向量的数量积坐标运算原理

合集下载

向量数量积的定义

向量数量积的定义
向量数量积与角度的关系
对于任意两个非零向量$vec{a}$和$vec{b}$,有$cos{langlevec{a}, vec{b}rangle} = frac{vec{a} cdot vec{b}}{|vec{a}| |vec{b}|}$。
证明
向量数量积的坐标表示的证明
利用向量的坐标表示和点积的定义,通过代数运算 证明。
向量数量积与模的关系的证明
利用向量的模的定义和点积的性质,通过代数运算 证明。
向量数量积与角度的关系的证明
利用向量的点积的性质和三角函数的性质,通过代 数运算证明。
04
向量数量积的应用
在物理中的应用
描述速度和加速度
向量数量积可以用来描述物理中 的速度和加速度,通过计算速度 和加速度的向量数量积,可以得 出物体运动的方向和速度变化的 快慢。
02
向量数量积的计算
计算公式
定义
两个向量$vec{A} = (a_1, a_2, ..., a_n)$和$vec{B} = (b_1, b_2, ..., b_n)$的数量积定义为$vec{A} cdot vec{B} = a_1b_1 + a_2b_2 + ... + a_nb_n$。
几何意义
向量长度和夹角
向量的数量积可以用来计算向量的长度和夹角,从而确定两个向量 的相似性和关系。
向量投影
在数学中,向量的投影是一个重要的概念,可以通过向量的数量积 来计算,从而确定一个向量在另一个向量上的投影。
在其他领域的应用
计算机图形学
在计算机图形学中,向量的数量积可以用来描述二维图形和三维模型的方向和旋转,从而实现图形的旋转、缩 放和平移等变换。
定理
向量数量积的坐标表示

19-20版 第2章 2.3 2.3.3 向量数量积的坐标运算与度量公式

19-20版 第2章 2.3 2.3.3 向量数量积的坐标运算与度量公式

2.3.3向量数量积的坐标运算与度量公式1.两向量的数量积与两向量垂直的坐标表示 (1)向量内积的坐标运算:已知a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2. (2)用向量的坐标表示两个向量垂直的条件:设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔a 1b 1+a 2b 2=0. 2.向量的长度、距离和夹角公式 (1)向量的长度:已知a =(a 1,a 2),则|a |(2)两点间的距离:如果A (x 1,y 1),B (x 2,y 2),则|AB →|(3)两向量的夹角:设a =(a 1,a 2),b =(b 1,b 2), 则cos 〈a ,b思考:与向量a =(a 1,a 2)同向的单位向量的坐标如何表示? [提示] 由于单位向量a 0=a|a |,且|a |=a 21+a 22,所以a 0=a|a |=1a 21+a 22(a 1,a 2)=⎝⎛⎭⎪⎫a 1a 21+a 22,a 2a 21+a 22,此为与向量a =(a 1,a 2)同向的单位向量的坐标.1.已知a=(1,-1),b=(2,3),则a·b=()A.5 B.4C.-2D.-1D[a·b=(1,-1)·(2,3)=1×2+(-1)×3=-1.]2.(2019·全国卷Ⅲ)已知向量a=(2,2),b=(-8,6),则cos〈a,b〉=________.-210[∵a=(2,2),b=(-8,6),∴a·b=2×(-8)+2×6=-4,|a|=22+22=22,|b|=(-8)2+62=10.∴cos〈a,b〉=a·b|a||b|=-422×10=-210.]3.已知a=(3,x),|a|=5,则x=________. ±4[|a|=32+x2=5,∴x2=16.即x=±4.]A .12 B .-12 C .32D .-32(2)已知向量a =(-1,2),b =(3,2),则a·b =________,a·(a -b )=________. (3)已知a =(2,-1),b =(3,2),若存在向量c ,满足a·c =2,b·c =5,则向量c =________.[思路探究] 根据题目中已知的条件找出向量坐标满足的等量关系,利用数量积的坐标运算列出方程(组)来进行求解.(1)D (2)1 4 (3)⎝ ⎛⎭⎪⎫97,47 [(1)因为a =(1,2),b =(2,x ),所以a·b =(1,2)·(2,x )=1×2+2x =-1,解得x =-32.(2)a·b =(-1,2)·(3,2)=(-1)×3+2×2=1,a·(a -b )=(-1,2)·[(-1,2)-(3,2)]=(-1,2)·(-4,0)=4. (3)设c =(x ,y ),因为a·c =2,b·c =5, 所以⎩⎪⎨⎪⎧2x -y =2,3x +2y =5,解得⎩⎪⎨⎪⎧x =97,y =47,所以c =⎝ ⎛⎭⎪⎫97,47.]1.进行数量积运算时,要正确使用公式a·b=x1x2+y1y2,并能灵活运用以下几个关系:|a|2=a·a;(a+b)(a-b)=|a|2-|b|2;(a+b)2=|a|2+2a·b+|b|2.2.通过向量的坐标表示可实现向量问题的代数化,应注意与函数、方程等知识的联系.3.向量数量积的运算有两种思路:一种是向量式,另一种是坐标式,两者相互补充.1.设向量a=(1,-2),向量b=(-3,4),向量c=(3,2),则(a+2b)·c=() A.(-15,12) B.0C.-3 D.-11C[依题意可知,a+2b=(1,-2)+2(-3,4)=(-5,6),∴(a+2b)·c=(-5,6)·(3,2)=-5×3+6×2=-3.]A.4 B.5C.3 5 D.4 5(2)已知向量a=(1,2),b=(-3,2),则|a+b|=________,|a-b|=________.[思路探究](1)两向量a=(x1,y1),b=(x2,y2)共线的坐标表示:x1y2-x2y1=0.(2)已知a=(x,y),则|a|=x2+y2.(1)D(2)254[(1)由a∥b,得y+4=0,y=-4,b=(-2,-4),∴2a-b=(4,8),∴|2a-b|=4 5.故选D.(2)由题意知,a+b=(-2,4),a-b=(4,0),因此|a+b|=25,|a-b|=4.]向量模的问题的解题策略:(1)字母表示下的运算,利用|a|2=a2将向量模的运算转化为向量的数量积的运算.(2)坐标表示下的运算,若a=(x,y),则|a|=x2+y2.2.已知向量a=(2x+3,2-x),b=(-3-x,2x)(x∈R),则|a+b|的取值范围为________.[2,+∞)[∵a+b=(x,x+2),∴|a+b|=x2+(x+2)2=2x2+4x+4=2(x+1)2+2≥2,∴|a+b|∈[2,+∞).]1.设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示?[提示] cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.2.已知a =(1,-1),b =(λ,1),当a 与b 的夹角α为钝角时,λ的取值范围是什么?[提示] ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.∵a ,b 的夹角α为钝角, ∴⎩⎪⎨⎪⎧λ-1<0,21+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0,∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1).【例3】 (1)已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则实数k 的取值范围是( )A .(-2,+∞) B.⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞ C .(-∞,-2)D .(-2,2)(2)已知a =(3,4),b =(2,-1),且(a +m b )⊥(a -b ),则实数m 为何值? [思路探究] (1)可利用a ,b 夹角为锐角⇔⎩⎨⎧a·b>0a ≠λb 求解. (2)可利用两非零向量a ⊥b ⇔a·b =0来求m .(1)B [当a 与b 共线时,2k -1=0,k =12,此时a ,b 方向相同,夹角为0°,所以要使a 与b 的夹角为锐角,则有a·b>0且a ,b 不同向.由a·b =2+k >0得k >-2,且k ≠12,即实数k 的取值范围是⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞,选B.](2)解:a +m b =(3+2m,4-m ),a -b =(1,5),因为(a +m b )⊥(a -b ),所以(a +m b )·(a -b )=0,即(3+2m )×1+(4-m )×5=0,所以m =233.1.利用数量积的坐标表示求两向量夹角的步骤:(1)求向量的数量积.利用向量数量积的坐标表示求出这两个向量的数量积. (2)求模.利用|a|=x 2+y 2计算两向量的模. (3)求夹角余弦值.由公式cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22求夹角余弦值.(4)求角.由向量夹角的范围及cos θ求θ的值.2.涉及非零向量a ,b 垂直问题时,一般借助a ⊥b ⇔a·b =x 1x 2+y 1y 2=0来解决.3.若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3 [2a -3b =2(k,3)-3(1,4)=(2k -3,-6). 因为2a -3b 与c 的夹角为钝角,则(2k -3,-6)·(2,1)<0且不反向,即4k -6-6<0,解得k<3.,当2a-3b与c反向时,k=-92所以k的范围是k<3且k≠-92.](教师用书独具)1.向量垂直的坐标表示(1)记忆口诀和注意问题注意坐标形式下两向量垂直的条件与两向量平行的条件不要混淆,“a⊥b ⇔x1x2+y1y2=0”可简记为“对应相乘和为0”;“a∥b⇔x1y2-x2y1=0”可简记为“交叉相乘差为0”.(2)可以解决的问题应用公式可解决向量垂直,两条直线互相垂直等问题.2.区分向量平行与垂直的坐标公式(1)向量的坐标表示与运算不但简化了数量积的运算,而且使有关模(长度)、角度、垂直等问题用坐标运算来解决尤为简单.(2)注意向量垂直的充要条件和向量平行的充要条件公式的区别.1.(2019·全国卷Ⅱ)已知向量a=(2,3),b=(3,2),则|a-b|=() A. 2 B.2C.5 2 D.50A[∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|=(-1)2+12= 2.故选A.]2.若a=(3,-1),b=(x,-2),且〈a,b〉=π4,则x等于()A.1 B.-1 C.4 D.-4A[∵a·b=|a|·|b|cos π4,∴3x+2=10×x2+4×2 2,解得x=1或x=-4.又∵3x+2>0,∴x>-23,故x=1.]3.设a=(x,x+1),b=(1,2)且a⊥b,则x=________.-23[∵a⊥b,∴a·b=0.即x+2(x+1)=0.解得x=-23.]4.已知向量a=(3,-1),b=(1,-2),求:(1)a·b;(2)(a+b)2;(3)(a+b)·(a-b).[解](1)因为a=(3,-1),b=(1,-2),所以a·b=3×1+(-1)×(-2)=3+2=5.(2)a+b=(3,-1)+(1,-2)=(4,-3),所以(a+b)2=|a+b|2=42+(-3)2=25. (3)a+b=(3,-1)+(1,-2)=(4,-3),a-b=(3,-1)-(1,-2)=(2,1),(a+b)·(a-b)=(4,-3)·(2,1)=8-3=5.。

向量数量积的坐标运算与度量公式

向量数量积的坐标运算与度量公式

02
向量数量积的性质
向量数量积的交换律
总结词
向量数量积的交换律是指两个向量的数量积与其顺序无关。
详细描述
根据向量数量积的定义,向量$mathbf{A}$和$mathbf{B}$的数量积可以表示为$mathbf{A} cdot mathbf{B}$ 或$mathbf{B} cdot mathbf{A}$,其结果相同。这意味着交换向量的顺序不会改变数量积的值。
向量数量积的分配律
总结词
向量数量积的分配律是指数量积满足分 配性质。
VS
详细描述
根据向量数量积的分配律,对于任意两个 向量$mathbf{A}$和$mathbf{B}$以及标 量$k$,有$k(mathbf{A} cdot mathbf{B}) = (mathbf{A}k) cdot mathbf{B} = mathbf{A} cdot (mathbf{B}k)$。这意味 着数量积满足分配性质,可以与标量进行 分配运算。
分配律
$(overset{longrightarrow}{a} + overset{longrightarrow}{b}) cdot overset{longrightarrow}{c} = overset{longrightarrow}{a} cdot overset{longrightarrow}{c} + overset{longrightarrow}{b} cdot overset{longrightarrow}{c}$。
向量数量积的坐标表示
坐标表示
向量$overset{longrightarrow}{a} = (a_1, a_2, ..., a_n)$和 $overset{longrightarrow}{b} = (b_1, b_2, ..., b_n)$的数量积为$a_1b_1 + a_2b_2 + ... + a_nb_n$。

2.3.2、2.3.3向量积的运算公式及度量公式概述.

2.3.2、2.3.3向量积的运算公式及度量公式概述.

张喜林制2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式考点知识清单1.向量数量积的运算律: (1)交换律: (2)分配律:(3)数乘向量结合律: 2.常用结论:=+2))(1(b a =-2))(2(b a=-⋅+)())(3(b a b a3.两个向量的数量积等于它们对应坐标乘积的和,即若=a ),,(21a a ),,(21b b b =则=⋅b a 4.设).,(),,(2121b b b a a a == 如果,b a ⊥则 如果,02211=+b a b a 则对于任意实数k ,向量),(12b b k -与向量),(21b b 垂直.5.向量),,(),,(2121b b b a a a ==则=||a ,cos a <>=b6.若),,(),,(2211y x B y x A 则),,(1212y y x x AB --=所以=||AB要点核心解读1.向量数量积的运算律 a b b a ⋅=⋅)1((交换律); )()())(2(b a b a b a λλλ⋅=⋅=⋅(结合律); c b c a c b a ⋅+⋅=⋅+))(3((分配律). 2.向量数量积的运算律的证明a b b a ⋅=⋅)1((交换律)证明:,,cos ||||,cos ||||a b a b a b b a b a b a ⋅>=<>=<=⋅.a b b a ⋅=⋅∴)()()()2(b a b a b a λλλ⋅=⋅=⋅(结合律)证明:.,cos ||||)(><=⋅b a b a b a λλ①.,cos ||||)(><=⋅b a b a b a λλλ②当0>λ时,a λ与a 同向,),,(,b a b a >=<λ.,cos ||||)(><=⋅∴b a b a b a λλ当0=λ时,,00)0()(=⋅=⋅=⋅b b a b a λ,0,cos ||||>=<b a b a λ.,cos ||||)(><=⋅∴b a b a b a λλ,0时当<λb a 与λ反向,),,,(b a b a <->=πλ],cos[||||)()(><--=⋅∴b a b a b a πλλ],cos [||||><--=b a b a λ .,cos ||||><=b a b a综合以上可得.,cos ||||)(><=⋅b a b a b a λλ ③由②同理可证得:.,cos ||||)(><=b a b a b a λλ综合以上可得:.||||)()()(b a b a b a b a λλλλ=⋅=⋅=⋅.,cos ><b ac b c a c b a ⋅+⋅=⋅+))(3((分配律)证明:作轴L 与向量c 的单位向量0c 平行. 如图2-3 -2 -1,作==a ,,b 则.b a +=设点0、A 、B 在轴L 上的射影为、O ,//B A 、跟据向量的数量积的定义有,00/c a c OA ⋅=⋅= ,00//c b c AB B A ⋅=⋅== ,)(00/c b a c OB OB ⋅+=⋅=但对轴上任意三点,//B A O 、、都有,0////B A A OB += 即,)(000c b c a c b a ⋅+⋅=⋅+ 上式两边同乘以|,|c 由c c c =0||得:.)(c b c a c b a ⋅+⋅=⋅+∴ 得证.3.关于向量数量积的运算律需要注意的几点(1)数量积是由向量的长度和夹角来确定的,它对于这两个向量是对称的,即与次序无关,因而有交换律..a b b a ⋅=⋅(2)从力做功情况来看,若力增大几倍,则功也增大几倍,而当力反转方向时,功要变号,于是有).()(b a b a ⋅=⋅λλ(3)两个力在同一物体上所做的功等于合力所做的功,于是有分配律.)(2121b a b a b a a ⋅+⋅=⋅+(4)值得注意的是,平面向量的数量积不满足结合律,.a C b a c b ⋅⋅=⋅)()(是错误的,这是因为c b b a ⋅⋅与都是数量,所以c b a c b a ⋅⋅⋅⋅)()(与分别表示a 的共线向量和c 的共线向量,当然就不能相等.(5)由,)()(d b c b d a c a d c b a ⋅+⋅+⋅+⋅=+⋅+可得向量的三个运算公式:,||||)()(22b a b a b a -=-⋅+,||2||)(222b b a a b a +⋅+=+ .||2||)(222b b a a b a +⋅-=-4.向量内积的坐标运算建立正交基底}.,{21e e 已知),(),,(2121b b b a a a ==,则.)()(121111122112211e b a e e b a e b e b e a e a b a +⋅=+⋅+=⋅.2122e b a e +⋅⋅+22221e e b a e因为,0,112212211=⋅=⋅=⋅=⋅e e e e e e e e 所以我们得到数量积的坐标表达式:5.用向量的坐标表示两个向量垂直的条件 设),,(),,(2121b b b a a a == 则.02211=+⇔⊥b a b a b a 6.向量的长度、距离和夹角公式(1)如图2-3 -2 -2,已知,1a a (=),2a 则=⋅=⋅=),(),(||21212a a a a a a a .2221a a +因此①这就是根据向量的坐标求向量长度的计算公式, 这个公式用语言可以表述为:向量的长度等于它的坐标平方和的算术平方根.(2)如果),,(),,(2211y x B y x A 则),,(1212y y x x AB --=从而②AB 的长就是A 、B 两点之间的距离,因此②式也是求两点的距离公式.这与我们在解析几何初步中得到的两点距离公式完全一样.(3)设),,(),,(2121b b b a a a == 则两个向量夹角余弦的坐标表达式7.如何运用坐标来解决垂直问题(1)设两非零向量),,(),,(2211y x b y x a ==则⇔⊥b a .02121=+y y x x利用向量垂直的坐标的条件,可使向量垂直问题代数他,从而有利于问题的解决.例如:已知: <<<<==βαββαα0)sin ,(cos ),sin ,(cos b a ),π则b a +与b a -是否互相垂直?并说明理由.解:由已知),sin ,(cos ),sin ,(cos ββαα==b a 有=+b a ),sin sin ,cos (cos βαβα++),sin sin ,cos (cos βαβα--=-b a又++-+=-<+αβαβα(sin )cos )(cos cos (cos )).(b a b a ).sin β)sin (sin βα-.0sin sin cos cos 2222=-+-=βαβα所以).()(b a b a -⊥+(2)平面向量数量积的坐标形式,一定要注意a 与b 的数量积等于两个向量对应坐标乘积之和.在用坐标形式判断两个向量垂直时,要与判断两个向量平行的坐标条件相区别:.0//;012212121=-⇔=+⇔⊥y x y x b a y y x x b a8.利用数量积求两个向量的夹角一定要注意两个向量的数量积为正不能得到它们的夹角一定为锐角,同样,两个向量的数量积为负也不能得到它们的夹角一定为钝角.设a ,b 为非零向量,如果,0>⋅b a 那么a ,b 的夹角为锐角或a ,b 同向,反之也成立;如果,0<⋅b a 那么a ,b 的夹角为钝角或a ,b 反向,反之也成立,典例分类剖析考点1 判断向量运算的正误[例1] 给出下列命题:①设a 、b 、c 是非零向量,则c b a ⋅⋅)(与c 共线;②若=a λ,R b ∈<λλ 且),0=/λ则0;=⋅=b a b a ③与a ⊥b 是等价命题;④若,.c b c a =⋅则;b a =⑤若a 与b 共线,则.||a b a =⋅ |;|b ⑥若.0<⋅b a 则),(b a 是钝角.其中真命题为 (填序号).[解析] 向量的加、减、数乘、数量积运算及运算律要理解透彻;注意有些命题在特殊情况下是否成立.①因为a ×b 是一个实数,不妨记作λ,故.)(λ=⋅⋅c b a ,//c c C λ=所以①正确.,0)(0=-⇔=-⇔=b a b a b a λλλλλ②因为,0=/λ所以,0=-b a 所以,b a =故②正确.③因为,c o s ||||,0θb a b a b a =⋅=⋅所以0||0||==b a 或或,0cos =θ所以0=a 或0=b 或.90 =θ又因为规定O 与任意向量垂直,所以.b a ⊥反之,.0cos 90,a b a b a ⇔=⇔>=⇔<⊥θ ,090cos ||||== b a b 故③正确.c b c a ⋅=⋅④不一定有.b a =例如,,C b c a ⊥⊥且,2b a =此时,0=⋅=⋅c b C a 但.b a =/故④错.⑤a 与b 共线b a 与⇒方向相同或方向相反0,>=⇒<b a 或.||||),(b a b a b a ±=⋅⇒=π故⑤错, ⑥因为,cos ||||,0θb a ab b a ⋅=<⋅所以,0cos <θ所以),,2(ππθ∈所以θ为钝角或平角,故⑥错.[答案] ①②③[点拨] 此例题为概念综合题,其中③是重要结论,注意深刻理解,灵活应用;⑤⑥的完整形式应用也较广泛,注意特殊情况1.已知a 、b 、c 是三个非零向量,则下列命题中真命题的个数为( ).;//||||||b a b a b a ⇔⋅=⋅①②a 、b 反向.||a b a -=⋅⇔|;|b |;|||b a b a b a -=+⇔⊥③④=a;c b c a b ⋅=⋅⇔⑤.000==⇔=⋅b a b a 或 1.A 2.B 3.C 4.D考点2 向量的混合运算[例2] (1)已知,2||,4||,120==>=⋅<b a b a则+a |=+⋅-+)()2(|b a b a b(2)若向量a 、b 、c 满足,0=++c b a 且,1||,3||==b a .4||=c 则=⋅+⋅+⋅a c c b b a [解析] (1))()2(b a b a b a +⋅-++2222)(b a b b a a b a -⋅-⋅+++= 2222b b a a b b a a -⋅-++⋅+=222120cos 24164120cos 24216⨯-⨯⨯-++⨯⨯+= .1232+=(2)根据已知条件,可知a 与b 同向,c 与a+b 反向.解法一:由已知得.|,|||||b a c b a c --=+=可知向量a 与b 同向,而向量c 与它们反向,-=++=⋅+⋅+⋅∴3180cos 12180cos 40cos 3 o a c c b b a .13124-=-解法二: ),(2)(2222a c cb b ac b a c b a ⋅+⋅+⋅+++=++a c cb b a ⋅+⋅+⋅∴2)()(2222c b a c b a ++-++=2)413(0222++-=.13-=[答案] 2132)1( + 13)2(- [点拨] ①利用公式2||a a a =⋅和向量数量积的运算性质计算.②(2)问解法二是利用2222)(b b a a b a +⋅+=+推广到=++2)(C b a +++222C b a)(2a c c b b a ⋅+⋅+⋅予以解答的.2.已知,21||,5||,4||=+==b a b a 求:;)1(b a ⋅)2()2)(2(b a b a -⋅+的值,考点3 利用数量积及运算律求横[例3] 已知向量a 、b 满足,1||||==b a 且,3|23|=-b a 求|3|b a +的值.[解析] 通过数量积a ×b 来探求已知条件3|23|=-b a 与目标式|3|b a +之间的关系..1||||,1||||22==∴==b a b a又,9)23(,3|23|2=-∴=-b a b a,9||412||922=+⋅-∴b b a a 将,1||||22==b a 代入有,31=⋅b a而 ,1213169||6||9)3(222=+⨯+=+⋅+=+b b a a b a.32|3|=+∴b a[点拨] 解题过程中要注意模与数量积之间的转换.3.已知向量a 、b 、c 满足:.0a c b a ,(=++:)(:)c b b ⋅=⋅)(a c ),23(:3:1-当1||=a 时;求||b 及||c 的值.考点4 向量夹角问题[例4] 已知a ,b 是两个非零向量,且|,|||||b a b a +==求向量b 与b a -的夹角.[解析] 我们可以利用向量减法的平行四边形法则,画出以a 、b 为邻边的平行四边形.如图2-3 -2 -3所示,若,,b a ==则=,,b a D b a -=+由+==a b a ||||||,b 可知,60oABC =∠b 与D所成角是.150我们还可以利用数量积的运算,得出b 与a-b 的央角,为了巩固数量积的有关知识,我们采用第二种方法解题,由||||)(,cos b a b b a b b a b --⋅>=-<作为切入点,.)(|,||||,|||22b a b a b b a b +=∴=+=.||21||)(2||||2222b b a b b a a b -=⋅+⋅+=∴ 而.||23||||21)(2222b b b b a b b a b -=--=-⋅=-⋅ ①由+-⨯-=+⋅-=-22222||)21(2||)(2)(b b b b a a b a ,|31||22b b =而.||3||,||3)(||222b b a b b a b a =-∴=-=- ②,||||)(,cos b a b b a b b a b --⋅>=-<代入①②得⋅-=⋅->=-<23||3||||23,cos 2b b b b a b 又 ⋅=-∴>∈-<65),(],,0[,ππb a b b a b 4.已知.3||,4||==b a(1)若a 与b 的夹角为,600求+-⋅+a b a b a |),3()2(|;3||,2b a b -(2)若,61)2()32(=+⋅-b a b a 求a 与b 的夹角. 考点5 垂直问题[例5] 已知,4||,5||==b a 且a 与b 的夹角为,60问:当且仅当k 为何值时,向量b ka -与b a 2+垂直?[解析] 利用,0=⋅⇔⊥b a b a 得到关于k 的方程,通过解此方程得到k 的值.于是,4||,5||==b a且a 与b 的夹角为,60o.10214560cos ||||=⨯⨯==⋅∴ b a b a 又向量b ka -与b a 2+垂直,.0)2()(=+⋅-∴b a b ka 则有k ,0||2)12(||22=-⋅-+b b a k a 即,042)12(10252=⨯--+k k解得⋅=1514k [点拨] 非零向量a ,b 若满足,0=⋅b a 则,b a ⊥反之也成立.根据这一结论我们可以解决两类问题:(1)由垂直条件求参数的值;(2)利用题谩条件证明向量垂直或直线垂直.5.已知a 、b 都是非零向量,且b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求a 与b 的夹角. 考点6 向量线性运算与数量积的综合问题[例6] △ABC 三边的长分别为a 、b 、c ,以A 为圆心,r 为半径作圆,如图2 -3 -2 -4,PQ 为直径,试判断P 、Q 在什么位置时,C ⋅有最大值?[解析] 由三角形法则构造P B 及Q C 的数量积转化为实数范围内求最大值,,.Q ,B B CA QA C A AP P =+-=即,--=--=A A C---=⋅∴AC AB C B ().AP (.Q P ⋅+⋅-=B A AC AP AP .)()22.r AC AB AP AB AP AC -⋅=⋅+- =-+)(=⋅+-⋅r AC ..2..cos ||.||2r A AB +-.cos 2+-=r A bc ⋅当与同向时,⋅最大为.||.||ra AP =即当QP 与共线且同方向时,C BP ⋅有最大值+A bc cos .2r ar -[点拨] 利用||||b a b a ⋅≤⋅求最值,但必须先构造出..C B ⋅6.如图2 -3 -2 -5,在Rt△ABC 中,已知,a BC =若长为2a 的线段PQ 以点A 为中心,问:Q B P 与 的夹角θ为何值时,.CQ BP ⋅的值最大?并求出这个最大值,考点7 向量内积的坐标运算[例7] 已知),3,1(),1,2(-==b a 若存在向量c ,使得:.9,4-=⋅=⋅C b c a 试求向量c 的坐标. [解析] 设),,(y x c =则由4=⋅c a 可得;42=+y x 又由9-=⋅c b 可得.93-=+-y x于是有⎩⎨⎧-=+-=+,93,42y x y x 解得⎩⎨⎧-==⋅.2,3y x⋅-=∴)2,3(c[点拨] 已知两向量a 、b ,可以求出它们的数量积a ×b ,但是反过来,若已知向量a 及数量积a ×b ,却不能确定b .需要像本例一样,已知两向量,及这两个向量与第三个向量的擞量积,则我们可利用数量积的坐标表示,通过解方程组的方法,确定第三个向量.7.巳知,1),4,2(),3,2(-=-==(c b a ),2-求.)()(),)((,2b a C b a b a b a b a +⋅+⋅-+⋅ 考点8 运用坐标运算处理垂直问题[例8] 在△ABC 中,),,1(),3,2(k ==且△ABC 的一个内角为直角,求k 的值. [解析] 题目没有明确哪一个角是直角,要对三个角分别进行讨论,当90=A 时,;32,0312,0.-=∴=⨯+⨯∴=⋅k k A A当90=B =--=-==)3,21(,0k A B ),3,1(--k,0)3(3)1(2=-⨯+-⨯∴k;311=∴k 当oC 90=时,,0)3(1,0C C =-+-∴=⋅k k B A⋅±=∴2133k 32-=∴k 或⋅±2133311或8.(1)已知点A(1,2)和B(4,一1),问在y 轴上是否存在一点C ,使得.90=∠ACB 若不存在,请说明理由;若存在,求出点C 的坐标.(2)已知),2,4(=a 求与a 垂直的单位向量的坐标,考点9 运用坐标运算求向量的夹角[例9] 已知a 、b 是两个非零向量,同时满足==b a |||,|b a -求a 与b a +的夹角.[解析] 解法一:根据,|||||,|||22b a b a ==有又由|,|||b a b -=得,||.2||||222b b a a b +-=.||212a b a =⋅∴ 而,||3||2||||2222a b b a a b a =+⋅+=+.||3||a b a =+∴设a 与b a +的夹角为θ,则,23||3||||21||||.||)(cos 22=⋅+=++=a a a a b a a b a a θ .30,1800o o =∴≤≤θθ解法二:设向量),,(),,(2211y x b y x a ==.|,|||22222121y x y x b a +=+∴=由|,|||b a b -= 得),(2121212121y x y y x x +=+即⋅+=⋅)(212121y x b a 由),(3)(212)(2||2121212121212y x y x y x b a +=+⨯++=+ 得.3||211y x b a +=+设a 与b a +的夹角为θ,则⋅=+⋅⋅++++=+⋅+=233)(21)(||||)(cos 212121212121212y x y x y x y x b a a b a a t θ .30,1800 =∴≤≤θθ解法三:根据向量加法的几何意义,作图(如图2 -3 -2 -6).在平面内任取一点O .作B b a 0,,以==为邻边作平行四边形OACB.|,|||b a = 即|,|||=∴ 四边形OACB 为菱形,OC 平分,AOB ∠这时,,0b a BA b a C -=+=而|,|||||b a b a -==即 .||||||==∴ △AOB 为正三角形,则,60 =∠AOB 于是,30 =∠AOC即a 与b a +的夹角为.30[点拨] 基于平面向量的表示上的差异,也就是表示方法的不同,才产生了以上三种不同的解法.9.(1)已知),1,1(),432,2(=-=b a 求a 与b 的夹角.(2)已知),1,1(),2,1(==b a 且a 与b a λ+的夹角为锐角,求实数A 的取值范围,考点10 向量坐标运算的综合应用[例10] 已知),23,21(),1,3(=-=b a 且存在实数k 和t ,使得,)3(2b t a x -+=,tb ka y +-=且 ,y x ⊥试求t t k 2+的最小值.[解析] 由题意可得,2)1()3(||22=-+=a,1)23()21(||22=+=b ,0231213=⨯-⨯=⋅b a 故有.b a ⊥ 由,y x ⊥知,0)(])3([2=+-⋅-+tb ka b t a即,0)3()3(2232=⋅+-+-+-b a k k t t b t t ka.00)3(1)3(22232=⋅+-+⋅-+⋅-∴k k t t t t k∴ 可得 433t t k -=故 ,47)2(41)34(41222-+=-+=+t t t t t k 即当2-=t 时,t t k 2+有最小值为⋅-47 [点拨] 向量与函数知识相结合的综合问题,关键是正确应用向量数量积的坐标形式,将其转化为函数问题,然后利用函数的相关知识来解决,10.已知向量,sin 2(),1,sin 3x b x a ==(],32,6[),1ππ∈x 记函数,)(b a x f ⋅Λ求函数)(x f 的值域.学业水平测试1.若),5,3(),2,(-==b a λ且a 与b 的夹角为钝角,则A 的取值范围是( ).),310.(+∞A ),310[+∞⋅B )310,.(-∞C )310,.(-∞D2.已知A 、B 、C 是坐标平面上的三点,其坐标分别为、)2,1(A ),1,0()1,4(-C B 、则△ABC 的形状为( ).A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不对3.给定两个向量),1,2(),4,3(-==b a 且),()(b a xb a -⊥+则x 等于( ).23.A 223.B 323.C 423.D 4.已知),1,1(),2,3(--B A 若点)21,(-x P 在线段AB 的中垂线上,则=x 5.已知,,21),1,0(),0,1(mj i b j a j i +=-===给出下列命题:①若a 与b 的夹角为锐角,则;21<m ②当且仅当21=m 时,a 与b 互相垂直;③a 与b 不可能是方向相反的向量;④若|,|||b a =则.2-=m 其中正确的命题的序号是6.求与向量)1,2(),2,1(==b a 夹角相等的单位向量c 的坐标高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分×8 =40分)1.(2007年湖北高考题)设b a a 在),3,4(=上的投影为,225b 在x 轴上的投影为2,且,14||≤b 则b 为( ). )14,2(⋅A )72,2.(-B )72,2.(-C )8,2(⋅D 2.(2009年辽宁高考题)平面向量a 与b 的夹角为,2,60(=a=+=|2|,1||),0b a b 则( ). 3.A 32.B 4.C 12.D3.与)4,3(=a 垂直的单位向量是( ).)53,54.(A )53,54.(--B )53,54.(-C 或)53,54(- )53,54.(D 或)53,54(-- 4.若O 为△ABC 所在平面内一点,且满足+-OB O ().OC B (,0)2=-则△ABC 的形状为( ).A .正三角形B .等腰三角形C .直角三角形 D.A 、B 、C 均不正确5.(2011年辽宁理)若a ,b ,c 均为单位向量,且-=⋅a b a (,0,0)()≤-⋅c b c 则||c b a -+的最大值为( ).12.-A 1.B 2.C 2.D6.(2007年重庆高考题)已知向量),5,3(),6,4(==O 且,//,0⊥则向量=0( ))72,73.(-A )214,72.(-B )72,73.(-C )214,72.(-D 7.(2010年安徽高考题)设向量),21,21(),0,1(==b a 则下列结论中正确的是( ). ||||.b a A = 22.=⋅b a B b a C -.与b 垂直 b a D //. 8.(2009年陕西高考题)在△ABC 中,M 是BC 的中点,,1A =M 点P 在AM 上且满足⋅=PA PM AP 则,2)(PC PB +等于( ).94.-A 34.-B 34.C 94.D 二、填空题f5分x4 =20分)9.(2008年江西高考题)直角坐标平面上三点,3()2,1(B A 、),7,9()2C 、-若E 、F 为线段BC 的三等分点,则=⋅F E A A10.(2008年宁夏高考题)已知平面向量,4(),3,1(=-=b a b a +-λ),2与a 垂直,则=λ11.(2010年广东高考题)若向量===c b x a ),1,2,1(),,1,1(),1,1,1(满足条件,2)2()(-=⋅-b a c 则=x12.(2011年安徽理)已知向量a ,b 满足=-⋅+)()2(b a b a ,6-且,2||,1||==b a三、解答题(10分×4 =40分)13.(1)已知,120,,1||,1||ob a b a >=<==计算向量b a -2在向里b a +方向上的投影.(2)已知,4||,6||==b a a 与b 的夹角为,60 求).2(b a +)3(b a -的值.14.已知向量.),1,3(),1,2(),2,3(R t c b a ∈-==-=(1)求||tb a +的最小值及相应的t 值;(2)若tb a -与c 共线,求实数t 的值.15.如图2-3 -2 -7,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明: ;)1(EF PA =.)2(EF PA ⊥16.平面内有向量)1,2(),1,5(B ),7,1(===OP O OA 点X 为直线OP 上的一个动点.(1)当≡⋅X 取最小值时,求O 的坐标;(2)当点X 满足(I)的条件和结论时,求AXB ∠cos 的值,。

向量的数量积的坐标运算

向量的数量积的坐标运算

在力学中,物体的动能与其速度 向量的模的平方成正比,可以通 过向量的数量积来计算。
在电磁学中的应用
计算电场强度
01
电场强度向量可以通过电荷分布密度向量与距离向量的数量积
来计算。
判断电场方向
02
电场强度的方向可以通过电场向量与距离向量的数量积来判断。来自计算磁感应强度03
磁感应强度向量可以通过电流密度向量与距离向量的数量积来
数量积的性质
分配律:(a+b)·c = a·c + b·c,即向量 数量积满足分配律。
零向量与任何向量 的数量积都是0。
交换律:a·b = b·a, 即向量数量积满足 交换律。
结合律:(λa)·b = λ(a·b) = a·(λb),其 中λ是标量,即向量 数量积满足结合律。
若向量a和b垂直, 则它们的数量积为0, 即a·b = 0。
VS
性质与应用
向量数量积具有交换律、分配律等性质, 在物理、工程、计算机图形学等领域有广 泛应用,如计算力、功、能量等物理量, 以及进行向量的投影、旋转等操作。
对未来研究的展望
深入研究高维向量数量积的性质和应用
随着数据维度的增加,高维向量的数量积运算将变得更加复杂,需要 进一步研究其性质和应用。
探索向量数量积在机器学习等领域的应用
在物理中,向量的数量积常用 来表示力、功等物理量。
04 向量的数量积坐标运算方 法
直接计算法
定义
直接计算法是指根据向量数量积的定义,通过计算两个向 量的模长和它们之间的夹角余弦值来求得数量积的方法。
公式
设两个向量 a = (x1, y1),b = (x2, y2),则它们的数量积 a · b = |a| * |b| * cosθ,其中 |a| 和 |b| 分别是向量 a 和 b 的模长,θ 是向量 a 和 b 之间的夹角。

平面向量数量积的坐标运算公式

平面向量数量积的坐标运算公式

平面向量数量积的坐标运算公式在咱们的数学世界里,平面向量数量积的坐标运算公式可是个相当重要的家伙!咱先来说说啥是平面向量。

想象一下,在一个平面上,有两个箭头,它们有自己的长度和方向,这就是平面向量啦。

那平面向量数量积又是个啥呢?简单说,就是两个向量之间的一种“亲密程度”的度量。

而平面向量数量积的坐标运算公式,就像是一把神奇的钥匙,能帮咱们轻松算出这种“亲密程度”。

假设两个向量 a = (x₁, y₁),b = (x₂, y₂),那它们的数量积 a·b 就等于 x₁x₂ + y₁y₂。

我给您举个例子哈。

比如说有个向量 a = (3, 4),另一个向量 b = (1, 2),那它们的数量积 a·b 就是 3×1 + 4×2 = 3 + 8 = 11 。

是不是一下子就清楚多啦?前几天我在给学生们讲这部分内容的时候,有个学生一脸懵地问我:“老师,这公式到底有啥用啊?”我就跟他们说:“同学们,你们想想,如果要计算两个力在某个方向上做的功,是不是就可以用这个公式?还有在物理学中,计算电场力做功,也能派上大用场呢!”这公式在解决实际问题的时候可厉害啦!比如说,在一个平面直角坐标系中,有两个物体沿着不同的方向运动,要计算它们相互作用的力的大小,用这个公式就能轻松搞定。

而且啊,这公式在解析几何里也经常出现。

比如判断两条直线是垂直还是平行,都可能用到它。

再想想,如果要设计一个机器人的运动轨迹,或者规划无人机的飞行路线,也得靠它来帮忙算出相关的数据。

总之,平面向量数量积的坐标运算公式虽然看起来可能有点复杂,但只要咱们好好理解,多做几道题练练手,就能发现它的妙处,用它解决好多难题,就像拥有了一件超级厉害的武器!希望大家都能把这个公式掌握得牢牢的,在数学的海洋里畅游无阻!。

向量数量积的坐标运算与度量公式

向量数量积的坐标运算与度量公式
向量数量积的坐标运算与度量公式
一.复习回顾: 复习回顾: 1、平面向量的数量积是如何定义的,它有那 、平面向量的数量积是如何定义的, 些重要的性质? 些重要的性质? r r 已知两个非零向量 a 和 b ,它们的夹角为θ ,我们把数量 r r a b cosθ 叫做 a 与b 的数量积(或内积), 的数量积(或内积) 记作
换用两向量的数量积坐标表示,即为:
r r r r r r r r 如果a ⊥ b, 则a ⋅ b = 0, 反之, 如果a ⋅ b = 0, 则a ⊥ b
如果a ⊥ b, 则a1b1 + a2b2 = 0; 如果a1b1 + a2b2 = 0, 则a ⊥ b.
a1 a2 当b1b2 ≠ 0时, 条件a1b1 + a2b2 = 0, 可以写成 = =k − b2 b1 所以向量(a1 , a2 )与(−b2 , b1 )平行, 其中k是比例系数,
即有
a ⋅ b = a b cosθ
a ⋅b
2、两平面向量垂直的充要条件是什么? 、两平面向量垂直的充要条件是什么? 3、两平面向量共线的充要条件又是什么,如 、两平面向量共线的充要条件又是什么, 何用坐标表示出来? 何用坐标表示出来?
a ⊥ b ⇔ a⋅b = 0
a // ( ≠ 0 ⇔ 存在唯一的 λ使得a = λ b bb ) r r r r 若a = 1,a 2), = 1,b2),// b ⇔ a1b2 − a2b1 = 0 (a b (b a
练习 : (1)a = (4,5), b =(−4,3), a ⋅ b = -1 (2)a = (8,5), b = (−7,−8), a ⋅ b = -96 (3)a = (−11,2), b = (3,9), a ⋅ b = -15

向量数量积坐标运算

向量数量积坐标运算
当两个向量的夹角为θ时,数量积也可以表示为$mathbf{A} cdot mathbf{B} = |mathbf{A}| |mathbf{B}| cosθ$。
向量数量积表示两个向量在几何空间中的投影面积之和,即它们在x轴和y轴上的投影面积的乘积之和。
当两个向量垂直时,它们的数量积为0;当两个向量平行或同向时,它们的数量积等于它们模长的乘积。
计算能量
在保守力场中,势能等于位置矢量与力的向量数量积,可以用来计算势能和做功。
在物理中的应用
判断向量共线
两个向量共线当且仅当它们的数量积为零,可以利用这个性质来判断向量的共线性。
计算向量的模
向量的模等于其自身与单位向量的数量积的平方根,可以用于计算向量的长度或大小。
求解线性方程组
向量数量积可以用于求解线性方程组,通过构造向量和矩阵,利用向量数量积的性质进行求解。
向量点积与向量加法的结合律
对于任意向量$vec{a}$、$vec{b}$和$vec{c}$,有$(vec{a} + vec{b}) cdot vec{c} = vec{a} cdot vec{c} + vec{b} cdot vec{c}$。
向量点积与向量减法的结合律
对于任意向量$vec{a}$和$vec{b}$,有$vec{a} - vec{b} = (vec{a} + (-vec{b}))$,且$(vec{a} - vec{b}) cdot vec{c} = vec{a} cdot vec{c} - vec{b} cdot vec{c}$。
使用计算器或软件进行验证
计算错误
注意单位换算
如果需要将不同单位的向量进行数量积运算,需要进行适当的单位换算,以确保结果的准确性。

向量坐标运算的所有公式

向量坐标运算的所有公式

向量坐标运算的所有公式在数学的广阔天地里,向量就像是一群活跃的小精灵,而向量坐标运算的公式则是我们掌控这些小精灵的魔法咒语。

接下来,让咱们一起瞧瞧这些神奇的公式吧!咱们先从最简单的向量加法坐标运算公式说起。

假设咱有两个向量,$\vec{a}=(x_1,y_1)$,$\vec{b}=(x_2,y_2)$,那么它们相加之后得到的向量$\vec{c}=\vec{a}+\vec{b}$的坐标就是$(x_1 + x_2, y_1 + y_2)$。

这就好比你在操场上跑步,先向东跑了$x_1$米,向北跑了$y_1$米,然后又向东跑了$x_2$米,向北跑了$y_2$米,那你最终的位置就是向东跑了$x_1 + x_2$米,向北跑了$y_1 + y_2$米。

再来说说向量减法的坐标运算公式。

还是上面那两个向量$\vec{a}$和$\vec{b}$,它们相减得到的向量$\vec{d}=\vec{a}-\vec{b}$的坐标就是$(x_1 - x_2, y_1 - y_2)$。

打个比方,你从学校出发,先向东走了$x_1$米,向北走了$y_1$米,然后又往回走,向西走了$x_2$米,向南走了$y_2$米,那你现在的位置相对于学校的坐标变化就是向东走了$x_1 - x_2$米,向北走了$y_1 - y_2$米。

还有向量数乘的坐标运算公式。

如果有一个实数$k$和向量$\vec{a}=(x_1,y_1)$,那么数乘之后得到的向量$\vec{e}=k\vec{a}$的坐标就是$(kx_1, ky_1)$。

这就像你跑步的速度加快了$k$倍,原来向东跑$x_1$米,向北跑$y_1$米,现在速度变了,跑的距离也就相应地变成了$kx_1$米和$ky_1$米。

说到这儿,我想起之前给学生们讲这部分内容的时候,有个小家伙总是搞混加法和减法的公式。

我就跟他说:“你就想象自己是个小探险家,向东走、向北走是积累路程,向西走、向南走就是减去路程,这样是不是好理解多啦?”嘿,这招还真管用,那孩子后来就很少出错啦。

向量点乘和叉乘(外积、向量积)概念及几何意义解读

向量点乘和叉乘(外积、向量积)概念及几何意义解读

概念向量是由n个实数组成的一个n行1歹0 (n*1)或一个1行n歹0 (1*n)的有序数组;向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。

点乘公式对丁向量a和向量b:a和b的点积公式为:要求一维向量a和向量b的行歹U数相同。

点乘几何意义点乘的几何意义是可以用来表征或计算两个向量之间的火角,以及在b向量在a 向量方向上的投影,有公式:推导过程如下,首先看一下向量组成:定义向量:根据三角形余弦定理有:根据关系c=a-b (a、b、c均为向量)有:即:向量a, b的长度都是可以计算的已知量,从而有a和b问的火角0:根据这个公式就可以计算向量a和向量b之间的火角。

从而就可以进一步判断这两个向量是否是同一方向,是否正交他就是垂直)等方向关系,具体对应关系为:ab>0 ? ?方向基本相同,火角在0°到90°之间ab=0 ? ?正交,相互垂直?ab<0 ? ?方向基本相反,火角在900到180°之间?叉乘公式两个向量的义乘,乂叫向量积、外积、义积,义乘的运算结果是一个向量而不是一个标量。

并且两个向量的义积与这两个向量组成的坐标平■面垂直。

对丁向量a和向量b:a和b的义乘公式为:其中:根据i、j、k问关系,有:叉乘几何意义在三维几何中,向量a和向量b的义乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直丁a和b向量构成的平■面。

在3D图像学中,义乘的概念非常有用,可以通过两个向量的义乘,生成第三个垂直丁a, b的法向量,从而构建X、Y、Z坐标系。

如下图所示:在二维空间中,义乘还有另外一个几何意义就是:aXb等丁由向量a和向量b构成的平■行四边形的面积。

向量数量积的坐标表示

向量数量积的坐标表示

05
向量数量积的扩展
向量点乘的坐标表示
总结词
向量点乘的坐标表示是两个向量的对应坐标相乘,然后求和。
详细描述
向量点乘的坐标表示是两个向量的对应坐标相乘,然后求和。设向量$mathbf{A} = (a_1, a_2, a_3)$,向量$mathbf{B} = (b_1, b_2, b_3)$,则$mathbf{A} cdot mathbf{B} = a_1b_1 + a_2b_2 + a_3b_3$。
在工程中的应用
机械系统分析
向量数量积可以用于分析机械系 统的运动状态,例如分析机器人 的关节运动、车辆的行驶轨迹等。
控制系统分析
向量数量积可以用于控制系统的 分析和设计,例如分析系统的稳 定性、设计控制算法等。
信号处理
在信号处理中,向量数量积可以 用于分析信号的频率和相位,例 如进行频谱分析和滤波器设计等。
$mathbf{C} = (c_1, c_2, c_3)$,则$mathbf{A} cdot (mathbf{B} times mathbf{C}) = (a_1(b_2c_3 - b_3c_2), a_2(b_3c_1 - b_1c_3), a_3(b_1c_2 - b_2c_1))$。
感谢观看
mathbf{B} = mathbf{B} cdot mathbf{A}$。
数量积满足分配律,即$(mathbf{A}
+
mathbf{பைடு நூலகம்}) cdot mathbf{C} = mathbf{A}
cdot mathbf{C} + mathbf{B} cdot
mathbf{C}$。
数量积为0当且仅当两个向量垂直,即 $mathbf{A} cdot mathbf{B} = 0$当且仅当 $mathbf{A} perp mathbf{B}$。

高中数学2-3-3向量数量积的坐标运算与度量公式课件新人教B版必修

高中数学2-3-3向量数量积的坐标运算与度量公式课件新人教B版必修

[答案] B
[解析] 3x+1×(-3)=0,∴x=1.
3.已知A、B、C是坐标平面上的三点,其坐标分别为
A(1,2),B(4,1),C(0,-1),则△ABC的形状为( A.直角三角形 C.等腰直角三角形 [答案] C
→ =(3,-1),AC → =(-1,-3) [解析] AB →· → =3×(-1)+(-1)×(-3)=0 AB AC → |=|AC → |= 10∴△ABC 为等腰直角三角形. 且|AB
[点评] 处理有关垂直总是要注意利用a⊥b⇔a·b=
0(a,b是非零向量),或者利用a⊥b⇔a1b1+a2b2=0(a=(a1, a2),b=(b1,b2)).
[例2] 设a=(4,-3),b=(2,1),若a+tb与b的夹角为 45°,求实数t的值. [分析] 利用公式a·b=|a||b|cosθ建立方程,解t的值.
a-b=(cosα-cosβ,sinα-sinβ). 又∵(a+b)·(a-b) = (cosα + cosβ)(cosα - cosβ) + (sinα + sinβ)(sinα - sinβ) =cos2α-cos2β+sin2α-sin2β=0,
∴(a+b)⊥(a-b).
解法二:∵a=(cosα,sinα),b=(cosβ,sinβ), ∴(a+b)·(a-b)=a2-b2=|a|2-|b|2 =(cos2α+sin2α)-(cos2β+sin2β)=1-1=0, ∴(a+b)⊥(a-b).
二、填空题
5 .已知 a = (x - 2 , x + 3) , b = (2x - 3 ,- 2) ,若 a⊥b, 则x=________.
[答案]
[解析]
2
9 0 或2
∵a⊥b,∴a· b=(x-2)(2x-3)-2(x+3)=0

向量内积的坐标运算与距离公式

向量内积的坐标运算与距离公式

向量内积的坐标运算与距离公式向量的内积,也叫点积或数量积,是一个很重要的概念,常用于几何学、物理学和工程学等领域的问题求解中。

本文将详细介绍向量内积的坐标运算和距离公式。

一、向量的内积向量的内积定义如下:对于二维向量A=(x1,y1)和B=(x2,y2),它们的内积表示为A·B=x1*x2+y1*y2对于三维向量A=(x1,y1,z1)和B=(x2,y2,z2),它们的内积表示为A·B=x1*x2+y1*y2+z1*z2更一般地,对于n维向量A = (x1, x2, ..., xn)和B = (y1,y2, ..., yn),它们的内积表示为A·B = x1*y1 + x2*y2 + ... +xn*yn。

内积有以下重要的性质:1.交换律:A·B=B·A2.分配律:A·(B+C)=A·B+A·C3.结合律:(kA)·B=A·(kB)=k(A·B),其中k是一个常数二、向量内积的坐标运算当我们给出向量的坐标时,可以通过坐标运算来计算向量的内积。

设A=(x1,y1)和B=(x2,y2)是二维向量,它们的内积可以表示为A·B=x1*x2+y1*y2例如,当A=(2,3)和B=(4,1)时,它们的内积为A·B=2*4+3*1=11设A=(x1,y1,z1)和B=(x2,y2,z2)是三维向量,它们的内积可以表示为A·B=x1*x2+y1*y2+z1*z2例如,当A=(1,2,3)和B=(4,5,6)时,它们的内积为A·B=1*4+2*5+3*6=32三、向量的距离公式向量的距离公式是用来计算两个向量之间的距离的公式。

对于二维向量A=(x1,y1)和B=(x2,y2),它们之间的距离表示为d=√((x2-x1)^2+(y2-y1)^2)。

例如,当A=(2,3)和B=(4,1)时,它们之间的距离为d=√((4-2)^2+(1-3)^2)=√8=2√2对于三维向量A=(x1,y1,z1)和B=(x2,y2,z2),它们之间的距离表示为d=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。

向量数量积的坐标运算

向量数量积的坐标运算

8.1.3 向量数量积的坐标运算【课程标准】 理解向量数量积的坐标表示,能用向量数量积的坐标运算解决向量的垂直,求模及夹角问题。

【核心素养】 逻辑推理 数学运算【导学流程】一、基础感知1.向量的坐标在平面直角坐标系中,分别给定与x 轴、y 轴正方向相同的单位向量12,e e 后,如果对于平面内的向量a ,有12a xe ye =+,则就是a 的坐标,记作a = .1122e e e e ⋅=⋅=,1221e e e e ⋅=⋅= . 2.向量的数量积设1122(,),(,)a x y b x y ==,则11122122,a x e y e b x e y e =+=+a b ⋅= = =即a b ⋅=当1122(,),(,)a x y b x y ==都不是零向量时,2a a a =⋅= ,2b b b =⋅= . 所以cos ,a b =. 在平面直角坐标系中,1122(,),(,)A x y B x y 则AB = ,AB = .练一练:(1)已知(3,1),(1,2)a b =-=-,求:,,,,a b a b a b ⋅.(2)已知点(1,2),(3,4),(5,0)A B C,求BAC∠的余弦值.3.用向量的坐标表示两个向量垂直的条件.⊥的充要条件是a b⋅=,a b⊥⇔.因此a b⊥.练一练:(1)已知点(1,2),(2,3),(2,5)A B C-,求证:AB ACπ(2)如图8―1-12所示,已知点(2,1)A,将向量OA绕原点O逆时针旋转2得到OB,求点B的坐标.(3)如图8-1-13所示,已知正方形ABCD 中,P 为对角线AC 不在端点上的任意一点,,PE AB PF BC ⊥⊥,连接,DP EF ,求证:DP EF ⊥.二、当堂检测1.已知向量,a b 的坐标,分别求,,a b a b ⋅和cos ,a b .(1)(4,3),(4,3)a b =-=-;(2)(3,5),(5,3)a b ==-;(3)(12,5),(1,2)a b ==;(4)(11,2),(3,9)a b =-=.2.已知(1,2),(5,8),(2,1)A B C --,求证:AB AC ⊥.3. 若213,(2,3)a b ==-,且a b ⊥,求向量a 的坐标.4. 已知点(3,1)A ,向量OA 绕原点O 逆时针旋转2π后等于OB ,求点B 的坐标.5.已知向量(1,2),(1,)a b λ=-=,若a 与b 的角为锐角,求λ的取值范围.6. 求与下列向量垂直的单位向量.(1)(3,4)a =;(2)(1,1)b =-; (3)(12,5)c =-;(4)(8,15)d =-.7.已知向量(3,3),(2,5)a b ==-,求a 在b 上的投影的数量.限时训练(限时45分钟)1.已知向量a =(1,-1),b =(2,x),若a·b=1,则x=( ) b A. -1 B. - C. D.12.已知a =(2,1),b =(-1,1),则a 在b 上的投影的数量为( ) A. B.- C.- D.3.已知向量a =(,1),b 是不平行于x 轴的单位向量,且3=•b a ,则b =( )A. B. C. D.(1,0) 4.已知A(1,2),B(2,3),C(-2,5),则△ABC 的形状是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形5.已知向量a =(1,-),b =(0,-2),则a 与b 的夹角为( )A. B. C. D.6.已知非零向量a =(t,0)(t∈R),b =(-1,),若4-=•b a ,则b a 2+与b 的夹角为( )A. B. C. D.7.已知向量a =(4,4),b =(5,m)(m∈R),c =(1,3),若b c a ⊥-)2(,则b =( )A.5B.5C.10D.108.已知向量a =(1,2),b =(2,-3),若向量c 满足b c a //)(+,c b a ⊥+)(,则c =( )A. B. C. D.9.已知平面向量()4,3-=,()x ,2=,()y ,2=,//,⊥求:(1)向量,的坐标;(2)向量2-与3-的夹角.10.已知在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,.。

向量的数量积的坐标运算的推导

向量的数量积的坐标运算的推导

向量的数量积的坐标运算的推导
向量的数量积是向量运算中的一种重要运算,它可以用来计算两个向量之间的夹角以及向量的长度等。

本文将介绍向量的数量积的坐标运算的推导过程。

首先,假设有两个向量a和b,它们的坐标分别为(a1,a2,a3)和(b1,b2,b3),它们的数量积可以表示为:
a·b = a1b1 + a2b2 + a3b3
其中,“·”表示数量积的运算符号。

接下来,我们来推导向量的数量积的坐标运算公式。

假设向量a 和b的夹角为θ,则它们的数量积可以表示为:
a·b = |a||b|cosθ
其中,“|a|”和“|b|”分别表示向量a和b的长度,而“cos θ”表示向量a和b的夹角的余弦值。

根据三角函数的性质,可以得到:
cosθ = (a1b1 + a2b2 + a3b3) / (|a||b|)
将上式代入数量积的公式中,可以得到:
a·b = |a||b|(a1b1 + a2b2 + a3b3) / (|a||b|)
= a1b1 + a2b2 + a3b3
因此,向量的数量积的坐标运算可以简化为向量坐标对应分量相乘后相加的形式。

总之,向量的数量积是向量运算中的一种重要运算,可以用来计算两个向量之间的夹角以及向量的长度等。

该运算的坐标运算公式为
向量坐标对应分量相乘后相加的形式。

数量积的三种求法

数量积的三种求法

数量积的三种求法
嘿,同学们!今天咱就来讲讲数量积的三种求法。

第一种方法,那就是定义法呀!这就好比是盖房子要先打牢地基一样重要。

当我们知道两个向量的模长和它们之间的夹角时,直接用公式去计算就好啦。

比如说向量 a 的模长是 3,向量 b 的模长是 4,它们之间的夹角是60 度,那数量积不就是3×4×cos60 度嘛!这多直白呀,是不是很好理解?就像你去买东西,知道了单价和数量,那总价不就轻松算出来啦!
第二种呢,是坐标法。

哎呀呀,这就好像是有了地图导航一样方便!如果我们知道两个向量在坐标系中的坐标,那直接按照公式去计算就好啦。

想象一下,每个坐标就像是一个独特的标记,让我们能准确找到数量积的答案。

比如说向量 a 的坐标是(1,2),向量 b 的坐标是(3,-1),那通过坐标运算,不就能求出它们的数量积嘛!这就像是你知道了目的地的经纬度,那还怕找不到地方吗?
还有第三种,投影法哦!这就如同阳光照射下物体的影子一样神奇。

通过一个向量在另一个向量上的投影来计算数量积。

举个例子吧,向量 a 在向量 b 上的投影长度是 2,而向量 b 的模长是 3,那它们的数量积不就是
2×3 嘛!是不是很有意思呀?这就好像你在灯光下看自己的影子,能通过影子的长度和灯光的角度来推测出很多东西呢!
同学们,这三种求法都很重要哦!在不同的情况下我们可以灵活运用。

就像你有不同的工具,在不同的场景下选择最合适的那个来解决问题。

可别小看了它们呀,以后做题、研究都会经常用到呢!难道不是吗?大家一定要好好掌握呀,加油哦!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量的数量积坐标运算原理
向量的数量积(也称为点积或内积)是向量运算中的一种重要运算,它用于计算两个向量之间的相似性和夹角。

在三维空间中,向量的数量积可以通过以下公式来表示:
A ·
B = A * B * cos(θ)
其中,A和B是两个向量,A 和B 分别表示它们的模(长度),θ表示A和B 之间的夹角。

向量的数量积可以使用坐标运算来计算。

假设A = (a1, a2, a3)和B = (b1, b2, b3)是两个三维向量,则它们的数量积通过以下公式计算:
A ·
B = a1 * b1 + a2 * b2 + a3 * b3
在计算数量积时,我们将每个向量的对应坐标相乘,然后将乘积相加,从而得到数量积的结果。

这个过程可以类比于在笛卡尔坐标系中通过向量的投影计算出向量的模和夹角。

为了更好地理解坐标运算原理,我们可以通过一个具体的例子来说明。

假设有两个向量A = (2, 3)和B = (4, 5),我们可以使用坐标运算来计算它们的数量积。

首先,将向量A和B的对应坐标相乘:
A ·
B = (2 * 4) + (3 * 5) = 8 + 15 = 23
这样,我们得到了向量A和B的数量积为23。

通过计算可以得到,向量A和B 之间的夹角θ约为57.02。

在实际应用中,向量的数量积具有很多重要的性质和应用。

以下是一些常见的性质和应用:
1. 平行性:如果两个向量的数量积为0,则它们是垂直的。

因此,我们可以使用数量积来判断两个向量是否平行。

2. 夹角:通过数量积的公式,我们可以计算出两个向量之间的夹角。

夹角的范围是0到180之间。

3. 正交性:如果两个向量的数量积为0,则它们是正交或垂直的。

因此,我们可以使用数量积来判断两个向量是否正交。

4. 投影:向量的数量积还可以用来计算一个向量在另一个向量上的投影。

具体而言,如果我们有一个向量A和一个单位向量u,那么向量A在u上的投影可以通过执行数量积A ·u来计算。

5. 计算模:通过数量积的公式,我们可以计算出一个向量的模(长度)。

具体而言,一个向量A的模可以通过计算数量积A ·A的平方根来得到。

总结来说,向量的数量积运算原理是通过对应坐标相乘并相加来计算两个向量之间的相似性和夹角。

通过数量积,我们可以判断向量是否平行、垂直、正交,可以计算向量的模和投影,是向量运算中一个十分重要的概念。

相关文档
最新文档