中考数学复习专题汇编3

合集下载

吉林省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类

吉林省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类

吉林省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类一.二元一次方程组的应用(共1小题)1.(2023•吉林)2022年12月28日查干湖冬捕活动后,某商家销售A,B两种查干湖野生鱼,如果购买1箱A种鱼和2箱B种鱼需花费1300元:如果购买2箱A种鱼和3箱B 种鱼需花费2300元.分别求每箱A种鱼和每箱B种鱼的价格.二.一次函数的应用(共1小题)2.(2021•吉林)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过a天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示.(1)直接写出乙地每天接种的人数及a的值;(2)当甲地接种速度放缓后,求y关于x的函数解析式,并写出自变量x的取值范围;(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.三.反比例函数的应用(共1小题)3.(2022•吉林)密闭容器内有一定质量的气体,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V的函数解析式.(2)当V=10m3时,求该气体的密度ρ.四.二次函数综合题(共2小题)4.(2021•吉林)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,﹣),点B(1,).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合,且线段PQ的长度随m的增大而减小.①求m的取值范围;②当PQ≤7时,直接写出线段PQ与二次函数y=x2+bx+c(﹣2≤x<)的图象交点个数及对应的m的取值范围.5.(2023•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c经过点A(0,1),点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠PAQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2,当h2﹣h1=m时,直接写出m的值.五.四边形综合题(共3小题)6.(2021•吉林)如图,在矩形ABCD中,AB=3cm,AD=cm.动点P从点A出发沿折线AB﹣BC向终点C运动,在边AB上以1cm/s的速度运动;在边BC上以cm/s的速度运动,过点P作线段PQ与射线DC相交于点Q,且∠PQD=60°,连接PD,BD.设点P的运动时间为x(s),△DPQ与△DBC重合部分图形的面积为y(cm2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.7.(2023•吉林)【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形EFMN.转动其中一张纸条,发现四边形EFMN总是平行四边形.其判定的依据是 .【探究提升】取两张短边长度相等的平行四边形纸条ABCD和EFGH(AB<BC,FG≤BC),其中AB=EF,∠B=∠FEH,将它们按图②放置,EF落在边BC上,FG,EH与边AD分别交于点M,N.求证:▱EFMN是菱形.【结论应用】保持图②中的平行四边形纸条ABCD不动,将平行四边形纸条EFGH沿BC 或CB平移,且EF始终在边BC上,当MD=MG时,延长CD,HG交于点P,得到图③.若四边形ECPH的周长为40,sin∠EFG=(∠EFG为锐角),则四边形ECPH的面积为 .8.(2021•吉林)如图①,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的中线,点E为射线BC上一点,将△BDE沿DE折叠,点B的对应点为点F.(1)若AB=a.直接写出CD的长(用含a的代数式表示);(2)若DF⊥BC,垂足为G,点F与点D在直线CE的异侧,连接CF,如②,判断四边形ADFC的形状,并说明理由;(3)若DF⊥AB,直接写出∠BDE的度数.六.作图—应用与设计作图(共1小题)9.(2023•吉林)图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点称为格点,线段AB的端点均在格点上.在图①、图②、图③中以AB为边各画一个等腰三角形,使其依次为锐角三角形、直角三角形、钝角三角形,且所画三角形的顶点均在格点上.七.解直角三角形的应用(共2小题)10.(2022•吉林)动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC 长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE 的长度(结果精确到1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)11.(2021•吉林)数学小组研究如下问题:长春市的纬度约为北纬44°,求北纬44°纬线的长度,小组成员查阅了相关资料,得到三条信息:(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;(2)如图,⊙O是经过南、北极的圆,地球半径OA约为6400km.弦BC∥OA,过点O 作OK⊥BC于点K,连接OB.若∠AOB=44°,则以BK为半径的圆的周长是北纬44°纬线的长度;(3)参考数据:π取3,sin44°=0.69,cos44°=0.72.小组成员给出了如下解答,请你补充完整:解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°( )(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB× (填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400× (填相应的三角函数值)≈ (km)(结果取整数).八.条形统计图(共1小题)12.(2021•吉林)2020年我国是全球主要经济体中唯一实现经济正增长的国家,各行各业蓬勃发展,其中快递业务保持着较快的增长.给出了快递业务的有关数据信息.2016﹣2020年快递业务量增长速度统计表年龄20162017201820192020增长速度51.4%28.0%26.6%25.3%31.2%说明:增长速度计算办法为:增长速度=×100%根据图中信息,解答下列问题:(1)2016﹣2020年快递业务量最多年份的业务量是 亿件.(2)2016﹣2020年快递业务量增长速度的中位数是 .(3)下列推断合理的是 (填序号).①因为2016﹣2019年快递业务量的增长速度逐年下降,所以预估2021年的快递业务量应低于2020年的快递业务量;②因为2016﹣2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.6×(1+25%)=1042亿件以上.九.折线统计图(共1小题)13.(2022•吉林)为了解全国常住人口城镇化率的情况,张明查阅相关资料,整理数据并绘制统计图如下:(以上数据来源于《中华人民共和国2021年国民经济和社会发展统计公报》)注:城镇化率=×100%.例如,城镇常住人口60.12万人,总人口100万人,则城镇化率为60.12%.回答下列问题:(1)2017﹣2021年年末,全国常住人口城镇化率的中位数是 %.(2)2021年年末全国人口141260万人,2021年年末全国城镇常住人口为 万人.(只填算式,不计算结果)(3)下列推断较为合理的是 (填序号).①2017﹣2021年年末,全国常住人口城镇化率逐年上升,估计2022年年末全国常住人口城镇化率高于64.72%.②全国常住人口城镇化率2020年年末比2019年年末增加1.18%,2021年年末比2020年年末增加0.83%,全国常住人口城镇化率增加幅度减小,估计2022年年末全国常住人口城镇化率低于64.72%.一十.列表法与树状图法(共1小题)14.(2023•吉林)2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆,某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A,B,C,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片,请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.吉林省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类参考答案与试题解析一.二元一次方程组的应用(共1小题)1.(2023•吉林)2022年12月28日查干湖冬捕活动后,某商家销售A,B两种查干湖野生鱼,如果购买1箱A种鱼和2箱B种鱼需花费1300元:如果购买2箱A种鱼和3箱B 种鱼需花费2300元.分别求每箱A种鱼和每箱B种鱼的价格.【答案】每箱A种鱼价格是700元,每箱B种鱼的价格300元.【解答】解:设每箱A种鱼的价格每箱x元,B种鱼的价格每箱y元,由题意得,,解得,答:每箱A种鱼价格是700元,每箱B种鱼的价格300元.二.一次函数的应用(共1小题)2.(2021•吉林)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过a天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示.(1)直接写出乙地每天接种的人数及a的值;(2)当甲地接种速度放缓后,求y关于x的函数解析式,并写出自变量x的取值范围;(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.【答案】(1)0.5,40.(2)y=x+15(40≤x≤100).(3)5万人.【解答】解:(1)乙地接种速度为40÷80=0.5(万人/天),0.5a=25﹣5,解得a=40.(2)设y=kx+b,将(40,25),(100,40)代入解析式得:,解得,∴y=x+15(40≤x≤100).(3)把x=80代入y=x+15得y=×80+15=35,40﹣35=5(万人).三.反比例函数的应用(共1小题)3.(2022•吉林)密闭容器内有一定质量的气体,当容器的体积V(单位:m3)变化时,气体的密度ρ(单位:kg/m3)随之变化.已知密度ρ与体积V是反比例函数关系,它的图象如图所示.(1)求密度ρ关于体积V的函数解析式.(2)当V=10m3时,求该气体的密度ρ.【答案】(1)ρ=;(2)该气体的密度为1kg/m3.【解答】解:(1)设ρ=,将(4,2.5)代入ρ=得2.5=,解得k=10,∴ρ=.(2)将V=10代入ρ=得ρ=1.∴该气体的密度为1kg/m3.四.二次函数综合题(共2小题)4.(2021•吉林)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,﹣),点B(1,).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合,且线段PQ的长度随m的增大而减小.①求m的取值范围;②当PQ≤7时,直接写出线段PQ与二次函数y=x2+bx+c(﹣2≤x<)的图象交点个数及对应的m的取值范围.【答案】(1)y=x2+x﹣.(2)y最小值为﹣2,y最大值为.(3)①m<.②﹣2≤m<,﹣2≤m≤﹣或﹣≤m时,PQ与图象交点个数为1,﹣<m<﹣时,PQ与图象有2个交点.【解答】解:(1)将A(0,﹣),点B(1,)代入y=x2+bx+c得:,解得,∴y=x2+x﹣.(2)∵y=x2+x﹣=(x+)2﹣2,∵抛物线开口向上,对称轴为直线x=﹣.∴当x=﹣时,y取最小值为﹣2,∵2﹣(﹣)>﹣﹣(﹣2),∴当x=2时,y取最大值22+2﹣=.(3)①PQ=|﹣2m+1﹣m|=|﹣3m+1|,当﹣3m+1>0时,PQ=﹣3m+1,PQ的长度随m的增大而减小,当﹣3m+1<0时,PQ=3m﹣1,PQ的长度随m增大而增大,∴﹣3m+1>0满足题意,解得m<.②∵0<PQ≤7,∴0<﹣3m+1≤7,解得﹣2≤m<,如图,当m=﹣时,点P在最低点,PQ与图象有1交点,m增大过程中,﹣<m<,点P与点Q在对称轴右侧,PQ与图象只有1个交点,直线x=关于抛物线对称轴直线x=﹣对称后直线为x=﹣,∴﹣<m<﹣时,PQ与图象有2个交点,当﹣2≤m≤﹣时,PQ与图象有1个交点,综上所述,﹣2≤m≤﹣或﹣≤m时,PQ与图象交点个数为1,﹣<m<﹣时,PQ与图象有2个交点.5.(2023•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c经过点A(0,1),点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠PAQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2,当h2﹣h1=m时,直接写出m的值.【答案】(1)y=﹣x2+2x+1;(2);(3)点P与点Q的纵坐标的差为1或8;(4)或.【解答】解:(1)∵抛物线y=﹣x2+2x+c经过点A(0,1),∴c=1,∴抛物线解析式为y=﹣x2+2x+1;(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴顶点坐标为(1,2),∵点Q与此抛物线的顶点重合,点Q的横坐标为2m,∴2m=1,解得:;(3)①AQ∥x轴时,点A,Q关于对称轴x=1对称,x Q=2m=2,∴m=1,则﹣12+2×1+1=2﹣22+2×2+1=1,∴P(1,2),Q(2,1),∴点P与点Q的纵坐标的差为2﹣1=1;②当AP∥x轴时,则A,P关于直线x=1对称,x P=m=2,x Q=2m=4,则﹣42+2×4+1=﹣7,∴P(2,1),Q(4,﹣7);∴点P与点Q的纵坐标的差为1﹣(﹣7)=8;综上所述,点P与点Q的纵坐标的差为1或8;(4)①如图所示,当P,Q都在对称轴x=1的左侧时,则0<2m<1,∴0<m,∵P(m,﹣m2+2m+1),∴Q(2m,﹣4m2+4m+1),∴=﹣m2+2m,h2=y Q﹣y A=﹣4m2+4m+1﹣1=﹣4m2+4m,∴h2﹣h1=﹣4m2+4m+m2﹣2m=m,解得:或m=0(舍去);②当P,Q在对称轴两侧或其中一点在对称轴上时,则2m≥1,m≤1,即,则h2=2﹣1=1,∴1+m2﹣2m=m 1,解得:(舍去)或(舍);③当点P在x=1的右侧且在直线y=0 方时,即1<m<2,∵h1=2﹣1=1,,∵4m2﹣4m+1﹣1=m,解得:或m=0(舍去);④当p在直线y=1上或下方时,即m≥2,,∴4m2﹣4m+1﹣(m2﹣2m+1)=m,解得:m=1(舍去)或m=0(舍去),综上所述,或.五.四边形综合题(共3小题)6.(2021•吉林)如图,在矩形ABCD中,AB=3cm,AD=cm.动点P从点A出发沿折线AB﹣BC向终点C运动,在边AB上以1cm/s的速度运动;在边BC上以cm/s的速度运动,过点P作线段PQ与射线DC相交于点Q,且∠PQD=60°,连接PD,BD.设点P的运动时间为x(s),△DPQ与△DBC重合部分图形的面积为y(cm2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.【答案】(1)1cm.(2)(x﹣3).(3)y=.【解答】解:(1)如图,在Rt△PDQ中,AD=cm,∠PQD=60°,∴tan60°==,∴DQ=AD=1cm.(2)点P在AB上运动时间为3÷1=3(s),∴点P在BC上时PB=(x﹣3).(3)当0≤x≤2时,点P在AB上,作PM⊥CD于点M,PQ交AB于点E,作EN⊥CD 于点N,同(1)可得MQ=AD=1cm.∴DQ=DM+MQ=AP+MQ=(x+1)cm,当x+1=3时x=2,∴0≤x≤2时,点Q在DC上,∵tan∠BDC==,∴∠BDC=30°,∵∠PQD=60°,∴∠DEQ=90°.∵sin30°==,∴EQ=DQ=,∵sin60°==,∴EN=EQ=(x+1)cm,∴y=DQ•EN=(x+1)×(x+1)=(x+1)2=x2+x+(0≤x≤2).当2<x≤3时,点Q在DC延长线上,PQ交BC于点F,如图,∵CQ=DQ﹣DC=x+1﹣3=x﹣2,tan60°=,∴CF=CQ•tan60°=(x﹣2)cm,∴S△CQF=CQ•CF=(x﹣2)×(x﹣2)=(x2﹣2x+2)cm2,∴y=S△DEQ﹣S△CQF=x2+x+﹣(x2﹣2x+2)=(﹣x2+ x﹣)cm2(2<x≤3).当3<x≤4时,点P在BC上,如图,∵CP=CB﹣BP=﹣(x﹣3)=(4﹣x)cm,∴y=DC•CP=×3(4﹣x)=6﹣x(3<x≤4).综上所述,y=7.(2023•吉林)【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形EFMN.转动其中一张纸条,发现四边形EFMN总是平行四边形.其判定的依据是 两组对边分别相平行的四边形是平行四边形 .【探究提升】取两张短边长度相等的平行四边形纸条ABCD和EFGH(AB<BC,FG≤BC),其中AB=EF,∠B=∠FEH,将它们按图②放置,EF落在边BC上,FG,EH与边AD分别交于点M,N.求证:▱EFMN是菱形.【结论应用】保持图②中的平行四边形纸条ABCD不动,将平行四边形纸条EFGH沿BC或CB平移,且EF始终在边BC上,当MD=MG时,延长CD,HG交于点P,得到图③.若四边形ECPH的周长为40,sin∠EFG=(∠EFG为锐角),则四边形ECPH的面积为 80 .【答案】【操作发现】两组对边分别相平行的四边形是平行四边形;【探究提升】见解析;【结论应用】80.【解答】【操作发现】解:如图①,四边形EFMN总是平行四边形.其判定的依据是两组对边分别相平行的四边形是平行四边形;故答案为:两组对边分别相平行的四边形是平行四边形;【探究提升】证明:∵四边形纸条ABCD和EFGH是平行四边形,∴MN∥EF,EN∥FM,∴四边形EFMN是平行四边形,∵∠B=∠FEH,∴AB∥NF,∵AN∥BE,∴四边形ABEN是平行四边形,∴AB=EN,∵AB=EF,∴EN=EM,∴▱EFMN是菱形;【结论应用】解:∵将平行四边形纸条EFGH沿BC或CB平移,∴四边形GFCP是平行四边形,∴PG=CF,PG∥CF,∵DM∥CF,∴DM∥PG,∴四边形PDMG是平行四边形,∵MD=MG,∴四边形PDMG是菱形,∴PG=PD,由【探究提升】知▱EFMN是菱形,∴FM=EF,∴EF=CD,∴CE=CP,∴四边形ECPH是菱形,∵四边形ECPH的周长为40,∴HE=PC=10,∴FG=HE=10,过G作GQ⊥BC于Q,∵sin∠EFG==,∴GQ=8,∴四边形ECPH的面积为CE•GQ=10×8=80.故答案为:80.8.(2021•吉林)如图①,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的中线,点E为射线BC上一点,将△BDE沿DE折叠,点B的对应点为点F.(1)若AB=a.直接写出CD的长(用含a的代数式表示);(2)若DF⊥BC,垂足为G,点F与点D在直线CE的异侧,连接CF,如②,判断四边形ADFC的形状,并说明理由;(3)若DF⊥AB,直接写出∠BDE的度数.【答案】(1)a;(2)四边形ADFC是菱形,理由见解答;(3)45°或135°.【解答】解:(1)如图①,在Rt△ABC中,∠ACB=90°,∵CD是斜边AB上的中线,AB=a,∴CD=AB=a.(2)四边形ADFC是菱形.理由如下:如图②∵DF⊥BC于点G,∴∠DGB=∠ACB=90°,∴DF∥AC;由折叠得,DF=DB,∵DB=AB,∴DF=AB;∵∠ACB=90°,∠A=60°,∴∠B=90°﹣60°=30°,∴AC=AB,∴DF=AC,∴四边形ADFC是平行四边形;∵AD=AB,∴AD=DF,∴四边形ADFC是菱形.(3)如图③,点F与点D在直线CE异侧,∵DF⊥AB,∴∠BDF=90°;由折叠得,∠BDE=∠FDE,∴∠BDE=∠FDE=∠BDF=×90°=45°;如图④,点F与点D在直线CE同侧,∵DF⊥AB,∴∠BDF=90°,∴∠BDE+∠FDE=360°﹣90°=270°,由折叠得,∠BDE=∠FDE,∴∠BDE+∠BDE=270°,∴∠BDE=135°.综上所述,∠BDE=45°或∠BDE=135°.六.作图—应用与设计作图(共1小题)9.(2023•吉林)图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点称为格点,线段AB的端点均在格点上.在图①、图②、图③中以AB为边各画一个等腰三角形,使其依次为锐角三角形、直角三角形、钝角三角形,且所画三角形的顶点均在格点上.【答案】见解答.【解答】解:如图:图①△ABC即为所求锐角三角形;图②△ABD即为所求直角三角形;图③△ABCF为所求钝角三角形.七.解直角三角形的应用(共2小题)10.(2022•吉林)动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC 长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE 的长度(结果精确到1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【答案】点A到CD的距离AE的长度约88cm.【解答】解:∵AB=34cm,BC=70cm,∴AC=AB+BC=104cm,在Rt△ACE中,sin∠BCD=,∴AE=AC•sin∠BCD≈104×0.85≈88cm.答:点A到CD的距离AE的长度约88cm.11.(2021•吉林)数学小组研究如下问题:长春市的纬度约为北纬44°,求北纬44°纬线的长度,小组成员查阅了相关资料,得到三条信息:(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;(2)如图,⊙O是经过南、北极的圆,地球半径OA约为6400km.弦BC∥OA,过点O作OK⊥BC于点K,连接OB.若∠AOB=44°,则以BK为半径的圆的周长是北纬44°纬线的长度;(3)参考数据:π取3,sin44°=0.69,cos44°=0.72.小组成员给出了如下解答,请你补充完整:解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°( 两直线平行,内错角相等 )(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB× cos B (填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400× 0.72 (填相应的三角函数值)≈ 27648 (km)(结果取整数).【答案】两直线平行,内错角相等;cos B;0.72;27648.【解答】解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°(两直线平行,内错角相等)(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB×cos B(填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400×0.72(填相应的三角函数值)≈27648(km)(结果取整数).故答案为:两直线平行,内错角相等;cos B;0.72;27648.八.条形统计图(共1小题)12.(2021•吉林)2020年我国是全球主要经济体中唯一实现经济正增长的国家,各行各业蓬勃发展,其中快递业务保持着较快的增长.给出了快递业务的有关数据信息.2016﹣2020年快递业务量增长速度统计表年龄20162017201820192020增长速度51.4%28.0%26.6%25.3%31.2%说明:增长速度计算办法为:增长速度=×100%根据图中信息,解答下列问题:(1)2016﹣2020年快递业务量最多年份的业务量是 833.6 亿件.(2)2016﹣2020年快递业务量增长速度的中位数是 28.0% .(3)下列推断合理的是 ② (填序号).①因为2016﹣2019年快递业务量的增长速度逐年下降,所以预估2021年的快递业务量应低于2020年的快递业务量;②因为2016﹣2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.6×(1+25%)=1042亿件以上.【答案】(1)833.6;(2)28.0%;(3)②.【解答】解:(1)由2016﹣2020年快递业务量统计图可知,2020年的快递业务量最多是833.6亿件,故答案为:833.6;(2)将2016﹣2020年快递业务量增长速度从小到大排列处在中间位置的一个数是28.0%,因此中位数是28.0%,故答案为:28.0%;(3)①2016﹣2019年快递业务量的增长速度下降,并不能说明快递业务量下降,而业务量也在增长,只是增长的速度没有那么快,因此①不正确;②因为2016﹣2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.6×(1+25%)=1042亿件以上,因此②正确;故答案为:②.九.折线统计图(共1小题)13.(2022•吉林)为了解全国常住人口城镇化率的情况,张明查阅相关资料,整理数据并绘制统计图如下:(以上数据来源于《中华人民共和国2021年国民经济和社会发展统计公报》)注:城镇化率=×100%.例如,城镇常住人口60.12万人,总人口100万人,则城镇化率为60.12%.回答下列问题:(1)2017﹣2021年年末,全国常住人口城镇化率的中位数是 62.71 %.(2)2021年年末全国人口141260万人,2021年年末全国城镇常住人口为 141260×64.72% 万人.(只填算式,不计算结果)(3)下列推断较为合理的是 ① (填序号).①2017﹣2021年年末,全国常住人口城镇化率逐年上升,估计2022年年末全国常住人口城镇化率高于64.72%.②全国常住人口城镇化率2020年年末比2019年年末增加1.18%,2021年年末比2020年年末增加0.83%,全国常住人口城镇化率增加幅度减小,估计2022年年末全国常住人口城镇化率低于64.72%.【答案】(1)62.71;(2)141260×64.72%;(3)①.【解答】解:(1)∵2017﹣2021年年末,全国常住人口城镇化率分别为60.24%,61.50%,62.71%,63.89%,64.72%,∴中为数是62.71%,故答案为:62.71.(2)∵2021年年末城镇化率为64.72%,∴常住人口为141260×64.72%(万人),故答案为:141260×64.72%.(3)∵2017﹣2021年年末,全国常住人口城镇化率逐年上升,∴估计2022年年末全国常住人口城镇化率高于64.72%.故答案为:①.一十.列表法与树状图法(共1小题)14.(2023•吉林)2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆,某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A,B,C,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片,请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.第31页(共31页)【答案】.【解答】解:根据题意列表如下:AB C AAA BA CA BAB BBCB C AC BC CC共有9种等可能结果,其中甲、乙两位选手演讲的主题人物是同一位航天员有3情况,∴甲、乙两位选手演讲的主题人物是同一位航天员的概率为:=.。

中考数学试题分类分析汇编专题3:方程(组)和不定式(组)

中考数学试题分类分析汇编专题3:方程(组)和不定式(组)

中考数学试题分类分析汇编(12专题) 专题3:方程(组)和不定式(组)一.选择题1. (2001年福建福州4分)随着计算机技术的迅猛发展,电脑价格不断降低。

某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为【 】 A. 4(n m )5+元B. 5(n m )4+元 C. (5m n)+元D. (5n m)+元【答案】B 。

【考点】一元一次方程的应用。

【分析】设电脑的原售价为x 元,则()()x m 120%n --=,∴x=5n m 4+。

故选B 。

2. (2003年福建福州4分)不等式组2x 4x 30≥⎧⎨+>⎩的解集是【 】(A ) x>-3 (B )x≥2 (C )-3<x≤2 (D ) x<-3 【答案】B 。

【考点】解一元一次不等式组。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

因此,2x 4x 2x 2x 30x 2≥≥⎧⎧⇒⇒≥⎨⎨+>>-⎩⎩。

故选B 。

3.(2003年福建福州4分)已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是【 】(A )2x 5x 60++= (B )2x 5x 60-+= (C )2x 5x 60--= (D )2x 5x 60+-=【答案】B 。

【考点】一元二次方程根与系数的关系。

【分析】∵所求一元二次方程的两根是α、β,且α、β满足α+β=5、αβ=6,∴这个方程的系数应满足两根之和是b 5a-=,两根之积是c 6a =。

当二次项系数a=1时,一次项系数b=-5,常数项c=6。

故选B 。

4. (2005年福建福州大纲卷3分)如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为【 】A 、x+y=180x=y+10⎧⎨⎩错误!未找到引用源。

广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)

广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.实数的运算(共1小题)1.(2023•广东)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.二.分式的化简求值(共1小题)2.(2022•广东)先化简,再求值:a+,其中a=5.三.分式方程的应用(共1小题)3.(2023•广东)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.四.解一元一次不等式组(共2小题)4.(2021•广东)解不等式组.5.(2022•广东)解不等式组:.五.函数的表示方法(共1小题)6.(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x (kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.六.反比例函数与一次函数的交点问题(共1小题)7.(2021•广东)在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=图象的一个交点为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.七.全等三角形的判定与性质(共1小题)8.(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.八.圆内接四边形的性质(共1小题)9.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.九.解直角三角形(共1小题)10.(2021•广东)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;(2)若AD=BD,求tan∠ABC的值.一十.解直角三角形的应用(共1小题)11.(2023•广东)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)一十一.条形统计图(共1小题)12.(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?一十二.众数(共1小题)13.(2021•广东)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.一十三.方差(共1小题)14.(2023•广东)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表实验序号12345678910A线路所用时间15321516341821143520B线路所用时间25292325272631283024根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a= ;b= ;c= ;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.广东省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2023•广东)(1)计算:+|﹣5|+(﹣1)2023.(2)已知一次函数y=kx+b的图象经过点(0,1)与点(2,5),求该一次函数的表达式.【答案】(1)6.(2)y=2x+1.【解答】(1)解:原式=2+5﹣1=6.(2)解:将(0,1)与(2,5)代入y=kx+b得:,解得:,∴一次函数的表达式为:y=2x+1.二.分式的化简求值(共1小题)2.(2022•广东)先化简,再求值:a+,其中a=5.【答案】2a+1,11.【解答】解:原式=====2a+1,当a=5时,原式=10+1=11.三.分式方程的应用(共1小题)3.(2023•广东)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.【答案】乙骑自行车的速度为12km/h.【解答】解:设乙步行的速度为xkm/h,则甲骑自行车的速度为1.2xkm/h,根据题意得﹣=,解得x=12.经检验,x=12是原分式方程的解,答:乙骑自行车的速度为12km/h.四.解一元一次不等式组(共2小题)4.(2021•广东)解不等式组.【答案】见试题解答内容【解答】解:解不等式2x﹣4>3(x﹣2),得:x<2,解不等式4x>,得:x>﹣1,则不等式组的解集为﹣1<x<2.5.(2022•广东)解不等式组:.【答案】1<x<2.【解答】解:,由①得:x>1,由②得:x<2,∴不等式组的解集为1<x<2.五.函数的表示方法(共1小题)6.(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x (kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.【答案】(1)y与x的函数关系式为y=2x+15(x≥0);(2)所挂物体的质量为2.5kg.【解答】解:(1)把x=2,y=19代入y=kx+15中,得19=2k+15,解得:k=2,所以y与x的函数关系式为y=2x+15(x≥0);(2)把y=20代入y=2x+15中,得20=2x+15,解得:x=2.5.所挂物体的质量为2.5kg.六.反比例函数与一次函数的交点问题(共1小题)7.(2021•广东)在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=图象的一个交点为P(1,m).(1)求m的值;(2)若PA=2AB,求k的值.【答案】(1)m=4;(2)k=2或k=6.【解答】解:(1)∵P(1,m)为反比例函数y=图象上一点,∴代入得m==4,∴m=4;(2)令y=0,即kx+b=0,∴x=﹣,A(﹣,0),令x=0,y=b,∴B(0,b),∵PA=2AB,由图象得,可分为以下两种情况:①B在y轴正半轴时,b>0,∵PA=2AB,过P作PH⊥x轴交x轴于点H,又B1O⊥A1H,∠PA1O=∠B1A1O,∴△A1OB1∽△A1HP,∴,∴B1O=PH=4×=2,∴b=2,∴A1O=OH=1,∴|﹣|=1,∴k=2;②B在y轴负半轴时,b<0,过P作PQ⊥y轴,∵PQ⊥B2Q,A2O⊥B2Q,∠A2B2O=∠PB2Q,∴△A2OB2∽△PQB2,∴,∴AO=|﹣|=PQ=,B2O=B2Q=OQ=|b|=2,∴b=﹣2,∴k=6,综上,k=2或k=6.七.全等三角形的判定与性质(共1小题)8.(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【答案】证明见解答过程.【解答】证明:∵PD⊥OA,PE⊥OB,∴∠ODP=∠OEP=90°,∵∠AOC=∠BOC,∴∠DOP=∠EOP,在△OPD和△OPE中,,∴△OPD≌△OPE(AAS).八.圆内接四边形的性质(共1小题)9.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.【答案】(1)等腰直角三角形,证明见解答过程;(2).【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∵∠ADB=∠CDB,∴,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=.即CD的长为:.九.解直角三角形(共1小题)10.(2021•广东)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;(2)若AD=BD,求tan∠ABC的值.【答案】(1)1;(2).【解答】解:(1)如图,连接BD,设BC垂直平分线交BC于点F,∴BD=CD,C△ABD=AB+AD+BD=AB+AD+DC=AB+AC,∵AB=CE,故△ABD的周长为1.(2)设AD=x,∴BD=3x,又∵BD=CD,∴AC=AD+CD=4x,在Rt△ABD中,AB===2.∴tan∠ABC===.一十.解直角三角形的应用(共1小题)11.(2023•广东)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【答案】A、B的距离大约是15.3m.【解答】解:连接AB,取AB中点D,连接CD,如图,∵AC=BC,点D为AB中点,∴中线CD为等腰三角形的角平分线(三线合一),AD=BD=AB,∴∠ACD=∠BCD=∠ACB=50°,在Rt△ACD中,sin∠ACD=,∴sin50°=,∴AD=10×sin50°≈7.66(m),∴AB=2AD=2×7.66=15.32≈15.3(m),答:A、B的距离大约是15.3m.一十一.条形统计图(共1小题)12.(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)图形见解析;(2)众数为:4万元,中位数为:5万元,平均数为:7万元;(3)根据(2)中结果应确定销售目标为7,激励大部分销售人员达到平均销售额.(答案不唯一).【解答】解:(1)补全统计图,如图,;(2)根据条形统计图可得,众数为:4(万元),中位数为:5(万元),平均数为:=7(万元),(3)应确定销售目标为7万元,激励大部分的销售人员达到平均销售额.一十二.众数(共1小题)13.(2021•广东)某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.【答案】见试题解答内容【解答】解:(1)由统计图中90分对应的人数最多,因此这组数据的众数应该是90分,由于人数总和是20人为偶数,将数据从小到大排列后,第10个和第11个数据都是90分,因此这组数据的中位数应该是90分,平均数是:=90.5(分);(2)根据题意得:600×=450(人),答:估计该年级获优秀等级的学生人数是450人.一十三.方差(共1小题)14.(2023•广东)小红家到学校有两条公共汽车线路.为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间.数据统计如下:(单位:min)数据统计表12345678910实验序号15321516341821143520 A线路所用时间25292325272631283024 B线路所用时间根据以上信息解答下列问题:平均数中位数众数方差A线路所用时间22a1563.2B线路所用时间b26.5c 6.36(1)填空:a= 19 ;b= 26.8 ;c= 25 ;(2)应用你所学的统计知识,帮助小红分析如何选择乘车线路.【答案】(1)19,26.8,25.(2)选择B路线更优.【解答】解:(1)求中位数a首先要先排序,从小到大顺序为:14,15,15,16,18,20,21,32,34,35.共有10个数,中位数在第5和6个数为18和20,所以中位数为=19,求平均数b==26.8,众数c=25,故答案为:19,26.8,25.(2)小红统计的选择A线路平均数为22,选择B线路平均数为26.8,用时差不太多.而方差63.2>6.36,相比较B路线的波动性更小,所以选择B路线更优.。

江苏省各地市2023年中考数学真题分类汇编-03解答题中档题知识点分类

江苏省各地市2023年中考数学真题分类汇编-03解答题中档题知识点分类

江苏省各地市2023年中考数学真题分类汇编-03解答题中档题知识点分类一.实数的运算(共1小题)1.(2023•宿迁)计算:.二.分式的混合运算(共1小题)2.(2023•镇江)(1)计算:﹣4sin45°+()0;(2)化简:(1﹣)÷.三.分式的化简求值(共1小题)3.(2023•宿迁)先化简,再求值:,其中.四.解一元一次不等式组(共1小题)4.(2023•常州)解不等式组,把解集在数轴上表示出来,并写出整数解.五.反比例函数图象上点的坐标特征(共1小题)5.(2023•泰州)阅读下面方框内的内容,并完成相应的任务.小丽学习了方程、不等式,函数后提出如下问题:如何求不等式x2﹣x﹣6<0的解集?通过思考,小丽得到以下3种方法:方法1 方程x2﹣x﹣6=0的两根为x1=﹣2,x2=3,可得函数y=x2﹣x﹣6的图象与x轴的两个交点横坐标为﹣2、3,画出函数图象,观察该图象在x轴下方的点,其横坐标的范围是不等式x2﹣x﹣6<0的解集.方法2 不等式x2﹣x﹣6<0可变形为x2<x+6,问题转化为研究函数y=x2与y=x+6的图象关系.画出函数图象,观察发现;两图象的交点横坐标也是﹣2、3;y=x2的图象在y=x+6的图象下方的点,其横坐标的范围是该不等式的解集.方法3 当x=0时,不等式一定成立;当x>0时,不等式变为x﹣1<;当x<0时,不等式变为x﹣1>.问题转化为研究函数y=x﹣1与y=的图象关系…任务:(1)不等式x2﹣x﹣6<0 的解集为 ;(2)3种方法都运用了 的数学思想方法(从下面选项中选1个序号即可);A.分类讨论B.转化思想C.特殊到一般D.数形结合(3)请你根据方法3的思路,画出函数图象的简图,并结合图象作出解答.六.反比例函数与一次函数的交点问题(共1小题)6.(2023•常州)在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(2,4)、B(4,n).C是y轴上的一点,连接CA、CB.(1)求一次函数、反比例函数的表达式;(2)若△ABC的面积是6,求点C的坐标.七.二次函数的应用(共2小题)7.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?8.(2023•泰州)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价0.01元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在1000~1750kg之间时的最大利润;(3)当一次性销售多少千克时利润为22100元?八.切线的性质(共2小题)9.(2023•镇江)如图,将矩形ABCD(AD>AB)沿对角线BD翻折,C的对应点为点C ′,以矩形ABCD的顶点A为圆心,r为半径画圆,⊙A与BC′相切于点E,延长DA 交⊙A于点F,连接EF交AB于点G.(1)求证:BE=BG;(2)当r=1,AB=2时,求BC的长.10.(2023•南通)如图,等腰三角形OAB的顶角∠AOB=120°,⊙O和底边AB相切于点C,并与两腰OA,OB分别相交于D,E两点,连接CD,CE.(1)求证:四边形ODCE是菱形;(2)若⊙O的半径为2,求图中阴影部分的面积.九.切线的判定与性质(共1小题)11.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, .求证: ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.一十.作图—复杂作图(共1小题)12.(2023•连云港)如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D,连接BD,过点C作CE∥AB.(1)请用无刻度的直尺和圆规作图:过点B作⊙O的切线,交CE于点F;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD=BF.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•泰州)如图,堤坝AB长为10m,坡度i为1:0.75,底端A在地面上,堤坝与对面的山之间有一深沟,山顶D处立有高20m的铁塔CD.小明欲测量山高DE,他在A 处看到铁塔顶端C刚好在视线AB上,又在坝顶B处测得塔底D的仰角α为26°35′.求堤坝高及山高DE.(sin26°35′≈0.45,cos26°35′≈0.89,tan26°35′≈0.50,小明身高忽略不计,结果精确到1m)一十二.条形统计图(共2小题)14.(2023•连云港)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择 .A.从八年级随机抽取一个班的50名学生B.从八年级女生中随机抽取50名学生C.从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表人数阅读数量(本)051252a53本及以上合计50统计表中的a= ,补全条形统计图;(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.15.(2023•镇江)香醋中有一种物质,其含量不同,风味不同,各风味香醋中该种物质的含量如表:风味偏甜适中偏酸含量(mg/100ml)71.289.8110.9某超市销售不同包装(塑料瓶装和玻璃瓶装)的以上三种风味的香醋,小明将该超市1﹣5月份售出的香醋数量绘制成如下的条形统计图:已知1﹣5月份共售出150瓶香醋,其中“偏酸”的香醋占比40%.(1)求出a、b的值;(2)售出的玻璃瓶装香醋中的该种物质的含量的众数为 mg/100ml,中位数为 mg/100ml;(3)根据小明绘制的条形统计图,你能获得哪些信息(写出一条即可)?一十三.中位数(共1小题)16.(2023•常州)为合理安排进、离校时间,学校调查小组对某一天八年级学生上学、放学途中的用时情况进行了调查.本次调查在八年级随机抽取了20名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:(1)根据图中信息,下列说法中正确的是 (写出所有正确说法的序号);①这20名学生上学途中用时都没有超过30min;②这20名学生上学途中用时在20min以内的人数超过一半;③这20名学生放学途中用时最短为5min;④这20名学生放学途中用时的中位数为15min.(2)已知该校八年级共有400名学生,请估计八年级学生上学途中用时超过25min的人数;(3)调查小组发现,图中的点大致分布在一条直线附近.请直接写出这条直线对应的函数表达式并说明实际意义.一十四.方差(共1小题)17.(2023•南通)某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取20名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级82838752.6八年级82849165.6注:设竞赛成绩为x(分),规定:90≤x≤100为优秀;75≤x<90为良好;60≤x<75为合格;x<60为不合格.(1)若该校八年级共有300名学生参赛,估计优秀等次的约有 人;(2)你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.一十五.列表法与树状图法(共1小题)18.(2023•南通)有同型号的A,B两把锁和同型号的a,b,c三把钥匙,其中a钥匙只能打开A锁,b钥匙只能打开B锁,c钥匙不能打开这两把锁.(1)从三把钥匙中随机取出一把钥匙,取出c钥匙的概率等于 ;(2)从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.江苏省各地市2023年中考数学真题分类汇编-03解答题中档题知识点分类参考答案与试题解析一.实数的运算(共1小题)1.(2023•宿迁)计算:.【答案】0.【解答】解:原式=,=0.二.分式的混合运算(共1小题)2.(2023•镇江)(1)计算:﹣4sin45°+()0;(2)化简:(1﹣)÷.【答案】(1)1;(2).【解答】解:(1)原式=2﹣4×+1=2﹣2+1=1;(2)原式=×=.三.分式的化简求值(共1小题)3.(2023•宿迁)先化简,再求值:,其中.【答案】x﹣1;.【解答】解:===x﹣1,当时,原式=.四.解一元一次不等式组(共1小题)4.(2023•常州)解不等式组,把解集在数轴上表示出来,并写出整数解.【答案】﹣1<x≤2,数轴见解答,整数解是:0,1,2.【解答】解:,解不等式①得,x≤2,解不等式②得,x>﹣1,∴不等式组的解集是﹣1<x≤2,在数轴上表示为,∴不等式组的整数解是:0,1,2.五.反比例函数图象上点的坐标特征(共1小题)5.(2023•泰州)阅读下面方框内的内容,并完成相应的任务.小丽学习了方程、不等式,函数后提出如下问题:如何求不等式x2﹣x﹣6<0的解集?通过思考,小丽得到以下3种方法:方法1 方程x2﹣x﹣6=0的两根为x1=﹣2,x2=3,可得函数y=x2﹣x﹣6的图象与x轴的两个交点横坐标为﹣2、3,画出函数图象,观察该图象在x轴下方的点,其横坐标的范围是不等式x2﹣x﹣6<0的解集.方法2 不等式x2﹣x﹣6<0可变形为x2<x+6,问题转化为研究函数y=x2与y=x+6的图象关系.画出函数图象,观察发现;两图象的交点横坐标也是﹣2、3;y=x2的图象在y=x+6的图象下方的点,其横坐标的范围是该不等式的解集.方法3 当x=0时,不等式一定成立;当x>0时,不等式变为x﹣1<;当x<0时,不等式变为x﹣1>.问题转化为研究函数y=x﹣1与y=的图象关系…任务:(1)不等式x2﹣x﹣6<0 的解集为 ﹣2<x<3 ;(2)3种方法都运用了 D 的数学思想方法(从下面选项中选1个序号即可);A.分类讨论B.转化思想C.特殊到一般D.数形结合(3)请你根据方法3的思路,画出函数图象的简图,并结合图象作出解答.【答案】(1)﹣2<x<3;(2)D;(3)见解答.【解答】解:(1)解方程x2﹣x﹣6=0,得x1=﹣2,x2=3,∴函数y=x2﹣x﹣6的图象与x轴的两个交点横坐标为﹣2、3,画出二次函数y=x2﹣x﹣6的大致图象(如图所示),由图象可知:当﹣2<x<3时函数图象位于x轴下方,此时y<0,即x2﹣x﹣6<0.所以不等式x2﹣x﹣6<0的解集为:﹣2<x<3.故答案为:﹣2<x<3;(2)上述3种方法都运用了数形结合思想,故答案为:D;(3)当x=0时,不等式一定成立;当x>0时,不等式变为x﹣1<;当x<0时,不等式变为x﹣1>.画出函数y=x﹣1和函数y=的大致图象如图:当x>0时,不等式x﹣1<的解集为0<x<3;当x<0时,不等式x﹣1>的解集为﹣2<x<0,∵当x=0时,不等式x2﹣x﹣6<0一定成立,∴不等式x2﹣x﹣6<0的解集为:﹣2<x<3.六.反比例函数与一次函数的交点问题(共1小题)6.(2023•常州)在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(2,4)、B(4,n).C是y轴上的一点,连接CA、CB.(1)求一次函数、反比例函数的表达式;(2)若△ABC的面积是6,求点C的坐标.【答案】(1)反比例函数解析式为y=;一次函数的解析为y=﹣x+6.(2)C(0,0)或(0,12).【解答】解:(1)∵点A(2,4)在反比例函数y=的图象上,∴m=2×4=8,∴反比例函数解析式为y=;又∵点B(4,n)在y=上,∴n=2,∴点B的坐标为(4,2),把A(2,4)和B(4,2)两点的坐标代入一次函数y=kx+b得,解得,∴一次函数的解析为y=﹣x+6.(2)对于一次函数y=﹣x+6,令x=0,则y=6,即D(0,6),根据题意得:S△ABC=S△BCD﹣S△ACD==6,解得:CD=6,∴OC=0或12,∴C(0,0)或(0,12).七.二次函数的应用(共2小题)7.(2023•宿迁)某商场销售A、B两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B种10件,销售总额为840元;如果售出A种10件,B种15件,销售总额为660元.(1)求A、B两种商品的销售单价;(2)经市场调研,A种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B种商品的售价不变,A种商品售价不低于B种商品售价.设A种商品降价m元,如果A、B两种商品销售量相同,求m取何值时,商场销售A、B两种商品可获得总利润最大?最大利润是多少?【答案】(1)A种商品的销售单价为30元,B种商品的销售单价为24元;(2)m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.【解答】解:(1)设A种商品的销售单价为a元,B种商品的销售单价为b元,由题意可得:,解得,答:A种商品的销售单价为30元,B种商品的销售单价为24元;(2)设利润为w元,由题意可得:w=(30﹣m﹣20)(40+10m)+(24﹣20)(40+10m)=﹣10(m﹣5)2+810,∵A种商品售价不低于B种商品售价,∴30﹣m≥24,解得m≤6,∴当m=5时,w取得最大值,此时w=810,答:m取5时,商场销售A、B两种商品可获得总利润最大,最大利润是810元.8.(2023•泰州)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价0.01元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.(1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在1000~1750kg之间时的最大利润;(3)当一次性销售多少千克时利润为22100元?【答案】(1)当一次性销售800千克时利润为16000元;(2)一次性销售量在1000~1750kg之间时的最大利润为22500元;(3)当一次性销售为1300或1700或1768千克时利润为22100元.【解答】解:(1)根据题意,当x=800时,y=800×(50﹣30)=800×20=16000,∴当一次性销售800千克时利润为16000元;(2)设一次性销售量在1000~1750kg之间时,销售价格为50﹣30﹣0.01(x﹣1000)=﹣0.01x+30,∴y=x(﹣0.01x+30)=﹣0.01x2+30x=﹣0.01(x2﹣3000x)=﹣0.01(x﹣1500)2+22500,∵﹣0.01<0,1000≤x≤1750,∴当x=1500时,y有最大值,最大值为22500,∴一次性销售量在1000~1750kg之间时的最大利润为22500元;(3)①当一次性销售量在1000~1750kg之间时,利润为22100元,∴﹣0.01(x﹣1500)2+22500=22100,解得x1=1700,x2=1300;②当一次性销售不低于1750千克时,均以某一固定价格销售,设此时函数解析式为y=kx,由(2)知,当x=1750时,y=﹣0.01(1750﹣1500)2+22500=21875,∴B(1750,21875),把B的坐标代入解析式得:21875=1750k,解得k=12.5,∴当一次性销售不低于1750千克时函数解析式为y=12.5x,当y=22100时,则22100=12.5x,解得x=1768综上所述,当一次性销售为1300或1700或1768千克时利润为22100元.八.切线的性质(共2小题)9.(2023•镇江)如图,将矩形ABCD(AD>AB)沿对角线BD翻折,C的对应点为点C ′,以矩形ABCD的顶点A为圆心,r为半径画圆,⊙A与BC′相切于点E,延长DA 交⊙A于点F,连接EF交AB于点G.(1)求证:BE=BG;(2)当r=1,AB=2时,求BC的长.【答案】(1)证明见解析;(2)2.【解答】(1)证明:连接AE,∵BC′与圆相切于E,∴半径AE⊥BE,∴∠BEG+∠AEG=90°,∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,DC=AB=2,∴∠BAF=90°,∴∠AGF+∠F=90°,∵AF=AE,∴∠F=∠AEG,∴∠AGF=∠BEG,∵∠AGF=∠BGE,∴∠BEG=∠BGE,∴BE=BG;(2)解:∵∠AEB=90°,AE=1,AB=2,∴sin∠ABE==,∴∠ABE=30°,由折叠的性质得到∠CBD=∠DBC′,∵∠ABC=90°,∴∠CBD=×(90°﹣30°)=30°,∴BC=CD=2.10.(2023•南通)如图,等腰三角形OAB的顶角∠AOB=120°,⊙O和底边AB相切于点C,并与两腰OA,OB分别相交于D,E两点,连接CD,CE.(1)求证:四边形ODCE是菱形;(2)若⊙O的半径为2,求图中阴影部分的面积.【答案】(1)证明过程见解答;(2)图中阴影部分的面积为﹣2.【解答】(1)证明:连接OC,∵⊙O和底边AB相切于点C,∴OC⊥AB,∵OA=OB,∠AOB=120°,∴∠AOC=∠BOC=∠AOB=60°,∵OD=OC,OC=OE,∴△ODC和△OCE都是等边三角形,∴OD=OC=DC,OC=OE=CE,∴OD=CD=CE=OE,∴四边形ODCE是菱形;(2)解:连接DE交OC于点F,∵四边形ODCE是菱形,∴OF=OC=1,DE=2DF,∠OFD=90°,在Rt△ODF中,OD=2,∴DF===,∴DE=2DF=2,∴图中阴影部分的面积=扇形ODE的面积﹣菱形ODCE的面积=﹣OC•DE=﹣×2×2=﹣2,∴图中阴影部分的面积为﹣2.九.切线的判定与性质(共1小题)11.(2023•宿迁)(1)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB, ①(答案不唯一) .求证: ②(答案不唯一) ;从①DE与⊙O相切;②DE⊥AC中选择一个作为已知条件,余下的一个作为结论,将题目补充完整(填写序号),并完成证明过程;(2)在(1)的前提下,若AB=6,∠BAD=30°,求阴影部分的面积.【答案】(1)①(答案不唯一);②(答案不唯一);证明过程见解答;(2)阴影部分的面积为.【解答】解:(1)若选择:①作为条件,②作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE与⊙O相切,求证:DE⊥AC,证明:连接OD,∵DE与⊙O相切于点D,∴∠ODE=90°,∵AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠AED=180°﹣∠ODE=90°,∴DE⊥AC;若选择:②作为条件,①作为结论,如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,点E在AC上,连接DE、DB,DE⊥AC,求证:DE与⊙O相切,证明:连接OD,∵DE⊥AC,∴∠AED=90°,AD平分∠BAC,∴∠EAD=∠DAB,∵OA=OD,∴∠DAB=∠ADO,∴∠EAD=∠ADO,∴AE∥DO,∴∠ODE=180°﹣∠AED=90°,∵OD是⊙O的半径,∴DE与⊙O相切;故答案为:①(答案不唯一);②(答案不唯一);(2)连接OF,DF,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=6,∠BAD=30°,∴BD=AB=3,AD=BD=3,∵AD平分∠BAC,∴∠EAD=∠DAB=30°,在Rt△AED中,DE=AD=,AE=DE=,∵∠EAD=∠DAB=30°,∴∠DOB=2∠DAB=60°,∠DOF=2∠EAD=60°,∵OD=OF,∴△DOF都是等边三角形,∴∠ODF=60°,∴∠DOB=∠ODF=60°,∴DF∥AB,∴△ADF的面积=△ODF的面积,∴阴影部分的面积=△AED的面积﹣扇形DOF的面积=AE•DE﹣=××﹣=﹣=,∴阴影部分的面积为.一十.作图—复杂作图(共1小题)12.(2023•连云港)如图,在△ABC中,AB=AC,以AB为直径的⊙O交边AC于点D,连接BD,过点C作CE∥AB.(1)请用无刻度的直尺和圆规作图:过点B作⊙O的切线,交CE于点F;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD=BF.【答案】(1)作图见解答过程;(2)证明见解答过程.【解答】(1)解:如图:过B作BF⊥AB,交CE于F,直线BF即为所求直线;(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵AB∥CE,∴∠ABC=∠BCF,∴∠BCF=∠ACB,∵点D在以AB为直径的圆上,∴∠ADB=90°,∴∠BDC=90°,∵BF为⊙O的切线,∴∠ABF=90°,∵AB∥CE,∴∠BFC+∠ABF=180°,∴∠BFC=90°,∴∠BDC=∠BFC,在△BCD和△BCF中,,∴△BCD≌△BCF(AAS),∴BD=BF.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•泰州)如图,堤坝AB长为10m,坡度i为1:0.75,底端A在地面上,堤坝与对面的山之间有一深沟,山顶D处立有高20m的铁塔CD.小明欲测量山高DE,他在A 处看到铁塔顶端C刚好在视线AB上,又在坝顶B处测得塔底D的仰角α为26°35′.求堤坝高及山高DE.(sin26°35′≈0.45,cos26°35′≈0.89,tan26°35′≈0.50,小明身高忽略不计,结果精确到1m)【答案】堤坝高为8米,山高DE为20米.【解答】解:过B作BH⊥AE于H,∵坡度i为1:0.75,∴设BH=4xm,AH=3xm,∴AB==5x=10m,∴x=2,∴AH=6m,BH=8m,过B作BF⊥CE于F,则EF=BH=8,BF=EH,设DF=am,∵α=26°35′.∴BF===2a,∴AE=6+2a,∵坡度i为1:0.75,∴CE:AE=(20+a+8):(6+2a)=1:0.75,∴a=12,∴DF=12(米),∴DE=DF+EF=12+8=20(米),答:堤坝高为8米,山高DE为20米.一十二.条形统计图(共2小题)14.(2023•连云港)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择 C .A.从八年级随机抽取一个班的50名学生B.从八年级女生中随机抽取50名学生C.从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表阅读数量人数(本)051252a3本及以上5合计50统计表中的a = 15 ,补全条形统计图;(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.【答案】(1)C ;(2)15,补全条形统计图见解答;(3)320人;(4)大多数学生暑期课外阅读数量不够多,要加强宣传课外阅读数的重要性(答案不唯一).【解答】解:(1)下面的抽取方法中,应该选择从八年级所有学生中随机抽取50名学生,故答案为:C ;(2)由题意得,a =50﹣5﹣25﹣5=15,补全条形统计图如下:故答案为:15;(3)800×=320(人),答:八年级学生暑期课外阅读数量达到2本及以上的学生人数约为320人;(4)大多数学生暑期课外阅读数量不够多,要加强宣传课外阅读数的重要性(答案不唯一).15.(2023•镇江)香醋中有一种物质,其含量不同,风味不同,各风味香醋中该种物质的含量如表:风味偏甜适中偏酸含量(mg/100ml)71.289.8110.9某超市销售不同包装(塑料瓶装和玻璃瓶装)的以上三种风味的香醋,小明将该超市1﹣5月份售出的香醋数量绘制成如下的条形统计图:已知1﹣5月份共售出150瓶香醋,其中“偏酸”的香醋占比40%.(1)求出a、b的值;(2)售出的玻璃瓶装香醋中的该种物质的含量的众数为 110.9 mg/100ml,中位数为 89.8 mg/100ml;(3)根据小明绘制的条形统计图,你能获得哪些信息(写出一条即可)?【答案】(1)18,20;(2)110.9,89.8;(3)人们更喜欢风味偏酸的香醋(答案不唯一,合理即可).【解答】解:(1)∵1﹣5月份共售出150瓶香醋,其中“偏酸”的香醋占比40%,∴售出“偏酸”的香醋的数量为150×40%=60(瓶).∴a+42=60,解得a=18.∵15+b+17+38+a+42=150,即130+b=150,解得b=20.综上,a=18,b=20.(2)售出的玻璃瓶装香醋的数量为20+38+42=100(瓶).其中:风味偏甜的有20瓶,风味适中的有38瓶,风味偏酸的有42瓶,∵售出的风味偏酸的数量最多,风味适中的数量居中,∴售出的玻璃瓶装香醋中的该种物质的含量的众数为110.9mg/100ml,中位数为89.8mg/100ml.故答案为:110.9,89.8.(3)根据小明绘制的条形统计图可知,人们更喜欢风味偏酸的香醋(答案不唯一,合理即可).一十三.中位数(共1小题)16.(2023•常州)为合理安排进、离校时间,学校调查小组对某一天八年级学生上学、放学途中的用时情况进行了调查.本次调查在八年级随机抽取了20名学生,建立以上学途中用时为横坐标、放学途中用时为纵坐标的平面直角坐标系,并根据调查结果画出相应的点,如图所示:(1)根据图中信息,下列说法中正确的是 ①②③ (写出所有正确说法的序号);①这20名学生上学途中用时都没有超过30min;②这20名学生上学途中用时在20min以内的人数超过一半;③这20名学生放学途中用时最短为5min;④这20名学生放学途中用时的中位数为15min.(2)已知该校八年级共有400名学生,请估计八年级学生上学途中用时超过25min的人数;(3)调查小组发现,图中的点大致分布在一条直线附近.请直接写出这条直线对应的函数表达式并说明实际意义.【答案】(1)①②③;(2)20;(3)直线的解析式为:y=x;这条直线可近似反映学生上学途中用时和放学途中用时一样.【解答】解:(1)根据在坐标系中点的位置,可知:这20名学生上学途中用时最长的时间为30min,故①说法正确;这20名学生上学途中用时在20min以内的人数为:17人,超过一半,故②说法正确;这20名学生放学途中用时最段的时间为5min,故③说法正确;这20名学生放学途中用时的中位数是用时第10和第11的两名学生用时的平均数,在图中,用时第10和第11的两名学生的用时均小于15min,故这20名学生放学途中用时的中位数为也小于15min,即④说法错误;故答案为:①②③.(2)根据图中信息可知,上学途中用时超过25min的学生有1人,故该校八年级学生上学途中用时超过25min的人数为400×120=20(人).(3)如图:设直线的解析式为:y=kx+b,根据图象可得,直线经过点(10,10),(7,7),将(10,10),(7,7)代入y=kx+b,得:,解得:,故直线的解析式为:y=x;则这条直线可近似反映学生上学途中用时和放学途中用时一样.一十四.方差(共1小题)17.(2023•南通)某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取20名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级82838752.6八年级82849165.6注:设竞赛成绩为x(分),规定:90≤x≤100为优秀;75≤x<90为良好;60≤x<75为合格;x<60为不合格.(1)若该校八年级共有300名学生参赛,估计优秀等次的约有 90 人;(2)你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.【答案】(1)90;(2)八年级成绩较好,理由见解析.【解答】解:(1)若该校八年级共有300名学生参赛,估计优秀等次的约有300×=90(人),故答案为:90;(2)八年级成绩较好,理由如下:因为七、八年级的平均数相等,而八年级的众数和中位数大于七年级的众数和中位数,所以八年级得分高的人数较多,即八年级成绩较好(答案不唯一).一十五.列表法与树状图法(共1小题)18.(2023•南通)有同型号的A,B两把锁和同型号的a,b,c三把钥匙,其中a钥匙只能打开A锁,b钥匙只能打开B锁,c钥匙不能打开这两把锁.(1)从三把钥匙中随机取出一把钥匙,取出c钥匙的概率等于 ;(2)从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.【答案】(1);(2).【解答】解:(1)∵有同型号的a,b,c三把钥匙,∴从三把钥匙中随机取出一把钥匙,取出c钥匙的概率等于,故答案为:;(2)画树状图如下:共有6种等可能的结果,其中取出的钥匙恰好能打开取出的锁的结果有2种,即Aa、Bb,∴取出的钥匙恰好能打开取出的锁的概率为=.。

2022广东深圳中考数学试卷分类解析汇编专项3-方程(组)和不等式

2022广东深圳中考数学试卷分类解析汇编专项3-方程(组)和不等式

2022广东深圳中考数学试卷分类解析汇编专项3-方程(组)和不等式专题3:方程(组)和不等式(组)一、选择题1. (深圳2003年5分)下列命题正确的是【 】A 、3x -7>0的解集为x>73B 、关于x 的方程ax=b 的解是x=ab C 、9的平方根是3 D 、(12+)与(12-)互为倒数【答案】D 。

【考点】命题与定理,解一元一次不等式,一元一次方程的定义,平方根的定义,倒数的概念。

【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案:A 、3x -7>0的解集为x >73,错误; B 、关于x 的方程ax=b 的解是x=a b 需加条件a≠0,错误; C 、9的平方根是±3,错误;D 、∵(12+)12-)=2-1=1,∴依照倒数的概念,(12+)与(12-)互为倒数,正确。

故选D 。

2.(深圳2004年3分)不等式组⎩⎨⎧≤-≥+12x 01x 的解集在数轴上的表示正确的是【 】A BC D【答案】D 。

-1-1-1-1【考点】解一元一次不等式组,在数轴上表示不等式的解集。

【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。

由第一个不等式得x≥-1,由第二个不等式得x≤3,∴不等式组的解集为-1≤x≤3。

不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,假如数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段确实是不等式组的解集.有几个就要几个。

在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。

故选D 。

3.(深圳2005年3分)方程x 2 = 2x 的解是【 】A 、x=2B 、x 1=2-,x 2= 0C 、x 1=2,x 2=0D 、x = 0【答案】C 。

2022年全国中考数学真题分类汇编专题3:整式解析版

2022年全国中考数学真题分类汇编专题3:整式解析版

2022年全国中考数学真题分类汇编专题3:整式一.选择题(共15小题)1.计算(2x2)3的结果,正确的是()A.8x5B.6x5C.6x6D.8x6【解答】解:(2x2)3=8x6.故选:D.2.下列运算正确的是()A.a2•a3=a5B.(a2)3=a8C.(a2b)3=a2b3D.a6÷a3=a2【解答】解:a2•a3=a5,故A正确,符合题意;(a2)3=a6,故B错误,不符合题意;(a2b)3=a6b3,故C错误,不符合题意;a6÷a3=a3,故D错误,不符合题意;故选:A.3.计算a2•a()A.a B.3a C.2a2D.a3【解答】解:原式=a1+2=a3.故选:D.4.下列运算正确的是()A.a2•a3=a5B.(a3)2=a5 C.(ab)2=ab2D. a3(a≠0)【解答】解:A.因为a2•a3=a2+3=a5,所以A选项运算正确,故A选项符合题意;B.因为(a3)2=a2×3=a6,所以B选项运算不正确,故B选项不符合题意;C.因为(ab)2=a2b2,所以C选项运算不正确,故C选项不符合题意;D.因为 a6﹣2=a4,所以D选项运算不正确,故D选项不符合题意.故选:A.5.计算a3•a2的结果是()A.a B.a6C.6a D.a5【解答】解:a3•a2=a5.故选:D.6.若24×22=2m,则m的值为()A.8B.6C.5D.2【解答】解:∵24×22=24+2=26=2m,∴m=6,故选:B.7.化简(3a2)2的结果是()A.9a2B.6a2C.9a4D.3a4【解答】解:(3a2)2=9a4.故选:C.8.计算a3÷a得a,则“?”是()A.0B.1C.2D.3【解答】解:根据同底数幂的除法可得:a3÷a=a2,∴?=2,故选:C.9.计算﹣a2•a的正确结果是()A.﹣a2B.a C.﹣a3D.a3【解答】解:﹣a2•a=﹣a3,故选:C.10.下列运算正确的是()A.3a﹣2a=1B.a3•a5=a8C.a8÷2a2=2a4D.(3ab)2=6a2b2【解答】解:3a﹣2a=a,故选项A错误,不符合题意;a3•a5=a8,故选项B正确,符合题意;a8÷2a2 a6,故选项C错误,不符合题意;(3ab)2=9a2b2,故选项D错误,不符合题意;故选:B.11.下列计算正确的是()A.m2•m3=m6B.﹣(m﹣n)=﹣m+nC.m(m+n)=m2+n D.(m+n)2=m2+n2【解答】解:A选项,原式=m5,故该选项不符合题意;B选项,原式=﹣m+n,故该选项符合题意;C选项,原式=m2+mn,故该选项不符合题意;D选项,原式=m2+2mn+n2,故该选项不符合题意;故选:B.12.下列计算结果正确的是()A.5a﹣3a=2B.6a÷2a=3aC.a6÷a3=a2D.(2a2b3)3=8a6b9【解答】解:A选项,原式=2a,故该选项不符合题意;B选项,原式=3,故该选项不符合题意;C选项,原式=a3,故该选项不符合题意;D选项,原式=8a6b9,故该选项符合题意;故选:D.13.计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a7【解答】解:(2a4)3=8a12,故选:B.14.计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.15.对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m ﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z ﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.二.填空题(共10小题)16.计算:a•a3=a4.【解答】解:a3•a,=a3+1,=a4.故答案为:a4.17.单项式3xy的系数为3.【解答】解:单项式3xy的系数为3.故答案为:3.18.若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为y2﹣xy+3.【解答】解:由题意得,这个多项式为:(2xy+3y2﹣5)﹣(3xy+2y2﹣8)=2xy+3y2﹣5﹣3xy﹣2y2+8=y2﹣xy+3.故答案为:y2﹣xy+3.19.已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为 或 ..【解答】解:根据题意可得,(2t﹣1)ab=±(2×2)ab,即2t﹣1=±4,解得:t 或t .故答案为: 或 .20.已知x+y=4,x﹣y=6,则x2﹣y2=24.【解答】解:∵x+y=4,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=4×6=24.故答案为:24.21.计算m•m7的结果等于m8.【解答】解:m•m7=m8.故答案为:m8.22.计算:m4÷m2=m2.【解答】解:m4÷m2=m4﹣2=m2.故答案为:m2.23.计算:3a3•a2=3a5.【解答】解:原式=3a3+2=3a5.故答案为:3a5.24.计算:(﹣a3)2=a6.【解答】解:(﹣a3)2=a6.25.已知a+b=4,a﹣b=2,则a2﹣b2的值为8.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.三.解答题(共8小题)26.下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6.【解答】解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.27.已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.28.先化简,再求值.(a+b)(a﹣b)+b(2a+b),其中a=1,b=﹣2.【解答】解:(a+b)(a﹣b)+b(2a+b)=a2﹣b2+2ab+b2=a2+2ab,将a=1,b=﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.29.先化简,再求值:(1+x)(1﹣x)+x(x+2),其中x .【解答】解:(1+x)(1﹣x)+x(x+2)=1﹣x2+x2+2x=1+2x,当x 时,原式=1 1+1=2.30.先化简,再求值:(2+a)(2﹣a)+a(a+1),其中a 4.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a 4时,原式=4 4.31.先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y .【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y 时,原式=12﹣2 0.33.先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x 1.【解答】解:原式=(x+2)(3x﹣2﹣2x)=(x+2)(x﹣2)=x2﹣4,当x 1时,原式=( 1)2﹣4=﹣2 .。

初中中考数学专题03 分式与二次根式(原卷版)

初中中考数学专题03 分式与二次根式(原卷版)

2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题03 分式与二次根式一、选择题1.(2024甘肃威武)计算:4222a b a b a b -=--( ) A. 2B. 2a b -C. 22a b -D. 2a b a b -- 2. (2024天津市)计算3311x x x ---的结果等于( ) A. 3 B. x C. 1x x - D. 231x - 3. (2024河北省)已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy -,则A =( ) A. x B. y C. x y + D. x y -4. (2024黑龙江绥化)m 的取值范围是( ) A. 23m ≤ B. 32m ≥- C. 32m ≥ D. 23m ≤-5. (2024四川乐山)已知12x <<2x -的结果为( ) A. 1- B. 1 C. 23x - D. 32x -6. (2024湖南省) )A. B. C. 14 D.7. (2024江苏盐城),设其面积为2cm S ,则S 在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和58. (2024重庆市B )的值应在( ) A. 8和9之间 B. 9和10之间C. 10和11之间D. 11和12之间9. (2024重庆市A )已知m =m 的范围是( ) A. 23m <<B. 34m <<C. 45m <<D. 56m << 二、填空题1. (2024吉林省)当分式11x +的值为正数时,写出一个满足条件的x 的值为______.2. (2024北京市)x 的取值范围是_________.3. (2024黑龙江齐齐哈尔)在函数12y x =++中,自变量x 的取值范围是______. 4. (2024湖北省)计算:111m m m +=++______.5. (2024四川德阳)__________.6. (2024贵州省)________.7. (2024山东威海)=________.8. (2024天津市)计算)11的结果为___.9. (2024上海市)1=,则x =___________.10. (2024山东威海)计算:2422x x x+=--________. 11. (2024黑龙江绥化)计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭_________. 三、解答题1. (2024江苏连云港)下面是某同学计算21211m m ---的解题过程: 解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-① (1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.2. (2024甘肃威武).3. (2024北京市)已知10a b --=,求代数式()223232a b ba ab b -+-+值. 4. (2024甘肃临夏)化简:21111a a a a a +⎛⎫++÷ ⎪--⎝⎭. 5. (2024江苏苏州) 先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--⎝⎭.其中3x =-. 6. (2024四川达州)先化简:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.7. (2024湖南省)先化简,再求值:22432x x x x x -⋅++,其中3x =. 8. (2024深圳)先化简,再求值: 2221111a a a a -+⎛⎫-÷ ⎪++⎝⎭,其中 21a =+ 9. (2024山东烟台)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.。

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④一.分式方程的应用(共1小题)1.(2023•济宁)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用15万元购买A型充电桩与用20万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A,B型充电桩,购买总费用不超过26万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?二.反比例函数与一次函数的交点问题(共1小题)2.(2023•聊城)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,4),B(a,﹣1)两点.(1)求反比例函数和一次函数的表达式;(2)点P(n,0)在x轴负半轴上,连接AP,过点B作BQ∥AP,交y=的图象于点Q,连接PQ.当BQ=AP时,求n的值.三.反比例函数综合题(共1小题)3.(2023•枣庄)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A (m,1),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)设直线AB与x轴交于点C,若P(0,a)为y轴上的一动点,连接AP,CP,当△APC的面积为时,求点P的坐标.四.二次函数综合题(共1小题)4.(2023•济宁)如图,直线y=﹣x+4交x轴于点B,交y轴于点C,对称轴为的抛物线经过B,C两点,交x轴负半轴于点A,P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y 轴于点D.(1)求抛物线的解析式;(2)若,当m为何值时,四边形CDNP是平行四边形?(3)若,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m的值;若不存在,请说明理由.五.全等三角形的判定与性质(共1小题)5.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED =∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.六.菱形的性质(共1小题)6.(2023•滨州)如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为(2,2),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.(1)求S关于x的函数解析式;(2)当x取何值时,S的值最大?请求出最大值.七.切线的判定与性质(共1小题)7.(2023•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,∠ADC的平分线DE交AC于点E.以AD上的点O为圆心,OD为半径作⊙O,恰好过点E.(1)求证:AC是⊙O的切线;(2)若CD=12,tan∠ABC=,求⊙O的半径.八.圆的综合题(共1小题)8.(2023•滨州)如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC 的外接圆交于点D.(1)求证:S△ABF:S△ACF=AB:AC;(2)求证:AB:AC=BF:CF;(3)求证:AF2=AB•AC﹣BF•CF;(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)九.作图—复杂作图(共1小题)9.(2023•滨州)(1)已知线段m,n,求作Rt△ABC,使得∠C=90°,CA=m,CB=n;(请用尺规作图,保留作图痕迹,不写作法)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明)一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•聊城)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B 的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内),求明珠大剧院到龙堤BC的距离.(结果精确到1m,参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)一十一.频数(率)分布直方图(共1小题)11.(2023•聊城)某中学把开展课外经典阅读活动作为一项引领学生明是非、知荣辱、立志向、修言行的德育举措.为了调查活动开展情况,需要了解全校2000名学生一周的课外经典阅读时间.从本校学生中随机抽取100名进行调查,将调查的一周课外经典阅读的平均时间x(h)分为5组:①1≤x<2;②2≤x<3;③3≤x<4;④4≤x<5;⑤5≤x <6,并将调查结果用如图所示的统计图描述.根据以上信息,解答下列问题:(1)本次调查中,一周课外经典阅读的平均时间的众数和中位数分别落在第 组和第 组(填序号);一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为 ;估计全校一周课外经典阅读的平均时间达到4小时的学生有 人;(2)若把各组阅读时间的下限与上限的中间值近似看作该组的平均阅读时间,估计这100名学生一周课外经典阅读的平均时间是多少?(3)若把一周课外经典阅读的平均时间达到4小时的人数百分比超过40%,作为衡量此次开展活动成功的标准,请你评价此次活动,并提出合理化的建议.一十二.列表法与树状图法(共1小题)12.(2023•枣庄)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群;A清洁与卫生,B整理与收纳,C家用器具使用与维护,D烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了 名学生,其中选择“C家用器具使用与维护”的女生有 名,“D烹饪与营养”的男生有 名;(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④参考答案与试题解析一.分式方程的应用(共1小题)1.(2023•济宁)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用15万元购买A型充电桩与用20万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A,B型充电桩,购买总费用不超过26万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?【答案】见试题解答内容【解答】解:(1)设A型充电桩的单价为x万元,则B型充电桩的单价少(x+0.3)万元,根据题意得=,解得x=0.9,经检验x=0.9是原方程的解,x+0.3=1.2.答:A型充电桩的单价为0.9万元,则B型充电桩的单价为1.2万元;(2)设购买A型充电桩m个,则购买B型充电桩(25﹣m)个,根据题意,得:,解得:≤m≤.∵m为整数,∴m=14,15,16.∴该停车场有3种购买机床方案,方案一:购买14个A型充电桩、11个B型充电桩;方案二:购买15个A型充电桩、10个B型充电桩;方案三:购买16个A型充电桩、9个B型充电桩.∵A型机床的单价低于B型机床的单价,∴购买方案三总费用最少,最少费用=16×0.9+1.2×9=25.2(万元).二.反比例函数与一次函数的交点问题(共1小题)2.(2023•聊城)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,4),B(a,﹣1)两点.(1)求反比例函数和一次函数的表达式;(2)点P(n,0)在x轴负半轴上,连接AP,过点B作BQ∥AP,交y=的图象于点Q,连接PQ.当BQ=AP时,求n的值.【答案】(1)反比例函数为y=﹣,B(4,﹣1),一次函数为y=﹣x+3;(2)n=﹣.【解答】解:(1)反比例函数y=的图象过A(﹣1,4),B(a,﹣1)两点,∴m=﹣1×4=a•(﹣1),∴m=﹣4,a=4,∴反比例函数为y=﹣,B(4,﹣1),把A、B的坐标代入y=kx+b得,解得,∴一次函数为y=﹣x+3;(2)∵A(﹣1,4),B(4,﹣1),P(n,0),BQ∥AP,BQ=AP,∴四边形APQB是平行四边形,∴点A向左平移﹣1﹣n个单位,向下平移4个单位得到P,∴点B(4,﹣1)向左平移﹣1﹣n个单位,向下平移4个单位得到Q(5+n,﹣5),∵点Q在y=﹣上,∴5+n=,解得n=﹣.三.反比例函数综合题(共1小题)3.(2023•枣庄)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A (m,1),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)设直线AB与x轴交于点C,若P(0,a)为y轴上的一动点,连接AP,CP,当△APC的面积为时,求点P的坐标.【答案】(1)一次函数的表达式为y=x﹣1,该函数的图象见解答;(2)x<﹣2或0<x<4;(3)点P的坐标为(0,)或(0,﹣).【解答】解:(1)∵反比例函数y=的图象经过A(m,1),B(﹣2,n)两点,∴1=,n==﹣2,解得:m=4,∴A(4,1),B(﹣2,﹣2),将A(4,1),B(﹣2,﹣2)代入y=kx+b,得,解得:,∴一次函数的表达式为y=x﹣1,该函数的图象如图所示:(2)由图可得,不等式kx+b﹣<0的解集范围是x<﹣2或0<x<4;(3)设直线AB交x轴于C,交y轴于D,在y=x﹣1中,当x=0时,y=﹣1,∴D(0,﹣1),当y=0时,得x﹣1=0,解得:x=2,∴C(2,0),∴OC=2,∵P(0,a),A(4,1),∴PD=|a+1|,∵S△APC=,∴|a+1|•(4﹣2)=,解得:a=或﹣,∴点P的坐标为(0,)或(0,﹣).四.二次函数综合题(共1小题)4.(2023•济宁)如图,直线y=﹣x+4交x轴于点B,交y轴于点C,对称轴为的抛物线经过B,C两点,交x轴负半轴于点A,P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y 轴于点D.(1)求抛物线的解析式;(2)若,当m为何值时,四边形CDNP是平行四边形?(3)若,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m的值;若不存在,请说明理由.【答案】(1)y=﹣x2+3x+4;(2)当m为时,四边形CDNP是平行四边形;(3)存在这样的m值,使MN=2ME,此时m的值为或.【解答】解:(1)在直线y=﹣x+4中,当x=0时,y=4,当y=0时,x=4,∴点B(4,0),点C(0,4),设抛物线的解析式为,把点B(4,0),点C(0,4)代入可得:,解得:,∴抛物线的解析式为y==﹣x2+3x+4;(2)由题意,P(m,﹣m2+3m+4),∴PN=﹣m2+3m+4,当四边形CDNP是平行四边形时,PN=CD,∴OD=﹣m2+3m+4﹣4=﹣m2+3m,∴D(0,m2﹣3m)N(m,0),设直线MN的解析式为,把N(m,0)代入可得,解得:k1=3﹣m,∴直线MN的解析式为y=(3﹣m)x+m2﹣3m,又∵过点P作x轴的平行线交抛物线于另一点M,且抛物线对称轴为,∴M(3﹣m,﹣m2+3m+4),∴(3﹣m)2+m2﹣3m=﹣m2+3m+4,解得m1=(不合题意,舍去),m2=;∴当m为时,四边形CDNP是平行四边形;(3)存在,理由如下:∵对称轴为x=,设P点坐标为(m,﹣m2+3m+4),∴M点横坐标为:×2﹣m=3﹣m,∴N(m,0),M(3﹣m,﹣m2+3m+4),①如图1,∵MN=2ME,即E是MN的中点,点E在对称轴x=上,∴E(,),又点E在直线BC:y=﹣x+4,代入得:=﹣+4,解得:m=或(舍去),故此时m的值为.②如图2,设E点坐标为(n,﹣n+4),N(m,0),M(3﹣m,﹣m2+3m+4),∵MN=2ME,∴0﹣(﹣m2+3m+4)=2(﹣m2+3m+4+n﹣4)①,∴3﹣m﹣m=2(n﹣3+m)②,联立①②并解得:m=(舍去)或,综上所述,m的值为或.五.全等三角形的判定与性质(共1小题)5.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED =∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.【答案】(1)证明过程见解答;(2).【解答】(1)证明:∵∠B=∠AED=∠C,∠AEC=∠B+∠BAE=∠AED+∠CED,∴∠BAE=∠CED,在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AE=ED,∴∠EAD=∠EDA;(2)解:∵∠AED=∠C=60°,AE=ED,∴△AED为等边三角形,∴AE=AD=ED=4,过A点作AF⊥ED于F,∴EF=ED=2,∴AF=,∴S△AED=ED•AF=.六.菱形的性质(共1小题)6.(2023•滨州)如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为(2,2),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.(1)求S关于x的函数解析式;(2)当x取何值时,S的值最大?请求出最大值.【答案】(1)S=(0≤x≤4),(2)当x=2时,S有最大值,最大值为2.【解答】解:(1)如图,过点A作AG⊥OC于点G,连接AC,∵顶点A的坐标为(2,2),∴OA=,OG=2,AG=2,∴cos∠AOG==,∴∠AOG=60°,∵四边形OABC是菱形,∴∠BOC=∠AOB=30°,AC⊥OB,AO=OC,∴△AOC是等边三角形,∴∠ACO=60°,∵DE⊥OB,∴DE∥AC,∴∠EDO=∠ACO=60°,∴△EOD是等边三角形,∴ED=OD=x,∵DF∥OB,∴△CDF∽△COB,∴,∵A(2,2),AO=4,则B(6,2),∴OB=,∴=,∴DF=(4﹣x),∴S==,∴S=(0≤x≤4),(2)∵S==(0≤x≤4),∴当x=2时,S有最大值,最大值为2.七.切线的判定与性质(共1小题)7.(2023•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,∠ADC的平分线DE交AC于点E.以AD上的点O为圆心,OD为半径作⊙O,恰好过点E.(1)求证:AC是⊙O的切线;(2)若CD=12,tan∠ABC=,求⊙O的半径.【答案】(1)见解析;(2)15﹣3.【解答】(1)证明:连接OE,∵OD=OE,∴∠OED=∠ODE,∵DE平分∠ADC,∴∠CDE=∠ODE,∴∠OED=∠CDE,∴OE∥CD,∵∠ACB=90°,∴∠AEO=90°,∴OE⊥AC,∴AC是⊙O的切线;(2)解:过D作DF⊥AB,∵AD平分∠BAC,DF⊥AB,∠ACB=90°,∴CD=DF,∵CD=12,tan∠ABC=,∴BF==16,∴BD==20,∴BC=CD+BD=32,∴AC=BC•tan∠ABC=24,∴=12,∵OE∥CD,∴△AEO∽△ACD,∴,∴,解得EO=15﹣3,∴⊙O的半径为15﹣3.八.圆的综合题(共1小题)8.(2023•滨州)如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC 的外接圆交于点D.(1)求证:S△ABF:S△ACF=AB:AC;(2)求证:AB:AC=BF:CF;(3)求证:AF2=AB•AC﹣BF•CF;(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)【答案】见解答.【解答】(1)解:过点F作FH⊥AC,FG⊥AB,垂足分别为H、G,如图:∵点E是△ABC的内心,∴AD是∠BAC的平分线,∵FH⊥AC,FG⊥AB,∴FG=FH,∵S△ABF,S△ACF,∴S△ABF:S△ACF=AB:AC.(2)证明:过点A作AM⊥BC于点M,如图,∵S△ABF=,S△ACF=,∴S△ABF:S△ACF=BF:FC,由(1)可得S△ABF:S△ACF=AB:AC.∴AB:AC=BF:FC,(3)证明:连接DB、DC,如图,∵,,∴∠ACF=∠BDF,∠FAC=∠FBD,∴△BFD∽△AFC,∴BF•CF=AF•DF,∵,∴∠FBA=∠ADC,又∠BAD=∠DAC,∴△ABF∽△ADC,∴,∴AB•AC=AD•AF,∴AB•AC=(AF+DF)•AF=AF2+AF•DF,∴AF2=AB•AC﹣BF•CF.(4)连接BE,如图,∵点E是△ABC的内心,∴BE是∠ABC的平分线,∴∠ABE=∠FBE,∵∠CAB=∠CAD=∠BAD,∠ADB=∠BDF,∴△ABD∽△BFD,∴,∴DB2=DA•DF,∵∠BED=∠BAE+∠ABE=+,∠DBE=∠DBC+∠FBE=∠DAC+∠FBE=+,∴∠BED=∠DBE,∴DB=DE,∴DE2=DA•DF,九.作图—复杂作图(共1小题)9.(2023•滨州)(1)已知线段m,n,求作Rt△ABC,使得∠C=90°,CA=m,CB=n;(请用尺规作图,保留作图痕迹,不写作法)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明)【答案】(1)见解答;(2)见解答.【解答】解:(1)如图:Rt△ABC即为所求;(2)已知:Rt△ABC,∠ACB=90°,CE是AB边上的中线,求证:CE=AB,证明:延长CE到D,使得DE=CE,∵CD是AB边上的中线,∴BE=AE,∴四边形ACBD是平行四边形,∵∠BCA=90°,∴四边形ABCD是矩形,∴AB=CD,∴CE=CD=AB.一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•聊城)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B 的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内),求明珠大剧院到龙堤BC的距离.(结果精确到1m,参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)【答案】明珠大剧院到龙堤BC的距离约为1320m.【解答】解:如图,过P作PE⊥BC于E,过A作AD⊥PE于D,则四边形ADEB是矩形,∴DE=AB=520m,设PD=xm,在Rt△APD中,∵∠PAD=68.2°,∴AD=≈m,∴BE=AD=m,∴PE=PD+DE=(x+520)m,CE=BC﹣BE=(1200﹣)m,在Rt△PCE中,tan C=tan56.31°=,解得x=800,∴PD=800m,∴PE=PD+DE=800+520=1320(m),答:明珠大剧院到龙堤BC的距离约为1320m.一十一.频数(率)分布直方图(共1小题)11.(2023•聊城)某中学把开展课外经典阅读活动作为一项引领学生明是非、知荣辱、立志向、修言行的德育举措.为了调查活动开展情况,需要了解全校2000名学生一周的课外经典阅读时间.从本校学生中随机抽取100名进行调查,将调查的一周课外经典阅读的平均时间x(h)分为5组:①1≤x<2;②2≤x<3;③3≤x<4;④4≤x<5;⑤5≤x <6,并将调查结果用如图所示的统计图描述.根据以上信息,解答下列问题:(1)本次调查中,一周课外经典阅读的平均时间的众数和中位数分别落在第 ③ 组和第 ③ 组(填序号);一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为 28% ;估计全校一周课外经典阅读的平均时间达到4小时的学生有 560 人;(2)若把各组阅读时间的下限与上限的中间值近似看作该组的平均阅读时间,估计这100名学生一周课外经典阅读的平均时间是多少?(3)若把一周课外经典阅读的平均时间达到4小时的人数百分比超过40%,作为衡量此次开展活动成功的标准,请你评价此次活动,并提出合理化的建议.【答案】(1)③,③,28%,560;(2)估计这100名学生一周课外经典阅读的平均时间为3.4小时;(3)①学校多举办经典阅读活动;②开设经典阅读知识竞赛,提高学生阅读兴趣(答案不唯一).【解答】解:(1)∵第③组的人数最多,∴一周课外经典阅读的平均时间的众数落在第③组;∵抽取100名进行调查,第50名、51名学生均在第③组,∴一周课外经典阅读的平均时间的中位数落在第③组;由题意得:(20+8)÷100×100%=28%,∴一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为28%;2000×28%=560(人),即估计全校一周课外经典阅读的平均时间达到4小时的学生有560人;故答案为:③,③,28%,560;(2)由题意可知,每组的平均阅读时间分别为1.5小时,2.5小时,3.5小时,4.5小时,5.5小时,∴=3.4(小时),答:估计这100名学生一周课外经典阅读的平均时间为3.4小时;(3)一周课外经典阅读的平均时间达到4小时的学生的人数的百分比为28%,∵28%<40%,∴此次开展活动不成功;建议:①学校多举办经典阅读活动;②开设经典阅读知识竞赛,提高学生阅读兴趣(答案不唯一).一十二.列表法与树状图法(共1小题)12.(2023•枣庄)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群;A清洁与卫生,B整理与收纳,C家用器具使用与维护,D烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了 20 名学生,其中选择“C家用器具使用与维护”的女生有 2 名,“D烹饪与营养”的男生有 1 名;(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.【答案】(1)20;2;1;(2)见解答;(3).【解答】解:(1)3÷15%=20(名),所以本次调查中,一共调查了20名学生,“C家用器具使用与维护”的女生数为25%×20﹣3=2(名),“D烹饪与营养”的男生数为20﹣3﹣10﹣5﹣1=1(名);故答案为:20;2;1;(2)选择“D烹饪与营养”的人数所占的百分比为:×100%=10%,补全上面的条形统计图和扇形统计图为:(3)画树状图为:共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果数为12,所以所选的学生恰好是一名男生和一名女生的概率==.。

广东省广州市三年中考数学真题分类汇编-03解答题(提升题)知识点分类

广东省广州市三年中考数学真题分类汇编-03解答题(提升题)知识点分类

广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共1小题)1.(2023•广州)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y2(元)与该水果的质量x(千克)之间的函数解析式为y2=10x (x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?二.反比例函数综合题(共1小题)2.(2023•广州)已知点P(m,n)在函数y=﹣(x<0)的图象上.(1)若m=﹣2,求n的值;(2)抛物线y=(x﹣m)(x﹣n)与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.①m为何值时,点E到达最高处;②设△GMN的外接圆圆心为C,⊙C与y轴的另一个交点为F,当m+n≠0时,是否存在四边形FGEC为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.三.二次函数综合题(共2小题)3.(2022•广州)已知直线l:y=kx+b经过点(0,7)和点(1,6).(1)求直线l的解析式;(2)若点P(m,n)在直线l上,以P为顶点的抛物线G过点(0,﹣3),且开口向下.①求m的取值范围;②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点Q′也在G上时,求G在≤x≤+1的图象的最高点的坐标.4.(2021•广州)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.四.全等三角形的判定与性质(共1小题)5.(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.五.四边形综合题(共3小题)6.(2023•广州)如图,在正方形ABCD中,E是边AD上一动点(不与点A,D重合).边BC关于BE对称的线段为BF,连接AF.(1)若∠ABE=15°,求证:△ABF是等边三角形;(2)延长F A,交射线BE于点G.①△BGF能否为等腰三角形?如果能,求此时∠ABE的度数;如果不能,请说明理由;②若,求△BGF面积的最大值,并求此时AE的长.7.(2022•广州)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且BE=DF.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.8.(2021•广州)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.六.圆的综合题(共2小题)9.(2023•广州)如图,在平面直角坐标系xOy中,点A(﹣2,0),B(0,2),所在圆的圆心为O.将向右平移5个单位,得到(点A平移后的对应点为C).(1)点D的坐标是,所在圆的圆心坐标是;(2)在图中画出,并连接AC,BD;(3)求由,BD,,CA首尾依次相接所围成的封闭图形的周长.(结果保留π)10.(2021•广州)如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△P AO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△P AO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C 的半径.七.作图—基本作图(共1小题)11.(2021•广州)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.八.相似形综合题(共1小题)12.(2023•广州)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD∽△ACE;②若tan∠BAC=,求cos∠DCE的值.九.解直角三角形(共1小题)13.(2022•广州)如图,AB是⊙O的直径,点C在⊙O上,且AC=8,BC=6.(1)尺规作图:过点O作AC的垂线,交劣弧于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O到AC的距离及sin∠ACD的值.一十.解直角三角形的应用-仰角俯角问题(共1小题)14.(2022•广州)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD=1.6m,BC=5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE=1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.一十一.频数(率)分布直方图(共1小题)15.(2022•广州)某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.频数分布表运动时间t/min频数频率30≤t<6040.160≤t<9070.17590≤t<120a0.35120≤t<15090.225150≤t<1806b合计n1请根据图表中的信息解答下列问题:(1)频数分布表中的a=,b=,n=;(2)请补全频数分布直方图;(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•广州)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y2(元)与该水果的质量x(千克)之间的函数解析式为y2=10x (x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?【答案】(1)y1与x之间的函数解析式为y1=;(2)在甲商店购买更多一些.【解答】解:(1)当0≤x≤5时,设y1与x之间的函数解析式为y1=kx(k≠0),把(5,75)代入解析式得:5k=75,解得k=15,∴y1=15x;当x>5时,设y1与x之间的函数解析式为y1=mx+n(m≠0),把(5,75)和(10,120)代入解析式得,解得,∴y1=9x+30,综上所述,y1与x之间的函数解析式为y1=;(2)在甲商店购买:9x+30=600,解得x=63,∴在甲商店600元可以购买63千克水果;在乙商店购买:10x=600,解得x=60,∴在乙商店600元可以购买60千克,∵63>60,∴在甲商店购买更多一些.二.反比例函数综合题(共1小题)2.(2023•广州)已知点P(m,n)在函数y=﹣(x<0)的图象上.(1)若m=﹣2,求n的值;(2)抛物线y=(x﹣m)(x﹣n)与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.①m为何值时,点E到达最高处;②设△GMN的外接圆圆心为C,⊙C与y轴的另一个交点为F,当m+n≠0时,是否存在四边形FGEC为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.【答案】(1)1;(2)①m=﹣;②假设存在,E(﹣,﹣),或(,﹣).【解答】解:(1)把m=﹣2代入y=﹣(x<0)得n=﹣=1;故n的值为1;(2)①在y=(x﹣m)(x﹣n)中,令y=0,则(x﹣m)(x﹣n)=0,解得x=m或x=n,∴M(m,0),N(n,0),∵点P(m,n)在函数y=﹣(x<0)的图象上,∴mn=﹣2,令x=,得y=(x﹣m)(x﹣n)=﹣(m﹣n)2=﹣2﹣(m+n)2≤﹣2,即当m+n=0,且mn=﹣2,则m2=2,解得:m=﹣(正值已舍去),即m=﹣时,点E到达最高处;②假设存在,理由:对于y=(x﹣m)(x﹣n),当x=0时,y=mn=﹣2,即点G(0,﹣2),由①得M(m,0),N(n,0),G(0,﹣2),E(,﹣(m﹣n)2),对称轴为直线x=,由点M(m,0)、G(0,﹣2)的坐标知,tan∠OMG==,作MG的中垂线交MG于点T,交y轴于点S,交x轴于点K,则点T(m,﹣1),则tan∠MKT=﹣m,则直线TS的表达式为:y=﹣m(x﹣m)﹣1.当x=时,y=﹣m(x﹣m)﹣1=﹣,则点C的坐标为:(,﹣).由垂径定理知,点C在FG的中垂线上,则FG=2(y C﹣y G)=2×(﹣+2)=3.∵四边形FGEC为平行四边形,则CE=FG=3=y C﹣y E=﹣﹣y E,解得:y E=﹣,即﹣(m﹣n)2=﹣,且mn=﹣2,则m+n=,∴E(﹣,﹣),或(,﹣).三.二次函数综合题(共2小题)3.(2022•广州)已知直线l:y=kx+b经过点(0,7)和点(1,6).(1)求直线l的解析式;(2)若点P(m,n)在直线l上,以P为顶点的抛物线G过点(0,﹣3),且开口向下.①求m的取值范围;②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点Q′也在G上时,求G在≤x≤+1的图象的最高点的坐标.【答案】(1)y=﹣x+7;(2)①m<10且m≠0;②(﹣2,9)或(2,5).【解答】解:(1)将点(0,7)和点(1,6)代入y=kx+b,∴,解得,∴y=﹣x+7;(2)①∵点P(m,n)在直线l上,∴n=﹣m+7,设抛物线的解析式为y=a(x﹣m)2+7﹣m,∵抛物线经过点(0,﹣3),∴am2+7﹣m=﹣3,∴a=,∵抛物线开口向下,∴a<0,∴a=<0,∴m<10且m≠0;②∵抛物线的对称轴为直线x=m,∴Q点与Q'关于x=m对称,∴Q点的横坐标为m+,联立方程组,整理得ax2+(1﹣2ma)x+am2﹣m=0,∵P点和Q点是直线l与抛物线G的交点,∴m+m+=2m﹣,∴a=﹣2,∴y=﹣2(x﹣m)2+7﹣m,∴﹣2m2+7﹣m=﹣3,解得m=2或m=﹣,当m=2时,y=﹣2(x﹣2)2+5,此时抛物线的对称轴为直线x=2,图象在≤x≤上的最高点坐标为(2,5);当m=﹣时,y=﹣2(x+)2+,此时抛物线的对称轴为直线x=﹣,图象在﹣2≤x≤﹣1上的最高点坐标为(﹣2,9);综上所述:G在≤x≤+1的图象的最高点的坐标为(﹣2,9)或(2,5).4.(2021•广州)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.【答案】(1)点(2,4)不在抛物线上;(2)(2,5);(3)x顶点<﹣或x顶点>或x顶点=1.【解答】解:(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=4﹣2+3=5,∴点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),化简得(,),顶点移动到最高处,即是顶点纵坐标最大,而=﹣(m﹣3)2+5,∴m=3时,纵坐标最大,即是顶点移动到了最高处,此时该抛物线解析式为y=x2﹣4x+9,顶点坐标为:(2,5);(3)设直线EF解析式为y=kx+b,将E(﹣1,﹣1)、F(3,7)代入得:,解得,∴直线EF的解析式为y=2x+1,由得:或,∴直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),而(2,5)在线段EF上,∴若该抛物线与线段EF只有一个交点,则(m+1,2m+3)不在线段EF上,或(2,5)与(m+1,2m+3)重合,∴m+1<﹣1或m+1>3或m+1=2(此时2m+3=5),∴此时抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点===1.四.全等三角形的判定与性质(共1小题)5.(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.【答案】证明见解析.【解答】证明:∵B是AD的中点,∴AB=BD,∵BC∥DE,∴∠ABC=∠D,在△ABC和△BDE中,,∴△ABC≌△BDE(SAS),∴∠C=∠E.五.四边形综合题(共3小题)6.(2023•广州)如图,在正方形ABCD中,E是边AD上一动点(不与点A,D重合).边BC关于BE对称的线段为BF,连接AF.(1)若∠ABE=15°,求证:△ABF是等边三角形;(2)延长F A,交射线BE于点G.①△BGF能否为等腰三角形?如果能,求此时∠ABE的度数;如果不能,请说明理由;②若,求△BGF面积的最大值,并求此时AE的长.【答案】(1)见解析;(2)①22.5°;②;.【解答】(1)证明:由轴对称的性质得到BF=BC,∵四边形ABCD是正方形,∴∠ABC=90°,∵∠ABE=15°,∴∠CBE=75°,∵BC关于BE对称的线段为BF,∴∠FBE=∠CBE=75°,∴∠ABF=∠FBE﹣∠ABE=60°,∴△ABF是等边三角形;(2)解:①能,∵边BC关于BE对称的线段为BF,∴BC=BF,∵四边形ABCD是正方形,∴BC=AB,∴BF=BC=BA,∵E是边AD上一动点,∴BA<BE<BG,∴点B不可能是等腰三角形BGF的顶点,若点F是等腰三角形BGF的顶点,则有∠FGB=∠FBG=∠CBG,此时E与D重合,不合题意,∴只剩下GF=GB了,连接CG交AD于H,∵BC=BF,∠CBG=∠FBG,BG=BG,∴△CBG≌△FBG(SAS),∴FG=CG,∴BG=CG,∴△BGF为等腰三角形,∵BA=BC=BF,∴∠BF A=∠BAF,∵△CBG≌△FBG,∴∠BFG=∠BCG,∵AD∥BC,∴∠AHG=∠BCG,∴∠BAF+∠HAG=∠AHG+∠HAG=180°﹣∠BAD=90°,∴∠FGC=180°﹣∠HAG﹣∠AHG=90°,∴∠BGF=∠BGC==45°,∵GB=GC,∴∠GBC=∠GCB=(180°﹣∠BGC)=67.5°,∴∠ABE=∠ABC﹣∠GBC=90°﹣67.5°=22.5°;②由①知,△CBG≌△FBG,要求△BGF面积的最大值,即求△BGC面积的最大值,在△GBC中,底边BC是定值,即求高的最大值即可,如图2,过G作GP⊥BC于P,连接AC,取AC的中点M,连接GM,作MN⊥BC于N,设AB=2x,则AC=2x,由①知∠AGC=90°,M是AC的中点,∴GM==x,MN==x,∴PG≤GM+MN=()x,当G,M,N三点共线时,取等号,∴△BGF面积的最大值==(1)×=;如图3,设PG与AD交于Q,则四边形ABPQ是矩形,∴AQ=PB=x,PQ=AB=2x,∴QM=MP=x,GM=x,∴,∵QE+AE=AQ=x,∴,∴=2()x=2(×()=.7.(2022•广州)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且BE=DF.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.【答案】(1)6(2)①7;②是,最小值为12.【解答】解:(1)过点D作DH⊥AB交BA的延长线于H,如图:∵四边形ABCD是菱形,∴AD=AB=6,∵∠BAD=120°,∴∠DAH=60°,在Rt△ADH中,DH=AD•sin∠DAH=6×=3,AH=AD•cos∠DAH=6×=3,∴BD===6;(2)①设CE⊥AB交AB于M点,过点F作FN⊥AB交BA的延长线于N,如图:菱形ABCD中,∵AB=BC=CD=AD=6,AD∥BC,∠BAD=120°,∴∠ABC+∠BAD=180°,∴∠ABC=180°﹣∠BAD=60°,在Rt△BCM中,BM=BC•cos∠ABC=6×=3,∵BD是菱形ABCD的对角线,∴∠DBA=ABC=30°,在Rt△BEM中,ME=BM•tan∠DBM=3×=,BE===2,∵BE=DF,∴DF=2,∴AF=AD﹣DF=4,在Rt△AFN中,∠F AN=180°﹣∠BAD=60°,∴FN=AF•sin∠F AN=4×=2,AN=AF•cos∠F AN=4×=2,∴MN=AB+AN﹣BM=6+2﹣3=5,∴S四边形ABEF=S△BEM+S梯形EMNF﹣S△AFN=EM•BM+(EM+FN)•MN﹣AN•FN=3+(+2)×5﹣2×2=+﹣2=7;②当四边形ABEF的面积取最小值时,CE+CF的值是最小,理由:设DF=x,则BE=DF=x,过点C作CH⊥AB于点H,过点F作FG⊥CH 于点G,过点E作EY⊥CH于点Y,作EM⊥AB于M点,过点F作FN⊥AB交BA的延长线于N,如图:∴EY∥FG∥AB,FN∥CH,∴四边形EMHY、FNHG是矩形,∴FN=GH,FG=NH,EY=MH,EM=YH,由①可知:ME=BE=x,BM=BE=x,AN=AF=(AD﹣DF)=3﹣x,FN=AF=,CH=BC=3,BH=BC=3,∴AM=AB﹣BM=6﹣x,AH=AB﹣BH=3,YH=ME=x,GH=FN=,EY=MH=BM﹣BH=x﹣3,∴CY=CH﹣YH=3﹣x,FG=NH=AN+AH=6﹣,CG=CH﹣GH=3﹣=x,∴MN=AB+AN﹣BM=6+3﹣x﹣x=9﹣2x,∴S四边形ABEF=S△BEM+S梯形EMNF﹣S△AFN=EM•BM+(EM+FN)•MN﹣AN•FN=x×x+(x+)•(9﹣2x)﹣(3﹣x)•=x2﹣x+9=(x﹣3)2+,∵>0,∴当x=3时,四边形ABEF的面积取得最小值,方法一:CE+CF=+•=+=+×=+×=+,∵(x﹣3)2≥0,当且仅当x=3时,(x﹣3)2=0,∴CE+CF=+≥12,当且仅当x=3时,CE+CF=12,即当x=3时,CE+CF的最小值为12,∴当四边形ABEF的面积取最小值时,CE+CF的值也最小,最小值为12.方法二:如图:将△BCD绕点B逆时针旋转60°至△BAG,连接CG,在Rt△BCG中,CG=2BC=12,∵==,∠CDF=∠GBE=60°,∴△BEG∽△DFC,∴==,即GE=CF,∴CE+CF=CE+GE≥CG=12,即当且仅当点C、E、G三点共线时,CE+CF的值最小,此时点E为菱形对角线的交点,BD中点,BE=3,DF=3,∴当四边形ABEF的面积取最小值时,CE+CF的值也最小,最小值为12.解法二:如图,在BD上截取DM,使得DM=2,在DA上取点F,连接DF,使得△DFM∽△BEC.则有CE=FM,作点M关于AD的对称点M′,∴CE+CF=FM+CF=(CF+FM)=(CF+FM′),∴C,F,M′共线时,最小,此时DF=3,可得CE+CF的值也最小,最小值为12.8.(2021•广州)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.【答案】见试题解答内容【解答】解:(1)证明:连接DF,CE,如图所示:,∵E为AB中点,∴AE=AF=AB,∴EF=AB=CD,∵四边形ABCD是菱形,∴EF∥CD,∴四边形DFEC是平行四边形.(2)作CH⊥BH,设AE=F A=m,如图所示,,∵四边形ABCD是菱形,∴CD∥EF,∴△CDG∽△FEG,∴,∴FG=2m,在Rt△CBH中,∠CBH=60°,BC=2,sin60°=,CH=,cos60°=,BH=1,在Rt△CFH中,CF=2+2m,CH=,FH=3+m,CF2=CH2+FH2,即(2+2m)2=()2+(3+m)2,整理得:3m2+2m﹣8=0,解得:m1=,m2=﹣2(舍去),∴.(3)G点轨迹为线段AG,证明:如图,(此图仅作为证明AG轨迹用),延长线段AG交CD于H,作HM⊥AB于M,作DN⊥AB于N,∵四边形ABCD是菱形,∴BF∥CD,∴△DHG∽△EGA,△HGC∽△AGF,∴,,∴,∵AE=AF,∴DH=CH=1,在Rt△ADN中,AD=2,∠DAB=60°.∴sin60°=,DN=.cos60°=,AN=1,在Rt△AHM中,HM=DN=,AM=AN+NM=AN+DH=2,tan∠HAM=,G点轨迹为线段AG.∴G点轨迹是线段AG.如图所示,作GH⊥AB,∵四边形ABCD为菱形,∠DAB=60°,AB=2,∴CD∥BF,BD=2,∴△CDG∽△FBG,∴,即BG=2DG,∵BG+DG=BD=2,∴BG=,在Rt△GHB中,BG=,∠DBA=60°,sin60°=,GH=,cos60°=,BH=,在Rt△AHG中,AH=2﹣=,GH=,AG2=()2+()2=,∴AG=.∴G点路径长度为.解法二:如图,连接AG,延长AG交CD于点W.∵CD∥BF,∴=,=,∴=,∵AF=AE,∴DW=CW,∴点G在AW上运动.下面的解法同上.六.圆的综合题(共2小题)9.(2023•广州)如图,在平面直角坐标系xOy中,点A(﹣2,0),B(0,2),所在圆的圆心为O.将向右平移5个单位,得到(点A平移后的对应点为C).(1)点D的坐标是(5,2),所在圆的圆心坐标是(5,0);(2)在图中画出,并连接AC,BD;(3)求由,BD,,CA首尾依次相接所围成的封闭图形的周长.(结果保留π)【答案】(1)(5,2)、(5,0);(2)见解答;(3)2π+10.【解答】解:(1)如下图,由平移的性质知,点D(5,2),所在圆的圆心坐标是(5,0),故答案为:(5,2)、(5,0);(2)在图中画出,并连接AC,BD,见下图;(3)和长度相等,均为×2πr=×2=π,而BD=AC=5,则封闭图形的周长=++2BD=2π+10.10.(2021•广州)如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△P AO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△P AO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C的半径.【答案】(1)A(﹣8,0),B(0,4);(2)S=2x+16(﹣8<x<0);(3)4.【解答】解:(1)∵直线y=x+4分别与x轴,y轴相交于A、B两点,∴当x=0时,y=4;当y=0时,x=﹣8,∴A(﹣8,0),B(0,4);(2)∵点P(x,y)为直线l在第二象限的点,∴P(x,),∴S△APO==2x+16(﹣8<x<0);∴S=2x+16(﹣8<x<0);(3)∵A(﹣8,0),B(0,4),∴OA=8,OB=4,在Rt△AOB中,由勾股定理得:AB=,在⊙C中,∵PQ是直径,∴∠POQ=90°,∵∠BAO=∠Q,∴tan Q=tan∠BAO=,∴,∴OQ=2OP,∴S△POQ=,∴当S△POQ最小时,则OP最小,∵点P在线段AB上运动,∴当OP⊥AB时,OP最小,∴S△AOB=,∴,∵sin Q=sin∠BAO,∴,∴,∴PQ=8,∴⊙C半径为4.七.作图—基本作图(共1小题)11.(2021•广州)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.【答案】(1)作图见解析部分.(2)证明见解析部分.【解答】(1)解:如图,图形如图所示.(2)证明:∵AC=AD,AF平分∠CAD,∴∠CAF=∠DAF,AF⊥CD,∵∠CAD=2∠BAC,∠BAD=45°,∴∠BAE=∠EAF=∠F AD=15°,∵∠ABC=∠AFC=90°,AE=EC,∴BE=AE=EC,EF=AE=EC,∴EB=EF,∠EAB=∠EBA=15°,∠EAF=∠EF A=15°,∴∠BEC=∠EAB+∠EBA=30°,∠CEF=∠EAF+∠EF A=30°,∴∠BEF=60°,∴△BEF是等边三角形.八.相似形综合题(共1小题)12.(2023•广州)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD∽△ACE;②若tan∠BAC=,求cos∠DCE的值.【答案】(1)作法、证明见解答;(2)①证明见解答;②cos∠DCE的值是.【解答】解:(1)如图1,作法:1.以点D为圆心,BC长为半径作弧,2.以点A为圆心,AC长为半径作弧,交前弧于点E,3.连接DE、AE,△ADE就是所求的图形.证明:∵四边形ABCD是菱形,∴AD=AB,∵DE=BC,AE=AC,∴△ADE≌△ABC(SSS),∴△ADE就是△ABC绕点A逆时针旋转得到图形.(2)①如图2,由旋转得AB=AD,AC=AE,∠BAC=∠DAE,∴=,∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∴△ABD∽△ACE.②如图2,延长AD交CE于点F,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵∠BAC=∠DAE,∴∠DAE=∠DAC,∵AE=AC,∴AD⊥CE,∴∠CFD=90°,设CF=m,CD=AD=x,∵=tan∠DAC=tan∠BAC=,∴AF=3CF=3m,∴DF=3m﹣x,∵CF2+DF2=CD2,∴m2+(3m﹣x)2=x2,∴解关于x的方程得x=m,∴CD=m,∴cos∠DCE===,∴cos∠DCE的值是.九.解直角三角形(共1小题)13.(2022•广州)如图,AB是⊙O的直径,点C在⊙O上,且AC=8,BC=6.(1)尺规作图:过点O作AC的垂线,交劣弧于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O到AC的距离及sin∠ACD的值.【答案】(1)详见解答;(2)点O到AC的距离为4,sin∠ACD=.【解答】解:(1)分别以A、C为圆心,大于AC为半径画弧,在AC的两侧分别相交于P、Q两点,画直线PQ交劣弧于点D,交AC于点E,即作线段AC的垂直平分线,由垂径定理可知,直线PQ一定过点O;(2)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,且AC=8,BC=6.∴AB==10,∵OD⊥AC,∴AE=CE=AC=4,又∵OA=OB,∴OE是△ABC的中位线,∴OE=BC=3,由于PQ过圆心O,且PQ⊥AC,即点O到AC的距离为3,连接OC,在Rt△CDE中,∵DE=OD﹣CE=5﹣3=2,CE=4,∴CD===2∴sin∠ACD===.一十.解直角三角形的应用-仰角俯角问题(共1小题)14.(2022•广州)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD=1.6m,BC=5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE=1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.【答案】(1)BC的长为8m;(2)旗杆AB的高度约为12.8m.【解答】解:(1)∵BC=5CD,CD=1.6m,∴BC=5×1.6=8(m),∴BC的长为8m;(2)若选择条件①:由题意得:=,∴=,∴AB=12.8,∴旗杆AB的高度为12.8m;若选择条件②:过点D作DF⊥AB,垂足为F,则DC=BF=1.6m,DF=BC=8m,在Rt△ADF中,∠ADF=54.46°,∴AF=DF•tan54.46°≈8×1.4=11.2(m),∴AB=AF+BF=11.2+1.6=12.8(m),∴旗杆AB的高度约为12.8m.一十一.频数(率)分布直方图(共1小题)15.(2022•广州)某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.频数分布表运动时间t/min频数频率30≤t<6040.160≤t<9070.17590≤t<120a0.35120≤t<15090.225150≤t<1806b合计n1请根据图表中的信息解答下列问题:(1)频数分布表中的a=14,b=0.15,n=40;(2)请补全频数分布直方图;(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.【答案】见试题解答内容【解答】解:(1)由题意可知,n=4÷0.1=40,∴a=40×0.35=14,b=6÷40=0.15,故答案为:14;0.15;40;(2)补全频数分布直方图如下:(3)480×=180(名),答:估计该校九年级学生平均每天体育运动时间不低于120min的学生人数为180名.。

广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.二元一次方程组的应用(共1小题)1.(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?二.一次函数综合题(共1小题)2.(2023•广东)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF 的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.三.二次函数的应用(共1小题)3.(2021•广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.四.二次函数综合题(共2小题)4.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B 两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.5.(2021•广东)已知二次函数y=ax2+bx+c的图象过点(﹣1,0),且对任意实数x,都有4x ﹣12≤ax2+bx+c≤2x2﹣8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.五.正方形的性质(共1小题)6.(2023•广东)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.六.圆的综合题(共2小题)7.(2023•广东)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.8.(2021•广东)如图,在四边形ABCD中,AB∥CD,AB≠CD,∠ABC=90°,点E、F 分别在线段BC、AD上,且EF∥CD,AB=AF,CD=DF.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.七.作图—复杂作图(共1小题)9.(2023•广东)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.八.翻折变换(折叠问题)(共1小题)10.(2021•广东)如图,边长为1的正方形ABCD中,点E为AD的中点.连接BE,将△ABE 沿BE折叠得到△FBE,BF交AC于点G,求CG的长.广东省2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.二元一次方程组的应用(共1小题)1.(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【答案】学生有7人,该书单价53元.【解答】解:设学生有x人,该书单价y元,根据题意得:,解得:.答:学生有7人,该书单价53元.二.一次函数综合题(共1小题)2.(2023•广东)综合运用如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕点O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F.(1)当旋转角∠COF为多少度时,OE=OF;(直接写出结果,不要求写解答过程)(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF 的面积分别记为S1与S2.设S=S1﹣S2,AN=n,求S关于n的函数表达式.【答案】(1)当旋转角为22.5°时,OE=OF;(2)FC的长为;(3)S关于n的函数表达式为.【解答】解:(1)当OE=OF时,在Rt△AOE和Rt△COF中,,∴Rt△AOE≌Rt△COF(HL),∴∠AOE=∠COF(即∠AOE=旋转角),∴2∠AOE=45°,∴∠COF=∠AOE=22.5°,∴当旋转角为22.5°时,OE=OF;(2)过点A作AG⊥x轴于点G,则有AG=3,OG=4,∴,∵四边形OABC是正方形,∴OC=OA=5,∠AOC=∠C=90°,又∵∠COF+∠FOA=90°,∠AOG+∠FOA=90°,∴∠COG=∠GOA,∴Rt△AOG∽Rt△FOC,∴,∴,∴FC的长为;(3)过点N作直线PQ⊥BC于点P,交OA于点Q,∵四边形OABC是正方形,∴∠BCA=∠OCA=45°,BC∥OA,又∠FON=45°,∴∠FCN=∠FON=45°,∴F、C、O、N四点共圆,∴∠OFN=∠OCA=45°,∴∠OFN=∠FON=45°,∴△FON是等腰直角三角形,∴FN=NO,∠FNO=90°,∴∠FNP+∠ONQ=90°,又∵∠NOQ+∠ONQ=90°,∴∠NOQ=∠FNP,∴△NOQ≌△FNP(AAS),∴NP=OQ,FP=NQ,∵四边形OQPC是矩形,∴CP=OQ,OC=PQ,∴,=,,=,=,=,∴,又∵△ANQ为等腰直角三角形,∴,∴,∴S关于n的函数表达式为.三.二次函数的应用(共1小题)3.(2021•广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.【答案】(1)猪肉粽每盒进价40元,豆沙粽每盒进价30元;(2)y关于x的函数解析式为y=﹣2x2+280x﹣8000(50≤x≤65),且最大利润为1750元.【解答】解:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a﹣10)元,则,解得:a=40,经检验a=40是方程的解,∴猪肉粽每盒进价40元,豆沙粽每盒进价30元,(2)由题意得,当x=50时,每天可售出100盒,当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100﹣2(x﹣50)]盒,∴y=x[100﹣2(x﹣50)]﹣40×[100﹣2(x﹣50)]=﹣2x2+280x﹣8000,配方,得:y=﹣2(x﹣70)2+1800,∵x<70时,y随x的增大而增大,∴当x=65时,y取最大值,最大值为:﹣2×(65﹣70)2+1800=1750(元).答:y关于x的函数解析式为y=﹣2x2+280x﹣8000(50≤x≤65),且最大利润为1750元.四.二次函数综合题(共2小题)4.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B 两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.【答案】(1)y=x2+2x﹣3;(2)△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,设P(m,0),则PA=1﹣m,∵y=x2+2x﹣3=(x+1)2﹣4,∴C(﹣1,﹣4),∴CF=4,∵PQ∥BC,∴△PQA∽△BCA,∴,即,∴QE=1﹣m,∴S△CPQ=S△PCA﹣S△PQA=PA•CF﹣PA•QE=(1﹣m)×4﹣(1﹣m)(1﹣m)=﹣(m+1)2+2,∵﹣3≤m≤1,∴当m=﹣1时S△CPQ有最大值2,∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).5.(2021•广东)已知二次函数y=ax2+bx+c的图象过点(﹣1,0),且对任意实数x,都有4x ﹣12≤ax2+bx+c≤2x2﹣8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.【答案】(1)二次函数解析式为y=x2﹣2x﹣3;(2)存在,N点的坐标为(1,0)或(5,0)或(,0)或(﹣2﹣,0).【解答】解:(1)不妨令4x﹣12=2x2﹣8x+6,解得:x1=x2=3,当x=3时,4x﹣12=2x2﹣8x+6=0.∴y=ax2+bx+c必过(3,0),又∵y=ax2+bx+c过(﹣1,0),∴,解得:,∴y=ax2﹣2ax﹣3a,又∵ax2﹣2ax﹣3a≥4x﹣12,∴ax2﹣2ax﹣3a﹣4x+12≥0,整理得:ax2﹣2ax﹣4x+12﹣3a≥0,∴a>0且Δ=0,∴(2a+4)2﹣4a(12﹣3a)=0,∴(a﹣1)2=0,∴a=1,b=﹣2,c=﹣3.∴该二次函数解析式为y=x2﹣2x﹣3.(2)存在,理由如下:令y=x2﹣2x﹣3中y=0,得x=3,则A点坐标为(3,0);令x=0,得y=﹣3,则点C坐标为(0,﹣3).设点M坐标为(m,m2﹣2m﹣3),N(n,0),根据平行四边形对角线性质以及中点坐标公式可得:①当AC为对角线时,,即,解得:m1=0(舍去),m2=2,∴n=1,即N1(1,0).②当AM为对角线时,,即,解得:m1=0(舍去),m2=2,∴n=5,即N2(5,0).③当AN为对角线时,,即,解得:m1=1+,m2=1﹣,∴n=或﹣2﹣,∴N3(,0),N4(﹣2﹣,0).综上所述,N点坐标为(1,0)或(5,0)或(,0)或(﹣2﹣,0).五.正方形的性质(共1小题)6.(2023•广东)综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板.步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC与纸盒上∠A1B1C1的大小关系;(2)证明(1)中你发现的结论.【答案】(1)∠ABC=∠A1B1C1;(2)证明过程见解答.【解答】解:(1)∠ABC=∠A1B1C1;(2)∵A1B1为正方形对角线,∴∠A1B1C1=45°,设每个方格的边长为1,则AB==,AC=BC==,∵AC2+BC2=AB2,∴由勾股定理的逆定理得△ABC是等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠A1B1C1.六.圆的综合题(共2小题)7.(2023•广东)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.【答案】(1)证明过程详见解答;(2)①证明过程详见解答;②.【解答】(1)证明:∵点A关于BD的对称点为A′,∴AE=A′E,AA′⊥BD,∵四边形ABCD是矩形,∴OA=OC,∴OE∥A′C,∴AA′⊥CA′;(2)①证明:如图2,设CD⊙O与CD切于点F,连接OF,并延长交AB于点G,∴OF⊥CD,OF=OE,∵四边形ABCD是矩形,∴OB=OD=BD,AB∥CD,AC=BD,OA=AC,∴OG⊥AB,∠FDO=∠BOG,OA=OB,∴∠GAO=∠GBO,∵∠DOF=∠BOG,∴△DOF≌△BOG(ASA),∴OG=OF,∴OG=OE,由(1)知:AA′⊥BD,∴∠EAO=∠GAO,∵∠EAB+∠GBO=90°,∴∠EAO+∠GAO+∠GBO=90°,∴3∠EAO=90°,∴∠EAO=30°,由(1)知:AA′⊥CA′,∴tan∠EAO=,∴tan30°=,∴;②解:如图3,设⊙O切CA′于点H,连接OH,∴OH⊥CA′,由(1)知:AA′⊥CA′,AA′⊥CA′,OA=OC,∴OH∥AA′,OE∥CA′,∴△COH∽△CAA′,△AOE∽△ACA′,∴,∴AA′=2OH,CA′=2OE,∴AA′=CA′,∴∠A′AC=∠A′CA=45°,∴∠AOE=∠ACA′=45°,∴AE=OE,OD=OA=AE,设AE=OE=x,则OD=OA=,∴DE=OD﹣OE=()x,在Rt△ADE中,由勾股定理得,=1,∴x2=,∴S⊙O=π•OE2=.8.(2021•广东)如图,在四边形ABCD中,AB∥CD,AB≠CD,∠ABC=90°,点E、F 分别在线段BC、AD上,且EF∥CD,AB=AF,CD=DF.(1)求证:CF⊥FB;(2)求证:以AD为直径的圆与BC相切;(3)若EF=2,∠DFE=120°,求△ADE的面积.【答案】(1)(2)证明见解答;(3)【解答】(1)证明:∵CD=DF,∴∠DCF=∠DFC,∵EF∥CD,∴∠DCF=∠EFC,∴∠DFC=∠EFC,∴∠DFE=2∠EFC,∵AB=AF,∴∠ABF=∠AFB,∵CD∥EF,CD∥AB,∴AB∥EF,∴∠EFB=∠AFB,∴∠AFE=2∠BFE,∵∠AFE+∠DFE=180°,∴2∠BFE+2∠EFC=180°,∴∠BFE+∠EFC=90°,∴∠BFC=90°,∴CF⊥BF;(2)证明:如图1,取AD的中点O,过点O作OH⊥BC于H,∴∠OHC=90°=∠ABC,∴OH∥AB,∵AB∥CD,∴OH∥AB∥CD,∵AB∥CD,AB≠CD,∴四边形ABCD是梯形,∴点H是BC的中点,∴OH=(AB+CD),连接CO并延长交BA的延长线于G,∴∠G=∠DCO,∵∠AOG=∠DOC,OA=OD,∴△AOG≌△DOC(AAS),∴AG=CD,OC=OG,∴OH是△BCG的中位线,∴OH=BG=(AB+AG)=(AF+DF)=AD,∵OH⊥BC,∴以AD为直径的圆与BC相切;(3)如图2,由(1)知,∠DFE=2∠EFC,∵∠DFE=120°,∴∠CFE=60°,在Rt△CEF中,EF=2,∠ECF=90°﹣∠CFE=30°,∴CF=2EF=4,∴CE==2,∵AB∥EF∥CD,∠ABC=90°,∴∠ECD=∠CEF=90°,过点D作DM⊥EF,交EF的延长线于M,∴∠M=90°,∴∠M=∠ECD=∠CEF=90°,∴四边形CEMD是矩形,∴DM=CE=2,过点A作AN⊥EF于N,∴四边形ABEN是矩形,∴AN=BE,由(1)知,∠CFB=90°,∵∠CFE=60°,∴∠BFE=30°,在Rt△BEF中,EF=2,∴BE=EF•tan30°=,∴AN=,∴S△ADE=S△AEF+S△DEF=EF•AN+EF•DM=EF(AN+DM)=×2×(+2)=.七.作图—复杂作图(共1小题)9.(2023•广东)如图,在▱ABCD中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.【答案】(1)见作图;(2)6﹣2.【解答】解:(1)如图E即为所求作的点;(2)∵cos∠DAB=,∴AE=AD•cos30°=4×=2,∴BE=AB﹣AE=6﹣2.八.翻折变换(折叠问题)(共1小题)10.(2021•广东)如图,边长为1的正方形ABCD中,点E为AD的中点.连接BE,将△ABE 沿BE折叠得到△FBE,BF交AC于点G,求CG的长.【答案】.【解答】解:延长BF交CD于H,连接EH.∵四边形ABCD是正方形,∴AB∥CD,∠D=∠DAB=90°,AD=CD=AB=1,∴AC===,由翻折的性质可知,AE=EF,∠EAB=∠EFB=90°,∠AEB=∠FEB,∵点E是AD的中点,∴AE=DE=EF,∵∠D=∠EFH=90°,在Rt△EHD和Rt△EHF中,,∴Rt△EHD≌Rt△EHF(HL),∴∠DEH=∠FEH,∵∠DEF+∠AEF=180°,∴2∠DEH+2∠AEB=180°,∴∠DEH+∠AEB=90°,∵∠AEB+∠ABE=90°,∴∠DEH=∠ABE,∴△EDH∽△BAE,∴==,∴DH=,CH=,∵CH∥AB,∴==,∴CG=AC=.。

专题3因式分解(共41题)-2021年中考数学真题分项汇编(解析版)

专题3因式分解(共41题)-2021年中考数学真题分项汇编(解析版)

专题3因式分解(共41题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x +【答案】A【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.2.(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+C .()()122y y -+D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键. 3.(2021·贵州铜仁市·中考真题)下列等式正确的是( )A .3tan452-+︒=-B .()5510x xy x y ⎛⎫÷= ⎪⎝⎭C .()2222a b a ab b -=++D .()()33x y xy xy x y x y -=+- 【答案】D【分析】依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可.【详解】 A. 3tan45314-+︒=+=,不符合题意B. ()55555105y y y x xy x y x ⎛⎫÷=⨯⎪= ⎝⎭,不符合题意 C. ()2222a b a ab b -=-+,不符合题意D. ()()3322()x y xy xy x y xy x y x y -=-=+-,符合题意 故选D .【点睛】本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义.4.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B .【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题5.(2021·四川成都市·中考真题)因式分解:24x -=__________.【答案】(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-6.(2021·云南中考真题)分解因式:34x x -=______.【答案】x (x +2)(x ﹣2).【详解】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.7.(2021·山东临沂市·中考真题)分解因式:2a 3﹣8a=________.【答案】2a (a+2)(a ﹣2)【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a 8a 2a a 4=2a a+2a 2-=--.8.(2021·广西柳州市·中考真题)因式分21x -= .【答案】(1)(1)x x +-.【详解】原式=(1)(1)x x +-.故答案为(1)(1)x x +-.考点:1.因式分解-运用公式法;2.因式分解.9.(2021·浙江宁波市·中考真题)分解因式:23x x -=_____________.【答案】x(x -3)【详解】直接提公因式x 即可,即原式=x (x -3).10.(2021·江苏宿迁市·中考真题)分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).11.(2021·浙江丽水市·中考真题)分解因式:24m -=_____.【答案】(2)(2)m m +-【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.12.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____.【答案】(a +1)2【分析】直接利用完全平方公式分解.【详解】a 2+2a +1=(a +1)2.故答案为()21+a .【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.13.(2021·吉林长春市·中考真题)分解因式:22a a +=_____.【答案】22(2)a a a a +=+【分析】直接提公因式法:观察原式22a a +,找到公因式a ,提出即可得出答案.【详解】 22(2)a a a a +=+.【点睛】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.14.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.15.(2021·江苏苏州市·中考真题)因式分解221x x -+=______.【答案】()21x -【分析】直接利用乘法公式分解因式得出答案.【详解】解:221x x -+=(x ﹣1)2.故答案为:(x ﹣1)2.【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.16.(2021·浙江台州市·中考真题)因式分解:xy -y 2=_____.【答案】y (x -y )【分析】根据提取公因式法,即可分解因式.【详解】解:原式= y (x -y ),故答案是:y (x -y ).【点睛】本题主要考查分解因式,掌握提取公因式法分解因式,是解题的关键.17.(2021·江西中考真题)因式分解:224x y -=______.【答案】(2)(2)x y x y +-【分析】直接利用平方差公式分解即可.【详解】解:224(2)(2)x y x y x y -=+-.故答案为:(2)(2)x y x y +-.【点睛】本题考查了分解因式-公式法,熟练掌握平方差公式的结构特征是解题的关键.18.(2021·甘肃武威市·中考真题)因式分解:242m m -=___________.【答案】()22m m -【分析】先确定242m m -的公因式为2m ,再利用提公因式分解因式即可得到答案.【详解】解:()24222.m m m m -=- 故答案为:()22m m -【点睛】本题考查的是提公因式分解因式,掌握公因式的确定是解题的关键.19.(2021·湖北黄石市·中考真题)分解因式:322a a a -+=______.【答案】()21a a -.【分析】观察所给多项式有公因式a ,先提出公因式,剩余的三项可利用完全平方公式继续分解.【详解】解:原式()221a a a =-+, ()21a a =-,故答案为:()21a a -.【点睛】本题考查了用提公因式法和公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,有公因式要先提公因式,再考虑运用公式法分解,注意一定要分解到无法分解为止.20.(2021·四川泸州市·)分解因式:244m -=___________.【答案】()()411m m +-.【分析】先提取公因式4,再利用平方差公式分解即可.【详解】解:()()()224441411m m m m -=-=+-. 故答案为:()()411m m +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.(2021·四川乐山市·中考真题)因式分解:249a -=________.【答案】(23)(23)a a -+【分析】此多项式可直接采用平方差公式进行分解.【详解】解:22249(2)3a a -=-=(23)(23)a a -+.故答案为:(23)(23)a a -+.【点睛】本题考查了公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.22.(2021·江苏无锡市·中考真题)分解因式:328x x -=_________.【答案】2x (x +2)(x -2)【分析】先提取公因式2x ,再利用平方差公式分解即可得.【详解】解:原式=2x (x 2-4)=2x (x +2)(x -2);故答案为:2x (x +2)(x -2).【点睛】本题主要考查了因式分解,解题的关键是掌握提公因式法和平方差公式.23.(2021·广西来宾市·中考真题)分解因式:224a b -=______.【答案】()()22a b a b +-【分析】利用平方差公式进行因式分解即可.【详解】解:224a b -=()222a b -=()()22a b a b +-.故答案为()()22a b a b +-.【点睛】本题考查了因式分解.熟练掌握平方差公式是解题的关键.24.(2021·浙江绍兴市·中考真题)分解因式:221x x ++= ___________ .【答案】2(1)x +【分析】根据完全平方公式因式分解即可.【详解】解:221x x ++=2(1)x +故答案为:2(1)x +.【点睛】此题考查的是因式分解,掌握利用完全平方公式因式分解是解决此题的关键. 25.(2021·湖北恩施土家族苗族自治州·中考真题)分解因式:2a ax -=__________.【答案】()()11a x x +-【分析】利用提公因式及平方差公式进行因式分解即可.【详解】解:()()()22111a ax a x a x x -=-=+-;故答案为()()11a x x +-.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.26.(2021·山东菏泽市·中考真题)因式分解:322a a a -+-=______.【答案】2(1)a a --【分析】先提取公因式,后采用公式法分解即可【详解】∴322a a a -+-=-a 22)1(a a -+=2(1)a a --故答案为: 2(1)a a --.【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键. 27.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∴2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键. 28.(2021·湖南长沙市·中考真题)分解因式:22021x x -=______.【答案】(2021)x x -【分析】利用提公因式法进行因式分解即可得. 【详解】解:22021(2021)x x x x -=-, 故答案为:(2021)x x -. 【点睛】本题考查了利用提公因式法进行因式分解,熟练掌握提公因式法是解题关键. 29.(2021·湖南株洲市·中考真题)因式分解:264x xy -=__________. 【答案】()232x x y - 【分析】直接提出公因式2x 即可完成因式分解. 【详解】解:()264232x xy x x y -=-;故答案为:()232x x y -. 【点睛】本题考查了提公因式法进行因式分解,解决本题的关键是找到它们的公因式,提出公因式后再检查分解是否彻底即可,本题为基础题,考查了学生对基础知识的掌握与运用. 30.(2021·陕西中考真题)分解因式:3269x x x ++=______. 【答案】()23x x + 【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案. 【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +. 【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.31.(2021·湖南岳阳市·中考真题)因式分解:221x x ++=______. 【答案】()21x +. 【详解】解:()22211x x x ++=+.故答案为:()21x +. 【点睛】此题考查了运用公式法因式分解,熟练掌握完全平方公式是解答此题的关键. 32.(2021·湖南邵阳市·中考真题)因式分解:23xy x -=______. 【答案】()()x y x y x -+ 【分析】提公因式与平方差公式相结合解题. 【详解】解:2322()()()xy x x y x x y x y x -=-=-+, 故答案为:()()x y x y x -+. 【点睛】本题考查因式分解,涉及提公因式与平方差公式,是重要考点,难度较易,掌握相关是解题关键. 33.(2021·四川眉山市·中考真题)分解因式:3x y xy -=______. 【答案】()()11xy x x +- 【分析】先利用提公因式法提出公因式xy ,再利用平方差公式法进行变形即可. 【详解】解:()()()32111x y xy xy x xy x x -=-=+-;故答案为:()()11xy x x +-. 【点睛】本题考查了提公因式法和公式法(平方差公式)进行的因式分解的知识,解决本题的关键是牢记因式分解的特点和基本步骤,分解的结果是几个整式的积的形式,结果应分解到不能再分解为止,即分解要彻底,本题易错点是很多学生提公因式后以为分解就结束了,因此要对结果进行检查. 34.(2021·湖南衡阳市·中考真题)因式分解:239a ab -=__________. 【答案】()33a a b - 【分析】利用提取公因式法因式分解即可 【详解】解:()23933a ab a a b -=-故答案为: ()33a a b - 【点睛】本题考查提取公因式法因式分解,熟练掌握因式分解的方法是关键 35.(2021·北京中考真题)分解因式:2255x y -=______________. 【答案】()()5x y x y +- 【分析】根据提公因式法及平方差公式可直接进行求解. 【详解】解:()()()22225555x y x y x y x y -=-=+-;故答案为()()5x y x y +-. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键. 36.(2021·浙江温州市·中考真题)分解因式:2218m -=______. 【答案】()()233m m +- 【分析】原式提取2,再利用平方差公式分解即可. 【详解】 解:2218m -=2(m 2-9) =2(m +3)(m -3).故答案为:2(m +3)(m -3). 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 37.(2021·黑龙江绥化市·中考真题)在实数范围内分解因式:22ab a -=_________.【答案】(a b b .【分析】利用平方差公式22()()a b a b a b -=+-分解因式得出即可. 【详解】 解:22ab a - =2(2)a b -=(a b b故答案为:(a b b .【点睛】此题主要考查了利用平方差公式22()()a b a b a b -=+-分解因式,熟练应用平方差公式是解题关键.三、解答题38.(2021·黑龙江大庆市·中考真题)先因式分解,再计算求值:328x x -,其中3x =. 【答案】()()222+-x x x ,30 【分析】先利用提公因式法和平方差公式进行因式分解,再代入x 的值即可. 【详解】解:()()()322824222x x x x x x x -=-=+-,当3x =时,原式235130=⨯⨯⨯=. 【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.39.(2021·黑龙江齐齐哈尔市·中考真题)(1)计算:()201 3.144cos4512π-⎛⎫-+-+︒- ⎪⎝⎭.(2)因式分解:3312xy xy -+.【答案】(1)6(2)3(2)(2)xy y y -+- 【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可. 【详解】(1)解:原式4141)2=++⨯-411=++6=+(2)解:原式23(4)xy y =--3(2)(2)xy y y =-+-【点睛】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键.40.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4 【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∴2x y -=,∴1121y x x y xy xy---===,∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.41.(2021·重庆中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”. 例如6092129=⨯,21和29的十位数字相同,个位数字之和为10,609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10,234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .【答案】(1)168不是“合和数”,621是“合和数,理由见解析;(2)M 有1224,1221,5624,5616. 【分析】(1)首先根据题目内容,理解“合和数”的定义:如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,再判断168,621是否是“合和数”;(2)首先根据题目内容,理解“合分解”的定义.引进未知数来表示A 个位及十位上的数,同时也可以用来表示B .然后整理出:()()()P M G M Q M =,根据能被4整除时,通过分类讨论,求出所有满足条件的M .【详解】 解:(1)168不是“合和数”,621是“合和数”. 1681214=⨯,2410+≠,168∴不是“合和数”,6212327=⨯,十位数字相同,且个位数字3710+=, 621∴是“合和数”.(2)设A 的十位数字为m ,个位数字为n (m ,n 为自然数,且39m ≤≤,19n ≤≤), 则10,1010A m n B m n =+=+-.∴()10210,()()(10)210P M m n m n m Q M m n m n n =+++-=+=+-+-=-. ∴()()21054()2105P M m m G M k Q M n n ++====--(k 是整数).39m ≤≤,8514m ∴≤+≤,k 是整数,58m ∴+=或512m +=,∴当58m +=时,5851m n +=⎧⎨-=⎩或5852m n +=⎧⎨-=⎩, 36341224M ∴=⨯=或3733=1221M =⨯.∴当512m +=时,51251m n +=⎧⎨-=⎩或51253m n +=⎧⎨-=⎩, 76745623M ∴=⨯=或78725616M =⨯=.综上,满足条件的M 有1224,1221,5624,5616. 【点睛】本题考查了新定义问题,解题的关键是:首先要理解题中给出的新定义和会操作题目中所涉及的过程,结合所学知识去解决问题,充分考察同学们自主学习和运用新知识的能力.。

江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类

江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类

江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类一.二次函数的应用(共1小题)1.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K 到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为 ;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为 ;(3)在(2)的条件下,若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.二.二次函数综合题(共2小题)2.(2023•江西)综合与实践问题提出某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,D为AC上一点,CD=,动点P以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF.设点P的运动时间为ts,正方形DPEF 的面积为S,探究S与t的关系.初步感知(1)如图1,当点P 由点C 运动到点B 时,①当t =1时,S = ;②S 关于t 的函数解析式为 .(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.延伸探究(3)若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等.①t 1+t 2= ;②当t 3=4t 1时,求正方形DPEF 的面积.3.(2021•江西)二次函数y =x 2﹣2mx 的图象交x 轴于原点O 及点A .感知特例(1)当m =1时,如图1,抛物线L :y =x 2﹣2x 上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ′,O ′,C ′,A ′,D ′,如表:…B (﹣1,3)O (0,0)C (1,﹣1)A ( , )D (3,3)……B '(5,﹣3)O ′(4,0)C '(3,1)A ′(2,0)D '(1,﹣3)…①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.探究问题(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为 ;②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是 (填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m的值.三.四边形综合题(共2小题)4.(2022•江西)综合与实践问题提出某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).操作发现(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为 ;当OF与BC垂直时,重叠部分的面积为 ;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为 ;类比探究(2)若将三角板的顶点F放在点O处,在旋转过程中,OE,OP分别与正方形的边相交于点M,N.①如图2,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;②如图3,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);拓展应用(3)若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示).5.(2021•江西)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是 ;类比迁移(2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量关系是 ;方法运用(3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.①求证:∠ABC+∠ADC=90°;②连接BD,如图4,已知AD=m,DC=n,=2,求BD的长(用含m,n的式子表示).四.圆的综合题(共1小题)6.(2021•江西)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.五.相似形综合题(共1小题)7.(2023•江西)课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在▱ABCD中,对角线BD⊥AC,垂足为O.求证:▱ABCD是菱形.知识应用(2)如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.①求证:▱ABCD是菱形;②延长BC至点E,连接OE交CD于点F,若∠E=∠ACD,求的值.六.解直角三角形的应用(共1小题)8.(2023•江西)图1是某红色文化主题公园内的雕塑,将其抽象成如图2所示的示意图.已知点B,A,D,E均在同一直线上,AB=AC=AD,测得∠B=55°,BC=1.8m,DE=2m.(结果保小数点后一位)(1)连接CD,求证:DC⊥BC;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类参考答案与试题解析一.二次函数的应用(共1小题)1.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K 到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为 66 ;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为 b> ;(3)在(2)的条件下,若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.【答案】(1)66;(2)①基准点K的高度h为21m;②b>;(3)他的落地点能超过K点,理由见解答过程.【解答】解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)①∵a=﹣,b=,∴y=﹣x2+x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣×752+×75+66=21,∴基准点K的高度h为21m;②∵a=﹣,∴y=﹣x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即﹣×752+75b+66>21,解得b>,故答案为:b>;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣,∴抛物线解析式为y=﹣(x﹣25)2+76,当x=75时,y=﹣×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.二.二次函数综合题(共2小题)2.(2023•江西)综合与实践问题提出某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,D为AC上一点,CD=,动点P以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF.设点P的运动时间为ts,正方形DPEF 的面积为S,探究S与t的关系.初步感知(1)如图1,当点P由点C运动到点B时,①当t=1时,S= 3 ;②S关于t的函数解析式为 S=t2+2 .(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S关于t的函数解析式及线段AB的长.延伸探究(3)若存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等.①t1+t2= 4 ;②当t3=4t1时,求正方形DPEF的面积.【答案】(1)①3;②S=t2+2;(2)S=t2﹣8t+18(2≤t≤8),AB=6;(3)①4;②正方形DPEF的面积为.【解答】解:(1)①当t=1时,CP=1,又∵∠C=90°,CD=,∴S=DP2=CP2+CD2=12+()2=3.故答案为:3;②当点P由点C运动到点B时,CP=t,∵∠C=90°,CD=,∴S=DP2=CP2+CD2=t2+()2=t2+2.故答案为:S=t2+2;(2)由图2可得:当点P运动到点B处时,PD2=BD2=6,当点P运动到点A处时,PD2=AD2=18,抛物线的顶点坐标为(4,2),∴BC===2,AD==3,∴M(2,6),设S=a(t﹣4)2+2,将M(2,6)代入,得4a+2=6,解得:a=1,∴S=(t﹣4)2+2=t2﹣8t+18,∴AC=AD+CD=3+=4,在Rt△ABC中,AB===6,CB+AC=2+6=8,∴抛物线的解析式为S=t2﹣8t+18(2≤t≤8);(3)①如图,则∠AHD=90°=∠C,∵∠DAH=∠BAC,∴△ADH∽△ABC,∴==,即==,∴DH=,AH=4,∴BH=2,DH=CD,∵存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等,∴DP1=DP2=DP3,∴CP1=t1,P2H=4﹣t2,在Rt△CDP1和Rt△HDP2中,,∴Rt△CDP1≌Rt△HDP2(HL),∴CP1=HP2,∴t1=4﹣t2,∴t1+t2=4.故答案为:4;②∵DP 3=DP 1,DH =DC ,∠DHP 3=∠C =90°,∴Rt △DHP 3≌Rt △DCP 1(HL ),∴P 3H =CP 1,∵P 3H =t 3﹣4,∴t 3﹣4=t 1,∵t 3=4t 1,∴t 1=,∴S =()2+2=.3.(2021•江西)二次函数y =x 2﹣2mx 的图象交x 轴于原点O 及点A .感知特例(1)当m =1时,如图1,抛物线L :y =x 2﹣2x 上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ′,O ′,C ′,A ′,D ′,如表:…B (﹣1,3)O (0,0)C (1,﹣1)A ( 2 , 0 )D (3,3)……B '(5,﹣3)O ′(4,0)C '(3,1)A ′(2,0)D '(1,﹣3)…①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L 的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.探究问题(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为 ﹣3≤x≤﹣1 ;②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是 y=ax2 (填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m 的值.【答案】(1)①(2,0);②所画图象见解答;(2)①﹣3≤x≤﹣1;②y=ax2;③m=±1.【解答】解:(1)①∵B(﹣1,3)、B'(5,﹣3)关于点A中心对称,∴点A为BB′的中点,设点A(m,n),∴m==2,n==0,故答案为:(2,0);②所画图象如图1所示,(2)①当m=﹣1时,抛物线L:y=x2+2x=(x+1)2﹣1,对称轴为直线x=﹣1,开口向上,当x≤﹣1时,L的函数值随着x的增大而减小,抛物线L′:y=﹣x2﹣6x﹣8=﹣(x+3)2+1,对称轴为直线x=﹣3,开口向下,当x≥﹣3时,L′的函数值随着x的增大而减小,∴当﹣3≤x≤﹣1时,抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,故答案为:﹣3≤x≤﹣1;②∵抛物线y=x2﹣2mx的“孔像抛物线”是y=﹣x2+6mx﹣8m2,∴设符合条件的抛物线M解析式为y=a′x2+b′x+c′,令a′x2+b′x+c′=﹣x2+6mx﹣8m2,整理得(a′+1)x2+(b′﹣6m)x+(c′+8m2)=0,∵抛物线M与抛物线L′有唯一交点,∴分下面两种情形:i)当a′=﹣1时,无论b′为何值,都会存在对应的m使得b′﹣6m=0,此时方程无解或有无数解,不符合题意,舍去;ii)当a′≠﹣1时,Δ=(b′﹣6m)2﹣4(a′+1)(c′+8m2)=0,即b′2﹣12b′m+36m2﹣4(a′+1)•8m2﹣4c′(a′+1)=0,整理得[36﹣32(a′+1)]m2﹣12b′m+b′2﹣4c′(a′+1)=0,∵当m取不同值时,两抛物线都有唯一交点,∴当m取任意实数,上述等式都成立,即:上述等式成立与m取值无关,∴,解得a′=,b′=0,c′=0,则y=x2,故答案为:y=ax2;③抛物线L:y=x2﹣2mx=(x﹣m)2﹣m2,顶点坐标为M(m,﹣m2),其“孔像抛物线”L'为:y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),抛物线L与其“孔像抛物线”L'有一个公共点A(2m,0),∴二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点时,有三种情况:i)直线y=m经过M(m,﹣m2),∴m=﹣m2,解得:m=﹣1或m=0(舍去),ii)直线y=m经过N(3m,m2),∴m=m2,解得:m=1或m=0(舍去),iii)直线y=m经过A(2m,0),∴m=0,但当m=0时,y=x2与y=﹣x2只有一个交点,不符合题意,舍去,综上所述,m=±1.三.四边形综合题(共2小题)4.(2022•江西)综合与实践问题提出某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).操作发现(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为 1 ;当OF与BC垂直时,重叠部分的面积为 1 ;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为 S1=S ;类比探究(2)若将三角板的顶点F放在点O处,在旋转过程中,OE,OP分别与正方形的边相交于点M,N.①如图2,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;②如图3,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);拓展应用(3)若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示).【答案】(1)1,1,S1=S;(2)①证明见解析部分;②﹣1;(3)S2的最小值为tan,S2的最大值为1﹣tan(45°﹣α).【解答】解:(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=正方形ABCD的面积=1;当OF与BC垂直时,OE⊥BC,重叠部分的面积=正方形ABCD的面积=1;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=S.理由:如图1中,设OF交AB于点J,OE交BC于点K,过点O作OM⊥AB于点M,ON ⊥BC于点N.∵O是正方形ABCD的中心,∴OM=ON,∵∠OMB=∠ONB=∠B=90°,∴四边形OMBN是矩形,∵OM=ON,∴四边形OMBN是正方形,∴∠MON=∠EOF=90°,∴∠MOJ=∠NOK,∵∠OMJ=∠ONK=90°,∴△OMJ≌△ONK(AAS),∴S△PMJ=S△ONK,∴S四边形OKBJ=S正方形OMBN=S正方形ABCD,∴S1=S.故答案为:1,1,S1=S.(2)①如图2中,结论:△OMN是等边三角形.理由:过点O作OT⊥BC,∵O是正方形ABCD的中心,∴BT=CT,∵BM=CN,∴MT=TN,∵OT⊥MN,∴OM=ON,∵∠MON=60°,∴△MON是等边三角形;②如图3中,连接OC,过点O作OJ⊥BC于点J.∵CM=CN,∠OCM=∠OCN,OC=OC,∴△OCM≌△OCN(SAS),∴∠COM=∠CON=30°,∴∠OMJ=∠COM+∠OCM=75°,∵OJ⊥CB,∴∠JOM=90°﹣75°=15°,∵BJ=JC=OJ=1,∴JM=OJ•tan15°=2﹣,∴CM=CJ﹣MJ=1﹣(2﹣)=﹣1,∴S四边形OMCN=2××CM×OJ=﹣1.(3)如图4﹣1中,过点O作OQ⊥BC于点Q,当BM=CN时,△OMN的面积最小,即S2最小.在Rt△MOQ中,MQ=OQ•tan=tan,∴MN=2MQ=2tan,∴S2=S△OMN=×MN×OQ=tan.如图4﹣2中,当CM=CN时,S2最大.同法可证△COM≌△CON,∴∠COM=α,∵∠COQ=45°,∴∠MOQ=45°﹣α,QM=OQ•tan(45°﹣α)=tan(45°﹣α),∴MC=CQ﹣MQ=1﹣tan(45°﹣α),∴S2=2S△CMO=2××CM×OQ=1﹣tan(45°﹣α).5.(2021•江西)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是 ∠DCE′ ;类比迁移(2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量关系是 AD2+DE2=AE2 ;方法运用(3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.①求证:∠ABC+∠ADC=90°;②连接BD,如图4,已知AD=m,DC=n,=2,求BD的长(用含m,n的式子表示).【答案】(1)∠DCE′.(2)AD2+DE2=AE2.(3)①证明见解析部分.②.【解答】(1)解:如图1中,由图形的拼剪可知,∠A=∠DCE′,故答案为:∠DCE′.(2)解:如图2中,∵∠ADC+∠ABC=90°,∠CDE=∠ABC,∴∠ADE=∠ADC+∠CDE=90°,∴AD2+DE2=AE2.故答案为:AD2+DE2=AE2.(3)①证明:如图3中,连接OC,作△ADC的外接圆⊙O.∵点O是△ACD两边垂直平分线的交点∴点O是△ADC的外心,∴∠AOC=2∠ADC,∵OA=OC,∴∠OAC=∠OCA,∵∠AOC+∠OAC+∠OCA=180°,∠OAC=∠ABC,∴2∠ADC+2∠ABC=180°,∴∠ADC+∠ABC=90°.②解:如图4中,在射线DC的下方作∠CDT=∠ABC,过点C作CT⊥DT于T.∵∠CTD=∠CAB=90°,∠CDT=∠ABC,∴△CTD∽△CAB,∴∠DCT=∠ACB,=,∴=,∠DCB=∠TCA∴△DCB∽△TCA,∴=,∵=2,∴AC:BA:BC=CT:DT:CD=1:2:,∴BD=AT,∵∠ADT=∠ADC+∠CDT=∠ADC+∠ABC=90°,DT=n,AD=m,∴AT===,∴BD=.四.圆的综合题(共1小题)6.(2021•江西)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.【答案】(1)证明见解答;(2)①是菱形,理由见解答;②+π.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∵CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD =S△ACD+S扇形COD=××2×2+=+π.五.相似形综合题(共1小题)7.(2023•江西)课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在▱ABCD中,对角线BD⊥AC,垂足为O.求证:▱ABCD是菱形.知识应用(2)如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.①求证:▱ABCD是菱形;②延长BC至点E,连接OE交CD于点F,若∠E=∠ACD,求的值.【答案】(1)证明见解答过程;(2)①证明见解答过程;②.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BO=DO,又∵BD⊥AC,垂足为O,∴AC是BD的垂直平分线,∴AB=AD,∴▱ABCD是菱形.(2)①证明:∵▱ABCD中,对角线AC和BD相交于点O,AC=8,BD=6,∴AO=CO=AC=4,DO=BD=3,又∵AD=5,∴在三角形AOD中,AD2=AO2+DO2,∴∠AOD=90°,即BD⊥AC,∴▱ABCD是菱形;②解:如图,设CD的中点为G,连接OG,∴OG是△ACD的中位线,∴OG=AD=,由①知:四边形ABCD是菱形,∴∠ACD=∠ACB,又∵∠E=∠ACD,∴∠E=∠ACB,又∵∠ACB=∠E+∠COE,∴∠E=∠COE,∴CE=CO=4,∵OG是△ACD的中位线,∴OG∥AD∥BE,∴△OGF∽△ECF,∴,又∵OG=,CE=4,∴.六.解直角三角形的应用(共1小题)8.(2023•江西)图1是某红色文化主题公园内的雕塑,将其抽象成如图2所示的示意图.已知点B,A,D,E均在同一直线上,AB=AC=AD,测得∠B=55°,BC=1.8m,DE=2m.(结果保小数点后一位)(1)连接CD,求证:DC⊥BC;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【答案】(1)证明过程见解答;(2)雕塑的高约为4.2m.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵AD=AC,∴∠ADC=∠ACD,∵∠B+∠ACB+∠ADC+∠ACD=180°,∴2∠ACB+2∠ACD=180°,∴∠ACB+∠ACD=90°,∴∠BCD=90°,∴DC⊥BC;(2)解:过点E作EF⊥BC,垂足为F,在Rt△DCB中,∠B=55°,BC=1.8m,∴BD=≈=(m),∵DE=2m,∴BE=BD+DE=(m),在Rt△BEF中,EF=BE•sin55°≈×0.82≈4.2(m),∴雕塑的高约为4.2m.。

中考数学专题复习试题分类汇编三等腰三角形和直角三角形

中考数学专题复习试题分类汇编三等腰三角形和直角三角形

中考数学专题复习试题分类汇编三等腰三角形和直角三角形学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知线段AB,按如下步骤作图:①作射线AC,使AC AB⊥;①作BAC∠的平分线AD;①以点A为圆心,AB长为半径作弧,交AD于点E;①过点E作EP AB⊥于点P,则:AP AB=()A.1:5B.1:2C.1:3D.1:22.如图,在ABC中,45,60,B C AD BC∠=︒∠=︒⊥于点D,3BD=.若E,F分别为AB,BC的中点,则EF的长为()A.33B.32C.1D.623.如图,在Rt ABC△纸片中,90,4,3ACB AC BC∠=︒==,点,D E分别在,AB AC 上,连结DE,将ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD 平分EFB∠,则AD的长为()252515204.如图,正三角形ABC的边长为3,将①ABC绕它的外心O逆时针旋转60°得到①A'B'C',则它们重叠部分的面积是()A.23B.334C.332D.35.如图,在Rt①ABC中,①ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.46.①BDE和①FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.①ABC的周长B.①AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长7.如图,等腰直角三角形ABC中,①ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH①CP交CP的延长线于点H,连结AP,则①P AH的度数()B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小8.已知直线m n,将一块含45︒角的直角三角板ABC按如图方式放置,其中斜边BC 与直线n交于点D.若125∠=︒,则2∠的度数为()A.60︒B.65︒C.70︒D.75︒9.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC CD DE==,点D,E可在槽中滑动,若75BDE∠=︒,则CDE∠的度数是()A.60°B.65°C.75°D.80°10.在ABC中,若一个内角等于另外两个角的差,则()A.必有一个角等于30B.必有一个角等于45︒C.必有一个角等于60︒D.必有一个角等于90︒评卷人得分二、填空题11.如图,在①ABC中,①ACB=90°,AC<BC.分别以点A,B为圆心,大于12AB的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则①AFH的周长为_____.12.如图,在ABC中,AB AC=,70B∠=︒,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则BAP∠的度数是_______.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是_____ .评卷人得分三、解答题14.如图,在四边形ABCD中,AB=AD=20,BC=DC=102(1)求证:①ABC①①ADC;(2)当①BCA=45°时,求①BAD的度数.15.问题:如图,在①ABD中,BA=BD.在BD的延长线上取点E,C,作①AEC,使EA=EC,若①BAE=90°,①B=45°,求①DAC的度数.答案:①DAC=45°思考:(1)如果把以上“问题”中的条件“①B=45°”去掉,其余条件不变,那么①DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“①B=45°”去掉,再将“①BAE=90°”改为“①BAE=n°”,其余条件不变,求①DAC的度数.16.如图,在△ABC和△DCE中,AC=DE,①B=①DCE=90°,点A,C,D依次在同一直线上,且AB①DE.(1)求证:△ABC①①DCE;(2)连结AE,当BC=5,AC=12时,求AE的长.17.如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂长AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD =,10DM =.(1)在旋转过程中:①当,,A D M 三点在同一直线上时,求AM 的长;②当,,A D M 三点在同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90︒,点D 的位置由ABC 外的点1D 转到其内的点2D 处,连结12D D ,如图2,此时2135AD C ∠=︒,260CD =,求2BD 的长.18.如图,在76⨯的方格中,ABC 的顶点均在格点上,试按要求画出线段EF (E ,F 均为格点),各画出一条即可.19.如图,在ABC中,AC AB BC.①已知线段AB的垂直平分线与BC边交于点P,连结AP,求证:2APC B;①以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连结AQ,若B,求B的度数.3AQC参考答案:1.D【解析】【分析】由题意易得①BAD =45°,AB =AE ,进而可得①APE 是等腰直角三角形,然后根据等腰直角三角形的性质可求解.【详解】解:①AC AB ⊥,①90CAB ∠=︒,①AD 平分BAC ∠,①①BAD =45°,①EP AB ⊥,①①APE 是等腰直角三角形,①AP =PE ,①222AE AP PE AP =+=,①AB =AE ,①2AB AP =,①:1:2AP AB =;故选D .【点睛】本题主要考查等腰直角三角形的性质与判定、勾股定理及角平分线的定义,熟练掌握等腰直角三角形的性质与判定、勾股定理及角平分线的定义是解题的关键.2.C【解析】【分析】根据条件可知①ABD 为等腰直角三角形,则BD =AD ,①ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC 。

山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类

山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类

山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类一.一次函数的应用(共1小题)1.(2023•日照)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒 个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材 张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.二.二次函数综合题(共5小题)2.(2023•淄博)如图,一条抛物线y=ax2+bx经过△OAB的三个顶点,其中O为坐标原点,点A(3,﹣3),点B在第一象限内,对称轴是直线x=,且△OAB的面积为18.(1)求该抛物线对应的函数表达式;(2)求点B的坐标;(3)设C为线段AB的中点,P为直线OB上的一个动点,连接AP,CP,将△ACP沿CP翻折,点A的对应点为A1.问是否存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.(2023•东营)如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE 上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.4.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.5.(2023•日照)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P 为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.6.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y 轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.三.三角形综合题(共1小题)7.(2023•临沂)如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系.(2)延长BC到E,使CE=BC,延长DC到F,使CF=DC,连接EF.求证:EF⊥AB.(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.四.四边形综合题(共2小题)8.(2023•淄博)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片ABCD和CEFG拼成“L”形图案,如图①.试判断:△ACF的形状为 .(2)深入探究小红在保持矩形ABCD不动的条件下,将矩形CEFG绕点C旋转,若AB=2,AD=4.探究一:当点F恰好落在AD的延长线上时,设CG与DF相交于点M,如图②.求△CMF 的面积.探究二:连接AE,取AE的中点H,连接DH,如图③.求线段DH长度的最大值和最小值.9.(2023•东营)(1)用数学的眼光观察如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB的中点,N是DC的中点.求证:∠PMN=∠PNM.(2)用数学的思维思考如图②,延长图①中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F.求证:∠AEM=∠F.(3)用数学的语言表达如图③,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC 的中点,连接MN并延长,与BC的延长线交于点G,连接GD.若∠ANM=60°,试判断△CGD的形状,并进行证明.五.圆的综合题(共3小题)10.(2023•枣庄)如图,AB为⊙O的直径,点C是的中点,过点C做射线BD的垂线,垂足为E.(1)求证:CE是⊙O的切线;(2)若BE=3,AB=4,求BC的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).11.(2023•日照)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.12.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.六.相似三角形的判定与性质(共1小题)13.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,∠BAC=∠DCE=90°,点E在线段AC上,BC,DE相交于点F,连接BE,BD,作EH⊥BD,垂足为点H,交BC与点G.(1)若点H是BD的中点,求∠BED的度数;(2)求证:△EFG∽△BFD;(3)求证:=.七.相似形综合题(共2小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC的最小值.15.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•日照)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒 (200﹣x) 个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材 (200﹣y) 张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.【答案】(1)(200﹣x),(200﹣y);(2)制作A种木盒100个,B种木盒100个;使用甲种方式切割的木板150张,使用乙种方式切割的木板50张;(3)A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.【解答】解:(1)∵要制作200个A,B两种规格的顶部无盖木盒,制作A种木盒x个,故制作B种木盒(200﹣x)个;∵有200张规格为40cm×40cm的木板材,使用甲种方式切割的木板材y张,故使用乙种方式切割的木板材(200﹣y)张;故答案为:(200﹣x),(200﹣y);(2)使用甲种方式切割的木板材y张,则可切割出4y个长、宽均为20cm的木板,使用乙种方式切割的木板材(200﹣y)张,则可切割出8(200﹣y)个长为10cm、宽为20cm 的木板;设制作A种木盒x个,则需要长、宽均为20cm的木板5x个,制作B种木盒(200﹣x)个,则需要长、宽均为20cm的木板(200﹣x)个,需要长为10cm、宽为20cm的木板4(200﹣x)个;故,解得:,故制作A种木盒100个,制作B种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张;(3)∵用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,故总成本为150×5+8×50=1150(元);∵两种木盒的销售单价均不能低于7元,不超过18元,∴,解得:7≤a≤18,设利润为w元,则w=100a+100(20﹣a)﹣1150,整理得:w=850+50a,∵50>0,∴w随a的增大而增大,故当a=18时,有最大值,最大值为850+50×18=1750(元),则此时B种木盒的销售单价定为20﹣×18=11(元),即A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.二.二次函数综合题(共5小题)2.(2023•淄博)如图,一条抛物线y=ax2+bx经过△OAB的三个顶点,其中O为坐标原点,点A(3,﹣3),点B在第一象限内,对称轴是直线x=,且△OAB的面积为18.(1)求该抛物线对应的函数表达式;(2)求点B的坐标;(3)设C为线段AB的中点,P为直线OB上的一个动点,连接AP,CP,将△ACP沿CP 翻折,点A的对应点为A1.问是否存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣3x;(2)(6,6);(3)存在,P点坐标为(,)或(﹣,﹣)或(+6,+6)或(﹣+6,﹣+6).【解答】解:(1)∵对称轴为直线x=,∴﹣=,∴b=﹣a①,将点A(3,﹣3)代入y=ax2+bx,∴9a+3b=﹣3②,联立①②可得,a=,b=﹣3,∴函数的解析式为y=x2﹣3x;(2)设B(m,m2﹣3m),如图1,过A点作EF⊥y轴交于E点,过B点作BF⊥EF交于F点,∴△OAB的面积=•m(m2﹣3m+3+3)﹣3×3﹣(m﹣3)(m2﹣3m+3)=18,解得m=6或m=﹣3(舍),∴B(6,6);(3)存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形,理由如下:∵A(3,﹣3),B(6,6),∴C(,),设直线OB的解析式为y=kx,∴6k=6,解得k=1,∴直线OB的解析式为y=x,设P(t,t),如图2,当BP为平行四边形的对角线时,BC∥A1P,BC=A1P,∵AC=BC,∴AC=A1P,由对称性可知AC=A1C,AP=A1P,∴AP=AC,∴=,解得t=,∴P点坐标为(,)或(﹣,﹣);如图3,当BC为平行四边形的对角线时,BP∥A1C,BP=A1C,由对称性可知,AC=A1C,∴BP=AC,∴=,解得t=+6或t=﹣+6,∴P(+6,+6)或(﹣+6,﹣+6);综上所述:P点坐标为(,)或(﹣,﹣)或(+6,+6)或(﹣+6,﹣+6).3.(2023•东营)如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE 上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.【答案】(1)y=x2﹣x;(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是4个单位.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,BC=4,∴点C的坐标为(2,﹣4),∴将点C坐标代入解析式得2a(2﹣10)=﹣4,解得:a=,∴抛物线的函数表达式为y=x2﹣x;(2)由抛物线的对称性得AE=OB=t,∴AB=10﹣2t,当x=t时,点C的纵坐标为t2﹣t,∴矩形ABCD的周长=2(AB+BC)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,连接AC,BD相交于点P,连接OC,取OC的中点Q,连接PQ,∵t=2,∴B(2,0),∴A(8,0),∵BC=4.∴C(2,﹣4),∵直线GH平分矩形ABCD的面积,∴直线GH过点P,由平移的性质可知,四边形OCHG是平行四边形,∴PQ=CH,∵四边形ABCD是矩形,∴点P是AC的中点,∴P(5,﹣2),∴PQ=OA,∵OA=8,CH=PQ=OA=4,∴抛物线向右平移的距离是4个单位4.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)MH+DH的最小值为;(3)对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形,点Q的坐标为(1,3)或(1,1)或(1,5).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,∴,解得:,∴该抛物线的表达式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4),设直线AM的解析式为y=kx+d,则,解得:,∴直线AM的解析式为y=2x+2,当x=0时,y=2,∴D(0,2),作点D关于x轴的对称点D′(0,﹣2),连接D′M,D′H,如图,则DH=D′H,∴MH+DH=MH+D′H≥D′M,即MH+DH的最小值为D′M,∵D′M==,∴MH+DH的最小值为;(3)对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形.由(2)得:D(0,2),M(1,4),∵点P是抛物线上一动点,∴设P(m,﹣m2+2m+3),∵抛物线y=﹣x2+2x+3的对称轴为直线x=1,∴设Q(1,n),当DM、PQ为对角线时,DM、PQ的中点重合,∴,解得:,∴Q(1,3);当DP、MQ为对角线时,DP、MQ的中点重合,∴,解得:,∴Q(1,1);当DQ、PM为对角线时,DQ、PM的中点重合,∴,解得:,∴Q(1,5);综上所述,对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形,点Q的坐标为(1,3)或(1,1)或(1,5).5.(2023•日照)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P 为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.【答案】(1)C(0,2),D(5,2);(2);(3)①(1,6),(4,6),(5,2);②a=0.5.【解答】解:(1)在y=﹣ax2+5ax+2(a>0)中,当x=0时,y=2,∴C(0,2),∵抛物线解析式为y=﹣ax2+5ax+2(a>0),∴抛物线对称轴为直线,∵过点C作x轴的平行线交该抛物线于点D,∴C、D关于抛物线对称轴对称,∴D(5,2);(2)当时,抛物线解析式为,当y=0时,,解得x=﹣1或x=6,∴A(﹣1,0),如图,设DP上与点M关于直线AD对称的点为N(m,n),由轴对称的性质可得:AN=AM,DN=DM,,∴3m+n=12,∴n=12﹣3m∴m2+2m+1+144﹣72m+9m2=25,∴m2﹣7m+12=0,解得m=3或m=4(舍去),∴n=12﹣3m=3,∴N(3,3),设直线DP的解析式为y=kx+b1,∴,解得,∴直线DP的解析式为,联立,解得或,∴P(,);(3)①当a=1时,抛物线解析式为y=﹣x2+5x+2,E(1,2),F(5,2),∴EH=EF=FG=4,∴H(1,6),G(5,6),当x=1时,y=﹣12+5×1+2=6,∴抛物线y=﹣x2+5x+2 恰好经过H(1,6);∵抛物线对称轴为直线,由对称性可知抛物线经过(4,6),∴点(4,6)为抛物线与正方形的一个交点,又∵点F与点D重合,∴抛物线也经过点F(5,2);综上所述,正方形EFGH的边与抛物线的所有交点坐标为(1,6),(4,6),(5,2);②如图,当抛物线与GH、GF分别交于T、D时,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴点T的纵坐标为2+2.5=4.5,∴,∴a2+1.5a﹣1=0,解得a=﹣2(舍去)或a=0.5;如图,当抛物线与GH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴,解得a=0.4(舍去,因为此时点F在点D下方)如图,当抛物线与EH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴﹣a()2+5a•+2=a+1+2.5,解得或(舍去);当时,y=﹣ax2+5ax+2=6.25a+2,当时,6.25a+2>6+a﹣,∴不符合题意;综上所述,a=0.5.6.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y 轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.【答案】(1)y=;(2)Q(3,﹣9)或(,9)或(,9);(3)当m=时,△PDE的面积最大值为:.【解答】解:(1)设抛物线的表达式为:y=a(x+3)(x﹣6),∴﹣9=a•3×(﹣6),∴a=,∴y=(x+3)(x﹣6)=;(2)如图1,抛物线的对称轴为:直线x==,由对称性可得Q1(3,﹣9),当y=9时,=9,∴x=,∴Q2(,9),Q3(,9),综上所述:Q(3,﹣9)或(,9)或(,9);(3)设△PED的面积为S,由题意得:AP=m+3,BP=6﹣m,OB=6,OC=9,AB=9.∴BC==3,∵sin∠PBD=,∴,∴PD=,∵PE∥BC,∴△APE∽△ABC,∠EPD=∠PDB=90°,∴,∴,∴PE=,∴S=PE•PD=(m+3)(6﹣m)=﹣,∴当m=时,S最大=,∴当m=时,△PDE的面积最大值为:.三.三角形综合题(共1小题)7.(2023•临沂)如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系.(2)延长BC到E,使CE=BC,延长DC到F,使CF=DC,连接EF.求证:EF⊥AB.(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.【答案】(1)结论:AB=(+1)BD.理由见解析部分;(2)(3)证明见解析部分.【解答】(1)解:结论:AB=(+1)BD.理由:在BC上取一点T,使得BT=BD,连接DT,AT.设AB=AC=a,则BC=a.∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵BD⊥AB,∴∠ABD=90°,∴∠DBT=45°,∵BD=BT,∴∠BDT=∠BTD=67.5°,∵BC=AB+BD=AC+BD=BT+AC,∴CT=CA=a,∴BD=BT=BC﹣CT=a﹣a,∴==+1,∴AB=(+1)BD;(2)证明:如图2中,在△BCD和△ECF中,,∴△BCD≌△ECF(SAS),∴∠CBD=∠E=45°,BD=EF,∴BD∥EF,∵BD⊥AB,∴EF⊥AB;(3)证明:延长CH交EF的延长线于点J.∵∠ACE=180°﹣∠ACB=135°,CH平分∠ACE,∴∠ACH=∠ECH=67.5°,∵∠ACB=∠E=45°,∴AC∥EJ,∴∠J=∠ACH=∠ECJ=67.5°,∴CE=EJ=CB,∵BC=BD+AB,EJ=EF+FJ,∴FJ=AB=AC,∵∠AHC=∠FHJ,∠ACH=∠J,∴△ACH≌△FJH(AAS),∴AH=FH.四.四边形综合题(共2小题)8.(2023•淄博)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片ABCD和CEFG拼成“L”形图案,如图①.试判断:△ACF的形状为 等腰直角三角形 .(2)深入探究小红在保持矩形ABCD不动的条件下,将矩形CEFG绕点C旋转,若AB=2,AD=4.探究一:当点F恰好落在AD的延长线上时,设CG与DF相交于点M,如图②.求△CMF 的面积.探究二:连接AE,取AE的中点H,连接DH,如图③.求线段DH长度的最大值和最小值.【答案】(1)等腰直角三角形;(2)探究一:;探究二:DH的最大值为+1,最小值为﹣1.【解答】解:(1)在Rt△ABC中,AC=,在Rt△CFG中,CF=,∵AB=GF,BC=CG,∴AC=CF,∴△ACF是等腰三角形,∵AB=GF,∠FGC=∠ABC=90°.BC=CG,∴△ABC≌△FGC(SAS),∴∠ACG=∠GFC,∵∠GCF+∠GFC=90°,∴∠ACG+∠GCF=90°,∴∠ACF=90°,∴△ACF是等腰直角三角形,故答案为:等腰直角三角形;(2)探究一:∵CD=GF,∠FMG=∠DMC,∠G=∠CDF=90°,∴△CDM≌△FGM(AAS),∴CM=MF,∵AC=CF,CD⊥AF,∴AD=DF,∵AB=CD=2,AD=DF=4,∴DM=4﹣CM,在Rt△CDM中,CM2=CD2+DM2,∴CM2=22+(4﹣CM)2,解得CM=,∴MF=,∴△CMF的面积=2×=;探究二:连接DE,取DE的中点P,连接HP,取AD、BC的中点为M、N,连接MN,MH,NH,∵H是AE的中点,∴MH∥DE,且MH=DE,∵CD=CE,∴CP⊥DE,DP=PE,∵MH∥DP,且MH=DP,∴四边形MHPD是平行四边形,∴MD=HP,MD∥HP,∵AD∥BC,MD=CN,∴HP∥CN,HP=CN,∴四边形HNCP是平行四边形,∴NH∥CP,∴∠MHN=90°,∴H点在以MN为直径的圆上,设MN的中点为T,∴DT==,∴DH的最大值为+1,最小值为﹣1.方法二:设AC的中点为T,连接HT,∵HT是△ACE的中位线,∴HT=CE=1,∴H在以T为圆心,1为半径的圆上,∵DT==,∴DH的最大值为+1,最小值为﹣1.9.(2023•东营)(1)用数学的眼光观察如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB的中点,N是DC的中点.求证:∠PMN=∠PNM.(2)用数学的思维思考如图②,延长图①中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F.求证:∠AEM=∠F.(3)用数学的语言表达如图③,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC 的中点,连接MN并延长,与BC的延长线交于点G,连接GD.若∠ANM=60°,试判断△CGD的形状,并进行证明.【答案】(1)证明见解析;(2)证明见解析;(3)直角三角形,理由见解析.【解答】(1)证明:∵P是BD的中点,N是DC的中点,∴PN是△BCD的中位线,PM是△ABD的中位线,∴PN=BC,PM=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM;(2)证明:由(1)知,PN是△BDC的中位线,PM是△ABD的中位线,∴PN∥BC,PM∥AD,∴∠PNM=∠F,∠PMN=∠AEM,∵∠PNM=∠PMN,∴∠AEM=∠F;(3)解:△CGD是直角三角形,理由如下:如图③,取BD的中点P,连接PM、PN,∵N是CD的中点,M是AB的中点,∴PN是△BCD的中位线,PM是△ABD的中位线,∴PN ∥BC ,PN =BC ,PM ∥AD ,PM =AD ,∵AD =BC∴PM =PN ,∴∠PNM =∠PMN ,∵PM ∥AD ,∴∠PMN =∠ANM =60°,∴∠PNM =∠PMN =60°,∵PN ∥BC ,∴∠CGN =∠PNM =60°,又∵∠CNG =∠ANM =60°,∴△CGN 是等边三角形.∴CN =GN ,又∵CN =DN ,∴DN =GN ,∴∠NDG =∠NGD =CNG =30°,∴∠CGD =∠CGN +∠NGD =90°,∴△CGD 是直角三角形.五.圆的综合题(共3小题)10.(2023•枣庄)如图,AB 为⊙O 的直径,点C 是的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是⊙O 的切线;(2)若BE =3,AB =4,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).【答案】(1)证明见解答.(2)BC的长为2.(3)阴影部分的面积为.【解答】(1)证明:如图,连接OC,∵点C是的中点,∴,∴∠ABC=∠EBC,∵OB=OC,∴∠ABC=∠OCB,∴∠EBC=∠OCB,∴OC∥BE,∵BE⊥CE,∴半径OC⊥CE,∴CE是⊙O的切线.(2)解:如图,连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CEB=90°,∵∠ABC=∠EBC,∴△ACB∽△CEB,∴,∴,∴.答:BC的长为2.(3)解:如图,连接OD、CD,∵AB=4,∴OC=OB=2,在Rt△BCE中,,∴,∴∠CBE=30°,∴∠COD=60°,∴∠AOC=60°,∵OC=OD,∴△COD是等边三角形,∴∠CDO=60°,∴∠CDO=∠AOC,∴CD∥AB,∴S△COD=S△CBD,∴.答:阴影部分的面积为.11.(2023•日照)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.【答案】(1)证明见解析;(2)证明见解析,(3).【解答】(1)证明:由旋转的性质可得AE=AD,∠DAE=α,∴∠BAC=∠DAE,∴∠BAC﹣∠BAD=∠DAE﹣∠BAD,即∠BAE=∠CAD,又∵AB=AC,∴△ABE≌△ACD(SAS),∴∠AEB=∠ADC,∵∠ADC+∠ADB=180°,∴∠AEB+∠ADB=180°,∴A、B、D、E四点共圆;(2)证明:如图所示,连接OA,OD,∵AB=AC,AD=CD,∴∠ABC=∠ACB=∠DAC,∵⊙O是四边形AEBD的外接圆,∴∠AOD=2∠ABC,∴∠AOD=2∠ABC=2∠DAC,∵OA=OD,∴∠OAD=∠ODA,∵∠OAD+∠ODA+∠AOD=180°,∴2∠DAC+2∠OAD=180°,∴∠DAC+∠OAD=90°,即∠OAC=90°,∴OA⊥AC,又∵OA是⊙O的半径,∴AC是⊙O的切线;(3)解:如图所示,作线段AB的垂直平分线,分别交AB、BC于G、F,连接AM,PM,如图:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵点M是边BC的中点,∴,AM⊥BC,∴,,在Rt△BGF中,,∴FM=BM﹣BF=3﹣2=1,∵⊙P是四边形AEBD的外接圆,∴点P一定在AB的垂直平分线上,∴点P在直线GF上,∴当MP⊥GF时,PM有最小值,∴∠PFM=∠BFG=90°﹣∠ABC=60°,在Rt△MPF中,PM=MF•sin∠PFM=1×sin60°=,∴圆心P与点M距离的最小值为.12.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF ⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.【答案】(1)证明过程见解答;(2)MN=BM+DN,理由见解答.【解答】(1)证明:∵CF⊥OE,OC是半径,∴CF是圆O的切线,∵BE是圆O的切线,∴BF=CF,∵EF=2BF,∴EF=2CF,sin E==,∴∠E=30°,∠EOB=60°,∵CD=CB,∴=,∴OC⊥BD,∵AB是直径,∴∠ADB=90°=∠EBO,∵∠E+∠EBD=90°,∠ABD+∠EBD=90°,∴∠E=∠ABD=30°,∴AD=BO=AB,∴△ABD≌△OEB(AAS);(2)解:MN=BM+DN,理由如下:延长ND至H使得DH=BM,连接CH,BD,如图2所示,∵∠CBM+∠NDC=180°,∠HDC+∠NDC=180°,∴∠HDC=∠MBC,∵CD=CB,DH=BM,∴△HDC≌△MBC(SAS),∴∠BCM=∠DCH,CM=CH,由(1)可得∠ABD=30°,∵AB是直径,∴∠ADB=90°,∴∠DCB=180°﹣∠A=120°,∵∠MCN=60°,∴∠BCM+∠NCD=120°﹣∠NCM=120°﹣60°=60°,∴∠DCH+∠NCD=∠NCH=60°,∴∠NCH=∠NCM,∵NC=NC,∴△CNH≌△CNM(SAS),∴NH=MN,∴MN=DN+DH=DN+BM,∴MN=BM+DN.六.相似三角形的判定与性质(共1小题)13.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,∠BAC=∠DCE=90°,点E在线段AC上,BC,DE相交于点F,连接BE,BD,作EH⊥BD,垂足为点H,交BC与点G.(1)若点H是BD的中点,求∠BED的度数;(2)求证:△EFG∽△BFD;(3)求证:=.【答案】(1)60°;(2)证明过程详见解答;(3)证明过程详见解答.【解答】(1)解:∵△ABC、△CDE是两个等腰直角三角形,∴∠ACB=∠ABC=45°,∠CED=∠CDE=45°,∴∠CFE=180°﹣∠ACB﹣∠CED=90°,∴EF=DF=DE,∵BH=DH,EH⊥BD,∴BE=DE,∴EF=BE,∴cos∠BED=,∴∠BED=60°;(2)证明:由(1)得:∠CFE=90°,∴CF⊥DE,∴∠BFD=∠EFG=∠BHE=90°,∵∠BGH=∠EGF,∴∠DBF=∠FEG,∴△EFG∽△BFD;(3)证明:如图,作BQ∥AC,交EH的延长线于点Q,∴△BGQ∽△CGE,∴,∠Q=∠CEH,∠QBE=∠AEB,∴,设∠DBF=DEH=α,由(1)知:BC是DE的垂直平分线,∴BE=BD,∴∠EBF=∠DBF=α,∴∠AEB=∠ACB+∠EBF=45°+α,∠CEH=∠CED+∠FEG=45°+α,∴∠AEB=∠CEH,∴∠Q=∠QBE,∴BE=EQ,∴=.七.相似形综合题(共2小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.【答案】(1)∠BDC=60°,;(2);(3)4.【解答】解:(1)∵矩形ABCD中,AB=2,,∴∠C=90°,CD=AB=2,,∴,∴∠BDC=60°,∵∠ABE=∠BAD=∠EAG=∠ADG=90°,∴∠EAG﹣∠EAD=∠BAD﹣∠EAD,即∠DAG=∠BAE,∴△ADG∽△ABE,∴;(2)如图2,过点F作FM⊥CG于点M,∵∠ABE=∠AGF=∠ADG=90°,AE=GF,∴∠BAE=∠DAG=∠CGF,∠ABE=∠GMF=90°,∴△ABE≌△GMF(AAS),∴BE=MF,AB=GM=2,∴∠MDF=∠BDC=60°,FM⊥CG,∴,∴,设DM=x,则,∴DG=GM+MD=2+x,由(1)可知:,∴,解得x=1,∴;(3)如图3,连接AC,将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',连接PP',矩形ABCD中,AD=BC=,AB=2,∴tan∠ACB==,∴∠ACB=30°,∴AC=2AB=4,∵EA=EC,∴∠EAC=∠ACE=30°,∠AEC=120°,∴∠ACG=∠GAC=90°﹣30°=60°,∴△AGC是等边三角形,AG=AC=4,∴PE=EF=AG=4,∵将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',∴PA=P'C,∠PEP'=120°,EP=EP'=4,∴,∴当点P,C,P′三点共线时,PA+PC的值最小,此时为.15.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.【答案】(1)证明见解析;(2)证明见解析;(3)3.【解答】(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°,∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF;(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°,∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF,∵CH=DE,∴CF=CH,∵点H在BC的延长线上,∴∠DCH=∠DCF=90°,又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H,∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H;(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG,∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11,∵CF+CG=FG,∴CF=FG﹣CG=11﹣8=3,即CF的长为3.。

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类(含答案)

山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.分式方程的应用(共2小题)1.(2023•济南)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?2.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?二.反比例函数综合题(共2小题)3.(2021•济南)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.4.(2022•济南)如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.三.二次函数图象与系数的关系(共1小题)5.(2023•济南)在平面直角坐标系xOy中,正方形ABCD的顶点A,B在x轴上,C(2,3),D(﹣1,3).抛物线y=ax2﹣2ax+c(a<0)与x轴交于点E(﹣2,0)和点F.(1)如图1,若抛物线过点C,求抛物线的表达式和点F的坐标;(2)如图2,在(1)的条件下,连接CF,作直线CE,平移线段CF,使点C的对应点P落在直线CE上,点F的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax2﹣2ax+c(a<0)与正方形ABCD恰有两个交点,求a的取值范围.四.二次函数综合题(共2小题)6.(2022•钢城区)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+ PQ的最大值.7.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.五.菱形的性质(共2小题)8.(2022•济南)已知:如图,在菱形ABCD中,E,F是对角线AC上两点,连接DE,DF,∠ADF=∠CDE.求证:AE=CF.9.(2021•济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE =∠CBF.求证:DE=DF.六.四边形综合题(共1小题)10.(2021•济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.七.切线的性质(共2小题)11.(2023•济南)如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,∠ABC=2∠BCP,点E是的中点,弦CE,BD相交于点F.(1)求∠OCB的度数;(2)若EF=3,求⊙O直径的长.12.(2022•钢城区)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.八.几何变换综合题(共1小题)13.(2022•钢城区)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为 ;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.九.相似形综合题(共1小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.一十.解直角三角形的应用-坡度坡角问题(共1小题)15.(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC 落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)山东省济南市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.分式方程的应用(共2小题)1.(2023•济南)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?【答案】(1)A型编程机器人模型单价是500元,B型编程机器人模型单价是300元;(2)购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.【解答】解:(1)设A型编程机器人模型单价是x元,B型编程机器人模型单价是(x﹣200)元.根据题意:,解这个方程,得:x=500,经检验,x=500是原方程的根,∴x﹣200=300,答:A型编程机器人模型单价是500元,B型编程机器人模型单价是300元;(2)设购买A型编程机器人模型m台,购买B型编程机器人模型(40﹣m)台,购买A型和B型编程机器人模型共花费w元,由题意得:40﹣m≤3m,解得:m≥10,w=500×0.8•m+300×0.8﹣(40﹣m),即:w=160m+9600,∵160>0∴w随m的减小而减小.当m=10时,w取得最小值11200,∴40﹣m=30答:购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.2.(2021•济南)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)甲种粽子的单价为8元,乙种粽子的单价为4元.(2)最多购进87个甲种粽子.【解答】解:(1)设乙种粽子的单价为x元,则甲种粽子的单价为2x元,依题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,则2x=8,答:甲种粽子的单价为8元,乙种粽子的单价为4元.(2)设购进甲种粽子m个,则购进乙种粽子(200﹣m)个,依题意得:8m+4(200﹣m)≤1150,解得:m≤87.5,答:最多购进87个甲种粽子.二.反比例函数综合题(共2小题)3.(2021•济南)如图,直线y=与双曲线y=(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)k=6,B(2,3);(2)2;(3)点P的坐标为(,0)或(0,).【解答】解:(1)将点A的坐标为(m,﹣3)代入直线y=x中,得﹣3=m,解得:m=﹣2,∴A(﹣2,﹣3),∴k=﹣2×(﹣3)=6,∴反比例函数解析式为y=,由,得或,∴点B的坐标为(2,3);(2)如图1,作BE⊥x轴于点E,CF⊥x轴于点F,∴BE∥CF,∴△DCF∽△DBE,∴=,∵BC=2CD,BE=3,∴=,∴=,∴CF=1,∴C(6,1),作点B关于y轴的对称点B′,连接B′C交y轴于点G,则B′C即为BG+GC的最小值,∵B′(﹣2,3),C(6,1),∴B′C==2,∴BG+GC=B′C=2;(3)存在.理由如下:①当点P在x轴上时,如图2,设点P1的坐标为(a,0),过点B作BE⊥x轴于点E,∵∠OEB=∠OBP1=90°,∠BOE=∠P1OB,∴△OBE∽△OP1B,∴=,∵B(2,3),∴OB==,∴=,∴a=,∴点P1的坐标为(,0);②当点P在y轴上时,过点B作BN⊥y轴于点N,如图2,设点P2的坐标为(0,b),∵∠ONB=∠P2BO=90°,∠BON=∠P2OB,∴△BON∽△P2OB,∴=,即=,∴b=,∴点P2的坐标为(0,);综上所述,点P的坐标为(,0)或(0,).4.(2022•济南)如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.【答案】(1)a=4,k=12;(2)①8;②P(3,4)或(6,2).【解答】解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CF⊥x轴于F,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴x A==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴y P=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),由y Q′﹣y B=y P′﹣y A得,0﹣1=y P′﹣3,∴y P′=2,当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).三.二次函数图象与系数的关系(共1小题)5.(2023•济南)在平面直角坐标系xOy中,正方形ABCD的顶点A,B在x轴上,C(2,3),D(﹣1,3).抛物线y=ax2﹣2ax+c(a<0)与x轴交于点E(﹣2,0)和点F.(1)如图1,若抛物线过点C,求抛物线的表达式和点F的坐标;(2)如图2,在(1)的条件下,连接CF,作直线CE,平移线段CF,使点C的对应点P落在直线CE上,点F的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax2﹣2ax+c(a<0)与正方形ABCD恰有两个交点,求a的取值范围.【答案】(1),F(4,0);(2)(﹣4,﹣6);(3)或.【解答】解:(1)∵抛物线y=ax2﹣2ax+c过点C(2,3),E(﹣2,0),得,解得,∴抛物线表达式为,当y=0 时,,解得x1=﹣2 (舍去),x2=4,∴F(4,0);(2)设直线CE的表达式为y=kx+b,∵直线过点C(2,3),E(﹣2,0),得,解得,∴直线CE的表达式为,设点,则点Q向左平移2个单位,向上平移3个单位得到点,将代入,解得t1=﹣4,t2=4 (舍去),∴Q点坐标为(﹣4,﹣6);(3)将E(﹣2,0)代入y=ax2﹣2ax+c得c=﹣8a,∴y=ax2﹣2ax﹣8a=a(x﹣1)2﹣9a,∴顶点坐标为(1,﹣9a),①当抛物线顶点在正方形内部时,与正方形有两个交点,∴0<﹣9a<3,解得,②当抛物线与直线BC交点在点C上方,且与直线AD交点在点D下方时,与正方形有两个交点,,解得综上所述,a的取值范围为或.四.二次函数综合题(共2小题)6.(2022•钢城区)抛物线y=ax2+x﹣6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+ PQ的最大值.【答案】(1)k=,t=3,y=﹣x2+x﹣6;(2)(10,﹣);(3).【解答】解:(1)将B(8,0)代入y=ax2+x﹣6,∴64a+22﹣6=0,∴a=﹣,∴y=﹣x2+x﹣6,当y=0时,﹣t2+t﹣6=0,解得t=3或t=8(舍),∴t=3,∵B(8,0)在直线y=kx﹣6上,∴8k﹣6=0,解得k=;(2)作PM⊥x轴交于M,∵P点横坐标为m,∴P(m,﹣m2+m﹣6),∴PM=m2﹣m+6,AM=m﹣3,在Rt△COA和Rt△AMP中,∵∠OAC+∠PAM=90°,∠APM+∠PAM=90°,∴∠OAC=∠APM,∴△COA∽△AMP,∴=,即OA•MA=CO•PM,3(m﹣3)=6(m2﹣m+6),解得m=3(舍)或m=10,∴P(10,﹣);(3)作PN⊥x轴交BC于N,过点N作NE⊥y轴交于E,∴PN=﹣m2+m﹣6﹣(m﹣6)=﹣m2+2m,∵PN⊥x轴,∴PN∥OC,∴∠PNQ=∠OCB,∴Rt△PQN∽Rt△BOC,∴==,∵OB=8,OC=6,BC=10,∴QN=PN,PQ=PN,由△CNE∽△CBO,∴CN=EN=m,∴CQ+PQ=CN+NQ+PQ=CN+PN,∴CQ+PQ=m﹣m2+2m=﹣m2+m=﹣(m﹣)2+,当m=时,CQ+PQ的最大值是.7.(2021•济南)抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),顶点为C.(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作∠PEF=∠CAB,边EF交x轴于点F,设点F的横坐标为m,求m的取值范围.【答案】(1)y=﹣x2+2x+3;顶点C(1,4);(2)P();(3)﹣1<m≤.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx+3得:,解得:.∴抛物线的表达式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点C(1,4).(2)设AC交y轴于点F,连接DF,过点C作CE⊥x轴于点E,如图,∵A(﹣1,0),C(1,4),∴OA=1,OE=1,CE=4.∴OA=OE,AC==2.∵FO⊥AB,CE⊥AB,∴FO∥CE,∴OF=CE=2,F为AC的中点.∵△DAC是以AC为底的等腰三角形,∴DF⊥AC.∵FO⊥AD,∴△AFO∽△FDO.∴.∴.∴OD=4.∴D(4,0).设直线CD的解析式为y=kx+m,∴,解得:.∴直线CD的解析式为y=﹣.∴,解得:,.∴P().(3)过点P作PH⊥AB于点H,如图,则OH=,PH=,∵OD=4,∴HD=OD﹣OH=,∴PD==.∴PC=CD﹣PD=5﹣=.由(2)知:AC=2.设AF=x,AE=y,则CE=2﹣y.∵DA=DC,∴∠DAC=∠C.∵∠CAB+∠AEF+∠AFE=180°,∠AEF+∠PEF+∠CEP=180°,又∵∠PEF=∠CAB,∴∠CEP=∠AFE.∴△CEP∽△AFE.∴.∴.∴x=﹣+y=﹣+.∴当y=时,x即AF有最大值.∵OA=1,∴OF的最大值为﹣1=.∵点F在线段AD上,∴点F的横坐标m的取值范围为﹣1<m≤.解法二:∵DC=DA,∴∠DAC=∠DCA,∴∠FAE=∠PEF=∠PCE,∴△CEP∽△AFE,∴=,∵C(1,4),A(﹣1,0),∴直线AC的解析式为y=2x+2,设E(n,2n+2),则AE==(n+1),CE==(1﹣n),CP==.∴=,∴45n2+20m﹣25=0,∵Δ>0,∴02﹣4×45×(20m﹣25)≥0,∴m≤,∴F的横坐标m的取值范围为﹣1<m≤.五.菱形的性质(共2小题)8.(2022•济南)已知:如图,在菱形ABCD中,E,F是对角线AC上两点,连接DE,DF,∠ADF=∠CDE.求证:AE=CF.【答案】证明过程见解答.【解答】证明:∵四边形ABCD是菱形,∴DA=DC,∴∠DAC=∠DCA,∵∠ADF=∠CDE,∴∠ADF﹣∠EDF=∠CDE﹣∠EDF,∴∠ADE=∠CDF,在△DAE和△DCF中,,∴△DAE≌△DCF(ASA),∴AE=CF.9.(2021•济南)已知:如图,在菱形ABCD中,E,F分别是边AD和CD上的点,且∠ABE =∠CBF.求证:DE=DF.【答案】证明见解析.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,AB=BC,∠A=∠C,又∵∠ABE=∠CBF,∴△ABE≌△CBF(ASA),∴AE=CF,∴AD﹣AE=CD﹣CF,∴DE=DF.六.四边形综合题(共1小题)10.(2021•济南)在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,BD=BC,将线段DB绕点D顺时针旋转至DE,记旋转角为α,连接BE,CE,以CE为斜边在其一侧作等腰直角三角形CEF,连接AF.(1)如图1,当α=180°时,请直接写出线段AF与线段BE的数量关系;(2)当0°<α<180°时,①如图2,(1)中线段AF与线段BE的数量关系是否仍然成立?请说明理由;②如图3,当B,E,F三点共线时,连接AE,判断四边形AECF的形状,并说明理由.【答案】见试题解答内容【解答】解:(1)如图1,当α=180°时,点E在线段BC上,∵BD=BC,∴DE=BD=BC,∴BD=DE=EC,∵△CEF是等腰直角三角形,∴∠CFE=∠BAC=90°,∵∠ECF=∠BCA=45°,∴△ABC∽△FEC,∴==,∴==,∵BC=AC,∴==,∴=,即==,∴=•=×=;(2)①=仍然成立.理由如下:如图2,∵△CEF是等腰直角三角形,∴∠ECF=45°,=,∵在△ABC中,∠BAC=90°,AB=AC,∴∠BCA=45°,=,∴∠ECF=∠BCA,=,∴∠ACF+∠ACE=∠BCE+∠ACE,∴∠ACF=∠BCE,∵=,∴△CAF∽△CBE,∴==,∴=仍然成立.②四边形AECF是平行四边形.理由如下:如图3,过点D作DG⊥BF于点G,由旋转得:DE=BD=BC,∵∠BGD=∠BFC=90°,∠DBG=∠CBF,∴△BDG∽△BCF,∴===,∵BD=DE,DG⊥BE,∴BG=EG,∴BG=EG=EF,∵EF=CF,∴CF=BG=BF,由①知,AF=BE=BG=CF=CE,∵△CAF∽△CBE,∴∠CAF=∠CBE,∠ACF=∠BCE,∵∠CEF=∠CBE+∠BCE=45°,∠BCE+∠ACE=∠ACB=45°,∴∠CBE=∠ACE,∴∠CAF=∠ACE,∴AF∥CE,∵AF=CE,∴四边形AECF是平行四边形.七.切线的性质(共2小题)11.(2023•济南)如图,AB,CD为⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,∠ABC=2∠BCP,点E是的中点,弦CE,BD相交于点F.(1)求∠OCB的度数;(2)若EF=3,求⊙O直径的长.【答案】(1)证明见解析;(2)6.【解答】解:(1)∵PC与⊙O相切于点C,∴OC⊥PC,∴∠OCB+∠BCP=90°,∵OB=OC,∴∠OCB=∠OBC,∵∠ABC=2∠BCP,∴∠OCB=2∠BCP,∴3∠BCP=90°,∴∠BCP=30°,∴∠OCB=60°.(2)连接DE,∵CD是直径,∴∠DEC=90°,∵点E是的中点,∴,∴∠DCE=∠FDE=∠ECB=∠DCB=30°,∵∠E=90°,EF=3,∠FDE=30°,∴DE=FE=3,∵∠E=90°,∠DCE=30°,∴,∴⊙O的直径的长为.12.(2022•钢城区)已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.【答案】(1)证明过程见解答;(2)线段BF的长为3.【解答】(1)证明:连接OC,∵CD与⊙O相切于点C,∴∠OCD=90°,∵∠D=30°,∴∠COD=90°﹣∠D=60°,∴∠A=∠COD=30°,∴∠A=∠D=30°,∴CA=CD;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠A=30°,AB=12,∴BC=AB=6,∵CE平分∠ACB,∴∠BCE=∠ACB=45°,∵BF⊥CE,∴∠BFC=90°,∴BF=BC•sin45°=6×=3,∴线段BF的长为3.八.几何变换综合题(共1小题)13.(2022•钢城区)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为 AE=BE﹣CE ;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.【答案】(1)BD=CE;(2)AE=BE﹣CE;(3)45°.【解答】解:(1)BD=CE,理由如下:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵AE是由AD绕点A逆时针旋转60°得到的,∴∠DAE=60°,AD=AE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即:∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)①由(1)得:∠DAE=60°,AD=AE,BD=CE,∴△ADE是等边三角形,∴DE=AE,∴AE=DE=BE﹣BD=BE﹣CE,故答案为:AE=BE﹣CE;②如图,∠BAD=45°,理由如下:连接AF,作AG⊥DE于G,∴∠AGD=90°,∵F是BC的中点,△ABC是等边三角形,△ADE是等边三角形,∴AF⊥BC,∠ABF=∠ADG=60°,∴∠AFB=∠AGD,∴△ABF∽△ADG,∴,∠BAF=∠DAG,∴∠BAF+∠DAF=∠DAG+∠DAF,∴∠BAD=∠FAG,∴△ABD∽△AFG,∴∠ADB=∠AGF=90°,由(1)得:BD=CE,∵CE=DE=AD,∴AD=BD,∴∠BAD=45°.九.相似形综合题(共1小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.【答案】(1)∠BDC=60°,;(2);(3)4.【解答】解:(1)∵矩形ABCD中,AB=2,,∴∠C=90°,CD=AB=2,,∴,∴∠BDC=60°,∵∠ABE=∠BAD=∠EAG=∠ADG=90°,∴∠EAG﹣∠EAD=∠BAD﹣∠EAD,即∠DAG=∠BAE,∴△ADG∽△ABE,∴;(2)如图2,过点F作FM⊥CG于点M,∵∠ABE=∠AGF=∠ADG=90°,AE=GF,∴∠BAE=∠DAG=∠CGF,∠ABE=∠GMF=90°,∴△ABE≌△GMF(AAS),∴BE=MF,AB=GM=2,∴∠MDF=∠BDC=60°,FM⊥CG,∴,∴,设DM=x,则,∴DG=GM+MD=2+x,由(1)可知:,∴,解得x=1,∴;(3)如图3,连接AC,将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',连接PP',矩形ABCD中,AD=BC=,AB=2,∴tan∠ACB==,∴∠ACB=30°,∴AC=2AB=4,∵EA=EC,∴∠EAC=∠ACE=30°,∠AEC=120°,∴∠ACG=∠GAC=90°﹣30°=60°,∴△AGC是等边三角形,AG=AC=4,∴PE=EF=AG=4,∵将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',∴PA=P'C,∠PEP'=120°,EP=EP'=4,∴,∴当点P,C,P′三点共线时,PA+PC的值最小,此时为.一十.解直角三角形的应用-坡度坡角问题(共1小题)15.(2023•济南)图1是某越野车的侧面示意图,折线段ABC表示车后盖,已知AB=1m,BC=0.6m,∠ABC=123°,该车的高度AO=1.7m.如图2,打开后备箱,车后盖ABC落在AB'C'处,AB'与水平面的夹角∠B'AD=27°.(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m,参考数据:sin27°≈0.454,cos27°≈0.891,tan27°≈0.510,≈1.732)【答案】(1)车后盖最高点B′到地面的距离为2.15m;(2)没有危险,详见解析.【解答】解:(1)如图,作B′E⊥AD,垂足为点E,在Rt△AB′E中,∵∠B′AD=27°,AB′=AB=1,∴sin27°=,∴B′E=AB′sin27°≈1×0.454=0.454,∵平行线间的距离处处相等,∴B′E+AO=0.454+1.7=2.154≈2.15,答:车后盖最高点B′到地面的距离为2.15m.(2)没有危险,理由如下:过C′作C′F⊥B′E,垂足为点F,∵∠B′AD=27°,∠B′EA=90°,∴∠AB′E=63°,∵∠AB′C′=∠ABC=123°,∴∠C′B′F=∠AB′C′﹣∠AB′E=60°,在Rt△B′FC′中,B′C′=BC=0.6,∴B′F=B′C′•cos60°=0.3.∵平行线间的距离处处相等,∴C′到地面的距离为2.15﹣0.3=1.85.∵1.85>1.8,∴没有危险.。

2023中考数学一轮复习专题3

2023中考数学一轮复习专题3

专题3.3 平面直角坐标系与一次函数、反比例函数(巩固篇)(真题专练)一、单选题1.(2021·四川自贡·中考真题)如图,()8,0A ,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,62.(2021·内蒙古鄂尔多斯·中考真题)已知:AOCD 的顶点()0,0O ,点C 在x 轴的正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径画弧,分别交OA 于点M ,交OC 于点N .①分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOC ∠内相交于点E .①画射线OE ,交AD 于点()2,3F ,则点A 的坐标为( )A .5,34⎛⎫- ⎪⎝⎭B .(3C .4,35⎛⎫- ⎪⎝⎭D .(23.(2021·辽宁锦州·中考真题)如图,在四边形DEFG 中,①E =①F =90°,①DGF =45°,DE =1,FG =3,Rt ①ABC 的直角顶点C 与点G 重合,另一个顶点B (在点C 左侧)在射线FG 上,且BC =1,AC =2,将①ABC 沿GF 方向平移,点C 与点F 重合时停止.设CG 的长为x ,①ABC 在平移过程中与四边形DEFG 重叠部分的面积为y ,则下列图象能正确反映y 与x 函数关系的是( )A .B .C .D .4.(2021·辽宁营口·中考真题)已知一次函数y kx k =-过点()1,4-,则下列结论正确的是( )A .y 随x 增大而增大B .2k =C .直线过点()1,0D .与坐标轴围成的三角形面积为25.(2021·贵州安顺·中考真题)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线()1,2,3,4,5,6,7n n y k x b n =+=,其中12345,k k b b b ===,则他探究这7条直线的交点个数最多是( ) A .17个B .18个C .19个D .21个6.(2021·山东滨州·中考真题)如图,在OAB 中,45BOA ∠=︒,点C 为边AB 上一点,且2BC AC =.如果函数()90y x x=>的图象经过点B 和点C ,那么用下列坐标表示的点,在直线BC 上的是( )A .(-2019,674)B .(-2020,675)C .(2021,-669)D .(2022,-670)7.(2021·湖北荆门·中考真题)在同一直角坐标系中,函数y kx k =-与(0)||ky k x =≠的大致图象是( )A .①①B .①①C .①①D .①①8.(2021·辽宁丹东·中考真题)如图,点A 在曲线到12(0)y x x=>上,点B 在双曲线2(0)ky x x=<上,//AB x 轴,点C 是x 轴上一点,连接AC 、BC ,若ABC 的面积是6,则k 的值( )A .6-B .8-C .10-D .12-9.(2021·山东淄博·中考真题)如图,在平面直角坐标系中,四边形AOBD 的边OB 与x 轴的正半轴重合,//AD OB ,DB x ⊥轴,对角线,AB OD 交于点M .已知:2:3,AD OB AMD =的面积为4.若反比例函数ky x=的图象恰好经过点M ,则k 的值为( )A .275B .545C .585D .1210.(2021·山东威海·中考真题)一次函数()1110y k x b k =+≠与反比例函数()2220k y k x=≠的图象交于点(1,2)A --,点(2,1)B .当12y y <时,x 的取值范围是( ) A .1x <- B .10x -<<或2x > C .02x <<D .02x <<或1x <-11.(2021·内蒙古呼伦贝尔·中考真题)点()()()1235,,3,,3,y y y --都在反比例函数()0ky k x=>的图像上,则( ) A .312y y y >> B .123y y y >>C .132y y y >>D .213y y y >>二、填空题12.(2021·辽宁盘锦·中考真题)如图,在平面直角坐标系xOy 中,点A 在x 轴负半轴上,点B 在y 轴正半轴上,①D 经过A ,B ,O ,C 四点,①ACO =120°,AB =4,则圆心点D 的坐标是________13.(2021·山东潍坊·中考真题)在直角坐标系中,点A 1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A 2(1,0),A 3(1,1),A 4(﹣1,1),A 5(﹣1,﹣1),A 6(2,﹣1),A 7(2,2),….若到达终点A n (506,﹣505),则n 的值为 _______.14.(2021·广西梧州·中考真题)如图,在同一平面直角坐标系中,直线l 1:y 14=x 12+与直线l 2:y =kx +3相交于点A ,则方程组11423y x y kx ⎧=+⎪⎨⎪=+⎩的解为 ___.15.(2021·贵州毕节·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.16.(2021·广西贺州·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.17.(2021·山东日照·中考真题)如图,在平面直角坐标系xOy 中,正方形OABC 的边OC 、OA 分别在x 轴和y 轴上,10OA =,点D 是边AB 上靠近点A 的三等分点,将OAD △沿直线OD 折叠后得到'OA D △,若反比例函数()0ky k x=≠的图象经过'A 点,则k 的值为_______.18.(2021·辽宁鞍山·中考真题)如图,ABC 的顶点B 在反比例函数(0)ky x x=>的图象上,顶点C 在x 轴负半轴上,//AB x 轴,AB ,BC 分别交y 轴于点D ,E .若32BE CO CE AD ==,13ABCS =,则k =_____.19.(2021·四川巴中·中考真题)如图,平行于y 轴的直线与函数y 1k x =(x >0)和y 22x=(x>0)的图象分别交于A 、B 两点,OA 交双曲线y 22x=于点C ,连接CD ,若OCD 的面积为2,则k =_______.20.(2021·湖北荆门·中考真题)如图,在平面直角坐标系中,Rt OAB 斜边上的高为1,30AOB ∠=︒,将Rt OAB 绕原点顺时针旋转90︒得到Rt OCD △,点A 的对应点C 恰好在函数(0)k y k x =≠的图象上,若在ky x =的图象上另有一点M 使得30MOC ∠=︒,则点M 的坐标为_________.21.(2021·黑龙江齐齐哈尔·中考真题)如图,点A 是反比例函数1(0)k y x x=<图象上一点,AC x ⊥轴于点C 且与反比例函数2(0)k y x x=<的图象交于点B ,3AB BC = ,连接OA ,OB ,若OAB 的面积为6,则12k k +=_________.22.(2021·内蒙古通辽·中考真题)如图,11OA B ,122A A B ,233A A B △…,1n n n A A B -都是斜边在x 轴上的等腰直角三角形,点1A ,2A ,3A ,…,n A 都在x 轴上,点1B ,2B ,3B ,…,n B 都在反比例函数()10y x x=>的图象上,则点n B 的坐标为__________.(用含有正整数n 的式子表示)23.(2021·山东潍坊·中考真题)如图,在直角坐标系中,O 为坐标原点a y x =与by x=(a >b >0)在第一象限的图象分别为曲线C 1,C 2,点P 为曲线C 1上的任意一点,过点P 作y 轴的垂线交C 2于点A ,作x 轴的垂线交C 2于点B ,则阴影部分的面积S ①AOB =_______.(结果用a ,b 表示)24.(2021·黑龙江绥化·中考真题)如图,在平面直角坐标系中,O 为坐标原点,MN 垂直于x 轴,以MN 为对称轴作ODE 的轴对称图形,对称轴MN 与线段DE 相交于点F ,点D 的对应点B 恰好落在(0,0)ky k x x=≠<的双曲线上.点O E 、的对应点分别是点C A 、.若点A 为OE 的中点,且1AEF S =△,则k 的值为____.25.(2021·广西柳州·中考真题)如图,一次函数2y x =与反比例数()0ky k x=>的图像交于A ,B 两点,点M 在以()2,0C 为圆心,半径为1的C 上,N 是AM 的中点,已知ON 长的最大值为32,则k 的值是_______.三、解答题26.(2021·山东青岛·中考真题)某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用1800元购进乙品牌洗衣液数量的45.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?27.(2021·辽宁沈阳·中考真题)如图,平面直角坐标系中,O 是坐标原点,直线15(0)y kx k =+≠经过点()3,6C ,与x 轴交于点A ,与y 轴交于点B .线段CD 平行于x 轴,交直线34y x =于点D ,连接OC ,AD .(1)填空:k = __________.点A 的坐标是(__________,__________); (2)求证:四边形OADC 是平行四边形;(3)动点P 从点O 出发,沿对角线OD 以每秒1个单位长度的速度向点D 运动,直到点D 为止;动点Q 同时从点D 出发,沿对角线OD 以每秒1个单位长度的速度向点O 运动,直到点O 为止.设两个点的运动时间均为t 秒. ①当1t =时,CPQ 的面积是__________.①当点P ,Q 运动至四边形CPAQ 为矩形时,请直接写出此时t 的值.28.(2021·甘肃兰州·中考真题)如图,一次函数12y x b =-+与反比例函数()100y x x =-<,()0ky x x=>图象分别交于()2,A m -,()4,B n ,与y 轴交于点C ,连接OA ,OB .(1)求反比例函数()0ky x x =>和一次函数12y x b =-+的表达式;(2)求AOB 的面积.29.(2021·山东济南·中考真题)如图,直线32y x =与双曲线()0k y k x=≠交于A ,B 两点,点A 的坐标为(),3m -,点C 是双曲线第一象限分支上的一点,连接BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值并直接写出....点B 的坐标; (2)点G 是y 轴上的动点,连接GB ,GC ,求GB GC +的最小值;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.参考答案1.D 【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可 【详解】解:由题意可知:AC =AB ①()8,0A ,()2,0C - ①OA =8,OC =2 ①AC =AB =10在Rt ①OAB 中,6OB = ①B (0,6) 故选:D【点拨】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键 2.A 【分析】由题意得:OE 平分①AOC ,结合AD ①OC ,可得AO=AF ,设AH =m ,则AO =AF =2+m ,根据勾股定理,列出方程,即可求解. 【详解】解:由作图痕迹可知:OE 平分①AOC ,①①AOF =①COF ,①在AOCD 中,AD ①OC , ①①COF =①AFO , ①①AOF =①AFO ,①AO=AF , ①()2,3F , ①FH =2,OH =3,设AH =m ,则AO =AF =2+m , ①在Rt AOH 中,AH 2+OH 2=AO 2, ①m 2+32=(2+m ) 2,解得:54m =, ①A 5,34⎛⎫- ⎪⎝⎭,故选A .【点拨】本题主要考查平行四边形的性质,尺规作角平分线,勾股定理,等腰三角形的判定和性质,推出AO=AF ,利用勾股定理列出方程,是解题的关键. 3.B 【分析】根据移动过程分三个阶段讨论,第一个是点B 到达点G 之前,即0<x <1时,求出y 和x 的关系式,确定图象,第二个是点C 到达点H 之前,即1<x <2时,求出y 和x 的关系式,确定图象,第三个是点C 到达点F 之前,即2<x <3时,求出y 和x 的关系式,确定图象,即可确定选项. 【详解】解:过点D 作DH ①EF ,①①DGF =45°,DE =1,FG =3, ①EH =2,DH =EF =2,当0<x <1时,重叠部分为等腰直角三角形,且直角边长为x , ①y =212x ,①102>, ①该部分图象开口向上,当1<x <2时,如图,设A 'B '与DG 交与点N ,A 'C '与DG 交与点M , 则S 重叠=S ①GMC '﹣S ①GNB ', 设B 'K =a ,则NK =2a , ①GC '=x ,B 'C '=1, ①GB '=x ﹣1,①①GKN 是等腰直角三角形, ①GK =NK , ①x ﹣1+a =2a , ①a =x ﹣1, ①NK =2x ﹣2,①21(1)(22)212GNB S x x x x '∆=--=-+,①212GMC S x '∆=, ①S 重叠=212x ﹣(x 2﹣2x +1)=21212x x -+-,①102-<, ①该部分图象开口向下,当2<x <3时,重叠部分的面积为S ①ABC ,是固定值, ①该部分图象是平行x 轴的线段, 故选:B .【点拨】本题主要考查动点问题的函数图象,关键是要把移动过程分成几个阶段,然后根据每个阶段的情况单独讨论,确定y 和x 之间的函数关系式,从而确定图象. 4.C 【分析】将点()1,4-代入一次函数解析式,求出k 的值,利用一次函数的图象与性质逐一判断即可.解:①一次函数y kx k =-过点()1,4-, ①4k k =--,解得2k =-,①一次函数为22y x =-+,y 随x 增大而减小,故A 和B 错误; 当1x =时,0y =,故C 正确;该一次函数与x 轴交于点()1,0,与y 轴交于点()0,2, ①与坐标轴围成的三角形面积为11212⨯⨯=,故D 错误;故选:C .【点拨】本题考查一次函数的图象与性质,利用待定系数法求出一次函数解析式是解题的关键. 5.B 【分析】因为题中已知12345,k k b b b ===,可知:第1、2条直线相互平行没有交点,第3、4、5条直线交于一点,由此即可求解此题. 【详解】解:①直线()1,2,3,4,5,6,7n n y k x b n =+=,其中12345,k k b b b === ①第1、2条直线相互平行没有交点,第3、4、5条直线交于一点, ①这5条直线最多有7个交点,第6条直线,与前面5条直线的交点数最多有5个, 第7条直线,与前面6条直线的交点数最多有6个, ①得出交点最多就是7+5+6=18条, 故选:B .【点拨】本题考查了两条直线相交或平行问题,做题关键在于分析得出两条平行直线,三条直线相交于一点. 6.D 【分析】根据反比例函数图象上点的坐标特征,求出B 、C 点的坐标,再写出BC 解析式,再判断点在BC 上.解:作BD OA ⊥,CE OA ⊥,45BOA ∠=︒,BD OD ∴=,设(,)B a a ,∴9a a=, 3a ∴=或3a =-(舍去), 3BD OD ∴==,(3,3)B , 2BC AC =.3ABAC ,BD OA ⊥,CE OA ⊥,//BD CE ∴,.ABD ACE ∴∆∆∽3BD ABCE AC==, ∴33CE=, 1CE ∴=,图象经过点C ,∴91x=, 9x ∴=,(9,1)C设BC 的解析式为y kx b =+,3319k b k b=+⎧⎨=+⎩,解得134k b ⎧=-⎪⎨⎪=⎩, ∴143y x =-+,当2019x =-时,677y =, 当2020x =-时,16773y =, 当2021x =时,26693y =-, 当2022x =时,670y =-, 故选:D .【点拨】本题考查反比例函数图象上的点的性质,能求出BC 的解析式是解题的关键. 7.B 【分析】根据k 的取值范围,分别讨论k >0和k <0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案. 【详解】 解:当k >0时,一次函数y=kx -k 经过一、三、四象限, 函数的(0)||ky k x =≠(k≠0)的图象在一、二象限, 故选项①的图象符合要求. 当k <0时,一次函数y=kx -k 经过一、二、四象限, 函数的(0)||ky k x =≠(k≠0)的图象经过三、四象限, 故选项①的图象符合要求. 故选:B .【点拨】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k 值相同,则两个函数图象必有交点;一次函数与y 轴的交点与一次函数的常数项相关. 8.C 【分析】根据//AB x 轴可以得到6ABCAOBS S==,转换成反比例函数面积问题即可解题.【详解】连接OA 、OB ,设AB 与y 轴交点为M ,①//AB x 轴 ①AB ①y 轴,6ABCAOBS S==①12BOMS k =,1212AOMS =⨯= ①6ABCAOBBOMAOMS S SS==+=①1162k += 解得10k =± ①点B 在双曲线2(0)ky x x=<上,且B 在第二象限 ①0k < ①10k =- 故选C【点拨】本题考查反比例函数问题,熟记反比例函数面积与k 的关系是解题的关键. 9.B 【分析】过点M 作ME ①x 轴于点E ,则有ME ①BD ,2MEOk S=,进而可得ADM BOM ∽、OME ODB ∽,然后根据相似三角形的面积比与相似比的关系可进行求解.【详解】解:过点M 作ME ①x 轴于点E ,如图所示:①DB x⊥轴,①ME①BD,①//AD OB,①ADM BOM∽,①:2:3AD OB=,①249 ADMBOMS ADS OB⎛⎫==⎪⎝⎭,①AMD的面积为4,①9BOMS=,①:2:3AD OB=,①:3:5OM OD=,由题可知①OMB、①OBD的高是相同的,则有35BOM OBDS S=,①453OBDS=,①ME①BD,①OME ODB∽,①2925 OMEODBS OMS OD⎛⎫==⎪⎝⎭,①275OMES=,由反比例函数k 的几何意义可得:2MEOk S =,①0k >, ①545k =; 故选B .【点拨】本题主要考查反比例函数k 的几何意义及相似三角形的性质与判定,熟练掌握反比例函数k 的几何意义及相似三角形的性质与判定是解题的关键. 10.D 【分析】先确定一次函数和反比例函数解析式,然后画出图象,再根据图象确定x 的取值范围即可. 【详解】解:①两函数图象交于点(1,2)A --,点(2,1)B①112=12k b k b --+⎧⎨=+⎩,221k -=-,解得:1=11k b ⎧⎨=-⎩,k 2=2 ①11y x =-,22y x=画出函数图象如下图:由函数图象可得12y y <的解集为:0<x <2或x <-1.故填D .【点拨】本题主要考查了运用待定系数法求函数解析式以及根据函数图象确定不等式的解集,根据题意确定函数解析式成为解答本题的关键. 11.A 【分析】根据反比例函数的增减性解答即可. 【详解】 解:①()0ky k x=>, ①在每个象限内,y 随着x 的增大而减小, ①-5<-3<0<3, ①312y y y >>, 故选:A .【点拨】此题考查反比例函数的增减性:当k >0时,在每个象限内,y 随着x 的增大而减小;当k <0,在每个象限内,y 随着x 的增大而增大.12.D (1) 【分析】先利用圆内接四边形的性质得到①ABO =60°,再根据圆周角定理得到AB 为①D 的直径,则D 点为AB 的中点,接着利用含30度的直角三角形三边的关系得到OB =2,OA =以A (0),B (0,2),然后利用线段的中点坐标公式得到D 点坐标. 【详解】解:①四边形ABOC 为圆的内接四边形, ①①ABO +①ACO =180°, ①①ABO =180°−120°=60°, ①①AOB =90°, ①AB 为①D 的直径, ①D 点为AB 的中点,在Rt①ABO 中,①①ABO =60°,①OB =12AB =2,①OA =①A (0),B (0,2),①D 点坐标为(1).故答案为(1).【点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了坐标与图形性质.13.2022【分析】 终点()506505n A -,在第四象限,寻找序号与坐标之间的关系可求n 的值. 【详解】解:①()506505-,是第四象限的点, ①()506505n A -,落在第四象限. ①在第四象限的点为()()()()61014213243506505n A A A A ---⋯-,,,,,,,,. ①64121042214432=⨯-+=⨯-+=⨯-+,,,18442=⨯-+⋯,, ①450522022n =⨯-+=.故答案为:2022【点拨】本题考查了点坐标的位置及坐标变化规律的知识点,善于观察并寻找题目中蕴含的规律是解题的关键.14.21x y =⎧⎨=⎩【分析】由题意,两直线的交点坐标就是这两条直线组成的方程组的解,即可得到答案.【详解】解:根据题意,①直线l 1:y 14=x 12+与直线l 2:y =kx +3相交于点A (2,1), ①方程组11423y x y kx ⎧=+⎪⎨⎪=+⎩的解为21x y =⎧⎨=⎩; 故答案为:21x y =⎧⎨=⎩. 【点拨】本题考查了一次函数与二元一次方程组的关系,解题的关键是掌握两直线的交点坐标就是这两条直线组成的方程组的解.15.(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ①x 轴于M将1x =代入直线解析式y x =中得1y =①1OM MN ==,MON ∠=45°①1ONM =∠90°①1ON NM =①1ON NM ⊥①11OM MM ==①1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)①2021M 的坐标为(20212,0)故答案为:(20212,0).【点拨】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.16.(--【分析】过P 作PD ①OC 于D ,先求出A ,B 的坐标,得①ABO =①OAB =45°,再证明①PCB ①①OP A ,从而求出BD =OD =【详解】如图所示,过P 作PD ①OC 于D ,①一次函数4y x =+与坐标轴分别交于A ,B 两点,①A (-4,0),B (0,4),即:OA =OB ,①①ABO =①OAB =45°,①①BDP 是等腰直角三角形,①①PBC =①CPO =①OAP =45°,①①PCB +①BPC =135°=①OP A +①BPC ,①①PCB =①OP A ,又①PC =OP ,①①PCB ①①OP A (AAS ),①AO =BP =4,①Rt ①BDP 中,BD =PD =BP=①OD =OB −BD =,①P (-).故答案是:P (-,.【点拨】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.17.48【分析】过A '作EF OC ⊥于F ,交AB 于E ,设(,)A m n ',OF m =,A F n '=,通过证得①A OF '∽①DA E ',得到310103m n n m ==--,解方程组求得m 、n 的值,即可得到A '的坐标,代入(0)k y k x =≠即可求得k 的值.【详解】解:过A '作EF OC ⊥于F ,交AB 于E ,90OA D ∠'=︒,90OA F DA E ∴∠'+∠'=︒,90OA F AOF ∠'+∠'=︒,DA E AOF ∴∠'=∠',A FO DEA ∠'=∠',∴①A OF '∽①DA E ', ∴OF A F OA A E DE A D''=='',设(,)A m n ',OF m ∴=,A F n '=,正方形OABC 的边OC 、OA 分别在x 轴和y 轴上,10OA =,点D 是边AB 上靠近点A 的三等分点,103DE m ∴=-,10A E n '=-, ∴310103m n n m ==--, 解得6m =,8n =,(6,8)A ∴', 反比例函数(0)k y k x=≠的图象经过A '点, 6848k ∴=⨯=,故答案为48.【点拨】本题考查了正方形的性质,反比例函数图象上点的坐标特征,三角形相似的判定和性质,求得A '的坐标是解题的关键.18.18【分析】过点B 作BF x ⊥轴于点F ,通过设参数表示出①ABC 的面积,从而求出参数的值,再利用①ABC 与矩形ODBF 的关系求出矩形面积,即可求得 k 的值.【详解】解:如图,过点B 作BF x ⊥轴于点F .//AB x 轴,DBE COE ∴∽,DB BE DE CO CE EO∴==,32BE CO CE AD ==, 32DB DE BE CO CO EO CE AD ∴====, 设3CO a =,3DE b =,则2AD a =,2OE b =,332DB a ∴=,5OD b =, 92a BD ∴=, 132a AB AD DB ∴=+=, 1113513222ABC a S AB OD b =⋅⋅=⨯⨯=, 45ab ∴=, 94551822ODBF a ab S BD OD b ⋅=⋅===矩形, 又反比例函数图象在第一象限,18k ∴=,故答案为18.【点拨】此题考查反比例函数知识,涉及三角形相似及利用相似求长度,矩形面积公式等,难度一般.19.8【分析】设A (m ,k m ),则B (m ,2m ),D (m ,0),C (n ,k n ),由112=222OCD C m S OD y m n n ===△得出12n m =,再根据()1122OCD OAD ACD k S S S k m n m=-=--△△△求解即可得到答案. 【详解】解:设A (m ,k m ),则B (m ,2m ),D (m ,0),C (n ,k n ), ①112=222OCD C m S OD y m n n ===△, ①12n m =, 又①()1122OCD OAD ACD k S S S k m n m=-=--△△△ 112m n k m -⎛⎫=- ⎪⎝⎭12n k m =14k = ①124k = 解得8k故答案为:8.【点拨】本题主要考查了反比例函数与一次函数的交点问题,反比例函数比例系数的几何意义,函数图像上点的坐标特征,三角形的面积,解题的关键在于能够熟练掌握相关知识进行求解.20. 【分析】利用30的正切可以求出C 点坐标,再利用C 、M 在(0)k y k x =≠上,设M 的坐标,最后通过30MOF ∠=︒可以求出M 点的坐标.【详解】解:如图,过点C 作CE y ⊥轴,过点M 作MF x ⊥轴,由题意可知30EOC MOF ∠=∠=︒,1CE =则tan 30CE OE ==︒C 在(0)k y k x=≠上,k ∴=设)M m (0)m > 30MOF ∠=︒tan MOF ∴∠=解得1,1m m ==-(不符合题意,舍去)所以M故答案为:.【点拨】本题考查了直角三角形的性质,特殊角的锐角三角函数,反比例函数性质,正确理解题意,求出C 点的坐标是解决问题的关键.21.20【分析】利用反比例函数比例系数k 的几何意义得到S ①AOC =12|1k |=-112k ,S ①BOC =12|2k |=-212k ,利用AB =3BC 得到S ①ABO =3S ①OBC =6,所以-212k =2,解得2k =-4,再利用-112k =6+2得1k =-16,然后计算1k +2k 的值.【详解】解:①AC ①x 轴于点C ,与反比例函数y =2k x (x <0)图象交于点B , 而1k <0,2k <0,①S ①AOC =12|1k |=-112k ,S ①BOC =12|2k |=-212k , ①AB =3BC ,①S ①ABO =3S ①OBC =6,即-212k =2,解得2k =-4, ①-112k =6+2,解得1k =-16, ①1k +2k =-16-4=-20.故答案为:-20.【点拨】本题考查了反比例函数比例系数k 的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.22. 【分析】根据等腰直角三角形的性质,得到1B 的横,纵坐标相等,在结合反比例函数解析式求得该点的坐标,再根据等腰三角形的性质和反比例函数的解析式首先求得各个点的坐标,发现其中的规律,从而得到答案.【详解】11OB A △为等腰三角形∴直线1OB 的解析式为y x = 由题意得:1y x y x =⎧⎪⎨=⎪⎩解得1x =()111B ∴,1OB ∴=112OA ∴==()12,0A ∴122A A B △为等腰三角形∴设直线12A B 的解析式为y x b =+02b ∴=+,解得2b =-∴直线12A B 的解析式为2y x =- ∴21y x y x =-⎧⎪⎨=⎪⎩解得1x =)21B ∴21222B A A y ∴==∴点2A ()233A A B △为等腰三角形∴设直线23A B 的解析式为1y x b =+∴10b =解得1b =-∴直线23A B的解析式为y x =-1y x y x ⎧=-⎪⎨=⎪⎩解得x =∴3B 综上可得:点()111B ,,点)21B,点3B 总结规律可得n B坐标为:故答案为: 【点拨】本题综合考查了等腰直角三角形的性质以及结合反比例函数的解析式求得点的坐标,解答本题的关键是找出其中的规律求出坐标.23.12a 22b a- 【分析】设B (m ,b m ),A (b n,n ),则P (m ,n ),阴影部分的面积S ①AOB =矩形的面积﹣三个直角三角形的面积可得结论.【详解】解:设B (m ,b m ),A (b n,n ),则P (m ,n ), ①点P 为曲线C 1上的任意一点,①mn =a ,①阴影部分的面积S ①AOB =mn 12-b 12-b 12-(m b n -)(n b m-) =mn ﹣b 12-(mn ﹣b ﹣b 2b mn+)=mn ﹣b 12-mn +b 22b mn- 12=a 22b a-. 故答案为:12a 22b a-. 【点拨】本题考查了反比例函数的系数k 的几何意义,矩形的面积,反比例函数图象上点的坐标特征等知识,本题利用参数表示三角形和矩形的面积并结合mn =a 可解决问题. 24.24-【分析】先利用轴对称和中点的定义,确定EG 和EO 之间的关系,再利用平行线分线段成比例定理及推论,得到FG 和OD 之间的关系,设EG =x ,FG =y ,用它们表示出D 点坐标,接着得到B 点坐标,利用1AEF S =△,得到1xy =,再利用反比例函数的定义,计算出B 点横纵坐标的积,即为所求k 的值.【详解】解:如图所示,由轴对称的性质可知:GE =GA ,CG =OG ,BC =OD ,①点A 为OE 的中点,①AE =OA , ①1244EG EG EG OE AE EG ===, ①MN ①y 轴, ①14FG EG OD EO ==, ①=4OD FG ,①1AEF S =△, ①112AE FG ⋅=, ①1212EG FG ⨯⋅=, ①1EG FG ⋅=,设EG =x ,FG =y ,则OG =3x ,OD =4y ,①()0,4D y ,因为D 点和B 点关于MN 对称,①()6,4B x y -①1EG FG ⋅=,①1xy =①6424x y -⋅=-,①点B 恰好落在(0,0)k y k x x=≠<的双曲线上, ①24k =-,故答案为:24-.【点拨】本题考查了轴对称的性质、中点的定义、平行线分线段成比例定理的推论、反比例函数的定义等内容,解决本题的关键是牢记相关定义与性质,能根据题意在图形中找到对应关系,能挖掘图形中的隐含信息等,本题蕴含了数形结合的思想方法等.25.3225【分析】根据题意得出ON 是ABM 的中位线,所以ON 取到最大值时,BM 也取到最大值,就转化为研究BM 也取到最大值时k 的值,根据,,B C M 三点共线时,BM 取得最大值,解出B 的坐标代入反比例函数即可求解.【详解】解:连接BM ,如下图:在ABM 中,,O N 分别是,AB AM 的中点,ON ∴是ABM 的中位线,12ON BM ∴=, 已知ON 长的最大值为32, 此时的3BM =,显然当,,B C M 三点共线时,取到最大值:3BM =,13BM BC CM BC =+=+=,2BC ∴=,设(,2)B t t ,由两点间的距离公式:2BC ==,22(2)44t t ∴-+=, 解得:124,05t t ==(取舍), 48(,)55B ∴, 将48(,)55B 代入()0k y k x=>, 解得:3225k =, 故答案是:3225.【点拨】本题考查了一次函数、反比例函数、三角形的中位线、圆,研究动点问题中线段最大值问题,解题的关键是:根据中位线的性质,利用转化思想,研究BM 取最大值时k 的值. 26.(1)甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶;(2)购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元【分析】(1)设甲品牌洗衣液每瓶的进价是x 元,则乙品牌洗衣液每瓶的进价是(x -6)元,根据数量=总价÷单价,结合用1800元购进乙品牌洗衣液数量的45,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设可以购买m 瓶乙品牌洗手液,则可以购买(100-m )瓶甲品牌洗手液,根据总价=单价×数量,结合总费用不超过1645元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再取其中的最大整数值即可得出结论.【详解】解:(1)设甲品牌洗衣液进价为x 元/瓶,则乙品牌洗衣液进价为()6x -元/瓶, 由题意可得,180********x x =⋅-, 解得30x =,经检验30x =是原方程的解.答:甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶.(2)设利润为y 元,购进甲品牌洗衣液m 瓶,则购进乙品牌洗衣液()120m -瓶,由题意可得,()30241203120m m +-≤,解得40m ≤,由题意可得,()()()363028*********y m m m =-+--=+,①20k =>,①y 随m 的增大而增大,①当40m =时,y 取最大值,240480560y =⨯+=最大值.答:购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元.【点拨】本题考查分式方程的应用,一次函数的应用,一元一次不等式的应用,解题的关键是灵活运用所学知识解决问题.27.(1)3-,5,0;(2)见解析;(3)①12;①55+【分析】(1)代入C 点坐标即可得出k 值确定直线的解析式,进而求出A 点坐标即可; (2)求出AD 点坐标,根据CD OA =,//CD OA ,即可证四边形OADC 是平行四边形; (3)①作CH OD ⊥于H ,设出H 点的坐标,根据勾股定理计算出CH 的长度,根据运动时间求出PQ 的长度即可确定CPQ ∆的面积;①根据对角线相等确定PQ 的长度,再根据P 、Q 的位置分情况计算出t 值即可.【详解】解:(1)直线15(0)y kx k =+≠经过点(3,6)C ,3156k ∴+=,解得3k =-,即直线的解析式为315y x =-+,当0y =时,5x =,(5.0)A ∴,(2)线段CD 平行于x 轴,D ∴点的纵坐标与C 点一样,又D 点在直线34y x =上, 当6y =时,8x =,即(8,6)D ,835CD ∴=-=,5OA =,OA CD ∴=,又//OA CD ,∴四边形OADC 是平行四边形;(3)①作CH OD ⊥于H ,H 点在直线34y x =上,∴设H 点的坐标为3(,)4m m , 2223(3)(6)4CH m m ∴=-+-,2223(8)(6)4DH m m =-+-, 由勾股定理,得222CH DH CD +=, 即2222233(3)(6)(8)(6)544m m m m -+-+-+-=, 整理得245=m 或8(舍去), 3CH ∴=,810OD =,∴当1t =时,10118PQ OD t t =--=--=,11831222CPQ S PQ CH ∆∴=⋅=⨯⨯=, ①10OD =,当05t 时,102PQ t =-,当510t 时,210PQ t =-,当点P ,Q 运动至四边形CPAQ 为矩形时,PQ AC =,(5AC ==当05t 时,102t -=,解得5t =当510t 时,210t -=解得5t =综上,当点P ,Q 运动至四边形CPAQ 为矩形时t 的值为55+【点拨】本题主要考查一次函数的性质,熟练掌握待定系数法求解析式,平行四边形的性质和矩形的性质是解题的关键.28.(1)()80y x x =>,142y x =-+;(2)12. 【分析】(1)把点A 的坐标代入()100y x x =-<m 的值,得出A 的坐标代入12y x b =-+,求出一次函数的解析式,进而求得点B 的坐标,利用B 点的坐标求得()0ky x x =>的解析式;(2)根据一次函数解析式求得点C 的坐标,再将y 轴作为分割线,求得①AOB 的面积;【详解】解:(1)①()2,A m -,在函数()100y x x=-<的图象上, ①m =5,①A (-2,5),把A (-2,5)代入12y x b =-+得:15(2)2b =-⨯-+, ①b =4,①一次函数12y x b =-+的表达式为:142y x =-+, ①()4,B n 在函数142y x =-+的图象上, ①n =2,①()4,2B ,把()4,2B 代入()0k y x x =>得:2=4k ,①k =8, ①反比例函数的解析式为:()80y x x=>; (2)①C 是直线AB 与y 轴的交点,直线AB :142y x =-+, ①当x =0时,y =4,①点C (0,4),即OC =4,①A (-2,5),()4,2B ,①AOB AOC BOC S S S =+△△△=12×4×2+12×4×4=12;【点拨】本题考查了反比例函数与一次函数的交点问题,用待定系数法求一次函数与反比例函数的解析式,根据题意求出C 点坐标是解题的关键.29.(1)6k =,B (2,3);(2)(3)P (132,0)或(0,133). 【分析】(1)根据直线32y x =经过点A (),3m -,可求出点A (-2,-3),因为点A 在()0k y k x =≠图象上,可求出k ,根据点A 和点B 关于原点对称,即可求出点B ;(2)先根据2BC CD =利用相似三角形的性质求出点C ,再根据对称性求出点B 关于y 轴的对称点B ’,连接B ’C ,即B ’C 的长度是GB GC +的最小值;(3)先作出图形,分情况讨论,利用相似三角形的性质求解即可.【详解】(1)解:因为直线32y x =经过点A (),3m -, 所以332m -=⨯, 所以m =-2,所以点A (-2,-3),因为点A 在()0k y k x=≠图象上, 所以()236k =-⨯-=, 因为32y x =与双曲线()0k y k x=≠交于A ,B 两点, 所以点A 和点B 关于原点对称,所以点B (2,3);(2)过点B ,C 分别作BE ①x 轴,CF ①x 轴,作B 关于y 轴对称点B’,连接B’C ,因为BE ①x 轴,CF ①x 轴,所以BE //CF ,所以BED CFD , 所以BE BD CF CD=, 因为2BC CD =, 所以31BE BD CF CD ==, 因为B (2,3),所以BE =3,所以CF =1,所以C 点纵坐标是1,将1C y =代入6y x=可得:x =6, 所以点C (6,1),又因为点B’是点B 关于y 轴对称的点,所以点B’(-2,3),所以B’C ==,即GB GC +的最小值是(3)解:①当点P 在x 轴上时,当①ABP =90°,四边形ABPQ 是矩形时,过点B 作BH ①x 轴,因为①OBP =90°,BH ①OP ,所以OHBBHP ,。

2020中考数学复习分类汇编专题3:二次函数与线段及其最值问题(含答案)

2020中考数学复习分类汇编专题3:二次函数与线段及其最值问题(含答案)

专题:二次函数中的线段问题(含最值问题)1. 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A ,B (1,0),与y 轴交于点C ,直线y = x -2经过点A 、C .抛物线的顶点为D ,对称轴为直线l .(1) 求抛物线的表达式、顶点D 的坐标及对称轴l ; (2) 设点E 为x 轴上一点,且AE =CE ,求点E 的坐标;(3) 设点G 是y 轴上一点,是否存在点G ,使得GD +GB 的值最小,若存在,求出点G 的坐标;若不存在,请说明理由;(4) 在直线l 上是否存在一点F ,使得△BCF 的周长最小,若存在,求出点F 的坐标及△BCF 周长的最小值;若不存在,请说明理由;(5) 点S 为y 轴上任意一点,K 为直线AC 上一点,连接BS ,BK ,是否存在点S ,K 使得△BSK 的周长最小,若存在,求出S ,K 的坐标,并求出△BSK 周长的最小值;若不存在,请说明理由;(6) 在y 轴上是否存在一点S ,使得SD -SB 的值最大,若存在,求出点S 的坐标;若不存在,请说明理由; (7) 若点H 是抛物线上位于AC 上方的一点,过点H 作y 轴的平行线,交AC 于点K ,设点H 的横坐标为h ,线段HK =d .①求d 关于h 的函数关系式; ②求d 的最大值及此时H 点的坐标.122. 如图,抛物线y=-x2-2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点D(m,0)为线段OA上一个动点(与点A,O不重合),过点D作x轴的垂线与线段AC交于点P,与抛物线交于点Q,连接BP,与y轴交于点E.(1)求A,B,C三点的坐标;(2)当点D是OA的中点时,求线段PQ的长;(3)在点D运动的过程中,探究下列问题:①是否存在一点D,使得PQ+22PC取得最大值?若存在,求此时m的值;若不存在,请说明理由;②连接CQ,当线段PE=CQ时,直接写出m的值.3. 如图,直线y =-34x +1与x 轴、y 轴分别交于A 、B 两点,抛物线y =-12x 2+bx +c 经过点B ,且与直线AB 的另一交点为C (4,n ).(1)求该抛物线的表达式及点C 的坐标;(2)设抛物线上的一个动点P 的横坐标为t (0<t <4),过点P 作PD ⊥AB 交直线AB 于点D ,作PE ∥y 轴交直线AB 于点E .①求线段PD 的长的最大值; ②当t 为何值时,点D 为BE 的中点.4. 已知抛物线y =ax 2+bx +2经过A (-1,0),B (2,0),C 三点.直线y =mx +12交抛物线于A ,Q 两点,点P 是抛物线上直线AQ 上方的一个动点,过点P 作PF ⊥x 轴,垂足为点F ,交AQ 于点N .(1)求抛物线的表达式;(2)如图①,在点P 运动过程中,当PN =2NF 时,求点P 的坐标;(3)如图②,线段AC 的垂直平分线交x 轴于点E ,垂足为点D ,点M 为抛物线的顶点,在直线DE 上是否存在一点G ,使△CMG 的周长最小?若存在,请求出点G 的坐标;若不存在,请说明理由.参考答案1. (1)解:对于直线y =21x -2, 令y =0,得x =4,令x =0,得y =-2, ∴点A (4,0),点C (0,-2),抛物线的解析式为y = -21x 2+25x -2 ∴顶点D 的坐标为(25,98 ),对称轴l 为直线x = 25(2)要求点E 的坐标,已知AE =CE ,设E 点坐标为(e ,0),用含e 的式子分别表示出AE 和CE ,建立等量关系求解即可.点E 的坐标为( 23,0)(3)要使GD +GB 的值最小,一般是通过轴对称作出对称点来解决. 解:存在.如解图②,要使GD +GB 的值最小,取点B 关于y 轴的对称点B ′,点B ′的坐标为(-1,0).连接B ′D ,直线B ′D 与y 轴的交点G 即为所求的点,点G 的坐标为(0, 289);(4)要使△BCF 周长最小,BC 长为定值,即要使CF +BF 的值最小.△BCF 周长的最小值为BC +AC =3 √5 ;(5)要求△BSK 周长的最小值,可分别作点B 关于y 轴和直线AC 的两个对称点B ′、B ″,连接B ′B ″与y 轴和直线AC 交点即为使得△BSK 的周长最小的点S 、K ,最小值即线段B ′B ″的长.存在点S (0,-43 ),点K (1, - 23 )使得△BSK 的周长最小,最小值为4;(6)当点S 在DB 的延长线上时,SD -SB 最大,最大值为BD , 即当点S 的坐标为(0,-43)时,SD -SB 的值最大;(7)平行于y 轴的直线上两点之间的距离为此两点的纵坐标之差的绝对值,如此问,由题可得点H 的横坐标为h ,①求出点H ,K 的纵坐标,再由点H 在点K 的上方,可得到d 关于h 的函数关系式;②利用二次函数的性质求最值,即可得d 的最大值及H 点的坐标.(1)d 关于h 的函数关系式为d =-21h 2+2h ; (2)当h =2时,d 最大,最大值为2,此时点H 的坐标为(2,1).参考答案2. 解:(1)在y =-x 2-2x +3中, 令y =0,得-x 2-2x +3=0, 解得x 1=-3,x 2=1. ∵点A 在点B 的左侧, ∴A (-3,0),B (1,0). 令x =0,得y =3, ∴点C 的坐标为(0,3);(2)设直线AC 的表达式为y =kx +b .将A ,C 两点的坐标(-3,0),(0,3)代入表达式,得⎩⎪⎨⎪⎧-3k +b =0,b =3,解得⎩⎪⎨⎪⎧k =1,b =3,∴直线AC 的表达式为y =x +3.(4分) ∵点D 是OA 的中点,∴OD =12OA =32,∴点D 的横坐标m =-32.∵PQ ⊥x 轴,∴把m =-32分别代入y =x +3和y =-x 2-2x +3,得P ,Q 两点的坐标分别为(-32,32)、(-32,154),∵DQ ⊥OA ,∴PQ =DQ -DP =y Q -y P . ∴PQ =154-32=94;(3)①存在点D ,使得PQ +22PC 取得最大值. 理由:∵点D 的横坐标为m ,PQ ⊥x 轴,且点P ,Q 分别在直线AC 和抛物线上, ∴P ,Q 两点的坐标分别为(m ,m +3),(m ,-m 2-2m +3). ∵DQ ⊥OA ,∴PQ =DQ -DP =y Q -y P ,∴PQ =-m 2-2m +3-(m +3)=-m 2-3m . 如解图,过点P 作PF ⊥y 轴于点F ,则PF =-m . 在Rt △AOC 中,OA =OC =3, ∴∠CAO =∠OCA =45°.∴sin ∠OCA =PF PC =22.∴PF =22PC ∴PQ +22PC =-m 2-3m -m =-m 2-4m =-(m +2)2+4, ∵PQ +22PC 是m 的二次函数,其中a =-1<0,而-3<m <0. ∴当m =-2时,PQ +22PC 取得最大值;②m =-1或m =- 5.【解法提示】∵△PFE ∽△BOE ,∴PF BO =EFEO.∵PF =-m ,OF =m +3,OB =1,∴EF =-mOE .∵OF =EF +OE ,∴m +3=(-m +1)OE ,则OE =m +3-m +1,EF =-m (m +3)-m +1,又∵CQ =PE ,PQ ∥CE ,∴|y Q -y C |=|y P -y E |=EF .∵|y Q -y C |=|-m 2-2m +3-3|=|m 2+2m |,∴-m (m +3)-m +1=|m 2+2m |.又∵-3<m <0,解得m =-1或m =- 5.3. 解:(1)把x =4,y =n 代入y =-34x +1中,得n =-34×4+1=-2∴点C 的坐标为(4,-2).将点C (4,-2)和点B (0,1)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧-8+4b +c =-2,c =1, 解得⎩⎪⎨⎪⎧b =54,c =1,∴抛物线的表达式为y =-12x 2+54x +1;(2)①∵PE =-12t 2+54t +1-(-34t +1)=-12t 2+2t ,如解图,过点E 作QE ⊥y 轴于点Q ,则QE =t , QB =1+34t -1=34t ,BE =QB 2+QE 2=(34t )2+t 2=54t ∵PE ∥y 轴, ∴∠PEB =∠EBQ , ∵∠BQE =∠PDE =90°, ∴△PED ∽△EBQ ,∴PE EB =PD EQ ,得-12t 2+2t 54t =PDt, PD =-25t 2+85t .∵-25<0,∴PD 有最大值, PD 最大=0-(85)24×(-25)=85;②∵点D 为BE 的中点,∴由PE EB =DE QB ,DE =12BE ,得12BE 2=PE ·QB ,代入得12×(54t )2=(-12t 2+2t )×34t ,整理得2532=-38t +32,解得t =2312,∴当t =2312时,点D 为BE 的中点.4. 解:(1)∵抛物线y =ax 2+bx +2经过A (-1,0),B (2,0),∴将点A 和点B 的坐标代入得⎩⎪⎨⎪⎧a -b +2=0,4a +2b +2=0,解得⎩⎪⎨⎪⎧a =-1,b =1,∴抛物线的表达式为y =-x 2+x +2;(2)直线y =mx +12交抛物线于A 、Q 两点,把A (-1,0)代入解析式得m =12,∴直线AQ 的表达式为y =12x +12.设点P 的横坐标为n ,则P (n ,-n 2+n +2),N (n ,12n +12),F (n ,0),∴PN =-n 2+n +2-(12n +12)=-n 2+12n +32,NF =12n +12.∵PN =2NF ,即-n 2+12n +32=2×(12n +12),解得n =-1或n =12,当n =-1时,点P 与点A 重合,不符合题意舍去.∴点P 的坐标为(12,94);(3)在直线DE 上存在一点G ,使△CMG 的周长最小;此时G (-38,1516).理由如下:∵y =-x 2+x +2=-(x -12)2+94,∴M (12,94).如解图,连接AM 交直线DE 于点G ,连接CG 、CM ,此时,△CMG 的周长最小. 设直线AM 的函数表达式为y =kx +b ,且过A (-1,0),M (12,94).根据题意得⎩⎪⎨⎪⎧-k +b =0,12k +b =94,解得⎩⎨⎧k =32,b =32.∴直线AM 的表达式为y =32x +32.∵D 为AC 的中点,∴D (-12,1).设直线AC 的表达式为y =kx +2,将点A 的坐标代入得-k +2=0,解得k =2, ∴AC 的表达式为y =2x +2.设直线DE 的表达式为y =-12x +c ,将点D 的坐标代入得:14+c =1,解得c =34,∴直线DE 的表达式为y =-12x +34.联立⎩⎨⎧y =-12x +34,y =32x +32,解得⎩⎨⎧x =-38,y =1516.∴在直线DE 上存在一点G ,使△CMG 的周长最小,此时G (-38,1516).。

2021年全国中考数学试题分类汇编专题03整式及运算

2021年全国中考数学试题分类汇编专题03整式及运算

专题03 整式及运算一、单选题1.(2021年福建中考)下列运算正确的是( )A .22a a -=B .()2211a a -=-C .632a a a ÷=D .326(2)4a a = 【答案】D【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案.【详解】解:A :()221a a a a -=-=,故 A 错误;B :()22121a a a -=-+,故 B 错误;C :63633a a a a -÷==,故C 错误;D :()()2232332622?44a a a a ⨯===.故选:D【点睛】本题考查了整式的加减法法则、乘法公式、同底数幂的除法法则、积的乘方、幂的乘方等知识点,熟知上述各种不同的运算法则或公式,是解题的关键.2.(2021年广东中考)已知93,274m n ==,则233m n +=( )A .1B .6C .7D .12【答案】D【分析】利用同底数幂乘法逆用转换求解即可.【详解】解:∵93,274m n ==,∵232323333(3)(3)927=34=12m n m n m n m n +=⨯=⨯=⨯⨯,∵故选:D .【点睛】本题主要考查同底数幂乘法的逆用,熟练掌握其运算法则即表现形式是解题关键.3.(2021年浙江丽水中考)计算:()24a a -⋅的结果是( ) A .8aB .6aC .8aD .6a -【答案】B【分析】 根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.【详解】解:原式24246a a a a +=⋅==.故选B .【点睛】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.4.(2021年四川资阳中考)下列计算正确的是( )A .2242a a a +=B .23a a a ⋅=C .22(3)6a a =D .623+=a a a 【答案】B【分析】根据合并同类项,同底数幂的乘法,积的乘方法则进行计算作出判断.【详解】解:A . 2222a a a +=,故此选项不符合题意;B . 23a a a ⋅=,正确,故此选项符合题意;C . 22(3)9a a =,故此选项不符合题意;D . 62,a a 不是同类项,不能合并计算,故此选项不符合题意;故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,积的乘方计算,掌握计算法则准确计算是解题关键.5.(2021年四川自贡中考)已知23120x x --=,则代数式2395x x -++的值是( )A .31B .31-C .41D .41-【答案】B根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可.【详解】解:∵23120x x --=,∵23=12x x -,∵()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .【点睛】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键.6.(2021年四川乐山中考)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( ) A .8n m (元) B .8n m (元) C .8m n (元) D .8m n(元) 【答案】A【分析】先求出1千克售价,再计算8千克售价即可;【详解】∵m 千克的售价为n 元,∵1千克商品售价为n m, ∵8千克商品的售价为8n m (元); 故答案选A .【点睛】本题主要考查了列代数式,准确分析列式是解题的关键.7.(2021年四川泸州中考)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或40【分析】根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【详解】解:一元二次方程2220x mx m m ++-=21,2,a b m c m m ===-2122c m x am x ==-= 220m m --=(2)(1)0m m ∴-+=2m ∴=或1m =-当2m =时,原一元二次方程为2420x x ++=12=24b m ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++-221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=-2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去,故选:C .【点睛】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.8.(2021年四川泸州中考)已知1020a =,10050b =,则1322a b ++的值是( ) A .2B .52C .3D .92【答案】C【分析】 根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【详解】解: ∵1020a =,10050b =,∵2310100102050100010a b a b +⋅==⨯==,∵23a b +=, ∵()()1311233332222a b a b ++=++=+=. 故选:C .【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.9.(2021年云南中考)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( ) A .21n n a +B .21n n a -C .1n n n a +D .()21n n a + 【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决.【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,...,∵第n 个单项式为21n n a +,故选:A .【点睛】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,求出相应的单项式.10.(2021年浙江金华中考)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25% 【答案】B【分析】设原件为x 元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x 元,∵先打九五折,再打九五折,∵调价后的价格为0.95x ×0.95=0.9025x 元,∵先提价50%,再打六折,∵调价后的价格为1.5x ×0.6=0.90x 元,∵先提价30%,再降价30%,∵调价后的价格为1.3x ×0.7=0.91x 元,∵先提价25%,再降价25%,∵调价后的价格为1.25x ×0.75=0.9375x 元,∵0.90x <0.9025x <0.91x <0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.11.(2021年浙江温州中考)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元,∵应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【点睛】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.11.(2021年甘肃武威中考)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .3 【答案】A【分析】先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”, ∵2323m n m n ++=+, 整理得9m +4n =0,()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.12.(2021年山东临沂中考)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C【分析】 根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∵再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.13.(2021年山东泰安中考)下列运算正确的是( )A .235235x x x +=B .()3326x x -=- C .()222x y x y +=+D .()()2322349x x x +-=- 【答案】D【分析】分别根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断即可.解:A 、x 2和x 3不是同类项,不能合并,此选项错误;B 、()3328x x -=-,此选项错误;C 、()2222x y x xy y +=++,此选项错误;D 、()()23223(23)(23)49x x x x x +-=+-=-,此选项正确, 故选:D .【点睛】本题考查了同类项、积的乘方、完全平方公式、平方差公式,熟记公式,掌握运算法则是解答的关键. 14.(2021年安徽)计算23()x x ⋅-的结果是( )A .6xB .6x -C .5xD .5x - 【答案】D【分析】利用同底数幂的乘法法则计算即可【详解】解:52233=-()x x x x +⋅-=-故选:D【点睛】本题考查同底数幂的乘法法则,正确使用同底数幂相乘,底数不变,指数相加是关键15.(2021年陕西中考)计算:()23a b -=( )A .621a bB .62a bC .521a bD .32a b -【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a b a b -=, 故选:A .本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键. 16.(2021年湖南衡阳中考)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .()23aD .2312a ⎛⎫ ⎪⎝⎭ 【答案】C【分析】根据同底数幂相乘、同底数幂相除、幂的乘方法则逐项计算即可.【详解】A 选项,23235a a a a +⋅==,不符合题意;B 选项,12210122=a a a a -=÷,不符合题意;C 选项,()23326=a a a ⨯=,符合题意;D 选项,22233611=1224a a a ⨯⎛⎫⋅= ⎪⎝⎭⎛⎫ ⎪⎝⎭,不符合题意. 故选:C .【点睛】本题考查同底数幂相乘、同底数幂相除、幂的乘方和积的乘方法则.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式的积的乘方,再把所得的幂相乘.17.(2021年浙江台州中考)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .【答案】C【分析】利用完全平方公式计算即可.【详解】解:∵()222249a b a b ab +=++=,2225a b +=, ∵4925122ab -==,【点睛】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.18.(2021年浙江台州中考)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( ) A .20% B .+100%2x y ⨯ C .+3100%20x y⨯ D .+3 100%10+10x yx y ⨯【答案】D【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解.【详解】 解:混合之后糖的含量:10%30%3100%1010x y x yx y x y ++=⨯++,故选:D .【点睛】本题考查列代数式,理解题意是解题的关键.19.(2021年江苏苏州中考)已知两个不等于0的实数a 、b 满足0a b +=,则baa b +等于() A .2- B .1- C .1 D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab ++, ∵()2222==a b ab b a b a a b ab ab+-++,∵两个不等于0的实数a 、b 满足0a b +=, ∵()22-2===-2a b ab b a ab a b ab ab+-+,故选:A .本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.20.(2021年上海中考)下列单项式中,23a b 的同类项是( )A .32a bB .232a bC .2a bD .3ab 【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∵32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∵232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∵2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∵3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.21.(2021年四川广安中考)下列运算中,正确的是( )A .2510a a a ⋅=B .222()a b a b -=-C .()23636a a -=D .22232a b a b a b -+=- 【答案】D【分析】根据同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式分别判断即可.解:A 、257a a a ⋅=,故选项错误;B 、222()2a b a b ab -=+-,故选项错误;C 、()23639a a -=,故选项错误;D 、22232a b a b a b -+=-,故选项正确;故选D .【点睛】本题考查了同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式,解题的关键是掌握各自的运算法则.22.(2021年四川眉山中考)下列计算中,正确的是( )A .5315a a a ⨯=B .53a a a ÷=C .()423812a b a b -=D .()222a b a b +=+ 【答案】C【分析】逐一分析各选项中的计算结果,利用计算公式进行计算即可得到正确选项.【详解】解:A 选项中,538a a a ⨯=;B 选项中,532a a a ÷=;C 选项正确;D 选项中,()2222a b a ab b +=++;故选:C .【点睛】本题综合考查了同底数幂的乘法计算、同底数幂的除法计算、幂的乘方运算、积的乘方运算、完全平方公式等内容,解决本题的关键是牢记对应法则和公式即可.23.(2021年湖南岳阳中考)下列运算结果正确的是( )A .32a a -=B .248a a a ⋅=C .()()2224a a a +-=-D .()22a a -=- 【答案】C【分析】逐一分析各选项,利用对应法则进行计算即可判断出正确选项.【详解】解:A 选项中:32a a a -=,因此错误;B 选项中:246·a a a =,因此错误;C 选项中:()()2224a a a +-=-,因此正确; D 选项中:()22a a -=,因此错误;故选:C .【点睛】本题考查了合并同类项、同底数幂的乘法、平方差公式、乘方的运算性质等内容,解决本题的关键是牢记相关运算法则和公式即可.24.(2021年浙江台州中考)下列运算中,正确的是( )A .a 2+a =a 3B .(-ab )2=-ab 2C .a 5÷a 2=a 3D .a 5・a 2=a 10【答案】C【分析】根据合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则分别计算即可.【详解】解:A .2a 与a 不是同类项,不能合并,故该项错误;B .()222b a ab =-,故该项错误;C .523a a a ÷=,该项正确;D .527a a a ⋅=,该项错误;故选:C .【点睛】本题考查整式的运算,掌握合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则是解题的关键. 25.(2021年四川成都中考)下列计算正确的是( )A .321mn mn -=B .()22346m n m n =C .()34m m m -⋅=D .()222m n m n +=+ 【答案】B【分析】 利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=≠,故选项A 计算不正确;B. ()()()222232346m n m n m n =⋅=,故选项B 计算正确; C . ()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D . ()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.26.(2021年山东临沂中考)计算3325a a 的结果是( )A .610aB .910aC .37aD .67a【答案】A【分析】直接利用单项式乘以单项式运算法则计算得出答案.【详解】解:6332510a a a =⋅,故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键.27.(2021年浙江宁波中考)计算()3a a ⋅-的结果是( )A .2aB .2a -C .4aD .4a -【答案】D【分析】 根据单项式乘以单项式和同底数幂的运算法则解答即可.【详解】解:原式4a =-.故选:D【点睛】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键.28.(2021年重庆中考)计算63a a ÷的结果是( )A .63aB .52aC .62aD .53a 【答案】D【分析】根据单项式除以单项式法则、同底数幂除法法则解题.【详解】解:63a a ÷=53a ,故选:D .【点睛】本题考查同底数幂相除、单项式除以单项式等知识,是重要考点,难度较易,掌握相关知识是解题关键. 29.(2021年江苏连云港中考)下列运算正确的是( )A .325a b ab +=B .22523a b -=C .277a a a +=D .()22112x x x -+-= 【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案.【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意;B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意;C ,合并同类项后2787a a a a +=≠,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意;故选:D .【点睛】本题考查了代数式的运算,同类项合并及完全平方差公式,解题的关键是:掌握相关的运算法则. 30.(2021年广西玉林中考)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.【详解】解:由图可得到: 11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∵944942121312Y Y -=--+=⨯,故答案选:B .【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.31.(2021年黑龙江绥化中考)下列运算正确的是( )A .()257a a =B .448x x x ⋅=C 3=±D =【答案】B【分析】根据幂的乘方,同底数幂的乘法,算术平方根,以及实数的运算法则逐一判断.【详解】A 、(a 5)2=a 10,故A 错,B 、x 4∵x 4=x 8,故B 正确,C 3=,故C 错,D -3-D 错, 故选:B【点睛】本题考查了算术平方根,实数的运算,同底数幂的乘法,以及幂的乘方,熟悉并灵活运用以上性质是解题的关键.32.(2021年河南中考)下列运算正确的是( )A .22()a a -=-B .2222a a -=C .23a a a ⋅=D .22(1)1a a -=-【答案】C【分析】直接利用幂的运算性质和完全平方公式分别判断得出答案.【详解】解:A 、22()a a -=,原计算错误,不符合题意;B 、2222a a a -=,原计算错误,不符合题意;C 、23a a a ⋅=,正确,符合题意;D 、22(1)21a a a -=-+,原计算错误,不符合题意;【点睛】本题主要考查了幂的运算性质和完全平方公式,正确掌握相关运算法则是解题关键.33.(2021年湖北鄂州中考)下列运算正确的是( )A .23a a a ⋅=B .541a a -=C .632a a a ÷=D .()3326a a = 【答案】A【分析】直接利用同底数幂的乘法、合并同类项、同底数幂的除法、幂的乘方直接求解即可.【详解】A 、23a a a ⋅=,选项正确,符合题意;B 、54a a a -=,选项错误,不符合题意;C 、633a a a ÷=,选项错误,不符合题意;D 、()3328a a =,选项错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法、合并同类项、同底数幂的除法、幂的乘方,解题的关键是:掌握相关的运算法则.34.(2021年江苏无锡中考)下列运算正确的是( )A .23a a a +=B .352()a a =C .824a a a ÷=D .235a a a ⋅=【答案】D【分析】根据合并同类项法则,幂的乘方法则,同底数幂的乘除法法则,逐一判断选项,即可.【详解】解:A. 2a a +,不是同类项,不能合并,故该选选错误,B. 236()a a =,故该选项错误,C. 826a a a ÷=,故该选项错误,D. 235a a a ⋅=,故该选项正确,【点睛】本题主要考查整式的运算,熟练掌握合并同类项法则,幂的乘方法则,同底数幂的乘除法法则,是解题的关键.35.(2021年内蒙古通辽中考)下列计算正确的是( )A .335x x x +=B .3321x x -=C .347x x x ⋅=D .()323626xy x y -=- 【答案】C【分析】根据合并同类项法则、同底数幂乘法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A.3332x x x +=,故该选项计算错误,不符合题意,B.3332x x x -=,故该选项计算错误,不符合题意,C.33744x x x x +⋅==,故该选项计算正确,符合题意,D.()323323362(2)8xy x y x y ⨯-=-=-,故该选项计算错误,不符合题意,故选:C .【点睛】本题考查合并同类项、同底数幂乘法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键.36.(2021年湖南中考)已知0a ≠,下列运算正确的是( )A .321a a -=B .326a a a ⋅=C .32a a a ÷=D .()3326a a = 【答案】C【分析】根据合并同类项、整式的乘法、同底数幂的除法、积的乘方逐项判断即可得.【详解】A 、32a a a -=,此项错误,不符题意;B 、2326a a a ⋅=,此项错误,不符题意;C 、32a a a ÷=,此项正确,符合题意;D 、()3328a a =,此项错误,不符题意;故选:C .【点睛】本题考查了合并同类项、整式的乘法、同底数幂的除法、积的乘方,熟练掌握各运算法则是解题关键. 37.(2021年内蒙古呼和浩特中考)下列计算正确的是( )A .224347a a a +=B 11a= C .31812()42-+÷-= D .21111a a a a --=-- 【答案】D【分析】 根据有理数、整式、分式、二次根式的运算公式运算验证即可.【详解】222347a a a +=,故A 错;当a >011a =,当a <011a=-,故B 错; 31812()262-+÷-=-,故C 错; 21111a a a a --=--,D 正确; 故选:D .【点睛】本题主要考查了有理数、整式、分式、二次根式的运算,熟记运算定理和公式是解决问题的额关键. 38.(2021年四川宜宾中考)下列运算正确的是( )A .23a a a +=B .()32622a a =C .623a a a ÷=D .325a a a ⋅=【答案】D【分析】根据同底数幂相乘底数不变指数相加、同底数幂相除底数不变指数相减、乘积的幂等于各部分幂的乘积运算法则求解即可.【详解】解:选项A :a 与2a 不是同类项,不能相加,故选项A 错误;选项B :()32628a a =,故选项B 错误;选项C :62624a a a a -÷==,故选项C 错误;选项D :33522a a a a +⋅==,故选项D 正确;故选:D .【点睛】本题考查幂的运算法则,属于基础题,熟练掌握运算法则是解决本类题的关键.39.(2021年黑龙江齐齐哈尔中考)下列计算正确的是( )A.4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y -= 【答案】A【分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【详解】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点睛】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.40.(2021年湖北中考)下列运算正确的是( )A .23a a a ⋅=B .()325a a =C .33(2)6a a =D .1234a a a ÷=【答案】A【分析】根据同底数幂的乘除法、幂的乘方、积的乘方法则逐项判断即可得.【详解】A 、23a a a ⋅=,此项正确,符合题意;B 、()326a a =,此项错误,不符题意;C 、33(2)8a a =,此项错误,不符题意;D 、1239a a a ÷=,此项错误,不符题意;故选:A .【点睛】本题考查了同底数幂的乘除法、幂的乘方、积的乘方,熟练掌握各运算法则是解题关键.41.(2021年山东威海中考)下列运算正确的是( )A .236(3)9a a -=-B .235()a a a -⋅=C .222(2)4x y x y -=-D .22445a a a += 【答案】B【分析】分别根据积的乘方和幂的乘方运算法则、同底数幂的乘法、完全平方公式以及合并同类项的运算法则对各项进行计算后再判断即可.【详解】解:A . 236(3)27a a -=-,原选项计算错误,不符合题意;B . 235()a a a -⋅=原选项计算正确 ,符合题意;C. 222(2)44x y x xy y -=-+,原选项计算错误,不符合题意;D . 22245a a a +=,原选项计算错误,不符合题意;故选:B .【点睛】此题主要考查了积的乘方和幂的乘方、同底数幂的乘法、完全平方公式以及合并同类项,熟练掌握相关运算法则是解答此题的关键.42.(2021年山东济宁中考)下列各式中,正确的是( )A .223x x x +=B .()x y x y --=--C .()325x x =D .532x x x ÷=【答案】D【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】解:A 、23x x x +=,此选项错误,不符合题意;B 、()+x y x y --=-,此选项错误,不符合题意;C 、()326x x =,此选项错误,不符合题意; D 、532x x x ÷=,此选项正确,符合题意;故选:D .【点睛】本题主要考查合并同类项法则,同底数幂除法,幂的乘方,熟练掌握运算性质是解题的关键.43.(2021年黑龙江鹤岗中考)下列运算中,计算正确的是( )A .2352m m m +=B .()32626a a -=- C .()222a b a b -=- D =【答案】D【分析】根据积的乘方、完全平方公式及二次根式的除法可直接进行排除选项.【详解】解:A 、2m 与3m 不是同类项,所以不能合并,错误,故不符合题意;B 、()32628a a -=-,错误,故不符合题意;C 、()2222a b a ab b -=-+,错误,故不符合题意;D =故选D .【点睛】本题主要考查积的乘方、完全平方公式及二次根式的除法,熟练掌握积的乘方、完全平方公式及二次根式的除法是解题的关键.44.(2021年内蒙古中考)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3-【答案】C【分析】 先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.45.(2021年山东济宁中考)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是( )A .23B .511C .59D .12 【答案】D【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+ 当3n =时的分子为5,分母为23110+=∴这个数为51102= 故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.46.(2021年湖北十堰市)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A .2025B .2023C .2021D .2019【答案】B【分析】 根据数字的变化关系发现规律第n 行,第n 列的数据为:2n (n -1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.【详解】解:观察数字的变化,发现规律:第n 行,第n 列的数据为:2n (n -1)+1,∵第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∵第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B .【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题. 47.(2021年广西来宾中考)下列运算正确的是( )A .235a a a ⋅=B .623a a a ÷=C .()325a a =D .2232a a a -= 【答案】A【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解.【详解】解:A. 235a a a ⋅=,原选项计算正确,符合题意;B. 624a a a ÷=,原选项计算错误,不合题意;C. ()326a a =,原选项计算错误,不合题意;D. 232a a -,不是同类项,无法相减,原选项计算错误,不合题意.故选:A【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减等知识,熟知相关运算公式和法则是解题关键.二、填空题48.(2021年天津中考)计算42a a a +-的结果等于_____.【答案】5a【分析】根据合并同类项的性质计算,即可得到答案.【详解】()424215a a a a a +-=+-=故答案为:5a .【点睛】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.49.(2021年广东中考)若1136x x +=且01x <<,则221x x -=_____. 【答案】6536-【分析】 根据1136x x +=,利用完全平方公式可得2125()36x x -=,根据x 的取值范围可得1x x-的值,利用平方差公式即可得答案.【详解】 ∵1136x x +=, ∵2211125()()436x x x x x x -=+-⋅=, ∵01x <<, ∵1x x<, ∵1x x-=56-, ∵221x x -=11()()x x x x +-=135()66⨯-=6536-,故答案为:6536-【点睛】 本题考查了完全平方公式及平方差公式,准确运用公式是解题的关键.50.(2021年江苏扬州中考)计算:2220212020-=__________.【答案】4041【分析】利用平方差公式进行简便运算即可.【详解】解:2220212020-=()()2021202020212020+⨯-=40411⨯=4041故答案为:4041.【点睛】本题考查了平方差公式的应用,解题时注意运算顺序.51.(2021年浙江嘉兴中考)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.【答案】()221n n --. 【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∵第n 个等式为:()22211n n n -=-- 故答案是:()221n n --. 【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键. 52.(2021年四川遂宁中考)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得. 【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∵第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时, ()12102n n +=,解得:20n =或21-(不合题意,舍去),∵第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .53.(2021年湖南岳阳中考)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.54.(2021年江苏苏州中考)若21m n +=,则2366m mn n ++的值为______.【答案】3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵ 21m n +=,∵2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.55.(2021年江苏扬州中考)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.。

(3)函数——2022年中考数学真题专项汇编(含答案)

(3)函数——2022年中考数学真题专项汇编(含答案)

(3)函数——2022年中考数学真题专项汇编1.【2022年北京】下面的三个问题中都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ; ②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ; ③用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x ,其中,变量y 与变量x 之间的函数关系可以利用如图所示的图象表示的是( )A.①②B.①③C.②③D.①②③2.【2022年天津】若点()1,2A x ,()2,1B x -,()3,4C x 都在反比例函数8y x=的图象上,则1x ,2x ,3x 的大小关系是( )A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<3.【2022年安徽】在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图象可能是( )A. B. C. D.4.【2022年陕西A 】已知二次函数223y x x =--的自变量1x ,2x ,3x 对应的函数值分别为1y ,2y ,3y .当110x -<<,212x <<,33x >时,1y ,2y ,3y 三者之间的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.231y y y <<5.【2022年山东青岛】已知二次函数2y ax bx c =++的图象开口向下,对称轴为直线1x =-,且经过点(3,0)-,则下列结论正确的是( ) A.0b >B.0c <C.0a b c ++>D.30a c +=6.【2022年天津】已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a c <<)经过点(1,0),有下列结论: ①20a b +<;②当1x >时,y 随x 的增大而增大;③关于x 的方程2()0ax bx b c +++=有两个不相等的实数根.其中,正确结论的个数是( ) A.0B.1C.2D.37.【2022年安徽】如图,OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x=的图象经过点C ,(0)ky k x =≠的图象经过点B .若OC AC =,则k =_________.8.【2022年北京】在平面直角坐标系xOy 中,若点1(2,)A y ,2(5,)B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)9.【2022年天津】在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2 km ,超市离学生公寓2 km.小琪从学生公寓出发,匀速步行了12 min 到阅览室;在阅览室停留70 min 后,匀速步行了10 min 到超市;在超市停留20 min 后,匀速骑行了8 min 返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离y km 与离开学生公寓的时间x min 之间的对应关系. 请根据相关信息,解答下列问题: (Ⅰ)填表:①阅览室到超市的距离为___________km ;②小琪从超市返回学生公寓的速度为___________km/min ;③当小琪离学生公寓的距离为1 km 时,他离开学生公寓的时间为___________min. (Ⅲ)当092x ≤≤时,请直接写出y 关于x 的函数解析式.10.【2022年北京】在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(4,3),(2,0)-,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.11.【2022年山东青岛】如图,一次函数y kx b =+的图象与x 轴正半轴相交于点C ,与反比例函数2y x=-的图象在第二象限相交于点(1,)A m -,过点A 作AD x ⊥轴,垂足为D ,AD CD =.(1)求一次函数的表达式;(2)已知点(,0)E a 满足CE CA =,求a 的值.12.【2022年重庆A 】已知一次函数()0y kx b k =+≠的图象与反比例函数4y x=的图象相交于点()1,A m ,(),2B n -.(1)求一次函数的表达式,并在图中画出这个一次函数的图象; (2)根据函数图象,直接写出不等式4kx b x+>的解集; (3)若点C 是点关于y 轴的对称点,连接AC ,BC ,求ABC △的面积.13.【2022年天津】已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a >)的顶点为P ,与x 轴相交于点(1,0)A -和点B . (Ⅰ)若2b =-,3c =-, ①求点P 的坐标;②直线x m =(m 是常数,13m <<)与抛物线相交于点M ,与BP 相交于点G ,当MG 取得最大值时,求点M ,G 的坐标.(Ⅱ)若32b c =,直线2x =与抛物线相交于点N ,E 是x 轴的正半轴上的动点,F 是y 轴的负半轴上的动点,当PF FE EN ++的最小值为5时,求点E ,F 的坐标.14.【2022年重庆A 】如图,在平面直角坐标系中,抛物线212y x bx c =++与直线AB 交于点()0,4A -,()4,0B .(1)求该抛物线的函数表达式;(2)点P 是直线AB 下方拋物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作y 轴的平行线交x 轴于点D ,求PC PD +的最大值及此时点P 的坐标;(3)在(2)中PC PD +取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,M 为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N ,使得以点E ,F ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.15.【2022年安徽】如图(1),隧道截面由抛物线的一部分AED 和矩形ABCD 构成,矩形的一边BC 为12米,另一边AB 为2米,以BC 所在的直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系xOy ,规定一个单位长度代表1米.(0,8)E 是抛物线的顶点.(1)求此抛物线对应的函数表达式. (2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图(2)、图(3)中粗线段所示,点1P ,4P 在x 轴上,MN 与矩形1234PP P P 的一边平行且相等.栅栏总长l 为图中粗线段12P P ,23P P ,34P P ,MN 长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图(2),点2P ,3P 在抛物线AED 上.设点1P 的横坐标为m(06m <≤),求栅栏总长l 与m 之间的函数表达式和l 的最大值. (ⅱ)现修建一个总长为18的栅栏,有如图(3)所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形1234PP P P 面积的最大值,及取最大值时点1P 的横坐标的取值范围(1P 在4P 右侧).答案以及解析1.答案:A解析:①②中,y 与x 之间是一次函数关系,当0x =时,0y >,且y 随x 的增大而减小,故①②中y 与x 的函数关系可以用题图所示的图象表示;③中,设绳子的长度为a ,则2222a x ay x x x -=⋅=-+,故y 与x 之间的函数关系图象是抛物线的一部分.故选A. 2.答案:B解析:方法一:反比例函数8y x=的图象在第一、三象限,在每个象限内,y 随x 的增大而减小,故2310x x x <<<,即231x x x <<. 方法二:对于8y x=,1(,2)A x ,()2,1B x -,()3,4C x ,14x ∴=,28x =-,32x =,231x x x ∴<<. 3.答案:D解析:由两个函数的解析式可知,当1x =时,两个函数对应的y 值都是2a a +,即直线2y ax a =+与2y a x a =+均过点2(1,)a a +,故可排除选项A 和选项C.若0a >,则一次函数2y ax a =+与2y a x a =+均满足y 随x 的增大而增大;若0a <,则对于一次函数2y ax a =+,y 随x 的增大而减小,且图象与y 轴交于正半轴,对于一次函数2y a x a =+,y 随x 的增大而增大,且图象与y 轴交于负半轴,故选项D 符合.故选D. 4.答案:B解析:抛物线223y x x =--的开口向上,对称轴为直线1x =,则抛物线上的点到直线1x =的距离越大,其纵坐标越大.已知110x -<<,212x <<,33x >,则213111x x x -<-<-,故213y y y <<.5.答案:D解析:选项A :抛物线开口向下,0a ∴<.对称轴为直线1x =-,12ba∴-=-.2b a ∴=.0b ∴<.故选项A 错误;选项B :设抛物线与x 轴的另一个交点为(,0)x ,则抛物线的对称轴可表示为1(3)2x x =-,11(3)2x ∴-=-,解得1x =,∴抛物线与x 轴的两个交点为(1,0)和(3,0)-.又抛物线开口向下,∴抛物线与y 轴交于正半轴.0c ∴>.故选项B 错误.选项C :抛物线过点(1,0).0a b c ∴++=.故选项C 错误;选项D :2b a =,且0a b c ++=,30a c ∴+=.故选项D 正确.故选:D. 6.答案:C解析:抛物线经过点(1,0),0a b c ∴++=,b a c ∴=--.0a c <<,0a b a a b c ∴++<++=,20a b ∴+<,故结论①正确.0a >,故抛物线开口向上,由①可知,12b a ->,∴当12b x a<<-时,y 随x 的增大而减小,故结论②错误.0a >,20a b +<,0b ∴<.对于关于x 的方程2()0ax bx b c +++=,2224()()4()()40b a b c a c a b c a c ab ∆=-+=+-+=-->,故该方程有两个不相等的实数根,即结论③正确.故选C. 7.答案:3解析:分别过点C ,B 作x 轴的垂线,垂足分别为D ,E .OC AC =,OD AD ∴=.由反比例函数中||k 的几何意义可知12COD S =△.四边形OABC 是平行四边形,//OC AB ∴,//BC OA ,OC AB =,COD BAE ∴∠=∠.又90CDO BEA ∠=∠=︒,COD BAE ∴≅△△,AE OD AD ∴==.方法一:连接OB ,如图,则3332BOE BAE COD S S S ===△△△,3232k ∴=⨯=.方法二:设1,C a a ⎛⎫ ⎪⎝⎭,则13,B a a ⎛⎫ ⎪⎝⎭,133k a a∴=⋅=.8.答案:>解析:0k >,∴反比例函数ky x=的图象位于第一、三象限,且在同一象限内,y 随x 的增大而减小.又520>>,12y y ∴>. 9.答案:(Ⅰ)0.8,1.2,2 (Ⅱ)①0.8 ②0.25 ③10或116(Ⅲ)当012x ≤≤时,0.1y x =; 当1282x <≤时, 1.2y =; 当8292x <≤时,0.08 5.36y x =-. 解析:(Ⅱ)①0.8②2(120112)0.25÷-=(km/min )③当012x ≤≤时,设y 关于x 的解析式为y kx =,由(12,1.2)可知0.1y x =.当1y =时,10x =.当112120x <≤时,设y 关于x 的解析式为y mx n =+, 由(112,2),(120,0)可知0.2530y x =-+.当1y =时,116x =. 故他离开学生公寓的时间为10 min 或116 min. 10.答案:(1)112y x =+,(0,1)A (2)1n ≥解析:(1)把(4,3),(2,0)-分别代入y kx b =+, 得43,20,k b k b +=⎧⎨-+=⎩解得1,21,k b ⎧=⎪⎨⎪=⎩∴该函数的解析式为112y x =+. 对于112y x =+,当0x =时,1y =, (0,1)A ∴.(2)1n ≥. 解法提示:函数112y x =+的图象如图所示,易知当直线y x n =+与y 轴的交点与点A 重合或在点A 上方时符合题意,故1n ≥.11.答案:(1)1y x =-+ (2)1-1+解析:解:(1)点(1,)A m -在反比例函数2y x=-的图象上, 221m =-∴=- (1,2)A ∴- AD x ⊥轴2AD ∴=,1OD =2CD AD ∴==211OC CD OD =∴=--=(1,0)C ∴点(1,2)A -,(1,0)C 在一次函数y kx b =+的图象上 20k b k b -+=⎧∴⎨+=⎩ 解得11k b =-⎧⎨=⎩∴一次函数的表达式为1y x =-+.(2)在Rt ADC △中,由勾股定理得,AC ==AC CE ∴==当点E 在点C 的左侧时,1a =-当点E 在点C 的右侧时,1a =+∴a 的值为1-1+12.答案:(1)一次函数的表达式是22y x =+,一次函数的图象见解析 (2)20x -<<或1x > (3)12解析:(1)把()1,A m ,(),2B n -分别代入4y x=中, 得41m =,42n-=, 解得4m =,2n =-, ∴点(1,4)A ,(2,2)B --,将(1,4)A ,(2,2)B --分别代入y kx b =+, 得4,22,k b k b +=⎧⎨-+=-⎩解得2,2,k b =⎧⎨=⎩∴一次函数的表达式为22y x =+.一次函数22y x =+的图象如图所示.(2)由函数图象可知,当20x -<<或1x >时,一次函数()0y kx b k =+≠的图象在反比例函数4y x=的图象的上方, ∴不等式4kx b x+>的解集为20x -<<或1x >; (3)点C 是点(2,2)B --关于y 轴的对称点, ∴点(2,2)C -,2(2)4BC ∴=--=.过点A 作AH BC ⊥于点H ,如图.(1,4)A ,4(2)6AH ∴=--=, 11461222ABC S BC AH ∴=⋅=⨯⨯=△. 13.答案:(Ⅰ)①(1,4)-②点M 的坐标为(2,3)-,点G 的坐标为(2,2)-(Ⅱ)5,07E ⎛⎫ ⎪⎝⎭,200,21F ⎛⎫- ⎪⎝⎭ 解析:(Ⅰ)①抛物线2y ax bx c =++与x 轴相交于点(1,0)A -,0a b c ∴-+=.又2b =-,3c =-,得1a =,∴抛物线的解析式为223y x x =--.2223(1)4y x x x =--=--,∴点P 的坐标为(1,4)-.②当0y =时,由2230x x --=,解得11x =-,23x =.∴点B 的坐标为(3,0).设经过B ,P 两点的直线的解析式为y kx n =+,有30,4,k n k n +=⎧⎨+=-⎩解得2,6,k n =⎧⎨=-⎩∴直线BP 的解析式为26y x =-.直线x m =(m 是常数,13m <<)与抛物线223y x x =--相交于点M ,与BP 相交于点G , ∴点M 的坐标为()2,23m m m --,点G 的坐标为(,26)m m -, ()222(26)2343(2)1MG m m m m m m ∴=----=-+-=--+,∴当2m =时,MG 有最大值1.此时,点M 的坐标为(2,3)-,点G 的坐标为(2,2)-.(Ⅱ)由(Ⅰ)知0a b c -+=,又32b c =,2b a ∴=-,3(0)c a a =->.∴抛物线的解析式为223y ax ax a =--.2223(1)4y ax ax a a x a =--=--,∴顶点P 的坐标为(1,4)a -.直线2x =与抛物线223y ax ax a =--相交于点N ,∴点N 的坐标为(2,3)a -.作点P 关于y 轴的对称点P ',作点N 关于x 轴的对称点N ',得点P '的坐标为(1,4)a --,点N '的坐标为(2,3)a .当满足条件的点E ,F 落在直线P N ''上时,PF FE EN ++取得最小值,此时,5PF FE EN P N +=''+=.延长P P '与直线2x =相交于点H ,则P H N H '⊥'.在Rt P HN ''△中,3PH =,3(4)7HN a a a =--=',222294925P N P H HN a ''∴+=+'==', 解得147a =,247a =-(舍), ∴点P '的坐标为161,7⎛⎫-- ⎪⎝⎭,点N '的坐标为122,7⎛⎫ ⎪⎝⎭. 可得直线P N ''的解析式为420321y x =-, ∴点5,07E ⎛⎫ ⎪⎝⎭和点200,21F ⎛⎫- ⎪⎝⎭即为所求. 14.答案:(1)2142y x x =-- (2)PC PD +取得最大值是254,此时点P 的坐标为335,28⎛⎫- ⎪⎝⎭ (3)113,28N ⎛⎫- ⎪⎝⎭,1513,28N ⎛⎫- ⎪⎝⎭,145,28N ⎛⎫ ⎪⎝⎭解析:(1)把(0,4)A -,(4,0)B 分别代入212y x bx c =++中, 得4,840,c b c =-⎧⎨++=⎩解得1,4,b c =-⎧⎨=-⎩ 故该抛物线的函数表达式为2142y x x =--. (2)如图,记PD 交直线AB 于点H .易得PCH △是等腰直角三角形,即PC PH =,PC PD PH PD ∴+=+.(0,4)A -,(4,0)B ,∴直线AB 的函数表达式为4y x =-. 设21,42P m m m ⎛⎫-- ⎪⎝⎭,则(,0)D m ,(,4)H m m -,22221132544[0(4)]342224PH PD m m m m m m m m ⎡⎤⎛⎫⎛⎫∴+=----+---=-++=--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 10-<,∴当32m =时,PC PD +取得最大值,最大值是254,此时点P 的坐标为335,28⎛⎫- ⎪⎝⎭. (3)满足条件的点N 的坐标有113,28⎛⎫- ⎪⎝⎭,1513(,)28-,145,28⎛⎫ ⎪⎝⎭. 由题意,得平移后的抛物线的函数表达式为217422y x x =++,735,28E ⎛⎫-- ⎪⎝⎭, ∴平移后的抛物线的对称轴为直线4x =-,70,2F ⎛⎫ ⎪⎝⎭. 设217,422N n n n ⎛⎫++ ⎪⎝⎭. ①若四边形是以MF 为对角线,则当EN 与MF 互相平分时,四边形MNFE 为平行四边形,70(4)2n ⎛⎫∴+-=+- ⎪⎝⎭, 12n ∴=-, 113,28N ⎛⎫∴- ⎪⎝⎭. ②若四边形是以ME 为对角线,则当FN 与ME 互相平分时,四边形MFEN 为平行四边形,70(4)2n ∴+=-+-, 152n ∴=-, 1513,28N ⎛⎫∴- ⎪⎝⎭. ③若四边形是以EF 为对角线,则当MN 与EF 互相平分时,四边形MFNE 为平行四边形,7(4)02n ⎛⎫∴+-=+- ⎪⎝⎭, 12n ∴=, 145,28N ⎛⎫∴ ⎪⎝⎭. 15.答案:(1)2186y x =-+ (2)(ⅰ)栅栏总长l 与m 之间的函数表达式为212242l m m =-++,l 的最大值为26(ⅱ)见解析解析:(1)由题意可知(6,2)A -. 设2y ax c =+,将(6,2)A -,(0,8)E 分别代入,得362,8,a c c +=⎧⎨=⎩解得1,68,a c ⎧=-⎪⎨⎪=⎩ 故此抛物线对应的函数表达式为2186y x =-+. (2)(ⅰ)由题意得1(,0)P m ,将x m =代入2186y x =-+,得2186y m =-+, 221,86P m m ⎛⎫∴-+ ⎪⎝⎭, 231,86P m m ⎛⎫∴--+ ⎪⎝⎭,4(,0)P m -, 232P P m ∴=,23412186MN P P PP m ===-+, 222111382224(2)26622l m m m m m ⎛⎫∴=-++=-++=--+ ⎪⎝⎭, 102-<,06m <≤, ∴当2m =时,l 的值最大,最大值为26. 综上,栅栏总长l 与m 之间的函数表达式为212242l m m =-++,l 的最大值为26. (ⅱ)方案一:设1234(08)PP MN P P t t ===<<, 则23183P P t =-,12342(183)3(3)27P P P P S t t t ∴=-=--+矩形.30-<,∴当3t =时,1234P P P P S 矩形的值最大,最大值为27. 将3y =代入2186y x =-+,解得1x,2x =,4P∴横坐标的最小值为1P 当3t =时,14231899PP P P ==-=,1P∴横坐标的最小值为91P ∴横坐标的取值范围为19P x 方案二:设23MN P P n ==,则34129P P PP n ==-, 12342981(9)24P P P P S n n n ⎛⎫∴=-=--+ ⎪⎝⎭矩形. 10-<,∴当92n =时,1234P P P P S 矩形的值最大,最大值为814, 此时341292P P PP ==.把92y =代入2186y x =-+,解得1x =2x4P ∴横坐标的最小值为1P 当92n =时,1492PP n ==,∴当4P 的横坐标为1P 的横坐标取最小值,为921P ∴的横坐标的取值范围是192P x ≤≤。

(整理)中考数学复习专题汇编3

(整理)中考数学复习专题汇编3

整式一、选择题1.计算的结果正确的是()A. B. C. D.【答案】A2.下列运算正确的是()A.-3(x-1)=-3x-1 B.-3(x-1)=-3x+1 C.-3(x-1)=-3x-3 D.-3(x -1)=-3x+3【答案】D3.下列命题中,正确的是()A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0,且b=0 D.若a·b=0,则a=0,或b=0【答案】D4.的结果是A. B. C. D.【答案】B5.列说法或运算正确的是A.1.0×102有3个有效数字 B.C.D.a10÷a4= a6【答案】D6.图①是一个边长为的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A.B.C.D.【答案】B7.如果,那么代数式的值是()A.0 B.2 C.5 D.8【答案】D8.由m(a+b+c)= ma+mb+mc,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2)=a3+b3.我们把等式①叫做多项式乘法的立方公式。

下列应用这个立方公式进行的变形不正确的是A.(x+4y)(x2-4xy+16y2)=x3+64y3B.(2x+y)(4x2-2xy+y2)=8x3+y3C.(a+1)(a2+a+1)=a3+1D.x3+27=(x+3)(x2-3x+9)【答案】C9.下列运算正确的是A. B.C. D.【答案】D10.已知,则a2-b2-2b的值为A.4 B.3 C.1D.0【答案】C11.下列计算正确的是A.B.C.D.【答案】D12.下列运算中正确的是A.B.C.D.【答案】B13.已知有一多项式与(2x2+5x-2)的和为(2x2+5x+4),求此多项式为何?A.2B.6C. 10x+6D.4x2+10x+2 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学复习专题汇编3整式一、选择题1.计算的结果正确的是()A. B. C. D.【答案】A2.下列运算正确的是()A.-3(x-1)=-3x-1 B.-3(x-1)=-3x+1 C.-3(x-1)=-3x-3 D.-3(x -1)=-3x+3【答案】D3.下列命题中,正确的是()A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0,且b=0 D.若a·b=0,则a=0,或b=0【答案】D4.的结果是A. B. C. D.【答案】B5.列说法或运算正确的是A.1.0×102有3个有效数字 B.C.D.a10÷a4= a6【答案】D6.图①是一个边长为的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A.B.C.D.【答案】B7.如果,那么代数式的值是()A.0 B.2 C.5 D.8【答案】D8.由m(a+b+c)= ma+mb+mc,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2)=a3+b3.我们把等式①叫做多项式乘法的立方公式。

下列应用这个立方公式进行的变形不正确的是A.(x+4y)(x2-4xy+16y2)=x3+64y3B.(2x+y)(4x2-2xy+y2)=8x3+y3C.(a+1)(a2+a+1)=a3+1D.x3+27=(x+3)(x2-3x+9)【答案】C9.下列运算正确的是A. B.C. D.【答案】D10.已知,则a2-b2-2b的值为A.4 B.3 C.1D.0【答案】C11.下列计算正确的是A.B.C.D.【答案】D12.下列运算中正确的是A.B.C.D.【答案】B13.已知有一多项式与(2x2+5x-2)的和为(2x2+5x+4),求此多项式为何?A.2B.6C. 10x+6D.4x2+10x+2 。

【答案】B14.下列运算正确的是A. B. C. D.【答案】C15.计算a2·a4的结果是( )A.a2 B.a6 C.a8D.a16【答案】B16.下列运算正确的是( )A. B. C.D.【答案】C17.下列运算正确的是()A.(3xy2)2=6x2y4 B. C.(-x)7÷(-x)2=-x5D.(6xy2)2÷3xy=2xy3【答案】C18.计算3x+x的结果是()A. 3x2 B.2x C. 4x D.4x2【答案】C19.下列运算正确的是()A.B.C. D.【答案】B20.计算的结果是()A.B.C.D.【答案】B21.下列计算正确的是( ).A. B. C. D.【答案】D22.下列计算正确的是().A、B、C、D、【答案】C.23.下列运算中,正确的是A. B.C. D.【答案】D24.下列等式成立的是().A. B.C. D.【答案】A25.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.2m+3 B.2m+6C.m+3 D.m+6【答案】A26.下列运算正确的是()A. B. C.D.【答案】B27.已知(m为任意实数),则P、Q的大小关系为()A. B. C. D.不能确定【答案】C28.下列运算正确的是()A. B. C. D.【答案】D29.(-a)a= ()A.-a B.a C.-a D.a【答案】B30.计算2a2÷a结果是()A.2 B.2aC.2a3 D.2a2【答案】B31.下列各式计算正确的是A. B.C. D..【答案】C32.若,,则代数式的值等于A. B. C. D.【答案】B33. 下列运算中,不正确的是( )A.x3+ x3=2x3B.(–x2)3= –x5C.x2·x4= x6D.2x3÷x2 =2x【答案】B34.下列计算正确的是()A.a+a=a2 B.a·a2=a3 C.(a2) 3=a5 D.a2 (a +1)=a2+1【答案】B35.下列运算正确的是()A. B.C.D.【答案】D36.下列计算结果正确的是A. B. C. D.【答案】C37.下列运算中,结果正确的是().A. B. C. D.【答案】A38.计算-(-3a)的结果是( )A.-6a B.-9a C. 6a D. 9a【答案】B39.若,则的值为()A. B. C.0 D.4【答案】B40.化简a+2b-b,正确的结果()A.a- b B.-2b C.a+b D.a+2【答案】C.41.计算的结果是A.a6B.a5C.2a3D.a【答案】B42.下列各式运算正确的是( )A.2a2+3a2=5a2B.(2ab2)2=4a3b4C. 2a6÷a3=2a2D. (a2)3=a5【答案】A43.下列运算,正确的是A.B.C.D.【答案】 A44.若,,则的值是().A.2 B.4 C.D.【答案】B45.下列计算正确的是()A.x4+x2=x6 B.x4—x2=x2C.x4·x2=x8 D.(x4)2=x8【答案】D46.下列计算正确的是:A. B. C. D.【答案】C47.计算(a3)2·a3的结果是()A.A8B.A9C.A10D.A11【答案】B48.如果A.3和-2B.-3和2C.3和2D.-3和-2【答案】C49.下列运算中,正确的是()A. B. C. D.【答案】A50.下列计算正确的是A. B.2a·4a=8a C. D.【答案】C51.(2010云南昆明)下列各式运算中,正确的是( )A. B.C. D.【答案】B52.计算(的结果是A. B. C. D.【答案】B53.下列运算正确的是()A. B.C. D.【答案】C54.下列运算中,正确的是()A. B. C. D.【答案】D55.下列运算中,正确的是()A. B. C. D.【答案】C56.如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足的规律.若前n行点数和为930,则n =().A.29B.30C.31D.32【答案】B57.下列运算正确的是()A.B.C. D.【答案】C58.计算(a4)2÷a2的结果是()A.a2 B.a5 C.a6D.a7【答案】C59.计算的结果是(A)(B)(C)(D)【答案】C60.下列运算中,正确的是()A.B.C.D.【答案】C61.计算(a)的结果是: ( )A.a B.a C.a D.a【答案】B62.(下列运算正确的是()A. B.C. D.【答案】D63.下列运算正确的是().A. B. C. D.【答案】D64.下列运算正确的是A.(a+b)(a-b)=a2+b2 B.(a-2)2=a2-4C.a3+a3=2a6 D.(-3a2)2=9a4【答案】D65.(下列运算正确的是()A. B. C. D.【答案】B66.下列各式运算正确的是A. B.C. D.【答案】D67.计算(-a2)3的结果是()A. –a5B.a6C.-a6 D. a5【答案】C68.已知整式的值为6,则的值为A.9 B.12 C.18 D.24【答案】C69.有若干张面积分虽为的正方形和长方形纸片,阳阳从中抽取了1张面积为的正方形纸片,4张面积为的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为的正方形纸片A.2张 B.4张 C.6张 D.8张【答案】B70.下列二次三项式是完全平方式的是:A. B. C. D.【答案】B71.下列运算正确的是()A. B.C. D.【答案】B72.下列运算中结果正确的是A. B.C. D.【答案】D73.下列运算正确的是()A. ·=B.C. +=2 D. ÷a=【答案】C74.下列计算正确的是()长A. B.(a+b)2=a2+b2 C. D.a2+a3=a5【答案】A75.下列运算正确的是()A. B. C. D.【答案】B76.计算(α3)2的结果是A.3α2B.2α3 C.α5 D.α6【答案】D77.下列运算正确的是()A. B. C. D.【答案】D78.多项式1+xy-xy²的次数及最高次项的系数分别是A.2,1 B.2,-1 C.3,-1 D.5,-1【答案】C79.下列运算正确的是()。

B. C. D.【答案】B80.下列运算正确的是A.B.C.D.【答案】D81.下列运算中,正确的是( )A.2a+3b=5ab B.2a-(a+b)=a-bC.(a+b)2=a2+b2 D.a2·a3=a 6【答案】B82.某工厂第一个生产a件产品,第二年比第一年增产了20%,则两年共生产产品的件数为( )A.0.2a B.a C.1.2a D.2.2a【答案】 D83.下列计算正确的是()A . B. C.D.【答案】D84.已知a-2b=-2,则4-2a+4b的值是( )A.0B.2C.4D.8【答案】D.85.下列运算正确的是 ( )A. B. C. D.【答案】C86.下列式子中,正确的是()A.x3+x3=x6B.=± 2 C.(x·y3)2=xy6 D.y5÷y2=y3【答案】D87.(2010四川广安)下列计算正确的是A. B. C. D.【答案】B88.下列各式:①②=1 ③④⑤,其中计算正确的是()A.①②③B.①②④C.③④⑤ D.②④⑤【答案】B89.如图2,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为A. B.C. D.【答案】C90.下列计算正确的是()A. B.C. D.【答案】D91.下列运算正确的是()A.a+a= a2B.a·a2= a2C.(2a) 2= 2 a2D. a+2a =3a【答案】D92.计算的结果是()A. B. C. D.【答案】B93.下列运算正确的是()A.a·a= a B.(—y)= y C.(m n)= m n D.—2x+6 x= 4 x【答案】D二、填空题94.若代数式3x+7的值为-2,则x=【答案】-395.若,且,则【答案】296.用代数式表示“a、b两数的平方和”,结果为【答案】97. 若,,则=【答案】798.计算:=【答案】99.已知.(1)若,则的最小值是;(2).若,,则=.【答案】(1);(2).100.若,则=【答案】14101.若代数式可化为,则的值是.【答案】5102.已知a≠0,,,,…,,则(用含a的代数式表示).【答案】103.观察等式:①,②,③…按照这种规律写出第n个等式:.【答案】104.计算:a 3÷ a 2 =【答案】105.计算:( x + 1 ) ( x ─ 1 ) =【答案】x2-1106.若3sm+5y2与x3yn的和是单项式,则nm.【答案】107.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由()个基础图形组成.-【答案】3n+1108.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是()元.【答案】(a+1.25b )109.已知, 【答案】-6110.用m 根火柴可以拼成如图1所示的x 个正方形,还可以拼成如图2所示的2y 个正方形,那么用含x 的代数式表示y ,得y =().【答案】y =53x -51.。

相关文档
最新文档