高二数学空间向量数量积的坐标表示

合集下载

空间向量及其运算的坐标表示课件-2022-2023学年高二上学期数学人教A版选择性必修第一册

空间向量及其运算的坐标表示课件-2022-2023学年高二上学期数学人教A版选择性必修第一册
对应一个向量 O A ,且点A 的位置由向量 O A 唯一确定,由空间向量基本
定理,存在唯一的有序数组(x,y,z),使 OA xi y j z k .
在单位正交基底 { i ,j ,k } 下与向量对应
z
的有序数组(x,y,z),叫做点A在空间直
A
角坐标系中的坐标,记作A(x,y,z),其
6.平面向量的夹角余弦值如何用坐标表示?
x1 x2 y1 y2
a b
cos

.
2
2
2
2
| a || b |
x1 y1 x2 y2
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
(a1+b1,a2+b2,a3+b3)
(1)+=
Ԧ

(a1-b1,a2-b2,a3-b3)
(2)-=
Ԧ
(λa1,λa2,λa3)
(3)λ=
Ԧ
(λ∈R).
a1b1+a2b2+a3b3
(4)·=
Ԧ
.

=(a
Ԧ
1,a2,a3)=a1i+a2j+a3k,=(b1,b2,b3)
=b1i+b2j+b3k,所以 ·=(a
中x 叫做点A 的横坐标、y 叫做点A 纵坐标、
O
z 叫做点A 竖坐标.
x
y
在空间直角坐标系Oxyz中,给定向量 a ,作 OA a ,由空间向量基
本定理,存在唯一的有序数组(x,y,z),使 a xi y j z k .
有序实数组(x,y,z)叫做 a 在空间直角坐标系Oxyz中的坐标,上式可

空间向量数量积的坐标表

空间向量数量积的坐标表
数量积满足结合律,即$(mathbf{A} cdot mathbf{B}) cdot mathbf{C} = mathbf{A} cdot (mathbf{B} cdot mathbf{C})$。
02
空间向量数量积的坐标表示
向量坐标表示
向量坐标表示
01
一个向量可以用坐标系中的有序实数对来表示,其中第一个数
(mathbf{b} cdot mathbf{c})$。
详细描述
结合律允许我们改变数量积运算的括号顺序,即不改变结果。结合律表明,向量的数量 积满足结合性质,可以按照任意组合进行计算。
04
空间向量数量积的应用
在解析几何中的应用
计算向量的长度和角度
通过数量积,可以计算向量的长度(模长)以及两个向量之间的 角度。
性质
数量积满足交换律,即$mathbf{A} cdot mathbf{B} = mathbf{B} cdot mathbf{A}$。
数量积满足分配律,即$(mathbf{A} + mathbf{B}) cdot mathbf{C} = mathbf{A} cdot mathbf{C} + mathbf{B} cdot mathbf{C}$。
表示向量的起点,第二个数表示向量的终点。
坐标系选择
02
选择一个合适的坐标系,使得向量的坐标表示更加直观和方便。
坐标变换
03
当坐标系发生变化时,向量的坐标表示也会随之改变。
向量数量积的坐标表示
数量积定义
两个向量的数量积是一个标量,等于 两个向量的对应坐标之和再乘以它们 的夹角的余弦值。
计算方法
根据向量的坐标表示,可以直接计算 出它们的数量积。
详细描述

空间向量的运算的坐标表示

空间向量的运算的坐标表示

三、空间ห้องสมุดไป่ตู้量长度与夹角的坐标表示
设 = (x1, y1, z1), b = (x2, y2, z2 ) a 根 空 向 运 的 标 示有 据 间 量 算 坐 表 , (1) | a |= a⋅ a = x + y + z ,
2 1 2 1 2 1
(2 ) cos < a, b >= (a ≠ 0, b ≠ 0)
= 2 × (−5) + 3 × (−13) + 2 × 6 = −10 − 39 + 12 = −37。
练 1 已 a = (−1 −3,2), b = (1 2,0).求: 习、 知 , , (1)2a,−5a, a + 2b,2a −b; r r r r (2)(a + 2b) ⋅ (−2a +b)。 r r 解 : (1)2a = (−2, −6, 4),−5a = (5,15, −10), r r r r a + 2b = (1,1, 2), 2a − b = (−3, −8, 4)。 r r r r (2)(a + 2b) ⋅ (−2a + b) = 3。
x1x2 + y1y2 + z1z2 x + y +z ⋅ x + y +z
2 1 2 1 2 1 2 2 2 2 2 2
(3)a ⊥ b ⇔ x1x2 + y1y2 + z1z2 = 0
练 2 判 下 向 是 平 或 直 习 断 列 量 否 行 垂 r r (1 a = (1 −2,3), b = (1 ) , ,2,1)。 r r (2)a = (0, −3,3), b = (0,1 −1). , r r 1 1 2 (3)a = (−3,2,4), b = (− , , ). 2 3 3 r 3 r 3 (4)a = ( , −3,2), b = (0,1 − ). , 2 2

空间向量数量积运算律(分配律)的说明

空间向量数量积运算律(分配律)的说明

空间角的计算
1.线线角
l2 e2 l1
设e1 ,e2分别为直线l1 ,l2的方 向向量,直线 l1 , l2 所成的 角为θ,则 cosθ =
e1
e1 ⋅ e2 e1 e2
• 空间向量数量积运算律(分配律)的说明 空间向量数量积运算律(分配律)
• a· (b+c)=a·b+a·c,对于平面向量 因为 |b+c|cosθ=|b|cosθ1+|c|cosθ2
B E θ2
c
C
|a||b+c|cosθ =|a||b|cosθ1+|a||c|cosθ2 所以: a· (b+c)=a·b+a·c
立体几何中的向量方法
直线的方向向量与平面的法向量
如何用向量来刻画直线、平面的“方向”? • 直线的方向向量不惟一,这些方向向量是共线向 量;两条平行直线的方向向量是共线向量.可以 用直线的方向向量研究空间线线、线面的平行与 垂直关系. • 平面的法向量不惟一,这些法向量是共线向量; 两个平行平面的法向量是共线向量.可以用平面 的法向量研究空间线面、面面的平行与垂直关 系.
a×b b
a
用向量语言(符号语言)描述空间线面关系: 空间线面关系的判定
平行 l1与l2 l1与α1 e1∥e2 e1⊥n1 n1∥n2 垂直 e1⊥e2 e1∥n1 n1⊥n2
α1与α2
其中e1 ,e2 分别为直线l1 ,l2 的方向向量,n1 ,n2 分 别为平面α1,α2的法向量。
空间线面关系的判定: 三垂线定理,线面平行的判定定理, 线面垂直的判定定理,面面平行的判 定定理,面面垂直的判定定理。
b
θ1 O
θ D
a
A

向量的数量积的坐标运算

向量的数量积的坐标运算

在力学中,物体的动能与其速度 向量的模的平方成正比,可以通 过向量的数量积来计算。
在电磁学中的应用
计算电场强度
01
电场强度向量可以通过电荷分布密度向量与距离向量的数量积
来计算。
判断电场方向
02
电场强度的方向可以通过电场向量与距离向量的数量积来判断。来自计算磁感应强度03
磁感应强度向量可以通过电流密度向量与距离向量的数量积来
数量积的性质
分配律:(a+b)·c = a·c + b·c,即向量 数量积满足分配律。
零向量与任何向量 的数量积都是0。
交换律:a·b = b·a, 即向量数量积满足 交换律。
结合律:(λa)·b = λ(a·b) = a·(λb),其 中λ是标量,即向量 数量积满足结合律。
若向量a和b垂直, 则它们的数量积为0, 即a·b = 0。
VS
性质与应用
向量数量积具有交换律、分配律等性质, 在物理、工程、计算机图形学等领域有广 泛应用,如计算力、功、能量等物理量, 以及进行向量的投影、旋转等操作。
对未来研究的展望
深入研究高维向量数量积的性质和应用
随着数据维度的增加,高维向量的数量积运算将变得更加复杂,需要 进一步研究其性质和应用。
探索向量数量积在机器学习等领域的应用
在物理中,向量的数量积常用 来表示力、功等物理量。
04 向量的数量积坐标运算方 法
直接计算法
定义
直接计算法是指根据向量数量积的定义,通过计算两个向 量的模长和它们之间的夹角余弦值来求得数量积的方法。
公式
设两个向量 a = (x1, y1),b = (x2, y2),则它们的数量积 a · b = |a| * |b| * cosθ,其中 |a| 和 |b| 分别是向量 a 和 b 的模长,θ 是向量 a 和 b 之间的夹角。

空间向量数量积的坐标表示

空间向量数量积的坐标表示

Hale Waihona Puke 0时,的夹角在什么范围内?
练习一:
1.求下列两点间的距离:
(1) A(1,1, 0) , B(1,1,1) ; (2) C(3 ,1, 5) , D(0 , 2 , 3) .
2.求下列两个向量的夹角的余弦:
(1) ar (2 , 3 ,
r 3),b (1, 0 , 0) ;
(2)
ar
(1
,
例题:
A
例1 已知A(3 , 3 ,1)、B(1, 0 , 5) ,求:
(1)线段 AB 的中点坐标和长度;
M
B
解:设 M(x , y , z) 是 AB的中点,则 O
uuuur OM
1 2
uuur (OA
uuur OB)
1 2
(3
,
3
,
1)
1 ,
0
,
5
2
,
3 2
,
3
,
∴点 M的坐标是
2
,
3 2
1
,
r 1),b
(1
,
0
,
1)
;
3.已知 ABCD ,顶点 A(1,0,0), B(0,1,0) ,C(0,0, 2) ,
则顶点 D 的坐标为___(_1_,_-_1_,2_)_____;
4. Rt△ABC 中, BAC 90o , A(2,1,1), B(1,1, 2) ,
C( x, 0,1) ,则 x __2__;
r a
r b
(a
1
b1,
a2
b2
,
a3
b3
)
;
ar
r b
(a 1b1,a2

2020北师大版高中数学选修2-1 教师课件:第二章 空间向量运算的坐标表示

2020北师大版高中数学选修2-1 教师课件:第二章  空间向量运算的坐标表示

[解析] 由已知可得:A→B=(4,5,-1)-(2,-1,2)=(2,6,-3),A→C=(-2,2,3) -(2,-1,2)=(-4,3,1). (1)O→P=12(A→B-A→C)=12[(2,6,-3)-(-4,3,1)]=(3,32,-2),所以 P 点的坐标 为(3,32,-2).
(2)设 P(x,y,z),则A→P=(x-2,y+1,z-2). 因为12(A→B-A→C)=(3,32,-2), 所以A→P=(x-2,y+1,z-2)=(3,32,-2), 解得:x=5,y=12,z=0,则 P 点的坐标为(5,12,0).
[解析] (1)∵c∥B→C, ∴c=mB→C=m(-2,-1,2)=(-2m,-m,2m)(m∈R), ∴|c|= -2m2+-m2+2m2=3|m|=3, ∴m=±1, ∴c=(-2,-1,2)或 c=(2,1,-2). (2)∵a=(1,1,0),b=(-1,0,2), ∴a·b=(1,1,0)·(-1,0,2)=-1. 又|a|= 12+12+0= 2,|b|= -12+0+22= 5, ∴(ka+b)·(ka-2b)=k2a2-ka·b-2b2=2k2+k-10=0,得 k=2 或 k=-52.
3+y-2z=0
z=1
∴向量 a=(-1,1,2),b=(1,-1,-2),c=(3,1,1). (2)∵a+c=(2,2,3),b+c=(4,0,-1), ∴(a+c)·(b+c)=2×4+2×0+3×(-1)=5, |a+c|= 22+22+32= 17,|b+c|= 42+02+-12= 17, ∴a+c 与 b+c 所成角的余弦值为a|a++cc|·|bb++cc|=157.
解析:(1)以 C 为坐标原点,建立如图所示的空间直角坐标系. 由已知,得 C(0,0,0),A(1,0,0),B(0,1,0),C1(0,0,2),P12,12,2, Q(1,0,1),B1(0,1,2),A1(1,0,2). ∴B→Q=(1,-1,1),C→B1=(0,1,2),B→A1=(1,-1,2),A→B1=(- 1,1,2),C→1P=12,12,0, ∴|B→Q|= 12+-12+12= 3.

专题03 空间向量及其运算的坐标表示(知识精讲)高二数学新教材知识讲学(人教A版选择性必修第一册)

专题03 空间向量及其运算的坐标表示(知识精讲)高二数学新教材知识讲学(人教A版选择性必修第一册)

专题三 空间向量及其运算的坐标表示一 知识结构图二.学法指导1.在空间直角坐标系中,确定点的坐标或求对称点坐标时,要记住规律:“在谁的轴上,谁属于R ,其它为零;在谁的平面上,谁属于R ,其它为零.”“关于谁对称谁不变,其余变成相反数.” 2.空间几何体中,要得到有关点的坐标时,先建立适当的坐标系,一般选择两两垂直的三条线段所在直线为坐标轴,然后选择基向量,根据已知条件和图形关系将所求向量用基向量表示,即得所求向量的坐标.3.进行空间向量的数量积坐标运算的技巧利用向量坐标运算解决问题的关键是熟记向量坐标运算的法则,同时掌握下列技巧. (1)在运算中注意相关公式的灵活运用,如(a +b )·(a -b )=a 2-b 2=|a |2-|b |2,(a +b )·(a +b )=(a +b )2等.(2)进行向量坐标运算时,可以先代入坐标再运算,也可先进行向量式的化简再代入坐标运算,如计算(2a )·(-b ),既可以利用运算律把它化成-2(a ·b ),也可以求出2a ,-b 后,再求数量积;计算(a +b )·(a -b ),既可以求出a +b ,a -b 后,求数量积,也可以把(a +b )·(a -b )写成a 2-b 2后计算. 4.判断空间向量垂直或平行的步骤(1)向量化:将空间中的垂直与平行转化为向量的垂直与平行; (2)向量关系代数化:写出向量的坐标;(3)对于a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),根据x 1x 2+y 1y 2+z 1z 2是否为0判断两向量是否垂直;根据x 1=λx 2,y 1=λy 2,z 1=λz 2(λ∈R )或x 1x 2=y 1y 2=z 1z 2(x 2,y 2,z 2都不为0)判断两向量是否平行.5.利用向量数量积的坐标公式求异面直线所成角的步骤(1)根据几何图形的特点建立适当的空间直角坐标系;(2)利用已知条件写出有关点的坐标,进而获得相关向量的坐标;(3)利用向量数量积的坐标公式求得异面直线上有关向量的夹角,并将它转化为异面直线所成的角.6.利用向量坐标求空间中线段的长度的一般步骤(1)建立适当的空间直角坐标系;(2)求出线段端点的坐标;(3)利用两点间的距离公式求出线段的长.三.知识点贯通知识点1 求空间点的坐标例题1.如图,在长方体ABCD ­A 1B 1C 1D 1中,|AB |=4,|AD |=3,|AA 1|=5,N 为棱CC 1的中点,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.(1)求点A ,B ,C ,D ,A 1,B 1,C 1,D 1的坐标; (2)求点N 的坐标. 【解析】(1)显然D (0,0,0),因为点A 在x 轴的正半轴上,且|AD |=3, 所以A (3,0,0).同理,可得C (0,4,0),D 1(0,0,5).因为点B 在坐标平面xOy 内,BC ⊥CD ,BA ⊥AD ,所以B (3,4,0).同理,可得A 1(3,0,5),C 1(0,4,5),与B 的坐标相比,点B 1的坐标中只有竖坐标不同,|BB 1|=|AA 1|=5,则B 1(3,4,5).(2)由(1)知C (0,4,0),C 1(0,4,5), 则C 1C 的中点N 为⎝⎛⎭⎫0+02,4+42,0+52,即N ⎝⎛⎭⎫0,4,52. 知识点二 求对称点的坐标在空间直角坐标系中,任一点P (a ,b ,c )的几种特殊的对称点的坐标如下:(1)求点P 关于x 轴的对称点的坐标; (2)求点P 关于xOy 平面的对称点的坐标;(3)求点P 关于点M (2,-1,-4)的对称点的坐标【解析】 (1)由于点P 关于x 轴对称后,它在x 轴的分量不变,在y 轴、z 轴的分量变为原来的相反数,所以对称点为P 1(-2,-1,-4).(2)由于点P 关于xOy 平面对称后,它在x 轴、y 轴的分量不变,在z 轴的分量变为原来的相反数,所以对称点为P 2(-2,1,-4).(3)设对称点为P 3(x ,y ,z ),则点M 为线段PP 3的中点.由中点坐标公式,可得x =2×2-(-2)=6,y =2×(-1)-1=-3,z =2×(-4)-4=-12,所以P 3(6,-3,-12). 知识点三 空间向量的坐标表示若),,(),,(2211y x B y x A 则),(1212y y x x --=。

向量数量积的坐标表示公式

向量数量积的坐标表示公式

向量数量积的坐标表示公式
向量数量积的坐标表示公式为:
若有两个向量A = (a1, a2, a3)和B = (b1, b2, b3),它们的数量积(也称为点积)为:
A∙B = a1b1 + a2b2 + a3b3
这个公式表示了两个向量在各个坐标上的对应分量相乘后相加所得到的结果,可以用来计算两个向量的点积。

同时,向量A∙B还可以表示为A·B = |A| |B| cosθ,其中|A|和|B|分别表示A和B的长度,θ表示A和B之间的夹角。

这个公式可以用来计算两个向量之间的夹角,从而得到它们的数量积。

除了上述的坐标表示公式,向量数量积还有几何表示和向量积的定义形式。

向量数量积在几何上表示了向量A在向量B方向上的投影长度与向量B的模长之积,而在向量积中,数量积还可以表示为A∙B = 0,当且仅当向量A和向量B垂直(即夹角为90度)时。

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点在高中数学的学习中,空间向量是一个重要的知识点,它为我们解决空间几何问题提供了全新的思路和方法。

接下来,就让我们一起深入了解一下空间向量的相关知识。

一、空间向量的基本概念空间向量是指具有大小和方向的量。

它与平面向量类似,但存在于三维空间中。

一个空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

空间向量的坐标表示:在空间直角坐标系中,若向量的起点坐标为\((x_1,y_1,z_1)\),终点坐标为\((x_2,y_2,z_2)\),则该向量的坐标为\((x_2 x_1, y_2 y_1, z_2 z_1)\)。

零向量:长度为\(0\)的向量,其方向任意。

单位向量:长度为\(1\)的向量。

二、空间向量的运算1、加法和减法空间向量的加法和减法运算遵循三角形法则和平行四边形法则。

若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)\),\(\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1z_2)\)2、数乘运算若\(\lambda\)为实数,\(\overrightarrow{a} =(x,y,z)\),则\(\lambda\overrightarrow{a} =(\lambda x, \lambda y, \lambda z)\)数乘运算的规律:\(\lambda (\overrightarrow{a} +\overrightarrow{b})=\lambda\overrightarrow{a} +\lambda\overrightarrow{b}\)3、数量积空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos <\overrightarrow{a},\overrightarrow{b}>\)若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} \cdot \overrightarrow{b} = x_1x_2 + y_1y_2 + z_1z_2\)数量积的性质:\(\overrightarrow{a} \perp \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0\)\(\overrightarrow{a} \cdot \overrightarrow{a} =|\overrightarrow{a}|^2\)4、向量积空间向量的向量积\(\overrightarrow{a} \times \overrightarrow{b}\)是一个向量,其模长为\(|\overrightarrow{a}||\overrightarrow{b}|\sin <\overrightarrow{a},\overrightarrow{b}>\),方向垂直于\(\overrightarrow{a}\)和\(\overrightarrow{b}\)所确定的平面,遵循右手定则。

1.3 空间向量的坐标表示及其运算(同步课件)-【优选组合】2021-2022学年高二(人教A版20

1.3 空间向量的坐标表示及其运算(同步课件)-【优选组合】2021-2022学年高二(人教A版20
[答案]由已知得 = (2,1, −3), = (3, −2, −1),
∴ || =
22 + 12 + (−3)2 = 14, || =
32 + (−2)2 + (−1)2 = 14, ⋅
= 2 × 3 + 1 × (−2) + (−3) × (−1) = 7,
∴ cos = cos<, > =
=
−4
3×2 5
=
2 5

15
.
12 + 22 + (−2)2 = 3, || =
探究点三 空间向量坐标运算的运用
例 [2021山东师大附中高二月考] 已知在空间直角坐标系中
,(0,2,3),(−2,1,6),(1, −1,5).
(1) 若点在直线上,且 ⊥ ,求点的坐标;
= (4,2,0), = (−1,2, −1),所以 ⋅ = −4 + 4 + 0 = 0,所以 ⊥ ,
即 ⊥ ,故B中结论正确;
易知 = − = (2,3,4) ,若 // ,则存在实数 ,使得 =
−1 = 2,
,即 ቐ 2 = 3, 此方程组无解,故 不平行于 ,故C中结论错误;
读 式.
标运算解决立体几何问题.
3.能用空间向量的坐标运算解决
平行、垂直、夹角、长度等问题.
要点一 空间向量运算的坐标表示
设 = (1 , 2 , 3 ), = (1 , 2 , 3 ),空间向量的坐标运算法则如下表所示:
运算
加法
减法
数乘
数量积
坐标表示
1 1 + 2 2 + 3 3
2. 已知 = (1,1,0), = (0,1,1), = (1,0,1), = − , = + 2 − ,则 ⋅

空间向量及其运算的坐标表示

空间向量及其运算的坐标表示
3m-n= (5,-11,19) ,(2m)·(-3n)= 168

,
解析:m+n=(1,-3,5)+(-2,2,-4)=(-1,-1,1),3m-n=3(1,-3,5)-(-2,2,-4)=(5,-11,19),
(2m)·(-3n)=(2,-6,10)·(6,-6,12)=168.
2.已知空间向量a=(2,λ,-1),b=(λ,8,λ-6),若a∥b,则λ=
间坐标系的转换.
二、空间向量运算的坐标表示
1.空间向量的坐标运算法则
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
“数量化”,也就是坐标系的引入,使得几何问题“代
数化”,为了使得空间几何“代数化”,我们引入了坐
标及其运算.
探究新知
一、空间直角坐标系与坐标表示
1.空间直角坐标系
在空间选定一点O和一个单位正交基底 , , ,以点O为原点,分别以i,j,k的方向为正方向、以它
们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空
(2)把ka+b与ka-2b用坐标表示出来,再根据数量积为0求解.
解:(1)∵ =(-2,-1,2)且 c∥ ,
∴设 c=λ =(-2λ,-λ,2λ)(λ∈R).
∴|c|= (-2)2 + (-)2 + (2)2 =3|λ|=3,解得 λ=±1.

空间向量运算的坐标表示(课件)2022-2023学年高二数学(人教A版2019选择性必修第一册)

空间向量运算的坐标表示(课件)2022-2023学年高二数学(人教A版2019选择性必修第一册)
(2)若ka+b与ka-2b互相垂直,求k.
思路分析(1)根据 c∥,设 c=λ,则向量 c 的坐标可用 λ 表示,再利用|c|=3 求 λ 值;
(2)把ka+b与ka-2b用坐标表示出来,再根据数量积为0求解.
解:(1)∵ =(-2,-1,2)且 c∥ ,
∴设 c=λ =(-2λ,-λ,2λ)(λ∈R).
2x1-x2=2,
x1=1,
(2)设a=(x1,y1,z1),b=(x2,y2,z2),由题设可得
解得
x1+2x2=1,
x2=0,
同理可得y1=-1,y2=2,z1=1,z2=-1,即a=(1,-1,1),
b=(0,2,-1),

b=0-2-1=-3, |a|= 3,|b|= 5,

bቤተ መጻሕፍቲ ባይዱ
15
cos〈a,b〉=

2,-2λ,-λ=0,
λ+1,1,2λ·
5λ2+2λ=3,
化简,得
2
2-2λ =0,
因此,a=(0,1,-2).
解得 λ=-1.
归纳总结
用坐标表示空间向量的步骤如下:
归纳总结
空间向量的坐标运算注意以下几点:
(1)一个向量的坐标等于这个向量的终点的坐标减去起点的坐标.
(2)空间向量的坐标运算法则类似于平面向量的坐标运算,牢记运算
∴|c|= (-2)2 + (-)2 + (2)2 =3|λ|=3,解得 λ=±1.
∴c=(-2,-1,2)或 c=(2,1,-2).
(2)∵a==(1,1,0),b==(-1,0,2),
∴ka+b=(k-1,k,2),ka-2b=(k+2,k,-4).

1.3.2空间向量运算的坐标表示 教案—高二上学期数学人教A版(2019)选择性必修第一册

1.3.2空间向量运算的坐标表示 教案—高二上学期数学人教A版(2019)选择性必修第一册

1.3.2 空间向量运算的坐标表示教学设计一、内容和内容解析1.内容:空间向量的坐标运算;根据向量坐标判断两向量平行或垂直;向量长度公式;两向量夹角公式、空间两点间距离公式。

2.内容解析本节课是人教A版高中数学选择性必修第一册第一章第三节的第二课时。

引入空间直角坐标系,为学生学习立体几何提供了新的方法,为培养学生思维提供了更广阔的空间。

本节课是在学生学习了空间向量及其运算和基本定理的基础上进一步学习空间向量运算的坐标表示,是平面向量运算的坐标表示在空间的推广,是运用向量坐标运算解决几何问题的基础.二、目标和目标解析1.目标(1)掌握空间向量运算的坐标表示(2)通过向量坐标判断两向量特殊位置关系(3)掌握向量长度公式、两向量夹角公式、空间两点间距离公式(4)培养学生类比思想、转化思想,提升学生“数学运算”和“逻辑推理”学科素养2.目标解析(1)掌握空间向量加减、数乘、数量积的坐标运算(2)会根据向量的坐标,判断两个向量平行或垂直(3)能根据向量的坐标计算出向量的模长,两向量夹角和空间两点距离,并能解决简单的立体几何问题三、教学问题诊断分析1.教学问题诊断:(1)空间向量运算的坐标表示同平面向量运算的坐标表示类似,可以类比平面向量运算的坐标表示进行推广,但怎样推广是学生的困难所在(2)学生难将向量坐标运算的代数结果与几何问题进行转化,利用空间向量运算的坐标表示解决一些立体几何问题是教学中的难点2.教学重点:空间向量的坐标运算,空间向量平行和垂直的条件,距离公式,夹角公式3.教学难点:运用空间向量的坐标运算解决立体几何问题四、教学支持条件:多媒体辅助教学五、教学过程设计(一)知识回顾平面直角坐标系空间直角坐标系空间点和空间向量的坐标表示【设计意图】回顾上节课所学内容,为本节课的学习作铺垫。

(二)类比得到空间向量运算的坐标表示【探究一】有了空间向量的坐标表示,你能类比平面向量的坐标运算,得到空间向量运算的坐标表示并给出证明吗?平面向量运算的坐标表示 空间向量运算的坐标表示{}123123123123111213212223313233,,,,()()10设为空间的一个单位正交基底,则所以因为,所以a a a b b b a a a b b b a b a b a b a b a b a b a b a b a b =++=++=++++=++++++++======i j k a i j k b i j k a b i j k i j k i i i j i k j i j j j k k i k j k k i i j j k k i j j k k i a b 112233.a b a b a b =++其他运算的坐标表示可以类似证明。

向量数量积的坐标表示

向量数量积的坐标表示

05
向量数量积的扩展
向量点乘的坐标表示
总结词
向量点乘的坐标表示是两个向量的对应坐标相乘,然后求和。
详细描述
向量点乘的坐标表示是两个向量的对应坐标相乘,然后求和。设向量$mathbf{A} = (a_1, a_2, a_3)$,向量$mathbf{B} = (b_1, b_2, b_3)$,则$mathbf{A} cdot mathbf{B} = a_1b_1 + a_2b_2 + a_3b_3$。
在工程中的应用
机械系统分析
向量数量积可以用于分析机械系 统的运动状态,例如分析机器人 的关节运动、车辆的行驶轨迹等。
控制系统分析
向量数量积可以用于控制系统的 分析和设计,例如分析系统的稳 定性、设计控制算法等。
信号处理
在信号处理中,向量数量积可以 用于分析信号的频率和相位,例 如进行频谱分析和滤波器设计等。
$mathbf{C} = (c_1, c_2, c_3)$,则$mathbf{A} cdot (mathbf{B} times mathbf{C}) = (a_1(b_2c_3 - b_3c_2), a_2(b_3c_1 - b_1c_3), a_3(b_1c_2 - b_2c_1))$。
感谢观看
mathbf{B} = mathbf{B} cdot mathbf{A}$。
数量积满足分配律,即$(mathbf{A}
+
mathbf{பைடு நூலகம்}) cdot mathbf{C} = mathbf{A}
cdot mathbf{C} + mathbf{B} cdot
mathbf{C}$。
数量积为0当且仅当两个向量垂直,即 $mathbf{A} cdot mathbf{B} = 0$当且仅当 $mathbf{A} perp mathbf{B}$。

332空间向量运算的坐标表示及应用(一) 课件-23学年高二上学期数学(2019)选择性必修第一册

332空间向量运算的坐标表示及应用(一) 课件-23学年高二上学期数学(2019)选择性必修第一册
.
解(1) 2 =2(-1,-3,2)=(-2,-6,4).
(2)因为 +2b=(-1,-3,2)+2(1,2,0)
=(-1,-3,2)+(2,4,0)
=(1,1,2),
-2 +b=-2(-1,-3,2)+(1,2,0)
=(2,6,-4)+(1,2,0)
=(3,8,-4),
所以( +2b) · (-2 +b)=(1,1,2) · (3,8,-4)
自己完成.证明过程如下:
因为 = ₁ ₁ ₁ , = ₂ ₂ ₂ ,所以
根据向量数量积的分配律,
以及i · i=j · j=k · k=1,i · j=j · k=i · k=0,即可得出
⋅ = ₁₂ ⋅ + ₁₂ ⋅ + ₁₂ ⋅ + ₁₂ ⋅ + ₁₂ ⋅
(2)因为 a=AB
所以 ka+b=(k-1,k,2),ka-2b=(k+2,k,-4).
因为(ka+b)⊥(ka-2b),
所以(ka+b)·(ka-2b)=0,即(k-1,k,2)·(k+2,k,-4)=2k2
+k-10=0.
5
解得 k=2 或 k=-2.
自探
空间向量平行与垂直
2.已知 a=(1,2,-y),b=(x,1,2),且(a+2b)∥(2a-b),
₁ሻ
也就是说:一个向量在空间
直角坐标系中的坐标等于表
= ₂ − ₁ + ₂ − ₁ +
示这个向量的有向线段的终
₂ − ₁
点的坐标减去起点的坐标.
= ₂ − ₁ ₂ − ₁ ₂ − ₁ .
空间向量运算坐标表示

人教A版高中数学选择性必修1《空间向量运算的坐标表示》教学课件

人教A版高中数学选择性必修1《空间向量运算的坐标表示》教学课件

平面向量运算的坐标表示 空间向量运算的坐标表示
设 a (a1, a2 ), b (b1, b2 ),
设 a (a1, a2 , a3 ), b (b1, b2 , b3),
a b a1 b1, a2 b2 , a b a1 b1, a2 b2 ,
a b a1 b1, a2 b2 , a3 b3 , a b a1 b1, a2 b2 , a3 b3 ,
a b a1 b1, a2 b2 , a b a1 b1, a2 b2 ,
a b a1 b1, a2 b2 , a3 b3 , a b a1 b1, a2 b2 , a3 b3 ,
a a1, a2 , R,
a a1, a2, a3 , R,
a b a1b1 a2b2.
a a1, a2 , R,
a b a1b1 a2b2.
? 你能类比平面向量运算的坐标表示,猜想空间向量运 算的坐标表示吗?
平面向量运算的坐标表示 空间向量运算的坐标表示
设 a (a1, a2 ), b (b1, b2 ),
设 a (a1, a2 , a3 ), b (b1, b2 , b3),
平面向量运算的坐标表示
设 a (a1, a2 ), b (b1, b2 ),
a b a1 b1, a2 b2 , a b a1 b1, a2 b2 ,
a a1, a2 , R,
a b a1b1 a2b2.
设 A(a1, a2 ), B(b1,b2 ),
AB b1 a1,b2 a2 .
平面向量运算的坐标表示 设 a (a1, a2 ), b (b1, b2 ),
a b a1 b1, a2 b2 , a b a1 b1, a2 b2 ,
空间向量运算的坐标表示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)当 cos a , b 1时,a 与 b 反向;
(3)当cos a , b 0 时,a b 。
6.空间两非零向量垂直的条件
a b a b 0 x1x2 y1 y2 z1z2 0
思考:当 0 cos a , b 1及1 cos a , b 0 时,
的夹角在什么范围内?
a b (a1b1,a2 b2 ,a3 b3 );
a (a1,a2,a3),( R);
a // b a1 b1,a2 b2 ,a3 b3( R; ) a // b且a、b均各坐标值非0 a1 / b1 a2 / b2 a2 / b2 .
规定:0 a 0
思考:0 a ??
D1F1
z
A1B1 ,求
4
BE1 与 DF1 所成的角的余弦值.
解:设正方体的棱长为1,如图建
D1
F1
C1
立空间直角坐标系 O xyz ,则
A1
E1 B1
B(1 , 1 , 0)
,
E1
1
,
3 4
,
1
,
D
O
C
y
D(0 , 0 , 0) ,
F1
0
,
1 4
,1
.
A
x
DF1
0
,
1 4
B
BE1
1
,
若A(x1,y1,z1) , B(x2,y2,z2),
则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
空间向量类似于平面向量可以用坐标表示,而且 也类似于平面向量可以用坐标来进行各种运算及进行 有关判断.
设a (a1,a2,a3),b (b1,b2,b3),则 a b (a 1b1,a2 b2 ,a3 b3 ) ;
例2:已知两点A(1,2,3),B(2,1,2),P(1,1,2),点Q在 OP上运动,求当QA QB取得最小值时,点Q的坐标。
设OQ OP (, , 2),
QA QB 6 2 16 10
当 4时,QA QB取得最小值 2。
3
3
此时Q( 4 ,4 ,8) 333
例3 如图, 在正方体ABCD A1B1C1D1中,B1E1
3.长度的计算
已知 a ( x, y, z) ,则 a x2 y2 z2
4.空间两点间的距离公式
已知 A( x1 , y1 , z1) 、B(x2 , y2 , z2 ) ,则
注:此公式的 几何意义是表 示长方体的对 角线的长度。
AB ( x2 x1)2 ( y2 y1)2 (z2 z1)2
例1 已知A(3 , 3 ,1)、B(1, 0 , 5) ,求:
(1)线段 AB 的中点坐标和长度;
M
B
解:设 M(x , y , z) 是 AB的中点,则 O
OM
1 2
(OA
OB)
1 2
(3
,
3
,
1)
1 ,
0
,
5
2
,
3 2
,
3
,
∴点 M的坐标是
2
,
3 2
,
3
.
AB (1 3)2 (0 3)2 (5 1)2 29 .
3.已知 ABCD ,顶点 A(1,0,0), B(0,1,0) ,C(0,0, 2) ,
则顶点 D 的坐标为___(_1_,_-_1_,2_)_____;
4. Rt△ABC 中, BAC 90 , A(2,1,1), B(1,1, 2) ,
C( x, 0,1) ,则 x __2__;
例题:
A
1.中点坐标公式
已知 A( x1 , y1 , z1 ) , B( x2 , y2 , z2 )
则线段 AB 的中点坐标为 ( x1 x2 , y1 y2 , z1 z2 )
2
2
2
2.空间向量数量积的坐标表示:
设空间两个非零向量a (x1,y1,z1),b (x2,y2,z2), 则a b x1x2 y1y2 z1z2
3 4
,
1
(1
,
1
,
0)
0
,
1 4
,
1
,1
(0
,
0,0)ຫໍສະໝຸດ 0,1 4
,1
.
BE1
DF1
0
0
1 4
1 4
1
1
15 16
,
,
15
| BE1 |
17 4 , | DF1 |
17 . 4
cos
BE1
,
DF1
|
BE1 BE1 |
DF1 | DF1
|
16 15 . 17 17 17
44
例 4.如图,正方体 ABCD A1B1C1D1 中, E , F 分别是 BB1 , D1B1 中点,求证: EF DA1
5.角度的计算
已知空间两非零向量 a (x1, y1, z1) , b ( x2, y2, z2 )
则 cos a, b a b
x1 x2 y1 y2 z1z2
ab
x12 y12 z12 x22 y22 z22
注意:(1)当 cos a , b 1时,a 与 b 同向;
证明:如图,不妨设正方体的棱长为 1,
分别以 DA 、 DC 、 DD1 为单位正交基底 建立空间直角坐标系 Oxyz ,
则 E(1 , 1 , 1 ) , F (1 , 1 , 1)
2
22
所以 EF ( 1 , 1 , 1 ) , 2 22
又 A1(1 , 0 , 1) , D(0 , 0 , 0) ,
空间向量运算的坐标表示(二)
复习:
z
z
以 i, j, k 为单位正交基底
建立空间直角坐标系O—xyz
p P(x, y, z)
i, j,k 为基底 ( x, y, z)
p xi y j zk
k
O
xi
j
y 记 p (x, y, z)
y OP ( x, y, z)
x
P(x, y, z)
(2)到 A 、B两点距离相等的点 P(x , y , z) 的
坐标 x , y , z 满足的条件。
解:点P(x , y , z)到 A 、B 的距离相等,则
(x 3)2 ( y 3)2 (z 1)2 (x 1)2 ( y 0)2 (z 5)2 ,
化简整理,得 4x 6 y 8z 7 0 即到 A 、B 两点距离相等的点的坐标 (x , y , z) 满 足的条件是 4x 6 y 8z 7 0
所以 DA1 (1 , 0 , 1)
练习一:
1.求下列两点间的距离:
(1) A(1,1, 0) , B(1,1,1) ; (2) C(3 ,1, 5) , D(0 , 2 , 3) .
2.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3),b (1, 0 , 0) ; (2) a (1, 1,1),b (1, 0 ,1) ;
相关文档
最新文档