点C ,过点A 作AD ∥y 轴,交BC 于点D ,点P 在BC 下方的抛物线上(P 不与B ,C 重合),连结PC ,PD ,则△PCD 面积的最大值是.2.已知直线经过点A (0,2),B (2,0),点C 在抛物线2y x 的图象上,则使得ABC S =2的点有()个.A .4B .3C .2D .1【例二】1.如图,抛物线2(3)3(0)y ax a x a=+++≠与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若126 5CC=,求m的值;(3)求△PBA面积的最大值以及此时点E的坐标.2.如图,二次函数()2302y ax x c a =-+≠的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知点A (-1,0),点C (0,-2).(1)求抛物线的函数解析式;(2)在抛物线的对称轴上,是否存在点Q ,使△ACQ 周长最短?若不存在,请说明理由;若存在,求出点Q 的坐标.(3)若点M 是线段BC 下方的抛物线上的一个动点,求△BCM 面积的最大值以及此时点M 的坐标.3.如图,在平面直角坐标系中,二次函数214y x bx c =-++的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(-4,0).(1)求该二次函数的表达式及点C 的坐标;(2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .求S 的最大值.4.如图,抛物线2=-++与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,对称轴与y x bx c抛物线交于点P,与直线BC交于点M,连接PB.(1)求抛物线的表达式;(2)抛物线上是否存在异于点P的一点Q,使△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.(3)在第一象限对称轴右侧的抛物线上是否存在一点R,使△RMP与△RMB的面积相等?若存在,求出点R的坐标;若不存在,请说明理由.【能力训练】1.如图,在平面直角坐标系中,抛物线24y x x c =-++与y 轴交于点A ,过点A 作AB ∥x 轴交抛物线于点B ,则以AB 为边的等边三角形ABC 的周长为.2.如图所示,在平面直角坐标系中,点A 是x 轴上一动点,过A 作AC x ⊥轴交抛物线222y x x =++于点C ,以AC 为边作等边ABC ∆,高AD 的最小值为.3.如图,P 是抛物线22y x x =-++在第一象限上的点,过点P 分别向x 轴和y 轴引垂线,垂足分别为A ,B ,则四边形OAPB 周长的最大值为.4.如图,抛物线223y x x =-++与x 轴交于A ,B 两点,它的对称轴与x 轴交于点N ,过顶点M 作ME y ⊥轴于点E ,连结BE 交MN 于点F .(1)求F 的坐标.(2)求EMF ∆与BNF ∆的面积之和.5.如图,在平面直角坐标系中,点A ,B 在x 轴上,点C ,D 在y 轴上且OB =OC =3,OA =OD =1,抛物线2(0)y ax bx c a =++≠经过A ,B ,C 三点,直线AD 与抛物线交于另一点E .(1)求这条抛物线的解析式;(2)若M 是直线AD 上方抛物线上的一个动点,求△AME 面积的最大值.(3)在抛物线上是否存在点G ,使得AEG S =3?如果存在,求出点G 的坐标;如果不存在,请说明理由.。
二次函数中几何的最值问题完整版

二次函数中几何的最值问题Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】二次函数中几何的最值问题一、解答题1、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,0)、B (6,0)、C(0,-2),抛物线y=a+bx+c(a≠0)经过A、B、C三点。
(1)求直线AC的解析式;(2)求此抛物线的解析式;(3)若抛物线的顶点为D,试探究在直线AC上是否存在一点P,使得△BPD的周长最小,若存在,求出P点的坐标;若不存在,请说明理由。
2、如图,已知抛物线y=-+mx+3与x轴交于A,B两点,与y轴交于点C,点B 的坐标为(3,0)。
(1)求m的值及抛物线的顶点坐标;(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标。
3、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值。
4、如图,抛物线y=+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B (5,﹣6),C(6,0).(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q 一共有几个并请求出其中某一个点Q的坐标.5、如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.6、如图,抛物线y=-3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标。
二次函数中几何图形周长的最值问题题型及解法

202X年12月20日
目 录
二次函数中几何图形周长的最值问题考法分析以及学生对该题的态度 基本题型及解法 1 一个动点在抛物线上求三角形周长的最大值 含有45°角的直角三角形周长最大值的求法 含有30°(或60°)角的直角三角形周长最大值的求法 任意角的直角三角形周长最大值的求法 2 两个动点在抛物线上求四边形周长最大值 3 一个动点在一条直线上求三角形周长最小值 4 两个动点分别在两条相交直线上求三角形周长的最小值 5 两个动点分别在两条相交直线上求四边形周长的最小值 三 . 方法总结
E‘
D’
N
E
M
做法:
1.作E点关于X轴的对称点对称点E’
2.作D点关于y轴的对称点对称点D’
3.链接D’E’与x轴,y轴相交于点M,N,此时的交点就是我们做要找的点的位置
4.连接EM,DN
5.此时四边形的周长最小
02
第三部分 方法总结
方法总结
运用相关知识和方法求出几何图形的最值
若求最小值,找准定点所在的直线
4.两个动点分别在两条相交直线上求三角形周长的最小值
“将军饮马”模型——两次对称(一定点两动点)
如图:一位将军骑马从驻地A出发,先牵马去草地OM吃草,再牵马去河边ON喝水, 最后回到驻地A, 问:这位将军怎样走路程最短?
A1
P
Q
A2
1.作A点关于直线OM的对称点对称点A1
2.作A点关于直线OM的对称点对称点A2
2. 四边形周长最大值转化为线段最大值 例2:(3)如图,抛物线 y=-x2-2x+3的图象与x轴交于A、B两点 (点A在点B的左边),与y轴交于点C,点D为抛物线的顶点. (1)求A、B、C的坐标; (2)点M为线段AB上一点(点M不与点A、B重合) ,过点M作x轴的垂线,与直线AC交于点E,与抛物 线交于点P,过点P作PQ∥AB交抛物线于点Q,过 点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形 PQMN的周长最大时,求△AEM的面积;
2020年九年级数学中考压轴专题练:《二次函数与周长、面积最值问题》(含答案)

压轴专题练:《二次函数与周长、面积最值问题》1.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求该抛物线的表达式;(2)点E是线段BC上方的抛物线上一个动点,求△BEC的面积的最大值;(3)点P是抛物线的对称轴上一个动点,当以A、P、C为顶点的三角形是直角三角形时,求出点P的坐标.2.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x 2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直.则称该矩形为点P,Q的相关矩形“.如图为点P,Q的“相关矩形”的示意图.(1)已知点A的坐标为(1,0).①若点B的坐标为(2,5),求点A,B的“相关矩形”的周长;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,已知抛物线y=x2+mx+n经过点A和点C,求抛物线y=x2+mx+n与y轴的交点D的坐标;(2)⊙O的半径为4,点E是直线y=3上的从左向右的一个动点.若在⊙O上存在一点F,使得点E,F的“相关矩形”为正方形,直接写出动点E的横坐标的取值范围.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)过点A(﹣1,0),B(3,0),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)若OB=3OC,求抛物线的解析式.(2)如图1,设△OBD的面积为S1,△OAC的面积为S2,若,求a的值.(3)如图2,a=﹣1,若P点是半径为2的OB上一动点,连接PC、PA,当点P运动到某一位置时,的值最大,请求出这个最大值,并说明理由.4.在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.点P,Q均在线段AB上,点P的横坐标为m,点Q的横坐标大于m,在△PQM中,若PM∥x轴,OM∥y轴,则称△PQM为点P,Q的“云三角形”.(1)若B点的坐标为(4,0),m=2,则点P,B的“云三角形”的面积为.(2)当点P,Q的“云三角形”是等腰三角形时,求点B的坐标.(3)在(2)的条件下,作过O,P,B三点的抛物线y=ax2+bx+c,①若点M为抛物线上一点,△POM是点P,O的“云三角形”,求△POM的面积S与m之间的函数关系式,并写出m的取值范围;②当点P,Q的“云三角形”的面积为3,且抛物线y=ax2+bx+c与点P,Q的“云三角形”恰有两个交点时,直接写出m的取值范围.5.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)已知抛物线上点D的横坐标为2,在抛物线的对称轴上是否存在一点P,使得△BDP 的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.6.抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.(1)若B点坐标为(2,0)①求实数b的值;②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x₁,y₁),N(x₂,y₂),则线段MN的中点坐标为(,)7.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣6(a≠0)与x轴交于A(﹣2,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为;(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是对称轴上的动点,在抛物线上是否存在点N,使以点B、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.8.一次函数y=﹣2x﹣2分别与x轴、y轴交于点A、B.顶点为(1,4)的抛物线经过点A.(1)求抛物线的解析式;(2)点C为第一象限抛物线上一动点.设点C的横坐标为m,△ABC的面积为S.当m 为何值时,S的值最大,并求S的最大值;(3)在(2)的结论下,若点M在y轴上,△ACM为直角三角形,请直接写出点M的坐标.9.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3),顶点为D(1)求抛物线的解析式;(2)求∠CBD的度数;(3)若点N是线段BC上一个动点,过N作MN∥y轴交抛物线于点M,交x轴于点H,设H点的横坐标为m.①求线段MN的最大值;②若△BMN是等腰三角形,直接写出m的值.10.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1.0).B(5,0)两点,与y轴交于点C.(1)求地物线的解析式;(2)在地物线的对称轴上找一点M.使得MA+MC最小,请求出点M的坐标;(3)在直线BC下方抛物线上是否存在点P,使得△PBC的面积最大?若存在.请求出点P的坐标;若不存在,请说明理由.11.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点坐标为C(3,6),并与y轴交于点B(0,3),点A是对称轴与x轴的交点.(1)求抛物线的解析式;(2)如图①所示,P是抛物线上的一个动点,且位于第一象限,连接BP,AP,求△ABP 的面积的最大值;(3)如图②所示,在对称轴AC的右侧作∠ACD=30°交抛物线于点D,求出D点的坐标;并探究:在y轴上是否存在点Q,使∠CQD=60°?若存在,求点Q的坐标;若不存在,请说明理由.12.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式.(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).13.如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B在二次函数y=x2+bx+c的图象上,且该二次函数图象上存在一点D,使四边形ABCD能构成平行四边形.(1)试求b、c的值,并写出该二次函数表达式;(2)动点P沿线段AD从A到D,同时动点Q沿线段CA从C到A都以每秒1个单位的速度运动,问:①当P运动过程中能否存在PQ⊥AC?如果不存在请说明理由;如果存在请说明点的位置?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?14.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点,与y 轴交于点C (0,3),且OB =OC .直线y =x +1与抛物线交于A 、D 两点,与y 轴交于点E ,点Q 是抛物线的顶点,设直线AD 上方的抛物线上的动点P 的横坐标为m .(1)求该抛物线的解析式及顶点Q 的坐标.(2)连接CQ ,直接写出线段CQ 与线段AE 的数量关系和位置关系.(3)连接PA 、PD ,当m 为何值时S △APD =S △DAB ?(4)在直线AD 上是否存在一点H ,使△PQH 为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.15.已知一次函数y =kx +3与二次函数y =﹣x 2+bx +c 的图象的一个交点坐标为A (3,0),另一个交点B 在y 轴上,点P 为y 轴右侧抛物线上的一动点.(1)求此二次函数的解析式;(2)当点P 位于直线AB 上方的抛物线上时,求△ABP 面积的最大值;(3)当此抛物线在点B 与点P 之间的部分(含点B 和点P )的最高点与最低点的纵坐标之差为9时,请直接写出点P 的坐标和△ABP 的面积.参考答案1.解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),∴,解得∴y=﹣x2+2x+3=﹣(x﹣1)2+4;(2)如图,作EF∥y轴交BC于点F,记△BEC的面积为S,∵B(3,0),C(0,3),∴直线BC解析式为:y=﹣x+3.设E(m,﹣m2+2m+3),则F(m,﹣m+3).∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.∴当时,此时,点E的坐标是(3)设P(1,n),A(﹣1,0)、C(0,3),∴AC2=10,AP2=4+n2,CP2=1+(n﹣3)2=n2﹣6n+10①当AC⊥AP时,AC2+AP2=CP2,即10+4+n2=n2﹣6n+10.解得;②当AC⊥CP时,AC2+CP2=AP2,即10+n2﹣6n+10=4+n2,解得;③当AP⊥CP时,AP2+CP2=AC2,即4+n2+n2﹣6n+10=10.解得n=1或2.综上所述,符合条件的点P的坐标是或或(1,1)或(1,2),2.解:(1)①如图1,∵矩形ACBD是点A,B的“相关矩形”,∴AD∥CB,∵点A(1,0),B(2,5),∴点C(2,0),BC=5,∴AC=2﹣1=1,∴点A,B的“相关矩形”的周长为2(AC+BC)=2×(1+6)=14;②如图2,∵点C在直线x=3上,∴点C的横坐标为3,∵点A(1,0),C的“相关矩形”为正方形,∴BC∥AD,AB=BC,∴点B的坐标为(3,0),∴BC=AB=3﹣1=2∴点C的纵坐标为(3,2),∵抛物线y=x2+mx+n经过点A和点C,∴,∴,∴抛物线的解析式为y=x2﹣3x+2,令x=0,则y=0,∴点D的坐标为(0,2);(2)如图3,当点F在y轴的右侧时,点E在点M的右侧时,点E的横坐标大,连接OM,OF,设OG=m,∵点E,F的“相关矩形”为正方形,∴FM=ME,∵点E在直线y=3上,∴MG=3,在Rt△OGF中,FG==,∴点E的横坐标为OG+ME=OG+MF=OG+MG+FG=OG+3+FG=m++3=()2+)2﹣2+2+3=(﹣)2+2+3≥2+3(当且仅当=时,取等号),即m=2时,点E的横坐标为(OG+ME)最大=(m+)最大+3=4+3,∴点E的横坐标最大是4+3,由圆的对称性得,点E的横坐标的最小值为﹣(4+3),即点E的横坐标的范围是大于等于﹣(4+3)而小于等于(4+3).3.解:(1)∵B(3,0),∴OB=3,OB=3OC,∴OC=1,∴C(0,1),∵A(﹣1,0),B(3,0),∴设抛物线的解析式y=a(x+1)(x﹣3),将C(0,1)代入,1=a×(0+1)×(0﹣3),∴a=﹣,∴y=((x+1)(x﹣3),即y=;(2)设y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a ∴C(0,﹣3a),CQ=﹣3a.∵A(﹣1,0),B(3,0),∴AB=4,∴设OD交BC于点M,由轴对称性,BC⊥OD,OD=2OM,在Rt△COB中,由面积法:∴∴又,∴a2+1=9.∴.∵a<0∴.(3)在x轴上取点D(2,0),连接PD,CD,BP∴BD=3﹣2=1,∵AB=4,BP=2,∴,∵∠PBD=∠ABP,∴△PBD~△ABP,∴,∴,∴,∴当点C,P,D在同一直线上时,最大,∵,∴最大值为.4.解:(1)如图1,∵A(0,6),B(4,0),∴直线AB解析式为,∵m=2,∴P(2,3)∵PM∥x轴,QM∥y轴,∴M(4,3),∠PMB=90°∴PM=2,BM=3,∴点P,B的“云三角形”△PBM的面积=;故答案为:3(2)如图2,根据题意,得MP=MQ,∠PMQ=90°,∴∠MPQ=45°,∵PM∥x轴,∴∠ABO=45°,∴OB=OA=6,点B的坐标为(6,0);(3)如图3,①首先,确定自变量取值范围为0<m<3,由(2)易得,线段AB的表达式为y=6﹣x,∴点P的坐标为(m,6﹣m),∵抛物线y=ax2+bx+c经过O,B两点,∴抛物线的对称轴为直线x=3,∴点M的坐标为(6﹣m,6﹣m),∴PM=(6﹣m)﹣m=6﹣2m,∴;②当点P在对称轴左侧,即m<3时,∵点P,Q的“云三角形”面积为3,由①得:2m2﹣12m+18=3,解得:或(舍去).当点P在对称轴上或对称轴右侧,即m≥3时,,∴,,,∵抛物线=ax2+bx+c与点P,Q的“云三角形”恰有两个交点,∴,解得:.综上所述,m的取值范围为:或.5.解:(1)OC=3,则c=3,OA=2,则点A(﹣2,0),将点A的坐标代入抛物线表达式得:0=﹣4﹣2b+3,解得:b=,故抛物线的表达式为:y=﹣x2+x+3;(2)当x=2时,y=﹣x2+x+3=2,故点D(2,2);令y=0,则x=3或﹣2,故点B(3,0),则函数的对称轴为:x=,点B关于对称轴的对称点为点A,连接AD交函数对称轴于点P,则点P为所求点,△BDP的周长=BD+BP+PD=BD+AP+PD=BD+AD为最小,由点A、D的坐标得,直线AD的表达式为:y=(x+2),当x=时,y=,故点P(,).6.解:(1)①将点B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直线解析式为y=﹣x+2,设E(m,﹣m2+m+2),过点E与BC垂直的直线解析式为y=x﹣m2+2,∴直线BC与其垂线的交点为F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],当m=1时,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面积的最大值为1,此时E(1,2);(2)∵抛物线的对称轴为x=,∴D(,0),∵函数与x轴有两个交点,∴△=1+4b>0,∴b>﹣,可求C(0,b),B(,0),设M(t,﹣t2+t+b),①当CM和BD为平行四边形的对角线时,C、M的中点为(,),B、D的中点为(,0),∴=,=0,∴b=﹣1+或b=﹣1﹣,∴b=﹣1+;②当BM和CD为平行四边形的对角线时,B、M的中点为(,),C、D的中点为(,),∴=,=,∴b无解;③当BC和MD为平行四边形的对角线时,B、C的中点为(,),M、D的中点为(,),∴=,=,∴b=或b=﹣(舍);综上所述:b=﹣1+或b=.7.解:(1)∵抛物线y=ax2+bx﹣6(a≠0)过点A(﹣2,0),B(3,0),∴解得:,∴抛物线解析式为y=x2﹣x﹣6.(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3,∴B(3,0),抛物线对称轴为直线,∵点D在直线上,点A,B关于直线对称,∴,AD=BD,∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小,设直线BC解析式为y=kx﹣6,∴3k﹣6=0,解得:k=2,∴直线BC:y=2x﹣6,∴,∴,故答案为:;(3)过点E作EG⊥x轴于点G,交直线BC与点F,设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6),∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t,∴=,∴当时,△BCE面积最大为,∴,∴此时点E坐标为;(4)存在点N,使以点B、C、M、N为顶点的四边形是平行四边形,设N(n,n2﹣n﹣6),M点的横坐标为,∵B(3,0),C(0,﹣6),①当BC∥MN,BC=MN时,B、M的横坐标为,C、N的中点的横坐标为,∴=,∴n=,∴N;②当BC∥NM,BC=NM时,B、N的中点的横坐标为,C、M的中点的横坐标为,∴=,∴n=﹣,∴N;③当BN∥CM,BN=CM时,B、C的中点横坐标为,M、N的中点横坐标为,∴=,∴n=,∴N;综上所述:点N坐标为,,.8.解:(1)一次函数y=﹣2x﹣2与x轴交于点A,则A的坐标为(﹣1,0),∵抛物线的顶点为(1,4),∴设抛物线解析式为y=a(x﹣1)2+4,∵抛物线经过点A(﹣1,0),∴0=a(﹣1﹣1)2+4,∴a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)连接OC,点C为第一象限抛物线上一动点,点C的横坐标为m,∴C(m,﹣m2+2m+3),一次函数y=﹣2x﹣2与y轴交于点B,则OB=2,∵A的坐标为(﹣1,0),∴OA=1,∴,,.∴,∴当m=2时,S的值最大,最大值为;(3)设M(0,n),∵A(﹣1,0),C(2,3),∴直线AC的解析式为y=x+1,①当AC⊥MC时,=﹣1,∴n=5,∴M(0,5);②当AC⊥AM时,n=﹣1,∴M(0,﹣1);③当AM⊥MC时,•n=﹣1,∴n=,∴M或M;综上所述:点M的坐标为(0,﹣1)、(0,5)、或.9.解:(1)∵抛物线与y轴交于点C(0,3),∴c=3,将点B(3,0)代入y=x2+bx+3,求得b=﹣4,∴y=x2﹣4x+3;(2)∵顶点为D,∴D(2,﹣1),∴直线BD的解析式y=x﹣3,∴∠OBD=45°,∵OB=OC,∴∠CBO=45°,∴∠CBD=90°;(3)①直线BC的解析式y=﹣x+3,∵H点的横坐标为m,∴N(m,﹣m+3),M(m,m2﹣4m+3),∴MN=﹣m+3﹣m2+4m﹣3=﹣m2+3m=﹣(m﹣)2+,当m=时,MN的最大值为;②BM2=(m﹣3)2(m2﹣2m+2),BN2=2(m﹣3)2,MN2=m2(m﹣3)2,当BM=BN时,m2﹣2m+2=2(m﹣3),解得m无解;当BM=MN时,m2﹣2m+2=m2,解得m=1;当BN=MN时,2=m2,解得m=±,∵点N是线段BC上一个动点,∴m>0,∴m=;③当M与D点重合的时候BN=BM,此时三角形BMN是等腰直角三角形,∴m=2;综上所述,当m=或m=1或m=2时△BMN是等腰三角形.10.解:(1)把A(﹣1.0).B(5,0)代入抛物线y=ax2+bx﹣5得,,解得,a=1,b=﹣4,∴抛物线的关系式为y=x2﹣4x﹣5,(2)当x=0时,y=﹣5,∴点C(0,﹣5)设直线BC的关系式为y=kx+b,把点B、C坐标代入得,,解得,k=1,b=﹣5,∴直线BC的关系式为y=x﹣5,∵抛物线的关系式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为直线x=2,由对称可得,直线BC与对称轴x=2交点就是所求的点M,当x=2时,y=2﹣5=﹣3,∴M(2,﹣3)时,MA+MC最小;(3)向下平移直线BC,使平移后的直线与抛物线有唯一公共点P时,此时点P到BC的距离最大,因此△PBC的面积最大,设将直线BC向下平移后的直线的关系式为y=x﹣5﹣m,则方程x2﹣4x﹣5=x﹣5﹣m,有两个相等的实数根,即x2﹣3x+m=0有两个相等的实数根,∴m=,当m=时,方程x2﹣3x+m=0的解为x=,把x=代入抛物线的关系式得,y=﹣4×﹣5=﹣,∴P(,﹣),答:在直线BC下方批物线上存在点P,使得△PBC的面积最大,此时点P的坐标为(,﹣).11.解:(1)抛物线顶点坐标为C(3,6),∴可设抛物线解析式为y=a(x﹣3)2+6,将B(0,3)代入可得a=﹣,∴y=﹣x2+2x+3;(2)连接PO,BO=3,AO=3,设P(n,﹣n2+2n+3),∴S△ABP =S△BOP+S△AOP﹣S△ABO,S△BPO=n,S△APO=﹣n2+3n+,S△ABO=,∴S△ABP =S△BOP+S△AOP﹣S△ABO=﹣n2+n=﹣(n﹣)2+,∴当x=时,S△ABP的最大值为;(3)存在,设点的坐标为(t,﹣t2+2t+3),过D作对称轴的垂线,垂足为G,则DG=t﹣3,CG=6﹣(﹣t2+2t+3)=t2﹣2t+3,∴∠ACD=30°,∴2DG=DC,在Rt△CGD中,CG==DG,∴(t﹣3)=t2﹣2t+3,∴t=3+3或t=3(舍)∴D(3+,﹣3),∴AG=3,GD=3,连接AD,在Rt△ADG中,∴AD==6,∴AD=AC=6,∠CAD=120°,∴在以A为圆心,AC为半径的圆与y轴的交点上,此时,∠CQD=∠CAD=60°,设Q(0,m),AQ为圆A的半径,AQ2=OA2+QO2=9+m2,∴AQ2=AC2,∴9+m2=36,∴m=3或m=﹣3,综上所述:Q点坐标为(0,3)或(0,﹣3).12.解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=﹣1+3=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)如图,设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t=,1 t=;2综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).13.解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0),∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),又∵四边形ABCD是平行四边形,∴D点坐标为(8,3),将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,∴,解得:,故该二次函数解析式为:y=x2﹣x﹣3.(2)∵OA=3,OB=4,∴AC=5.①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,∴△APQ∽△CAO,∴,即,解得:t=.即当点P运动到距离A点个单位长度处,有PQ⊥AC.②∵S四边形PDCQ +S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽△CAO可得:,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ 达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.14.解:(1)直线y=x+1与抛物线交于A点,则点A(﹣1,0)、点E(0,1).∵OB=OC,C(0,3),∴点B的坐标为(3,0),故抛物线的表达式为y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),将点C的坐标代入,得﹣3a=3,解得a=﹣1,∴抛物线的表达式为y=﹣x2+2x+3,∴函数的对称轴为x=1,故点Q的坐标为(1,4).(2)CQ=AE,且CQ∥AE,理由:∵Q(1,4),C(0,3),∴CQ==,CQ的解析式为y=x+3,又∵AE==,直线AE的解析式为y=x+1,∴CQ=AE,CQ∥AE,(3)∵,∴,,∴点D的坐标为(2,3).如图1,过点P作y轴的平行线,交AD于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1)∴S△PAD====×4×3.解得m=0或1.(4)存在,点P的坐标为(2,3)或(0,3)或.设点H(t,t+1),点P(m,n),n=﹣m2+2m+3,而点Q(1,4),①当∠QPH=90°时,如图2,过点P作y轴的平行线,过点H、点Q作x轴的平行线,交过点P且平行于y轴的直线于点M、G,∵∠GQP+∠QPG=90°,∠QPG+∠HPM=90°,∴∠HPM=∠GQP,∠PGQ=∠HMP=90°,PH=PQ,∴△PGQ≌△HMP(AAS),∴PG=MH,GQ=PM,即4﹣n|=|t﹣m|,|1﹣m|=|n﹣(t+1)|,解得m=2或n=3.当n=3时,3=﹣m2+2m+3,解得m1=0,m2=2(舍去),∴点P(0,3).②当∠PQH=90°时,如图3所示,同理可得m 1=0,m 2=3(舍去),故点P 为(0,3). ③当∠PHQ =90°时,如图4,同理可得n =2,解得m 1=1+(舍去),m 2=1﹣. 故点P (1﹣,2).综上可得,点P 的坐标为(0,3)或(1﹣,2). 15.解:(1)∵点A (3,0)在一次函数y =kx +3的图象上, ∴0=3k +3,∴k =﹣1,∴一次函数的解析式为y =﹣x +3,∴B (0,3),又∵A 、B 都在二次函数y =﹣x 2+bx +c 的图象上, ∴∴b =2,c =3,∴二次函数的解析式为y =﹣x 2+2x +3;(2)过P作PC⊥x轴交AB于点C,设P点坐标为(m,﹣m2+2m+3),则C(m,﹣m+3),∴PC=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∴S△PAB =S△PAC+S△PBC=====∵,∴当时,S△PAB有最大值;(3)抛物线的顶点坐标为:(1,4)为最高点,最高点与最低点的纵坐标之差为9时,则y P=﹣5,y=﹣x2+2x+3=﹣5,解得:x=4(不合题意值已舍去)故:P(4,﹣5),如图2,设PB交x轴于点H,由点BP的坐标得,直线PB的表达式为:y=﹣2x+3,故点H(,0),则HA=3﹣=,S=×HA×(y B﹣y P)=×(3+5)=6.△PAB。
初中数学二次函数面积最值问题的4种解法…掌握不再惧怕压轴题

初中数学二次函数面积最值问题的4种解法…掌握不再惧怕压轴题初中数学二次函数面积最值问题一般是指给出一个二次函数,要求求出其在一定范围内的面积最大值或最小值。
这类问题可以通过四种不同的解法来求解,分别是代数解法、几何解法、导数解法和平移法。
下面我来详细介绍这四种解法。
1.代数解法:代数解法是通过代数方法来解决问题。
对于给定的二次函数,首先根据题目要求找出变量的限制条件,然后可以利用一些代数的技巧,如配方法、因式分解等,将问题转化为求最值的问题。
通过求取顶点,得到函数的极值点,进而求得面积的最值。
代数解法的优点是原理简单,容易理解和掌握;缺点是计算量大,需要一些代数技巧和计算能力。
2.几何解法:几何解法是通过几何图形的性质和关系来解决问题。
对于给定的二次函数,可以画出函数的图像,然后根据几何图形的性质,找出切线、直线和坐标轴的交点,进而得到问题的解。
几何解法的优点是直观简单,理论基础较弱;缺点是需要具备较好的几何直观和空间想象能力。
3.导数解法:导数解法是通过求函数的导数,对函数的变化情况进行分析,进而求出极值点。
对于给定的二次函数,可以求出其导数,并令导数为零,求得顶点的横坐标,再代入函数中求得纵坐标,从而得到问题的解。
导数解法的优点是简单快捷,通用性强;缺点是需要一些微分的知识和运算能力。
4.平移法:平移法是通过对函数进行平移变换,将求最值的问题转化为求一些形状固定的函数的最值问题。
对于给定的二次函数,可以通过平移到一些特定位置,使得问题的解变为该函数的最值。
平移法的优点是逻辑清晰,简单明了;缺点是需要一些平移变换的知识和运算能力。
这四种解法各有特点,可以根据具体情况选择合适的方法。
在解决二次函数面积最值问题时,可以结合代数、几何、导数和平移四种解法,综合运用,可以更快更准确地解决问题。
掌握了这些解法,就不再害怕压轴题了。
难点探究专题:利用二次函数求面积、周长最值问题压轴题四种模型全攻略(学生版+解析版)

难点探究专题:利用二次函数求面积、周长最值问题压轴题四种模型全攻略【考点导航】目录【典型例题】1【考点一利用二次函数求面积最大值问题】【考点二利用二次函数求面积最小值问题】【考点三利用二次函数求周长最大值问题】【考点四利用二次函数求周长最小值问题】【典型例题】【考点一利用二次函数求面积最大值问题】1(2023秋·吉林四平·九年级四平市第三中学校校考阶段练习)如图,抛物线y=x2+bx+c与x轴交于点A,B与y轴交于点C,点A的坐标为-1,0.,点B的坐标为3,0(1)求抛物线的表达式;(2)若点P是第四象限内抛物线上一动点,连接PB,PC,求△PBC的面积S的最大值;(3)当a-2≤x≤a+1时,抛物线有最小值5,求a的值.【变式训练】1(2023春·河北沧州·九年级校考期中)如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为4,0点,点P是直线BC,与y轴交于C0,-4下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)当点P 运动到什么位置时,四边形ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.2(2023秋·福建莆田·九年级福建省莆田市中山中学校考阶段练习)已知,抛物线y =-x 2+bx +c 经过B 3,0 、C 0,3 两点,点P 是抛物线上一点,点A 是抛物线与x 轴的另一个交点.(1)求抛物线的解析式;(2)当点P 位于第一象限时,连接BP ,CP ,得到△BCP ,当△BCP 的面积最大时,求点P 的坐标;(3)当点P 位于第四象限时,连接AC ,BC ,PC ,若∠PCB =∠ACO ,求直线PC 的解析式;3(2023秋·广西南宁·九年级南宁市天桃实验学校校考阶段练习)如图,在平面直角坐标系中,抛物线y =12x 2+bx +c 与x 轴交于点A -1,0 ,点B ,与y 轴交于点C ,且OC =2,点P 是抛物线上一动点.(1)求该抛物线的解析式;(2)当点P 在第四象限时,求△BCP 的最大面积;(3)当点P 在第一象限,且∠PCB =∠ABC 时,求出点P 的坐标.【考点二利用二次函数求面积最小值问题】1(2022秋·广东广州·九年级中山大学附属中学校考阶段练习)如图,在矩形ABCD 中,AB =6,BC =12,点P 从点A 出发沿AB 边向点B 以1个单位每秒的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2个单位每秒的速度移动.如果P ,Q 两点在分别到达B ,C 两点后就停止移动,设运动时间为t 秒(0<t <6),回答下列问题:(1)运动开始后第几秒时△PBQ的面积等于8.(2)设五边形APQCD的面积为S,写出S与t的函数关系式,当t为何值时S最小?求S的最小值.【变式训练】1(2023·安徽合肥·合肥市第四十五中学校考模拟预测)已知抛物线y=-x2+bx+c交x轴于A-1,0,与y轴交于点C.,B3,0(1)求b,c的值;(2)已知P为抛物线y=-x2+bx+c一点(不与点B重合),若点P关于x轴对称的点P 恰好在直线BC上,求点P的坐标;(3)在(2)的条件下,平移抛物线y=-x2+bx+c,使其顶点始终在直线y=x上,且与PP 相交于点Q,求△QBP 面积的最小值.2(2023·全国·九年级专题练习)如图,在平面直角坐标系中,抛物线y=-x2+bx+c的图象与坐标轴相交于A,B,C三点,其中A点坐标为3,0,连接AC,BC.动点P从A点出发,在线,B点坐标为-1,0段AC上以每秒2个单位长度向点C做匀速运动;同时,动点Q从B点出发,在线段BA上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ,设运动时间为t秒.(1)b=,c=;(2)在P,Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)已知点M是该抛物线对称轴上一点,当点P运动1秒时,若要使得线段MA+MP的值最小,则试求出点M的坐标.【考点三利用二次函数求周长最大值问题】1(2023·山东东营·统考中考真题)如图,抛物线过点O0,0,矩形ABCD的边AB在线段OE上,E10,0(点B在点A的左侧),点C,D在抛物线上,设B t,0,当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.【变式训练】1(2023春·湖南长沙·八年级校考期末)已知抛物线y=a-1x+a2-4(a为常数,a>0)x2+2a-7的图象经过原点,点A在抛物线上运动.(1)求a的值.(2)若点P8-t,s都是这个抛物线上的点,且有s>r,求t的取值范围.和点Q t-4,r(3)设点A位于x轴的下方且在这个抛物线的对称轴的左侧运动,过点A作x轴的平行线交抛物线于另一点D,过点A作AB⊥x轴,垂足为点B,过点D作DC⊥x轴,垂足于点C,试问四边形ABCD的周长是否存在最大值?如果存在,请求出这个最大值和对应的x值,如果不存在,请说明理由.2(2023·安徽合肥·合肥寿春中学校考模拟预测)如图,在平面直角坐标系中,直线y=kx与抛物线y= ax2+c交于A8,6、B两点,点B的横坐标为-2.(1)求直线AB 和抛物线的解析式;(2)点P 是直线AB 下方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的平行线,与直线AB 交于点C ,连接PO ,设点P 的横坐标为m .①若点P 在x 轴上方,当m 为何值时,△POC 是等腰三角形;②若点P 在x 轴下方,设△POC 的周长为p ,求p 关于m 的函数关系式,当m 为何值时,△POC 的周长最大,最大值是多少?3(2023春·内蒙古赤峰·九年级统考阶段练习)如图,已知二次函数图象与坐标轴分别交于A (0,3)、B (-1,0)、C (3,0)三点.(1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值;(3)当矩形MNHG 的周长最大时,在二次函数图象上是否存在点P ,使△PNC 的面积是矩形MNHG 面积的916?若存在,直接写出该点的横坐标;若不存在,请说明理由.【考点四利用二次函数求周长最小值问题】1(2023秋·安徽·九年级阶段练习)如图,已知抛物线y =ax 2+bx +c a ≠0 与x 轴负半轴交于点A ,与y 轴交于点B ,若OA =1,OB =3,抛物线的对称轴为直线x =1.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P ,使得△PAB 周长最小,求出△PAB 最小周长.【变式训练】1(2023秋·云南临沧·九年级统考期末)如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴为直线x =2,点B 坐标为3,0 ,D 为抛物线的顶点.(1)求抛物线的解析式.(2)P为该抛物线对称轴上一动点,当△ACP的周长最小时,求点P的坐标.(3)当函数y=x2+bx+c的自变量x满足m≤x≤m+2时,函数y的最小值为3,求m的值.2(2023秋·全国·九年级专题练习)综合与探究如图,经过B3,0两点的抛物线y=x2-bx+c与x轴的另一个交点为A.,C0,-3(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求D的坐标;(3)已知点M在抛物线上,求S△ABM=8时的点M坐标;(4)已知E2,-3,请直接写出能以点A,B,E,P为顶点的四边形是平行四边形的点P坐标.3(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中,已知二次函数y=ax2+bx+c的图象与x轴交于点A-2,0.点D为线段BC上的一动点. 和点B6,0两点,与y轴交于点C0,6(1)求二次函数的表达式;(2)如图1,求△AOD周长的最小值;(3)如图2,过动点D作DP∥AC交抛物线第一象限部分于点P,连接PA,PB,记△PAD与△PBD的面积和为S,当S取得最大值时,求点P的坐标,并求出此时S的最大值.4(2023春·山东东营·九年级校考阶段练习)如图,已知抛物线y=-x2+bx+c与一直线相交于A(1, 0)、C(-2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标.难点探究专题:利用二次函数求面积、周长最值问题压轴题四种模型全攻略【考点导航】目录【典型例题】1【考点一利用二次函数求面积最大值问题】【考点二利用二次函数求面积最小值问题】【考点三利用二次函数求周长最大值问题】【考点四利用二次函数求周长最小值问题】【典型例题】【考点一利用二次函数求面积最大值问题】1(2023秋·吉林四平·九年级四平市第三中学校校考阶段练习)如图,抛物线y=x2+bx+c与x轴交于点A,B与y轴交于点C,点A的坐标为-1,0,点B的坐标为3,0.(1)求抛物线的表达式;(2)若点P是第四象限内抛物线上一动点,连接PB,PC,求△PBC的面积S的最大值;(3)当a-2≤x≤a+1时,抛物线有最小值5,求a的值.【答案】(1)y=x2-2x-3(2)278(3)a =6或a=-3【分析】1 用待定系数法即可求解;(2)先求直线BC的表达式,过点P作PH∥y轴交BC于点H,由S△PBC=S△PHC+S△PHB,即可求解.(3)当a+1≤1时, 即a≤0, 则x=a+1时, 抛物线取得最小值;当x=a-2≥1时, 即a≥3, 则x=a-2时, 抛物线取得最小值,进而求解;【详解】(1)设抛物线的表达式为:y=a x-1,x-3又∵a=1∴y=x+1x-3=x2-2x-3;(2)过点P作PH∥y轴交BC于点H,当x =0时,y =-3,∴点C 0,-3 ,设直线BC 的表达式为y =mx +n ,把3,0 和0,-3 代入得:3m +n =0n =-3 ,解得m =1n =-3 ∴直线BC 的表达式为y =x -3,设点P x ,x 2-2x -3 , 则点H x ,x -3 ,∴S △PBC =S △PHC +S △PHB =12×PH ×OB =12×3x -3-x 2+2x +3 =-32x -32 2+278,∵a =-32<0,∴S △PBC 有最大值,最大值为278;(3)∵y =x 2-2x -3=x -1 2-4≥-4,即抛物线的最小值是-4,即x =a -2和x =a +1不可能在抛物线对称轴两侧;当a +1≤1时, 即a ≤0,则x =a +1时,抛物线取得最小值,即y =a +1 2-2a +1 -3=5,解得:a =3(舍去)或a =-3,即a =-3;当x =a -2≥1时, 即a ≥3,则x =a -2时, 抛物线取得最小值,即y =a -2 2-2a -2 -3=5,解得:a =6或a =0(舍去),综上,a =6或a =-3;【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【变式训练】1(2023春·河北沧州·九年级校考期中)如图1,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为4,0 ,与y 轴交于C 0,-4 点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.【答案】(1)y=x2-3x-4(2)P点的坐标为:2,-6,四边形ABPC的面积的最大值为18【分析】(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.【详解】(1)解:将B、C两点的坐标代入得,16+4b+c=0c=-4,解得:b=-3 c=-4,所以二次函数的表达式为:y=x2-3x-4;(2)解:如图,过点P作y轴的平行线与BC交于点Q,与OB交于点F,P x,x2-3x-4,设直线BC的解析式为:y=kx+d,则d=-44k+d=0 ,解得:k=1 d=-4,∴直线BC的解析式为:y=x-4,则Q点的坐标为x,x-4;当0=x2-3x-4,解得:x1=-1,x2=4,∴AO=1,AB=5,S四边形ABPC=S△ABC+S△BPQ+S△CPQ=12AB⋅OC+12QP⋅BF+12QP⋅OF=12×5×4+124-xx-4-x2-3x-4+12x x-4-x2-3x-4=-2x2+8x+10=-2x-22+18,当x=2时,四边形ABPC的面积最大,此时P点的坐标为:2,-6,四边形ABPC的面积的最大值为18.【点睛】此题考查了二次函数综合应用,求二次函数的解析式,求一次函数的解析式,求二次函数与坐标轴的交点坐标等,熟练掌握待定系数法求函数解析式是解题的关键.2(2023秋·福建莆田·九年级福建省莆田市中山中学校考阶段练习)已知,抛物线y=-x2+bx+c经过B3,0、C0,3两点,点P是抛物线上一点,点A是抛物线与x轴的另一个交点.(1)求抛物线的解析式;(2)当点P 位于第一象限时,连接BP ,CP ,得到△BCP ,当△BCP 的面积最大时,求点P 的坐标;(3)当点P 位于第四象限时,连接AC ,BC ,PC ,若∠PCB =∠ACO ,求直线PC 的解析式;【答案】(1)y =-x 2+2x +3(2)P 32,154(3)直线PC 的解析式为y =-2x +3【分析】(1)根据待定系数法可进行求解;(2)过点P 作PH ∥y 轴,交BC 于点H ,由题意易得直线BC 的解析式为y =-x +3,设点P a ,-a 2+2a +3 ,则H a ,-a +3 ,然后根据铅垂法可进行求解;(3)设CP 与x 轴的交点为E ,过点E 作EF ⊥BC 于点F ,由题意易得△BOC 为等腰直角三角形,△EFB 为等腰直角三角形,△AOC ∽△EFC ,然后根据等腰直角三角形的性质及相似三角形的性质可进行求解.【详解】(1)解:由题意可得:-9+3b +c =0c =3,解得:b =2c =3 ,∴抛物线的解析式为y =-x 2+2x +3;(2)解:过点P 作PH ∥y 轴,交BC 于点H ,如图所示:设直线BC 的解析式为y =kx +b ,则有:3k +b =0b =3,解得:k =-1b =3 ,∴直线BC 的解析式为y =-x +3,设点P a ,-a 2+2a +3 ,则H a ,-a +3 ,∴PH =-a 2+2a +3--a +3 =-a 2+3a ,点C 与点B 的水平距离为3,∴S △BCP =12×3×-a 2+3a =-32a -32 2+278,∵0<a <3且-32<0,∴当a =32时,△BCP 的面积最大,最大值即为278,此时∴P 32,154 ;(3)解:设CP 与x 轴的交点为E ,过点E 作EF ⊥BC 于点F ,如图所示:由(1)及题意可得:OC =OB =3,当y =0时,则有-x 2+2x +3=0,解得:x 1=-1,x 2=3,∴△BOC 为等腰直角三角形,即∠OBC =45°,BC =2OB =32,OA =1,∴△EFB 为等腰直角三角形,∴EF =BF ,∵∠PCB =∠ACO ,∠AOC =∠EFC =90°,∴△AOC ∽△EFC ,∴AO EF =OC CF ,即AO OC =EF CF =13,∴CF =3EF =3BF ,∴CF +BF =4BF =BC =32,∴BF =324,∴BE =2BF =32,∴OE =OB -BE =32,∴E 32,0 ,设直线PC 的解析式为y =kx +b ,则有:32k +b =0b =3,解得:k =-2b =3 ,∴直线PC 的解析式为y =-2x +3.【点睛】本题主要考查二次函数的综合及相似三角形的性质与判定,熟练掌握二次函数的图象与性质及相似三角形的性质与判定是解题的关键.3(2023秋·广西南宁·九年级南宁市天桃实验学校校考阶段练习)如图,在平面直角坐标系中,抛物线y =12x 2+bx +c 与x 轴交于点A -1,0 ,点B ,与y 轴交于点C ,且OC =2,点P 是抛物线上一动点.(1)求该抛物线的解析式;(2)当点P 在第四象限时,求△BCP 的最大面积;(3)当点P 在第一象限,且∠PCB =∠ABC 时,求出点P 的坐标.【答案】(1)y =12x 2-32x -2(2)S △BCP 最大值为4(3)点P 坐标为173,509【分析】(1)先求出点C 的坐标为0,-2 ,把A -1,0 ,C 0,-2 代入解析式y =12x 2+bx +c ,求解即可;(2)过点P 作PE ⊥x 轴交BC 于点E ,令y =0,得12x 2-32x -2=0,求解得B 4,0 ;再用待定系数法求出BC 的解析式为y =12x -2,设点P a ,12a 2-32a -2 ,则点E a ,12a -2 ,所以PE =12a -2-12a 2-32a -2 =-12a 2+2a ,由三角莆面积公式得S △BCP =12×-12a 2+2a ×4=-a -2 2+4,然后根据二次函数最值求法求解即可;(3)根据点P 在第一象限,所以设CP 交x 轴于点H ,根据等腰三角形的判定与勾肌主得BH =CH =52,从而求出点H 32,0 .再用待定系数法救是直线CH 解析式为y =43x -2,然后求出直线CH 与抛物线在第一象限的交点坐标即可得解.【详解】(1)解:∵OC =2,∴点C 的坐标为0,-2 ,把A -1,0 ,C 0,-2 代入解析式y =12x 2+bx +c ,得1=12-b +c-2=c,解得b =-32c =-2,∴抛物线的解析式为y =12x 2-32x -2;(2)解:过点P 作PE ⊥x 轴交BC 于点E ,如图:令y =0,则12x 2-32x -2=0解得x 1=-1,x 2=4,∴B 4,0设BC 的解析式为y =kx +b ,把C 0,-2 ,B 4,0 代入得b =-24k +b =0,解得k =12b =-2,,∴BC 的解析式为y =12x -2,设点P a ,12a 2-32a -2 ,则点E a ,12a -2 ,∴PE =12a -2-12a 2-32a -2 =-12a 2+2a ,∴S △BCP =12×-12a 2+2a ×4=-a -2 2+4,0<a <4 ,-1<0,∴当a =2时,S △BCP 取最大值,最大值为4;(3)解:∵点P 在第一象限,∴设CP 交x 轴于点H ,如图:∵∠PCB =∠ABC ,∴CH =BH ,∵CH 2=OC 2+OH 2,∴BH 2=CH 2=OC 2+OB -BH 2=22+4-BH 2,解得BH =52,∴OH=OB-BH=4-52=32,∴点H32,0.设直线CH解析式为y=kx+b,将点C0,-2,点H32,0代入得-2=b0=32k+b,解得k=43b=-2,∴直线CH解析式为y=43x-2,联立解析式得y=43x-2 y=12x2-32x-2,解得:x1=0y1=-2或x2=173y2=509,∴点P在第一象限,∴点P坐标为173,509.【点睛】本题考查用待定系数法函数解析式,一次函数与抛物线的图象性质,一次函数和抛物线的交点问题,等腰三角形的判定,勾股定理,三角形的面积.熟练掌握一次函数与抛物线的图象性质是解题的关键.【考点二利用二次函数求面积最小值问题】1(2022秋·广东广州·九年级中山大学附属中学校考阶段练习)如图,在矩形ABCD中,AB=6,BC=12,点P从点A出发沿AB边向点B以1个单位每秒的速度移动,同时点Q从点B出发沿BC边向点C以2个单位每秒的速度移动.如果P,Q两点在分别到达B,C两点后就停止移动,设运动时间为t秒(0<t<6),回答下列问题:(1)运动开始后第几秒时△PBQ的面积等于8.(2)设五边形APQCD的面积为S,写出S与t的函数关系式,当t为何值时S最小?求S的最小值.【答案】(1)2秒或4秒(2)S=t2-6t+72,当t=3时,S最小=63【分析】(1)设运动开始后第t秒时△PBQ的面积等于8,由三角形面积公式即可求解;(2)由S=S矩形ABCD-S△PBQ即可求解.【详解】(1)解:设运动开始后第t秒时△PBQ的面积等于8,由题意得126-t×2t=8,整理得:t 2-6t +8=0,解得:t 1=2,t 2=4,答:运动开始后第2秒或4秒时△PBQ 的面积等于8.(2)解:S =S 矩形ABCD -S △PBQ=6×12-126-t ×2t=t 2-6t +72,=t -3 2+63,∵1>0,0<t <6,∴当t =3时,S 最小=63;答:S =t 2-6t +72,当t =3时,S 最小=63.【点睛】本题考查了一元二次方程及二次函数的应用,根据图形找出等量关系式,掌握二次函数最值的求法是解题的关键.【变式训练】1(2023·安徽合肥·合肥市第四十五中学校考模拟预测)已知抛物线y =-x 2+bx +c 交x 轴于A -1,0 ,B 3,0 ,与y 轴交于点C .(1)求b ,c 的值;(2)已知P 为抛物线y =-x 2+bx +c 一点(不与点B 重合),若点P 关于x 轴对称的点P 恰好在直线BC 上,求点P 的坐标;(3)在(2)的条件下,平移抛物线y =-x 2+bx +c ,使其顶点始终在直线y =x 上,且与PP 相交于点Q ,求△QBP 面积的最小值.【答案】(1)b =2c =3 ;(2)P -2,-5 ;(3)S △QBP的最小值为1358.【分析】(1)利用待定系数法即可求解;(2)求得直线BC 的解析式为y =-x +3,设P a ,-a +3 ,则P a ,a -3 ,解方程a -3=-a 2+2a +3,即可求解;(3)由顶点始终在直线y =x 上,推出c =-b 24+b 2,由三角形面积公式得S △QBP=5PQ 2,当P Q 取最小值时,S △QBP取最小值,求得P Q 关于b 的二次函数,利用二次函数的性质即可求解.【详解】(1)解:∵抛物线y =-x 2+bx +c 交x 轴于A -1,0 ,B 3,0 ,∴-1-b +c =0-9+3b +c =0,解得b =2c =3 ;(2)解:由(1)得抛物线解析式为y =-x 2+2x +3,令x =0,则y =3,∴C 0,3 ,设直线BC 的解析式为y =kx +3,则0=3k +3,解得k =-1,∴直线BC 的解析式为y =-x +3,∵点P 关于x 轴对称的点P 恰好在直线BC 上,∴设P a ,-a +3 ,则P a ,a -3 ,即点P a ,a -3 在抛物线y =-x 2+2x +3上,∴a -3=-a 2+2a +3,整理得a 2-a -6=0,解得a 1=-2,a 2=3,∵点P 不与点B 重合,∴P -2,5 ,P -2,-5 ;(3)解:抛物线y =-x 2+2x +3的顶点坐标为b 2,b 24+c ,∵顶点始终在直线y =x 上,∴b 2=b 24+c ,即c =-b 24+b 2,由(2)知直线PP 的方程为x =-2,∵抛物线y =-x 2+bx +c 与PP相交于点Q ,∵S △QBP=5PQ2,∴当P Q 取最小值时,S △QBP取最小值,∵P Q =5--4-2b +c =9+2b -c=9+2b --b 24+b 2 =b 24+3b 2+9=b 2+32 +274,∵1>0,∴当b 2=-32即b =-3时,P Q 的最小值为274,∴S △QBP的最小值为=52×274=1358.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.2(2023·全国·九年级专题练习)如图,在平面直角坐标系中,抛物线y =-x 2+bx +c 的图象与坐标轴相交于A ,B ,C 三点,其中A 点坐标为3,0 ,B 点坐标为-1,0 ,连接AC ,BC .动点P 从A 点出发,在线段AC 上以每秒2个单位长度向点C 做匀速运动;同时,动点Q 从B 点出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)b =,c =;(2)在P ,Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少?(3)已知点M 是该抛物线对称轴上一点,当点P 运动1秒时,若要使得线段MA +MP 的值最小,则试求出点M 的坐标.【答案】(1)2,3(2)当t =2时,四边形BCPQ 的面积最小,最小值为4(3)M 1,23 【分析】(1)利用待定系数法求解即可;(2)过点P 作PH ⊥x 轴,垂足为E ,利用S 四边形BCPQ =S △ABC -S △APQ 表示出四边形BCPQ 的面积,求出t 的范围,利用二次函数的性质求出最值即可;(3)直接利用对称点的性质得出M 点位置,进而得出答案.【详解】(1)∵二次函数y =-x 2+bx +c 的图象经过点A 3,0 ,B -1,0 ,则-9+3b +c =0-1-b +c =0 ,解得:b =2c =3 ;故答案为:2;3;(2)令x =0,则有y =3,即有C 0,3 ;∵C 0,3 ,A 3,0 ,B -1,0 ,∴OC =OA =3,OB =1,即AB =4,AC =OC 2+OA 2=32,∴△OAC 是等腰直角三角形,∴∠BAC =45°,由点P 、Q 的运动可知:AP =2t ,BQ =t ,结合B -1,0 ,可得:Q -1+t ,0 ,即:AQ =AB -BQ =4-t ,过点P 作PH ⊥x 轴,垂足为H ,如图,∴AH =PH =2t2=t ,即H 3-t ,0 ,∴S 四边形BCPQ =S △ABC -S △APQ=12×OC ×AB -12×AQ ×PH=12×3×4-12×4-t ×t =12t -2 2+4,∵当其中一点到达终点时,另一点随之停止运动,且AC =32,∴0≤t ≤322即,0≤t ≤3,∴当t =2时,四边形BCPQ 的面积最小,最小值为4;(3)由(2)可知,当t =1时,可得点P 的坐标为(2,1),根据抛物线的对称性可知,点A ,B 关于对称轴:x =1对称,连接BP ,与抛物线对称轴交于点M ,点M 即为所求,∵P 2,1 ,B -1,0 ,∴利用待定系数法可得直线BP 的解析式为:y =13x +13,当x =1时,y =23.即点M 的坐标为1,23.【点睛】本题考查了二次函数综合,涉及到全等三角形的判定和性质,等腰直角三角形的性质,轴对称最值问题,用方程的思想解决问题是解本题的关键.【考点三利用二次函数求周长最大值问题】1(2023·山东东营·统考中考真题)如图,抛物线过点O 0,0 ,E 10,0 ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上,设B t ,0 ,当t =2时,BC =4.(1)求抛物线的函数表达式;(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t =2时的矩形ABCD 不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形ABCD 的面积时,求抛物线平移的距离.【答案】(1)y =14x 2-52x(2)当t =1时,矩形ABCD 的周长有最大值,最大值为412(3)4【分析】(1)设抛物线的函数表达式为y =ax x -10 a ≠0 ,求出点C 的坐标,将点C 的坐标代入即可求出该抛物线的函数表达式;(2)由抛物线的对称性得AE =OB =t ,则AB =10-2t ,再得出BC =-14t 2+52t ,根据矩形的周长公式,列出矩形周长的表达式,并将其化为顶点式,即可求解;(3)连接AC ,BD 相交于点P ,连接OC ,取OC 的中点Q ,连接PQ ,根据矩形的性质和平移的性质推出四边形OCHG 是平行四边形,则PQ =CH ,PQ =12OA .求出t =2时,点A 的坐标为8,0 ,则CH =12OA =4,即可得出结论.【详解】(1)解:设抛物线的函数表达式为y =ax x -10 a ≠0 .∵当t =2时,BC =4,∴点C 的坐标为2,-4 .将点C 坐标代入表达式,得2a 2-10 =-4,解得a =14.∴抛物线的函数表达式为y =14x 2-52x .(2)解:由抛物线的对称性得:AE =OB =t ,∴AB =10-2t .当x =t 时,BC =-14t 2+52t .∴矩形ABCD 的周长为2AB +BC =210-2t +-14t 2+52t=-12t 2+t +20=-12t -1 2+412.∵-12<0,∴当t =1时,矩形ABCD 的周长有最大值,最大值为412.(3)解:连接AC ,BD 相交于点P ,连接OC ,取OC 的中点Q ,连接PQ .∵直线GH 平分矩形ABCD 的面积,∴直线GH 过点P ..由平移的性质可知,四边形OCHG 是平行四边形,∴PQ =CH .∵四边形ABCD 是矩形,∴P 是AC 的中点.∴PQ =12OA .当t =2时,点A 的坐标为8,0 ,∴CH =12OA =4.∴抛物线平移的距离是4.【点睛】本题主要考查了求二次函数的解析式,二次函数的图象和性质,矩形的性质,平移的性质,解题的关键是掌握用待定系数法求解二次函数表达式的方法和步骤,二次函数图象上点的坐标特征,矩形的性质,以及平移的性质.【变式训练】1(2023春·湖南长沙·八年级校考期末)已知抛物线y =a -1 x 2+2a -7 x +a 2-4(a 为常数,a >0)的图象经过原点,点A 在抛物线上运动.(1)求a的值.(2)若点P8-t,s和点Q t-4,r都是这个抛物线上的点,且有s>r,求t的取值范围.(3)设点A位于x轴的下方且在这个抛物线的对称轴的左侧运动,过点A作x轴的平行线交抛物线于另一点D,过点A作AB⊥x轴,垂足为点B,过点D作DC⊥x轴,垂足于点C,试问四边形ABCD的周长是否存在最大值?如果存在,请求出这个最大值和对应的x值,如果不存在,请说明理由.【答案】(1)a=2;(2)t<6;(3)存在,当x=12时,四边形ABCD的周长最大为13 2.【分析】(1)将坐标0,0代入抛物线计算求值即可;(2)由a的值可得抛物线解析式,从而可得s,r的表达式,再根据s>r解不等式即可;(3)由y=x2-3x可得函数的对称轴,根据A、D两点的对称性设A m,m2-3m,D n,m2-3m,再由两点的中点坐标在对称轴上可得n的表达式;根据坐标的定义求得四边形周长的表达式再配方即可解答;【详解】(1)解:将原点坐标代入抛物线可得:0=a2-4,a=±2,∵a>0,∴a=2;(2)解:把a=2代入抛物线可得:y=x2-3x,点P和点Q代入抛物线解析式可得:s=8-t2-38-t=t2-13t+40,r=t-42-3t-4=t2-11t+28,∵s>r,∴t2-13t+40>t2-11t+28,∴-2t>-12,∴t<6;(3)解:由抛物线解析式y=x2-3x可得对称轴为x=--32=32,AD平行于x轴,设A m,m2-3m且0<m<32,D n,m2-3m,由抛物线的对称性可知A、D两点的中点坐标在对称轴x=32上,∴m+n2=32,∴n=3-m,∵AB和DC都和x轴垂直,AD平行于x轴,∴四边形ABCD 是矩形,由函数图象可知A 点纵坐标m 2-3m <0,∴四边形ABCD 的周长为:2AB +2AD =2m 2-3m +2n -m =-2m 2-3m +23-2m =-2m -12 2+52,∴当m =12时四边形周长有最大值52;【点睛】本题考查了二次函数的图象和性质,不等式的性质,矩形的性质,坐标的定义等知识;掌握二次函数的对称性是解题关键.2(2023·安徽合肥·合肥寿春中学校考模拟预测)如图,在平面直角坐标系中,直线y =kx 与抛物线y =ax 2+c 交于A 8,6 、B 两点,点B 的横坐标为-2.(1)求直线AB 和抛物线的解析式;(2)点P 是直线AB 下方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的平行线,与直线AB 交于点C ,连接PO ,设点P 的横坐标为m .①若点P 在x 轴上方,当m 为何值时,△POC 是等腰三角形;②若点P 在x 轴下方,设△POC 的周长为p ,求p 关于m 的函数关系式,当m 为何值时,△POC 的周长最大,最大值是多少?【答案】(1)y =34x ,y =18x 2-2(2)①当m =4+4103时,△POC 是等腰三角形;②当m =2时,△POC 的周长最大,最大值为9【分析】(1)利用待定系数法求解析式;(2)①当△POC 是等腰三角形时,判断出只有OC =PC ,设出点P 的坐标,用OC =PC 建立方程组求解即可;②先表示出PC ,OC ,OP ,然后建立△POC 的周长p 关于m 的函数关系式,确定出最大值.【详解】(1)解:将点A 8,6 代入y =kx ,得8k =6,解得k =34,∴直线AB 的解析式为y =34x ;当x =-2时,y =34x =34×-2 =-32,∴B -2,-32 将点A 8,6 ,B -2,-32代入y =ax 2+c ,得64a +c =64a +c =-32,解得a =18c =-2 ,∴抛物线的解析式为y =18x 2-2;(2)①设P m ,n ,则18m 2-2=n ,∵过点P 作x 轴的平行线,与直线AB 交于点C ,∴C 43n ,n ,∴PC =m -43n ,当点P 在x 轴上方时,m >0,∠OCP 是钝角,∴OC <OP ,PC <OP ,∵△POC 是等腰三角形,∴OC =CP ,∵OC =53n ,∴m -43n =53n ,∴m =3n ,∵18m 2-2=n ∴m =318m 2-2 ,∴m =4+4103或m =4-4103(舍去),∴当m =4+4103时,△POC 是等腰三角形;②当点P 在x 轴下方时,-2<m <4,∴n <0∵P m ,n ,则18m 2-2=n ,点C 43n ,n ,∴OC =-53n ,OP =m 2+n 2=m 2+18m 2-2 2=18m 2+2,∵PC =m -43n ,18m 2-2=n ,∴p =OP +PC +OC=18m 2+2+m -43n +-53n =18m 2+m -3n +2=18m 2+m -318m 2-2 +2=-14m -2 2+9,∴当m =2时,p 最大,最大值为9,∴当m =2时,△POC 的周长最大,最大值为9.【点睛】此题是二次函数综合题,主要考查了待定系数法,平面内两点之间的距离公式,等腰三角形的性质,三角形的周长,极值的确定,解本题的关键是表示出PC ,OC ,OP 的长度.3(2023春·内蒙古赤峰·九年级统考阶段练习)如图,已知二次函数图象与坐标轴分别交于A (0,3)、B (-1,0)、C (3,0)三点.(1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值;(3)当矩形MNHG 的周长最大时,在二次函数图象上是否存在点P ,使△PNC 的面积是矩形MNHG 面积的916?若存在,直接写出该点的横坐标;若不存在,请说明理由.【答案】(1)y =-x 2+2x +3(2)10(3)存在;32,3+322,3-322【分析】(1)利用待定系数法解答即可;(2)设点M 的坐标为m ,-m 2+2m +3 ,则点N 2-m ,-m 2+2m +3 ,利用m 的代数式分别表示出矩形的边长,利用矩形的周长的公式求得矩形的周长,利用配方法解答即可得出结论;(3)利用(2)的结论求得点N 的坐标,可得点N 与点A 重合,设点P 的坐标为n ,-n 2+2n +3 ,过点P 作PD ⊥x 轴于点D ,交AC 于点E ,利用含n 的代数式表示出FE ,利用S △PNC =S △PNE +S △PCE =12×PE ⋅OC ,求得△PNC 的面积,利用已知条件得到关于n 的方程,解方程即可求得n 值;再利用平行线的距离相等,当直线AC 向下平移94个单位长度时,该直线与抛物线的交点也满足条件,求得平移后的直线解析式,与抛物线的解析式联立,解方程组即可得出结论.【详解】(1)设二次函数解析式为y =ax 2+bx +c (a ≠0),∵二次函数图象过A (0,3)、B (-1,0)、C (3,0)三点,∴c =3a -b +c =09a +3b +c =0,解得a =-1b =2c =3,即二次函数解析式为y =-x 2+2x +3.(2)设点M 的坐标为m ,-m 2+2m +3 ,则点N 2-m ,-m 2+2m +3 ,∴MN =m -2+m =2m -2,GM =-m 2+2m +3,矩形MNHG 的周长C =2MN +2GM ,=2(2m -2)+2-m 2+2m +3=-2m 2+8m +2,∵-2<0。
专题 二次函数压轴题-线段周长面积最大值(知识解读)-中考数学(全国通用)

专题01 线段周长面积最大值(知识解读)【专题说明】从近几年的各地中考试卷来看,求线段、周长面积的最大问题在压轴题中比较常见,而且通常与二次函数相结合。
这个专题为同学们介绍解题方法,供同学们参考。
【方法点拨】考点1:线段、周长最大问题考点2 :面积最大问题 (1)铅锤法铅锤高水平宽⨯=21S(2)面积方法如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比.如图3,同高三角形的面积比等于底的比.如图1 如图2 如图3(3)利用相似性质利用相似图形,面积比等于相似比的平方。
【典例分析】【考点1 线段最大值问题】【典例1】(盘锦)如图,在平面直角坐标系中,抛物线y=ax2+bx+4交y轴于点C,交x 轴于A、B两点,A(﹣2,0),a+b=,点M是抛物线上的动点,点M在顶点和B点之间运动(不包括顶点和B点),ME∥y轴,交直线BC于点E.(1)求抛物线的解析式;(2)求线段ME的最大值;【变式1-1】(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【变式1-2】(2021•柳南区校级模拟)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?【典例2】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)过点P作PN⊥BC,垂足为点N.求线段PN的最大值;【变式2】(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【考点2 周长最大值问题】【典例3】(2022春•衡阳期中)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;【变式3】(2022春•北碚区校级期中)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+2交x轴于A、B两点(点A在点B的左侧),交y轴于点C,一次函数y=﹣x﹣1交抛物线于A,D两点,其中点D(3,﹣4).(2)点G为抛物线上一点,且在线段BC上方,过点G作GH∥y轴交BC于H,交x 轴于点N,作GM⊥BC于点M,求△GHM周长的最大值;【考点3 面积最大值问题】【典例4】(2021秋•龙江县校级期末)综合与探究如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的解析式,连接BC,并求出直线BC的解析式;(2)请在抛物线的对称轴上找一点P,使AP+PC的值最小,此时点P的坐标是(,);(3)点Q在第一象限的抛物线上,连接CQ,BQ,求出△BCQ面积的最大值.【变式4-1】(2022春•南岸区月考)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x 轴交于A(﹣1,0),B(3,0),交y轴于点C,且OC=3.(2)点P为直线BC下方抛物线上的一点,连接AC、BC、CP、BP,求四边形PCAB 的面积的最大值,以及此时点P的坐标;【变式4-2】(2022•东方二模)如图,抛物线y=x2+bx+c经过B(3,0)、C(0,﹣3)两点,与x轴的另一个交点为A,顶点为D.(1)求该抛物线的解析式;(2)点E为该抛物线上一动点(与点B、C不重合),当点E在直线BC的下方运动时,求△CBE的面积的最大值;【典例5】(聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC.又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.【变式5】(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC 于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.专题01 线段周长面积最大值(知识解读)【专题说明】从近几年的各地中考试卷来看,求线段、周长面积的最大问题在压轴题中比较常见,而且通常与二次函数相结合。
二次函数面积最值问题

二次函数面积最值问题一、问题概述二次函数面积最值问题是指在给定的二次函数中,找到使其面积最大或最小的变量取值。
这个问题在数学中有着广泛的应用,比如在经济学、物理学、工程学等领域都有着重要的作用。
二、问题分析为了解决二次函数面积最值问题,我们需要先了解一些基本概念和公式。
下面是一些常见的数学公式:1. 二次函数的标准形式:y=ax^2+bx+c其中a,b,c都是实数,且a≠0。
2. 二次函数的顶点坐标:(h,k)其中h=-b/2a,k=f(h),f(x)表示二次函数。
3. 二次函数的对称轴方程:x=h4. 两点之间距离公式:d=sqrt[(x2-x1)^2+(y2-y1)^2]5. 矩形面积公式:S=lw其中S表示矩形面积,l表示矩形长,w表示矩形宽。
了解了这些基本概念和公式后,我们可以开始分析如何解决二次函数面积最值问题。
三、求解方法1. 求最大值要求一个二次函数在给定区间内的最大面积,我们可以通过以下步骤来实现:步骤一:将二次函数化为标准形式。
步骤二:求出二次函数的顶点坐标。
步骤三:根据顶点坐标和区间端点,确定矩形的长和宽。
步骤四:计算矩形面积,并比较得出最大值。
具体的,可以按照以下函数来实现:```pythondef max_area(a,b,c,start,end):# 将二次函数化为标准形式f = lambda x: a*x**2+b*x+c# 求出二次函数的顶点坐标h = -b/(2*a)k = f(h)# 根据顶点坐标和区间端点,确定矩形的长和宽l = end-startw = abs(f(start)-k)*2# 计算矩形面积,并比较得出最大值S = l*wreturn S if S>0 else 0```其中,a,b,c分别表示二次函数的系数,start,end表示给定区间的端点。
这个函数会返回一个最大面积值。
2. 求最小值要求一个二次函数在给定区间内的最小面积,我们可以通过以下步骤来实现:步骤一:将二次函数化为标准形式。
(完整word版)二次函数面积和周长最值问题

二次函数面积和周长最值问题15、[淮南市洞山中学第四次质量检测,21,12分](本题12分)如图,已知二次函数y =ax 2+bx +c 的图象经过A (1,0)、B (5,0)、C (0,5)三点。
(1)求这个二次函数的解析式;(2)过点C 的直线y =kx +b 与这个二次函数的图象相交于点E (4,m ),请求出△CBE 的面积S 的值。
16、(2012深圳市龙城中学质量检测)在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,一4),C (2,0)三点.(1)求抛物线的解析式;(3分) (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值;(4分)(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.(3分)25.如图,抛物线y=ax 2+bx+c (a <0)与双曲线k y=x相交于点A ,B ,且抛物线经过坐标原点,点A 的坐标为(﹣2,2),点B 在第四象限内,过点B 作直线BC∥x 轴,点C 为直线BC 与抛物线的另一交点,已知直线BC 与x 轴之间的距离是点B 到y 轴的距离的4倍,记抛物线顶点为E . (1)求双曲线和抛物线的解析式; (2)计算△ABC 与△ABE 的面积;(3)在抛物线上是否存在点D,使△ABD 的面积等于△ABE 的面积的8倍?若存在,请求出点D 的坐标;若不存在,请说明理由.yxECB A O F CBA O Mxy12.(山东省临沂市)如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点.(1)求此抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得△DCA2。
二次函数中几何图形周长的最值问题题型及解法

谢 谢!
教育是行善的智慧 无忧是无畏的行者
2. 根据我市现目前考试题型来看,该部分是个重点,也是个难点, 很大一部分学生对该部分望而生畏,几乎不敢动笔,分析了一下, 其主要原因有两点:其一,因为此题涉及的解题过程比较繁杂, 再加上思路不清晰,会花大量的时间思考,所以这部分学生就选 择放弃了;另外的,还有部分学生是压根就不会做这类题,对解 决该题没有思路,没有参考方向,所以根本不看这题。
做法: 1.作A点关于直线OM的对称点对称点A1
A1
2.作A点关于直线OM的对称点对称点A2
3.链接A1A2与OM,ON相交于点P,Q,
P
此时的交点就是我们做要找的吃草和喝
水的位置
4.连接AP,AQ
Q A2
4.此时走的路程最短
例4:已知:抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),
C(0,﹣3).如图,若点C关于点B的对称点为点E,是否存在x轴上的点
M,y轴上的点N,使得四边形DNME的周长最小?若存在,请求出M、N
点的坐标,并求出DNME的周长最小值;若不存在,请说明理由。
E
做法:
D’
1.作E点关于X轴的对称点对称点E’
2.作D点关于y轴的对称点对称点D’
NM
3.链接D’E’与x轴,y轴相交于点M,N,此时的交点就是 我们做要找的点的位置
做法:
1.过D点作对称轴,与PQ相交于点F
2.C矩形 PQNM=2(PQ+PM)=2(2DF+PM)
3. 一个动点在一条直线上求三角形周长最小值
二次函数问题周长最小或最值问题

二次函数问题周长最小或面积倍分专题复习1如图,△ABC 的三个顶点坐标分别为A (-2,0)、B (6,0)、C (0,32 ),抛物线y=ax 2+bx+c (a ≠0)经过A 、B 、C 三点。
(1)求直线AC 的解析式;(2)求抛物线的解析式;(3)若抛物线的顶点为D ,在直线AC 上是否存一点P ,使得△BDP 的周长最小,若存在,求出P 点的坐标;若不存在,请说明理由。
2、(9分)如图13,抛物线y=ax 2+bx +c(a≠0)的顶点为(1,4),交x 轴于A 、B ,交y 轴于D ,其中B 点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A 的直线与抛物线交于点E ,交y 轴于点F ,其中E 点的横坐标为2,若直线PQ 为抛物线的对称轴,点G 为PQ 上一动点,则x 轴上是否存在一点H ,使D 、G 、F 、H 四点围成的四边形周长最小.若存在,求出这个最小值及G 、H 的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T ,过点T 作x 的垂线,垂足为M ,过点M 作直线MN ∥BD ,交线段AD 于点N ,连接MD ,使△DNM ∽△BMD ,若存在,求出点T 的坐标;若不存在,说明理由.3. 如图,二次函数y=ax 2-5ax +4a(a ≠0)的图象与x 轴交于A、B 两点(A 在B 的左侧),与y 轴交于点C ,点C 关于抛物线对称轴的对称点为D ,连结BD .(1)求A 、B两点的坐标;(2)若AD ⊥BC ,垂足为P ,求二次函数的表达式;(3)在(2)的条件下,若直线x=m 把△ABD 的面积分为1∶2的两部分,求m 的值.4已知一元二次方程x2﹣4x+3=0的两根是m,n且m<n.如图,若抛物线y=﹣x2+bx+c的图象经过点A(m,0)、B(0,n).(1)求抛物线的解析式.(2)若(1)中的抛物线与x轴的另一个交点为C.根据图象回答,当x取何值时,抛物线的图象在直线BC的上方(3)点P在线段OC上,作PE⊥x轴与抛物线交于点E,若直线BC将△CPE的面积分成相等的两部分,求点P的坐标.5.如图,在平面直角坐标系xOy中,一抛物线的顶点坐标是(0,1),且过点(﹣2,2),平行四边形OABC的顶点A、B在此抛物线上,AB与y轴相交于点M.已知点C的坐标是(﹣4,0),点Q(x,y)是抛物线上任意一点.(1)求此抛物线的解析式及点M的坐标;(2)在x轴上有一点P(t,0),若PQ∥CM,试用x的代数式表示t;(3)在抛物线上是否存在点Q,使得△BAQ的面积是△BMC的面积的2倍若存在,求此时点Q 的坐标.6在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等若存在,求出t的值;若不存在,请说明理由.7.如图,四边形OABC是矩形,点B的坐标为(8,6),直线AC和直线OB相交于点M,点P是OA的中点,PD⊥AC,垂足为D.(1)求直线AC的解析式;(2)求经过点O、M、A的抛物线的解析式;(3)在抛物线上是否存在Q,使得S△PAD:S△QOA=8:25,若存在,求出点Q的坐标,若不存在,请说明理由.。
初中复习方略数学微专题四 二次函数中几何图形线段、周长、面积的最值

抛物线对称轴为直线 x=- 2
=1,
2×(-1)
3k+c=0
设直线 AC 的解析式为 y=kx+c,将 A(3,0),C(0,3)代入,得:
,
c=3
k=-1
解得:
,
c=3
∴直线 AC 的解析式为 y=-x+3,∴P(1,2);
(3)存在.设 P(1,t),①以 AC 为边时,如图 2,∵四边形 ACPQ 是菱形, ∴CP=CA, ∴12+(3-t)2=32+32,解得:t=3± 17 , ∴P1(1,3- 17 ),P2(1,3+ 17 ), ∴Q1(4,- 17 ),Q2(4, 17 ),
1.(2021·天津中考)已知抛物线 y=ax2-2ax+c(a,c 为常数,a≠0)经过点 C(0,- 1),顶点为 D. (1)当 a=1 时,求该抛物线的顶点坐标; (2)当 a>0 时,点 E(0,1+a),若 DE=2 2 DC,求该抛物线的解析式; (3)当 a<-1 时,点 F(0,1-a),过点 C 作直线 l 平行于 x 轴,M(m,0)是 x 轴上 的动点,N(m+3,-1)是直线 l 上的动点.当 a 为何值时,FM+DN 的最小值为 2 10 ,并求此时点 M,N 的坐标.
(2021·常德中考)如图,在平面直角坐标系 xOy 中,平行四边形 ABCD 的 AB 边与 y 轴交于 E 点,F 是 AD 的中点,B、C、D 的坐标分别为(-2,0),(8,0),(13, 10). (1)求过 B、E、C 三点的抛物线的解析式; (2)试判断抛物线的顶点是否在直线 EF 上; (3)设过 F 作与 AB 平行的直线交 y 轴于 Q,M 是线段 EQ 之间的动点,射线 BM 与抛物线交于另一点 P,当△PBQ 的面积最大时,求 P 的坐标.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数面积和周长最值问题15、[淮南市洞山中学第四次质量检测,21,12分](本题12分)如图,已知二次函数y=ax2+bx+c的图象经过A(1,0)、B(5,0)、C(0,5)三点。
(1)求这个二次函数的解析式;(2)过点C的直线y=kx+b与这个二次函数的图象相交于点E(4,m),请求出△CBE的面积S的值。
16、(20120)三点.(1)求抛物线的解析式;(3分)(2)若点M为第三象限内抛物线上一动点,点M求出S的最大值;(4分)(3)若点P是抛物线上的动点,点Q是直线y=-x形为平行四边形,直接写出相应的点Q的坐标.(3分)25.如图,抛物线y=ax2+bx+c(a<0)与双曲线ky=x2,2),点B在第四象限内,过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点,已知直线BC与x轴之间的距离是点B到y轴的距离的4倍,记抛物线顶点为E.(1)求双曲线和抛物线的解析式;(2)计算△ABC与△ABE的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABE的面积的8倍?若存在,请求出点D的坐标;若不存在,请说明理由.y12.(山东省临沂市)如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点.(1)求此抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得△DCA2. 如图,在平面直角坐标系中,两个一次函数y=x ,y=122+-x 的图象相交于点A ,动点E 从O 点出发,沿OA 方向以每秒1个单位的速度运动,作EF ∥y 轴与直线BC 交于点F ,以EF 为一边向x 轴负方向作正方形EFMN ,设正方形EFMN 与△AOC 的重叠部分的面积为S.(1)求点A 的坐标; (2)求过A 、B 、O 三点的抛物线的顶点P 的坐标; (3)当点E 在线段OA 上运动时,求出S 与运动时间t (秒)的函数表达式; (4)在(3)的条件下,t 为何值时,S 有最大值,最大值是多少?此时(2)中的 抛物线的顶点P 是否在直线EF 上,请说明理由.11.如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式;(2) 求△CAB 的铅垂高CD 及CAB S △;(3) 设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P , 使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.-2图12-2xC Oy ABD 1 1x6.如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点C ,OA=4,AO=2OC ,且抛物线对称轴为直线3x =-(1)求该抛物线的函数表达式;(2)已知矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在AC 、BC 上,设OD=m ,矩形DEFG 的面积为S ,当矩形DEFG 的面积S 取得最大值时,连接DF 并延长至点M ,使25FM DF =,求出此时点M 的坐标。
(3)若点Q 是抛物线上一点,且横坐标为4-,点P 是y 轴上一点,是否存在这样的点P ,使得BPQ 是直角三角形,如果存在,求出点P 的坐标,若不存在,请说明理由。
7.(一中)如图,在平面直角坐标系中,已知直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线32++=nx mx y 经过点A 和点(2,3),与x 轴的另一交点为C.(1)求此二次函数的表达式;(2)若点P 是x 轴下方的抛物线上一点,且△ACP 的面积为10,求P 点坐标; (3)若点D 为抛物线上AB 段上的一动点(点D 不与A ,B 重合),过点D 作DE ⊥x 轴交x 轴于F ,交线段AB 于点E.是否存在点D ,使得四边形BDEO 为平行四边形?若存在,请求出满足条件的点D 的坐标;若不存在,请通过计算说明理由.26.(12分)如图,在平面直角坐标系中,点A 的坐标为(1,3),△AOB的面积是3.(1)求点B 的坐标;(2)求过点A 、O 、B 的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△AOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;(4)在(2)中x 轴下方的抛物线上是否存在一点P ,过点P 作x 轴的垂线,交直线AB 于点D ,线段OD 把△AOB 分成两个三角形.使其中一个三角形面积与四边形BPOD 面积比为2 : 3?若存在,求出点P 的坐标;若不存在,请说明理由.8.(一中)如图,在Rt △ABO 中,OB=8,tan ∠OBA=43.若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点C 在x 轴负半轴上,且OB =4OC.若抛物线c bx ax y ++=2经过点A 、B 、C .(1)求该抛物线的解析式;(2)设该二次函数的图象的顶点为P ,求四边形OAPB 的面积;(3)有两动点M,N 同时从点O 出发,其中点M 以每秒2个单位长度的速度沿折线OAB 按O →A →B 的路线运动,点N 以每秒4个单位长度的速度沿折线按O →B →A 的路线运动,当M 、N 两点相遇时,它们都停止运动.设M 、N 同时从点O 出发t 秒时,△OMN 的面积为S .①请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ②判断在①的过程中,t 为何值时,△OMN 的面积最大?10.(一中)如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-4,0),点N 的坐标为(-3,-2),直角梯形OMNH 关于原点O 的中心对称图形是直角梯形OABC ,(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C ); (1)求出过A ,B ,C 三点的抛物线的表达式;(2)在直角梯形OABC 中,截取BE=AF=OG=m(m >0),且E ,F ,G 分别在线段BA ,AO ,OC 上,求四边形...BEFG ....的面积...S 与m 之间的函数关系式,并写出自变量m 的取值范围;面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(3)在(2)的情况下,是否存在BG ∥EF 的情况,若存在,请求出相应m 的值,若不存在,说明理由.11.(南开)如图,已知直线y =-2x +4与x 轴、y 轴分别相交于A 、C 两点,抛物线y=-2x 2+bx+c (a ≠0)经过点A 、C.(1)求抛物线的解析式;(2)设抛物线的顶点为P ,在抛物线上存在点Q ,使△ABQ 的面积等于△APC 面积的4倍.求出点Q 的坐标;(3)点M 是直线y=-2x+4上的动点,过点M 作ME 垂直x 轴于点E ,在y 轴(原点除外)上是否存在点F ,使△MEF 为等腰直角三角形? 若存在,求出点F 的坐标及对应的点M 的坐标;若不存在,请说明理由. 12. (一中)矩形OABC 在直角坐标系中的位置如图所示, A 、C 两点的坐标分别为A(6,0), C(0, 2), 直线12y x =与BC 相交于D.(1) 求点D 的坐标;(2) 若抛物线2y ax bx =+经过D 、A 两点, 试确定此抛物线的解析式;(3) P 为x 轴上方(2)中抛物线上一点, 求POA ∆面积的最大值;(4) 设(2)中抛物线的对称轴与OD 交于点M, 点Q 为对称轴上一动点, 以Q 、O 、M 为顶点的三角形与OCD ∆相似,求符合条件的Q 点的坐标.4、(2009年重庆市江津区)如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.14.(一中)如图,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连接AB ,过点B 作BC ∥x 轴交该抛物线于点C.(1) 求这条抛物线的函数关系式.(2) 两个动点P 、Q 分别从O 、A 同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着线段AB 向B 点运动. 设这两个动点运动的时间为t (秒) (0<t ≤2),△PQA 的面积记为S.① 求S 与t 的函数关系式;② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状;(3)是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由.26、已知二次函数2(1)4y x =--的图象如图所示.(1)求抛物线与x 轴交点A 、B 的坐标(点A 在点B 的左侧),及与y 轴的交点C 的坐标; (2)设抛物线的顶点为点D ,求BCD ∆的面积S ;(3)在抛物线上是否存在点E ,使以A 、B 、C 、E 为顶点的四边形是梯形?若存在,请求出点E 的坐标,并说明理由;若不存在,请说明理由。
2. (2010年广州中考数学模拟试题(四))关于x 的二次函数y =-x 2+(k 2-4)x +2k -2以y 轴为对称轴,且与y 轴的交点在x 轴上方.(1)求此抛物线的解析式,并在直角坐标系中画出函数的草图;(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直x 轴于点B ,再过点A 作x 轴的平行线交抛物线于点D ,过D 点作DC 垂直x 轴于点C, 得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式;(3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说25.如图,抛物线212y x bx c =++与直线:l y kx m =+交于(4,2),(0,1)A B -两点。
(1)求抛物线与直线的解析式;(2)若点D 是直线,下方抛物线上的一动点,过点D 作DE//y轴交直线l 于点E ,求DE 的最大值,并求出此时D 点的坐标;(3)在(2)的条件下,DE 取最大值时,点P 在直线AB 上,平面内是否存在点Q ,使得以D 、E 、P 、Q 为顶点的四边形为菱形?若存在直接写出Q 点坐标,若不存在说明理由.25、如图,抛物线22y ax bx =++与x 轴交于A 、B 两点,点A 的坐标为()1,0-,抛物线的对称轴为直线 1.5x =,点M 为线段AB 上一点,过M 作x 轴的垂线交抛物线于P ,交过点A 的直线y x n =-+于点C 。