七年级数学整式的加减2

合集下载

整式的加减教案-数学七年级上第二章2.2人教版

整式的加减教案-数学七年级上第二章2.2人教版

2.2 整式的加减-第二课时1教学目标1.1知识与技能:①让学生经过观察、合作交流、类比讨论、总结出去括号法那么;②理解去括号就是将分配律用于整式运算,掌握去括号法那么;③能熟练、准确地应用去括号、合并同类项将整式化简;④熟练掌握整式的加减运算法那么,能够列整式解决实际问题。

1.2 过程与方法:①经历类比有括号的有理数的运算,发现去括号时的符号变化规律,归纳出去括号法那么,培养学生观察、分析、归纳的能力。

②经历去括号与合并同类项的运算,培养学生的观察、分析、归纳以及整式加减的运用能力。

1.3情感态度与价值观:①培养学生主动探究、合作交流的意识和严谨治学的学习态度。

②认识到数学是解决实际问题和进展交流的重要工具。

2教学重点 / 难点 / 易考点2.1教学重点①准确应用去括号法那么将整式化简。

②整式的加减。

2.2教学难点①括号前面是“ - 〞号去括号时,括号内各项变号容易产生错误。

②总结出整式的加减的运算法那么。

3专家建议“数学教学是数学活动的教学〞。

我们进展数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。

也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。

这一节课,从去括号法那么,到整式的加减运算。

不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而到达培养学生观察、归纳、概括能力的目的。

4教学方法问题引入 ----类比探究----去括号法那么----整式加减运算法那么----课堂小结----稳固练习5教学用具6教学过程6.1问题引入问题一:用火柴棍拼成一排正方形图形,如果图形中含有 1、2、3 或 4 个正方形,分别需要多少根火柴棍?如果图形中含有 n 个正方形,需要多少根火柴棍?【教师说明】 总结同学们的答案,共有三种方法〔 1〕第一个正方形用 4 根火柴棍,每增加一个正方形增加 3 根火柴棍,搭 n 个正方形就需要 [4+ 3(n - 1)]根火柴棍.〔〕把每一个正方形2都看成用 4 根火柴棍搭成的,然后再减去多算的火柴棍,得到需要 [4n - ( n -1)] 根火柴棍.( 3〕第一个正方形可以看成是 3 根火柴棍加 1 根火柴棍搭成的,此后每增加一个正方形就增加 3 根,搭 n 个正方形共需要 (3 n + 1) 根火柴棍.6.2 类比探究我们看以下两个简单问题:〔1〕4+(3 -1)〔2〕4-(3 -1)方法一: =4+2方法一: = 4 -2=6=2方法二: =4+3-1方法二: =4-3+1=6=26.3 交流讨论1.4 + 3(n -1) 应如何计算?2.4n -(n -1) 应如何计算?【教师说明】 算式 1:=4+3n-3算式 2: =4n-n+1=3n+1=3n+1所以在问题一中的三种算法的结果是一样的。

七年级数学上册 第二章 整式的加减 2.1 整式(第1课时)课件

七年级数学上册 第二章 整式的加减 2.1 整式(第1课时)课件
第二章 整数 的加减 (zhěngshù)
2.1 整式(zhěnɡ shì)(第一课时)
第一页,共二十四页。
1.用字母表示(biǎoshì)数的意义是用字母表示(biǎoshì)数能简明 表达数量关系.
第二页,共二十四页。
2.用字母表示数的书写规则: (1)字母与字母相乘时,“×”通常省略不写或写成“·”;
第二十四页,共二十四页。
则第n个图案中的“ ”的个数是 3n+1
.(用含
有n的代数式表示).
第十二页,共二十四页。
9.按图2-1-6所示的方式(fāngshì)用火柴摆图形.
(1)填写下表:
3 5 7 9 11 (2)要摆出n(n>1且n为整数)个三角形,需要多少(duōshǎo)
根火柴?
解:(2)需要(xūyào)(2n+1)根火柴;
解:(1)采用计时制应付(yìng fù)的费用为
0.05x×60+0.02x×60=4.2x(元),
采用包月制应付的费用为
69+0.02x×60=(69+1.2x)(元).
第十五页,共二十四页。
(2)若小明估计自家(zìjiā)一个月内上网的时间为20小时,你认 为采用哪种方式较为合算?
(2)若一个月内上网的时间为20小时,
6.有一种石棉瓦(如图2-1-2),每块宽60厘米,
用于铺盖屋顶时,每相邻两块重叠部分(bù fen)的宽都 为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为
(50n+10)厘米.
第九页,共二十四页。
7.如图2-1-3是一长方形休闲广场,四角都设计一块半径相同 的四分之一圆的花坛,若圆形的半径为
(n-3m) 元;

[初中数学++]整式的加减第2课时+课件+北师大版七年级数学上册

[初中数学++]整式的加减第2课时+课件+北师大版七年级数学上册

【重点2】整式的化简及求值(模型观念、运算能力)
【典例2】(教材再开发·P92例4拓展)已知A=2a2-a+3b-ab,B=a2+2a-b+ab.
(1)化简A-2B;
(2)当a-b=2,ab=-1时,求A-2B的值;
(3)若A-2B的值与b的取值无关,求A-2B的值.
【自主解答】(1)A-2B=(2a2-a+3b-ab)-2(a2+2a-b+ab)
C.+(a-1)=+a+1
D.+(a+1)=+a-1
【解析】A选项,-(a-1)=-a+1,故该选项符合题意;
B选项,-(a+1)=-a-1,故该选项不符合题意;
C选项,+(a-1)=a-1,故该选项不符合题意;
D选项,+(a+1)=a+1,故该选项不符合题意.
2.已知b-a=10,c+d=-5,则(b+c)-(a-d)的值为( D )解析】因为b-a=10,c+d=-5,所以(b+c)-(a-d)=b-a+c+d=10-5=5.
4a+7b
3.一条线段长为6a+8b,将它剪成两段,其中一段长为2a+b,则另一段长为__________.
【解析】另一段长为:(6a+8b)-(2a+b)
=6a+8b-2a-b
【解析】设这个多项式是A,则A+5x2-4x-3=-x2-3x,
所以A=-x2-3x-(5x2-4x-3)=-x2-3x-5x2+4x+3=-6x2+x+3.
5a3-4a2+a-1

人教版七年级数学上册教案(RJ) 第二章 整式的加减

人教版七年级数学上册教案(RJ) 第二章 整式的加减

第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。

本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。

通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。

二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。

但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。

三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。

四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。

通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。

六. 教学准备教师准备教案、PPT、练习题等教学资源。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。

2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。

例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。

同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。

3.操练(15分钟)教师布置一些练习题,让学生独立完成。

例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。

七年级数学上册 第二章 整式的加减 2.1 整式同步课件

七年级数学上册 第二章 整式的加减 2.1 整式同步课件
【问题(wèntí)3】 (1)你能举出一个(yī ɡè)单项式的例子,并说出它 的系数和次数吗?
(2)请你写出一个(yī ɡè)单项式,并使它的系数是 -2,次数是4,那么该单项式可以是 .
2021/12/10
第二十五页,共五十页。
《倍速学习法》
练习1 下列(xiàliè)各式中哪些是单项式?
x,0 , 2,0.72a , 3, a,π,a+1,2xy.
土地段(dìduàn).列车在冻土地段(dìduàn)的行驶速度是100 km/h.列车在冻土地段行驶时,根据已知数据求出列车行 驶的路程.
(1)2 h行驶多少千米?3 h呢?8 h呢?t h呢?
(2)字母(zìmǔ) t 表示时间有什么意义?
如果用 v 表示速度,列车行驶的路程是多少?
(3)回顾以前所学的知识,你还能举出用字母表示(biǎoshì)
这台电视机现在的售价是
元;
(5)一个(yī ɡè)长方形的长是0.9 m,宽是a m ,这个长方
形的面积是
m2.
2021/12/10
第二十八页,共五十页。
《倍速学习法》
解:(1) 12n ,它的系数是12,次数是1;
(2)1 ah ,它的系数是 1 ,次数是2;
2
2
(3) a ,3 它的系数是1,次数是3;
若 (m2)x2y是n 关于 x,y 的一个
四次单项式,求m,n应满足的条件?
答案: m2,n2
2021/12/10
第三十二页,共五十页。
《倍速学习法》
【课堂(kètáng)小结】 (1)本节课学了哪些主要内容? (2)请你举例说明单项式的概念、单项式的
系数(xìshù)和次数的概念.

人教版七年级数学上册 2.2整式的加减 知识点归纳

人教版七年级数学上册 2.2整式的加减 知识点归纳

人教版七年级数学上册2.2整式的加减知识点归纳
如果两个单项式所含字母相同,并且相同字母的指数也别分相同,那么这两个单项式是同类项。

例1、3a2b和5a2b是同类项;2x2y3和6y3x2也是同类项。

任意几个常数项都是同类项。

例2、3、6.5、100、-99都是同类项。

把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项的本质是乘法分配律的逆运用。

合并同类项后,所得项的系数是合并之前各个同类项的系数之和,所得项的字母和它对应的指数都不变。

例3、3a2b+5a2b=8a2b。

例4、5a2b−3a2b=2a2b。

拆括号法则:
①括号前面是“+”号,拆开括号不变号。

②括号前面是“-”号,拆开括号都变号。

温馨提示:上面的“变号”指的是“+”变“-”,“-”变“+”。

例5、化简:5x4y3+(-2x4y3+8x4y3)
解:原式=5x4y3-2x4y3+8x4y3
=3x4y3+8x4y3
=11x4y3
例6、化简:5x4y3−(-2x4y3+8x4y3)
解:原式=5x4y3+2x4y3−8x4y3
=7x4y3−8x4y3
=-x4y3
整式的加减运算法则:有括号先拆括号,然后再合并同类项。

先将式子化简,再代入数值进去计算往往比较简便。

七年级上册的数学第二章“整式的加减”主要知识点

七年级上册的数学第二章“整式的加减”主要知识点

七年级上册的数学第二章“整式的加减”主要知识点1. 整式的概念-单项式:由数与字母的积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

-系数:单项式中的数字因数叫做单项式的系数。

-次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

-多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。

2. 整式的加减法则-同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

-合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项时,把同类项的系数相加,字母和字母的指数不变。

3. 去括号与添括号-去括号法则:如果括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;如果括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。

-添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都要变号。

4. 整式的加减运算步骤1. 去括号:根据去括号法则去掉括号。

2. 识别同类项:找出所有同类项。

3. 合并同类项:利用合并同类项法则进行合并。

4. 整理结果:按照一定顺序(如降幂或升幂)写出最终的整式。

5. 应用题-整式的加减运算还经常出现在应用题中,如求解面积、体积、距离等问题,需要学生将实际问题抽象为整式的加减运算。

6. 注意事项-在进行整式加减时,要仔细识别同类项,避免漏项或重复计算。

-注意系数的符号,特别是负号的作用。

-运算后要进行必要的化简,使结果更加简洁明了。

人教版初一七年级数学 第二章 整式的加减--整式的加减

人教版初一七年级数学 第二章 整式的加减--整式的加减

一、教学目标:(一)知识目标1.会用字母表示数量关系;2.会进行整式加减运算,并能说明其中的算理;3.熟练掌握整式加减运算;(二)能力目标1.在进行整式加减运算的过程中,发展有条理的思考及语言表达能力;(三)情感目标1.在解决问题的过程中了解数学的价值,发展“用数学”的信心;2.在解决问题的过程中,获得成就感,培养学习数学的兴趣.二、教学重难点:(一)教学重点3.经历“由特例归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探索过程.(二)教学难点1.灵活地列出算式和去括号.2.利用整式的加减运算,解决简单的实际问题.三、教学方法:活动——讨论法;探究——交流法.四、教具准备:投影片五、教学安排:2课时.六、教学过程:第一课时:在开始课堂之前,让学生先来看一个数学小幽默:参看课件——整式的加减_数学小幽默.Ⅰ.提出问题,引入新课[师]下面我们先来做一个游戏:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,又得到一个数;(3)求这个两位数的和.[生]我取了一个两位数12;交换这个两位数的十位数字和个位数字,又得到数21;求得这两个数的和是33.我又取了一个两位数29;交换个位和十位上的数字得到92;求得这两个数的和是121.最后,我取了一个两位数31;交换个位和十位上的数字得到13;求得这两个数的和是44.观察可以发现这些和都是11的倍数.例如33是11的3倍,121是11的11倍,44是11的4倍.[师]这个规律是不是对任意的两位数都成立呢?为什么?(鼓励同伴之间互相讨论,相互启发)[生]对于任意一个两位数,我们可以用字母表示数的形式表示出来,设a、b分别表示两位数十位上的数字和个位上的数字,那么这个两位数可以表示为:10a+b.交换这个两位数的十位数字和个位数字,就得到一个新的两位数是:10b+a.这两个数相加:(10a+b)+(10b+a)=10a+b+10b+a=(10a+a)+(b+10b)=11a+11b 根据运算的结果,可知一个两位数,交换它十位和个位上数字,得到一个新两位数,这两数的和是11的倍数.[师]很棒!(10a+b)+(10b+a)是什么样的运算呢?10a+b与10b+a都是什么样的代数式?[生]10a+b与10b+a是多项式,也就是整式,因此(10a+b)+(10b+a)是整式的加法.[师]如果要是求这两个数的差,又如何列出计算的式子呢?[生](10a+b)-(10b+a).[师]这就是整式的减法.你能发现它们的差有何规律吗?[生](10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b由此可知,这两个数的差是9的倍数.[师]我们借助于整式的加减法将实际问题中的数量关系用字母表示出来,并发现了其中的规律.在说明(10a+b)+(10b+a)是11的倍数时,每一步的依据的法则是什么呢?(10a+b)-(10b+a)是9的倍数呢?[生]第一步的依据是去括号法则;第二步是合并同类项法则.[师]从上面的例子中可以发现整式的加减法可以帮我们解决实际情景中的问题.因此,我们这节课就来学习整式的加减.Ⅱ.合作讨论新课,学会运算整式的加减1.做一做图1-6两个数相减后,结果有什么规律?这个规律对任意一个三位数都成立吗?为什么?[师]同学们先来按照上面所示的框图的步骤来讨论一下两个数相减后,结果有什么规律?[生]任取一个三位数,经过上述程序后结果一定是99的倍数.[师]是不是任意的三位数都有这样的规律呢?首先我们先要设出一个任意的三位数.如何设呢?[生]可以设百位、十位、个位上的数字分别为a,b,c,则这个三位数为100a+10b+c.[师]任意的一个三位数为100a+10b+c,接下来我们按照框图所示的步骤可得:交换百位和个位上的数字就得到一个新数,是什么呢?[生]100c+10b+a.[师]两个数相减,可得到一个算式为什么呢?[生](100a+10b+c)-(100c+10b+a).[师]为什么在上面的算式中要加上括号呢?[生]“两个数相减”,而这两个三位数,我们都是用多项式表示出来的,每一个多项式,它都是一个整体,因此需加括号.[师]这一点很重要,如何说明这个差就是99的倍数呢?[生]化简可得,即(100a +10b +c )-(100c +10b +a )=100a +10b +c -100c -10b -a =(100a -a )+(10b -10b )+(c -100c )=99a -99c也就是说任意一个三位数,经过上述程序后结果一定是99的倍数. 2.议一议[师]在上面的问题中,涉及到整式的什么运算?说一说你计算的每一步依据?[生]在上面的问题中,我们涉及到整式的加减法.在进行整式的加减时,我们先去括号,再合并同类项.[师]在去括号和合并同类项时应注意什么呢?[生]我们上学期已学习过去括号和合并同类项.去括号时,特别要注意括号前面是“-”号的情况,去掉“-”号和括号时,里面的各项都需要变号;合并同类项时,先判断哪些项是同类项,利用加法结合律和合并同类项的法则即可完成.3.例题讲解 [例1]计算(1)2x 2-3x +1与-3x 2+5x -7的和(2)(-x 2+3xy -y 2)-(-x 2+4xy -y 2)(这样的题目,我们已经训练过,因此可让学生自己完成,叫两个同学板演,同时教师深入到学生之中进行观察,对于发现的问题,可以通过让学生表达算理即去括号法则和合并同类项法则,自纠自改)解:(1)(2x 2-3x +1)+(-3x 2+5x -7) =2x 2-3x +1-3x 2+5x -7 =2x 2-3x 2-3x +5x +1-7 =-x 2+2x -6212123(2)(-x2+3xy -y2)-(-x 2+4xy -y 2)=-x2+3xy -y2+x 2-4xy +y 2=-x 2+x 2+3xy -4xy -y 2+y 2=-x 2-xy +y 2注:1.列算式时,每一个多项式表示的是一个整体,因此必须加括号. 2.在第(2)小题中,去括号要注意符号问题.[例2](1)已知A=a 2+b 2-c 2,B=-4a 2+2b 2+3c 2,且A +B +C =0,求C . (2)已知xy =-2,x +y =3,求代数式 (3xy +10y )+[5x -(2xy +2y -3x )]的值. 分析:(1)可用逆运算来代入求解;(2)求代数式的值,一般是先化简,再求值,这个地方应注意整体代入. 解:(1)根据A +B +C =0,可得C =-A -B 即C =-(a 2+b 2-c 2)-(-4a 2+2b 2+3c 2) =-a 2-b 2+c 2+4a 2-2b 2-3c 2 =-a 2+4a 2-b 2-2b 2+c 2-3c 2 =3a 2-3b 2-2c 2(2)原式=3xy +10y +[5x -2xy -2y +3x ] =3xy +10y +5x +3x -2xy -2y =3xy -2xy +10y -2y +5x +3x =xy +8x +8y =xy +8(x +y )21212321212321212321当xy =-2,x +y =3时 原式=xy +8(x +y )=-2+8×3 =-2+24=22. Ⅲ.随堂练习1.计算:(1)(4k 2+7k )+(-k 2+3k -1) (2)(5y +3x -15z 2)-(12y -7x +z 2)2.解下列各题(1)-5ax 2与-4x 2a 的差是 ; (2) 与4x 2+2x +1的差为4x 2; (3)-5xy 2+y 2-3与 的和是xy -y 2; (4)已知A =x 2-x +1,B =x -2,则2A -3B = ;(5)比5a 2-3a +2多a 2-4的数是 . 1.解:(1)原式=4k 2+7k -k 2+3k -1 =4k 2-k 2+7k +3k -1 =3k 2+10k -1(2)原式=5y +3x -15z 2-12y +7x -z 2 =5y -12y +3x +7x -15z 2-z 2 =-7y +10x -16z 22.解:(1)-5ax 2-(-4x 2a ) =-5ax 2+4ax 2 =-ax 2;(2)设所求整式为A ,则32A -(4x 2+2x +1)=4x 2 A =4x 2+4x 2+2x +1=8x 2+2x +1;也可根据:被减式=差+减式,列式求解. (3)(xy -y 2)-(-5xy 2+y 2-3) =xy -y 2+5xy 2-y 2+3 =xy +5xy 2-2y 2+3(4)2A -3B =2(x 2-x +1)-3(x -2) =2x 2-2x +2-3x +6 =2x 2-5x +8(5)设这个数为A ,则A -(5a 2-3a +2)=a 2-4A =(a 2-4)+(5a 2-3a +2)=a 2-3a -2注:在上述求解的过程中,可利用逆运算来求解. Ⅳ.课时小结[师]这节课我们学习了整式的加减,你有何收获和体会呢?[生]在实际情景中,利用整式的加减发现了一般规律,使我们认识到学习整式加减的重要性.[生]整式加减运算的步骤是遇到括号先去括号,再合并同类项. [生]在去括号时,特别注意括号前是“-”号的情况. …… Ⅴ.课后作业1.课本P 8、习题1.2,第1、2、3题;32323172.自己设计一个数字游戏,并用整式加减运算说明其中的规律. Ⅵ.活动与探究已知(a +12)2+|b +4|=0,求代数式(a -b )+(a +b )+-的值.[过程]由已知条件可得,两个非负数的和为零的两个非负数都为零,列出方程求出a 、b 的值;在化简代数式时,观察可发现在这个题中遇到括号若先去括号会较繁,如果将(a +b )、(a -b )当成一个整体,计算起来反而简便.[结果]由(a +12)2+|b +4|=0,得a +12=0,b +4=0,即a =-12,b =-4; 当a +b =-16,a -b =-8时(a -b )+(a +b )+-=(-)(a -b )+(+)(a +b )=(a -b )+(a +b )=×(-8)+×(-16)=-12. 七、板书设计§1.2.1 整式的加减(一)一、做一做,议一议21413b a +6b a -21413b a +6b a -216141313112731127第二课时:Ⅰ.创设问题情景,引入新课出示投影片:1.为什么总是1089?用不同的三位数再做几次,结果都是1089吗?你能发现其中的原因吗?图1-8[师]我们来做上面的数字游戏,取满足条件的一个三位数,按图示所给定的程序运算,结果是1089吗?然后用不同的满足条件的三位数再做几次,结果一样吗?请同学们独立完成然后回答.[生]我试了几个数,结果都是1089.[师]你能解释其中的原因吗?[生]根据题意,可设个位上的数字是a,十位上的数字是b,百位上的数字则为(a+2),所以这个三位数为100(a+2)+10b+a.交换百位上的数字与个位上的数字,可得到一个较小的三位数即100a+10b+(a+2).按图示所给定程序,得[100(a+2)+10b+a]-[100a+10b+(a+2)]=100a+200+10b+a-100a-10b-(a+2)=100a-100a+10b-10b+200+a-a-2=200-2=198即按照给定的程序的前三步,运算结果都为198,这样,继续程序的后两步可得到1089.也就是任何一个满足条件的三位数,按照题目给定的顺序,结果总是1089.[师]真棒!我们已学会了用整式的加减运算解释这一实际情景,用整式的加减运算还能解释哪些现象呢?这一节课,我们继续来学习整式的加减运算及它的应用.Ⅱ.探索规律,体会整式运算的必要性下面是用棋子摆成的“小屋子”.摆第1个“小屋子”需要5枚棋子,摆第2个需要枚棋子,摆第3个需要枚棋子.图1-9按照这样的方式继续摆下去.(1)摆第10个这样的“小屋子”需要多少枚棋子?(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?与同伴进行交流.(教师教学中要鼓励学生独立思考的基础上探索出规律.鼓励学生算法多样化,并可实际操作探索规律)[生]实际操作可以发现摆后面一个“小屋子”,总比它前面一个多用6枚棋子.摆第2个“小屋子”需要(5+6)枚即11枚棋子,摆第3个需要(5+6×2)枚即17枚棋子,……摆第10个这样的“小屋子”需要(5+6×9)枚即59枚棋子.进而可以概括出摆第n个“小屋子”需用5+6(n-1)=6n-1枚棋子.[师]很好.这位同学能抓住图形变化的规律.有没有别的方法呢?[生]通过观察还可以发现,摆前几个“小屋子”分别用的棋子数5,11,17,23,从而也概括出规律来,即摆第n个这样的“小屋子”需要(6n-1)枚棋子.[生]老师,我也有一种方法,将图1-9的“小屋子”拆成上下两部分,上面部分是一个“三角形”(第一个为一个点),下面部分可以看成一个“正方形”,摆第n个“小屋子”分别需要2n-1和4n枚棋子(如图1-10).图1-10这样摆第n个“小屋子”共用的棋子数为(2n-1)+4n=6n-1.[师]很好!有的同学对数敏感,通过数棋子数发现了规律;有的同学对图形的组成比较敏感,将图分成两部分(上面部分是“三角形”,下面部分是“正方形”)发现了规律.最后都推出第n个这样的“小屋子”需(6n-1)枚棋子.我相信同学们一定还有其他的办法.下面同学们可相互交流各自的想法,或许你会有新的发现.(教师鼓励学生充分交流,并引导学生认真倾听他人的想法)Ⅲ.例题讲解 [例1]计算:(1)(3a 2b +ab 2)-(ab 2+a 2b )(2)7(p 3+p 2-p -1)-2(p 3+p )(3)-(+m 2n +m 3)-(-m 2n -m 3)[师]该例题是整式加减的运算,我们该如何进行整式的加减呢? [生]如果遇到有括号,应先去括号,然后再合并同类项.[师]下面我们就请三位同学到黑板上解答.其余同学来对他们的解答作出评价.[生]解:(1)(3a2b +ab 2)-(ab 2+a 2b )=3a2b +ab 2-ab 2-a 2b =2a2b -ab 2;(2)7(p 3+p 2-p -1)-2(p 3+p ) =7p 3+7p 2-7p -7-2p 3-2p =5p 3+7p 2-9p -7;(3)-(+m 2n +m 3)-(-m 2n -m 3)=--m 2n -m 3-+m 2n +m 3=-1[生]这三个同学做得都很好.特别是括号前是“-”号,容易出现变号问题.但这三个同学步骤清楚,符号处理准确无误.41433132414341432131323132[师]祝贺他们!大家知道我们学习数的加法运算,除可列算式外,还可以列竖式.整式的加减法可不可以列竖式.Ⅳ.试一试(课本P 11)求多项式2a +3b -5c 与-4a -11b +8c 的和时,可以利用竖式的方法:利用这种方法计算下列各题.计算过程中需要注意什么? (1)(5x 2+2x -7)-(6x 2-5x -23) (2)(a 3-b 3)+(2a 3-b 2+b 3)[师]同学们先阅读用竖式求两个整式的和的方法,然后试着回答在计算过程中需要注意什么?[生]列竖式时要注意每个整式中的同类项要对齐. [师]下面我们就用竖式的方法求出上面两个小题. [生]解:(1)列成竖式为: (2)列成竖式为:Ⅴ.练一练(P10、随堂练习)1.火车站和飞机场都为旅客提供“打包”服务.如果长、宽、高分别为x 、y 、z 米的箱子按如图1-11所示的方式“打包”,至少需要多少米的“打包”带?(其中灰色线为“打包”带)图1-11c b a c b a cb a 382532 8114)+---+--++2.某花店一枝黄色康乃馨的价格是x元,一枝红色玫瑰的价格是y元,一枝白色百合的价格是z元,下面这三束鲜花的价格各是多少?这三束鲜花的总价是多少元?图1-12解:1.由图可知:至少需要(2x+4y+6z)米的打包带.2.第(1)束鲜花的价格为(3x+2y+z)元;第(2)束鲜花的价格为(2x+2y+3z)元;第(3)束鲜花的价格为(4x+3y+2z)元.这三束花的总价钱为:(3x+2y+z)+(2x+2y+3z)+(4x+3y+2z)=3x+2y+z+2x+2y+3z+4x+3y+2z=9x+7y+6 z(元)Ⅵ.课时小结[师生共同总结]这节课我们主要学习了如下内容:(1)在探索规律的问题中进一步体会符号表示的意义,发展符号感;(2)经历了“由特例进行归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探索过程,发展了推理能力;(3)体会整式加减运算的必要性,并运用整式加减比较不同的算法.Ⅶ.课后作业课本习题1.3,第1、2题Ⅷ.活动与探究用砖砌成如图1-13所示的墙,已知每块砖长一定,宽为b cm,则图中留出方孔(图中阴影部分)的面积之和是多少?图1-13[过程]求图中阴影部分的面积有两种方法:一种直接求,只要求出三个阴影部分小正方形的边长就可,其边长恰为每块砖的长与宽的差;另一种是间接求,三个阴影部分的面积等于墙的面积减去22块砖的面积,但也需求出砖的长才可求出.[结果]方法一(直接法):设砖的长为x cm,根据题意,列方程得 5x =3x +3b 2x =3bx =b所以阴影部分每个小正方形的边长为b -b =b (cm ),阴影部分的面积为3×(b )2=b 2(cm 2).方法二(间接法):同方法一求出砖的长为b cm,整个墙的面积为S墙=(5×b )×(3b +b )=33b 2(cm 2)22块砖的面积为S砖=22×b ×b =33b 2(cm 2)所以图中留出方孔的面积S 阴=33b 2-33b 2=b 2(cm 2)六、板书设计232321214323232343234343§1.2.2 整式的加减(二)一、数字游戏解:设百位数字为a+2,十位数字为b,个位数字为a,根据图示程序,得:[100(a+2)+10b+a]-[100a+10b+(a+2)]=100a+200+10b+a-100a-10b-a-2=200-2=198最后两步程序,得198+891=1089因此满足条件的三位数按图示程序最后总能得到1089.二、探索规律方法一:第1个共5个棋子;第2个共(5+6)个棋子;第3个共(5+2×6)个棋子;……第n个共5+6(n-1)个棋子,即(6n-1)个棋子.方法二:由5、11、17……可归纳出第n个共有(6n-1)个棋子.方法三:将“小屋子”分成两部分,也可推出第n个“小屋子”共有(2n-1)+4n=(6n-1)个棋子.三、例题(学生板演)四、练一练五、课时小结。

七年级数学上册第二章整式的加减2.2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版

七年级数学上册第二章整式的加减2.2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版

七年级数学上册第二章整式的加减2. 2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版一、教学目标(-)学习目标1 .熟练掌握整式的加减运算法则,并能准确化简求值.2 .体会整体代入法的作用.3 .准确的运用去括号法则、合并同类项法则进行整式的化简求值.(二)学习重点熟练掌握整式的加减运算法则,并能化简求值.(三)学习难点准确的运用整体代入的方法化简求值.体会整体的代入方法的作用.二、教学设计(-)课前设计1 .预习任务整式的化简求值一般先一化简,再求值 .2 .预习自测(1)化简:-(a -h)2+\ 3(a - b)2 - 8(« - b)2 + 7(a - b)2. 2【知识点】合并同类项.【数学思想】整体思想.1 25【解题过程】解:原式=(一 + 13-8 + 7)(0-。

)2 二一(々一。

)2. 2 2【思路点拨】根据同类项,把同类项结合到一起,根据合并同类项,可得答案.9S【答案】—(a-b)2. 2(2)化简:6x2y + 2xy^-3x2y2 -7x-5yx-4y2x2 -6x2y .【知识点】合并同类项.【解题过程】解:原式二—7/),2—3邛—7-【思路点拨】根据合并同类项的法则求解即可.【答案】-7x2r-3^-7x.(3)化简求值:(7〃?。

-4〃?〃 -4,/)一(2"/ 一+ 2/J);其中/7? = ■!■ ; // =-- 22【知识点】去括号、合并同类项.【解题过程】解:原式=7〃/一4〃〃?一4/一2〃72+〃〃?一2万=5m2 -3//Z/Z-6/?2当〃2 =—, 〃 = 一工时,5m2 -36〃-6/ =5x(—)2 - 3x — x(--)-6x(--)2 =— 2 2 2 2 22 2【思路点拨】先化简再代入求值,可以简化计算.【答案】2(4)化简求值:(1〃2_2〃-6)-1(!〃2-4a-7),其中〃=2.3 2 2【知识点】化简求值【解题过程】解:(L『-2«-6)--(—i/2-4a-7) =-a2 -2a-6- — a2+2a + — = — a2-- 3 2 2 3 4 2 12 2i 5 i Q当a = 2时,原式二上x2?—二二一上.12 2 6【思路点拨】先化简再代入求值,可以简化计算.13【答案】—上6(二)课堂设计1 .知识回顾(1)去括号法则是.注意:①去括号,看符号,是“+”不变号,是“一”全变号.②括号前的因数分配到括号内不要漏乘项.③去括号前后项数一致.(2)合并同类项的法则:系数相加,字母和字母的指数不变.(3)整式加减运算实际是,2 .问题探究探究一•活动①(整合旧知,探究整式的化简求值)化简求值:4x?),一[6个一3(4\y-2)-x1] + l,其中x = 2,2学生独立自主的解决,老师巡视,发现学生在解题过程中的不同方法.抽两个不同方法的学生板书(一个是直接代入求值,另一个先化简再求值)师问:比较两解法,哪种方法更简单?生答:先化简再求值更简单一些.师问:你们能总结整式的化简求值的方法步骤吗?生答:先化简,再求值【设计意图】使学生进一步理解掌握整式的加减法则,熟练进行整式的化简求值,掌握化简求值的格式要求.探究二•活动①(大胆操作,探究整体思想代入求值)已知代数式2/+3y + l的值是2,求6r+9)、-7的值.师问:题目没有直接告知x和y的值,如何求值呢?引导学生观察与思考.【设计意图】让学生初步认识整体思想的作用.・活动②(集思广益,证明整体代入的方法)师问:注意观察条件和结论中含字母的部分的系数有何特征?生答:成倍数关系师问:这类型的题目用什么方法求值呢?法一、由条件向结果转化V 2x2+3y + \ = 2,则3(2x2+3y + l) = 3x2,则6』+9y + 3 = 6, A 6x2+9y = 3. ・•.把6/ + 9 y作为整体带入6/ + 9 y - 7得值是-4法二、由结果向条件转化6/+9),一7:3(2/+3乃一7,再由2丁+3y + l = 2得2/+3y = 1,・••原式二—4 【设计意图】让学生认识到整体带入的数学思想使运算化简更简便.探究三运用整式的加减化简求值・活动①i i 3 1 ?例L 求Lx — 2(x —:y2) +(—, x + =),2)的值,其中工=—2,),=二.2 3 2 3 3【知识点】整式的化简求值.1 1 3 1【解题过程】解:ix-2(x-ir)+(--x+ir)2 3 2 31 个2)3 1 ,=—x-2x + — ~ — x + - y2 3, 2 3.= -3x+y2当x = -2, y = g时,原式二(一3)乂(一2) + ($2=6 + [=62.【思路点拨】先化简,再求值.4【答案】6-.9练习:先化简,再求值:12(。

浙教版数学七年级上册_《整式的加减(2)》习题课件4

浙教版数学七年级上册_《整式的加减(2)》习题课件4

整式的加减(2)
(1)按上述的促销方式用含a、b的代数式分别表示该校羽毛球队在甲、乙两 家商店的花费. (2)用含a、b的代数式表示到甲、乙两家商店购买球拍和羽毛球费用的差.
解:(1)由题意可得, 在甲商店购买的费用为(300a+40b)×0.9=(270a+36b)元, 在乙商店购买的费用为300a+40(b-a)=(260a+40b)元. (2)(270a+36b)-(260a+40b)=10a-4b.
整式的加减(2)
5.计算:(-6x2+5xy)-12xy-(2x2-9xy)=___-_8_x_2+__2_x_y___.
6.一个多项式加上-5+3x-x2得到x2-6,当x=-1时,这 个多项式的值是___4____.
7.阅读下面的解题过程:
计算2(-4a+3b)-3(a-2b).
解:原式=(-8a+6b)-(3a-6b) (第1步)
4.6.2 整式的加减
A
练就好基础
1.若A、B都是五次多项式,则A+B一定是( C )
A.五次多项式
B.十次多项式
C.不高于五次的整式
D.单次项
2.一个多项式减去x2-2y2等于x2+y2,则这个多项式是( B )
A.-2x2+y2
B.2x2-y2
C.x2-2y2 2y2
D . - x2 +
整式的加减(2)
x
Байду номын сангаас
所捂的代数式的值
1
__0___
2
___1__
3
___4__
4
___9__
解:(1)所捂的多项式为-2x2+3x-6-(-3x2+5x-7) =-2x2+3x-6+3x2-5x+7 =x2-2x+1; (2)规律:所捂代数式的值等于x的值减1的差的平方. (3)所捂多项式的值为144,则x的取值为-11或13.

七年级数学上册:2.2整式的加减(二)—去括号与添括号(基础)知识讲解

七年级数学上册:2.2整式的加减(二)—去括号与添括号(基础)知识讲解

整式的加减(二)—去括号与添括号(基础)【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用;2.会用整式的加减运算法则,熟练进行整式的化简及求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+- 添括号去括号,()a b c a b c -+-- 添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y).【答案与解析】(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c;(2)-(-xy-1)+(-x+y)=xy+1-x+y.【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.举一反三【变式1】去掉下列各式中的括号:(1).8m-(3n+5);(2).n-4(3-2m);(3).2(a-2b)-3(2m-n).【答案】(1).8m-(3n+5)=8m-3n-5.(2).n-4(3-2m)=n-(12-8m)=n-12+8m.(3).2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【变式2】下列运算正确的是().A.-3(x-1)=-3x-1B.-3(x-1)=-3x+1C.-3(x-1)=-3x-3D.-3(x-1)=-3x+3【答案】D类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1).=-xx y z t+-+=-=+2() 2345()()=+-;23()x y(2).x y z t=--=--x y z t x x-+-=+=-23()45() 23452()2().【答案】(1).2345x y z t --+-,2345x y z t +-+,345y z t -+-,45z t -.(2).345y z t -+-,345y z t -+,45z t -+,23x y -+.【解析】(1)2345x y z t +-+(2345)x y z t =---+-(2345)x y z t =++-+2(345)x y z t =--+-23(45)x y z t =+--;(2)2345x y z t -+-2(345)x y z t =+-+-2(345)x y z t =--+23(45)x y z t =---+45(23)z t x y =---+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.【高清课堂:整式的加减(二)--去括号与添括号388394添括号练习】举一反三【变式】()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.【答案】b c d -+;2x y z --+;a b -;2b b +.类型三、整式的加减3.()()222232,23,1.;2.23.M x xy y N x xy y M N M N =-+=+---已知求:【答案与解析】(1)2222(32)(23)M N x xy y x xy y -=-+-+-222222223223(32)(21)(13)34x xy y x xy y x xy y x xy y =-+--+=--+++=-+(2)2222232(32)3(23)M N x xy y x xy y -=-+-+-2222(642)(639)x xy y x xy y =-+-+-2222222642639(66)(43)(29)711x xy y x xy y x xy y xy y =-+--+=--+++=-+【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.类型四、化简求值4.先化简,再求各式的值:22131222,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中【答案与解析】原式=2221312232233x x y x y x y -+-+=-+,当22,3x y =-=时,原式=22443(2)()66399-⨯-+=+=.【总结升华】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=?举一反三【变式1】先化简再求值:(-x 2+5x +4)+(5x -4+2x 2),其中x =-2.【答案】(-x 2+5x +4)+(5x -4+2x 2)=-x 2+5x +4+5x -4+2x 2=x 2+10x .当x =-2,原式=(-2)2+10×(-2)=-16.【变式2】先化简,再求值:3(2)[3()]2y x x x y x +----,其中,x y 化为相反数.【答案】3(2)[3()]236322()y x x x y x y x x x y x x y +----=+-+--=+因为,x y 互为相反数,所以0x y +=所以3(2)[3()]22()200y x x x y x x y +----=+=⨯= 5.已知2xy =-,3x y +=,求整式(310)[5(223)]xy y x xy y x ++-+-的值.【答案与解析】由2xy =-,3x y +=很难求出x ,y 的值,可以先把整式化简,然后把xy ,x y +分别作为一个整体代入求出整式的值.原式310(5223)xy y x xy y x =++--+3105223xy y x xy y x=++--+5310232x x y y xy xy=++-+-88x y xy=++8()x y xy =++.把2xy =-,3x y +=代入得,原式83(2)24222=⨯+-=-=.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.举一反三【变式】已知代数式2326y y -+的值为8,求2312y y -+的值.【答案】∵23268y y -+=,∴2322y y -=.当2322y y -=时,原式=211(32)121222y y -+=⨯+=. 6.如果关于x 的多项式22(8614)(865)x ax x x ++-++的值与x 无关.你知道a 应该取什么值吗?试试看.【答案与解析】所谓多项式的值与字母x 无关,就是合并同类项,结果不含有“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.注意这里的a 是一个确定的数.(8x 2+6ax +14)-(8x 2+6x +5)=8x 2+6ax +14-8x 2-6x -5=6ax -6x +9=(6a -6)x +9由于多项式(8x 2+6ax +14)-(8x 2+6x +5)的值与x 无关,可知x 的系数6a -6=0.解得a =1.【总结升华】本例解题的题眼是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项.。

人教版七年级上册数学第2节《整式的加减》参考课件(共16张PPT)

人教版七年级上册数学第2节《整式的加减》参考课件(共16张PPT)
(1)求多项式 求:
的值. 的值.
的值,
第一天水位的变化量为-2acm, 上的数交换位置,计算所得数与原数的和,所得
进货后这个商店有大米多少千克? 例5 已知m是绝对值最小的有理数,且
第二天水位的变化量为0.5acm. 其中


(1)水库中水位第一天连续下降了a 小时,每小时平均
问题.本节课设计了大量的实际问题,可以让学生
2
求:
的值.
例6 若

8x 3xy 将整式化简求值,运2用整式的加法解决简单的实际
86
2
例6 若 a2a b2 0 ,a bb 2 1 3 ,
求:a22abb2的值.
例6 若 a2a b2 0 ,a bb 2 1 3,
求:a22abb2的值.
解:a2 ab20 ①
abb2 13②
①+②得:a2ababb27
10a b 10b a
11a 11b
11(a b)
∴所得数与原数的和能被11整除.
例5 已知m是绝对值最小的有理数,且am1by1 与 3 a x b 3 是同类项, 求 :2 x 2 3 x y 6 x 2 3 m x 2 m x y 9 m y 2的值
例5 已知m是绝对值最小的有理数,且am1by1与
例3(2)某商店原有5袋大米,每袋大米为x千克.
解: 例1 下列各题计算的结果对不对?如果不对
将整式化简求值,运用整式的加法解决简单的实际
例1 下列各题计算的结果对不对?如果不对
把下降的水位变化量记为负, 答:这两天水位总的变化情况为下降了1.
(2)某商店原有5袋大米,每袋大米为x千克.
把上升的水位变化量记为正. 求:

最新版七年级数学上册课件:3.4 整式的加减(第2课时)

最新版七年级数学上册课件:3.4 整式的加减(第2课时)

探究新知
3.4 整式的加减/
观察比较两式等号两边画横线的变化情况. (1)4+ 3(x-1) =4+ 3x-3 =3x+1; (2)4x -(x-1) =4x -x+1 =3x+1.
思考 去括号前后,括号里各项的符号有什么变化?
探究新知
去括号法则
3.4 整式的加减/
(1)括号前是 “+” 号,把括号和它前面的
巩固练习
3.4 整式的加减/
变式训练
去括号: (1) a+(-b+c)=_________a_-__b_+__c__________; (2) 3a-2(b+2c)=______3_a_-__2_b__-__4_c_________; (3) 2(x-3)-5(y-3z)=_____2_x_-__6_-__5_y_+__1_5_z_______;
基础巩固题
1.下列各式化简正确的是( C ) A.-(2a-b+c)=-2a-b- c B.-(2a-b+c)=2a-b-c C.-(2a-b+c)=-2a+b- c D.-(2a-b+c)=2a+b-c
课堂检测
3.4 整式的加减/
基础巩固题
2.下列各式,与a-b-c的值不相等的是( B )
A.a-(b+c)
解:不一定成立.点拨
(1)去括号时,不仅要去掉括号,还要连同括号前面的符号一起去掉. (2)去括号时,首先要弄清括号前是“+”号还是“-”号. (3)注意法则中的“都”字,变号时,各项都变号;不变号时,各项都
不变号. (4)当括号前有数字因数时,应运用乘法分配律运算,切勿漏乘. (5)出现多层括号时,一般是由里向外逐层去括号.
B.a-(b-c)
C.(a-b)+(-c)
D.(-c)-(b-
a)

七年级数学4.6整式的加减(2)

七年级数学4.6整式的加减(2)

4.6整式的加减
班级 姓名
(一)方法:
在解决实际问题时,经常需要把若干个整式相加减。

整式的加减可以归结为 和 。

例题1:求整式3x+4y 与2x-2y-1的和
解:
例题2:小红家的收入分农业收入和其他收入两部分。

今年农业收入是其他收入的1.5倍,预计明年农业收入将减少20%,而其他收入将增加40%,那么预计小红家明年的全年收入是增加还是减少? 解:
方法小结:在解决实际问题时,我们常常需要列有关代数式,这时我们应首先 。

练习:计算
(1))2()2
1(23222x x x -+-
- (2)()223)13(222---+-x x x x
2、 (1) 的和与求整式1b 3a 26+--+b a
(2) 的差倍与的求整式b a ab ab b 2
22235a 3+-
(二)自我检测
1、,求:,设a a a a 22
2--=-=B A ()B A +1 ()B A -2
2.某企业有A,B 两类经营收入,今年A 类年收入是B 类年收入的2倍,预计明年A 类年收入将减少10%,B 类年收入将增加18%。

问明年该企业的年总收入是增加还是减少?
)的值()(,代数式,求当2222y 2x y 7x 2y x y 3x 2
1232y 4x ------==。

人教版七年级数学教案:2.2整式的加减

人教版七年级数学教案:2.2整式的加减
学生小组讨论的环节让我看到了学生的合作精神和问题解决能力。他们能够将所学的知识应用到解决实际问题上,这让我感到很欣慰。不过,我也注意到有些学生在分享成果时表达不够清晰,这可能是因为他们在整理思路和语言表达上还存在一定的困难。因此,我打算在后续的教学中加入更多的口头表达和逻辑思维训练。
成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的概念、整式的加减法则及其在实际中的应用。通过实践活动和小组讨论,我们加深了对整式的加减的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生的逻辑推理能力,通过整式加减的运算,理解数学的内在联系和规律。
2.提升学生的数学运算能力,熟练掌握整式的加减法则,准确进行运算。
3.培养学生的抽象概括能力,能从具体实例中提炼出整式的概念和性质。
4.增强学生的问题解决能力,将整式的加减法则应用于解决实际问题和探索数学问题。
举例解释:
-在识别同类项时,难点在于如何判断变量的次数和系数,如3x^2和5x^3不是同类项,需要引导学生观察变量x的次数不同。
-在整式的减法中,难点是理解并运用相反数的概念,例如,从5个苹果中拿走3个,实际上是加上-3个苹果。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的加减》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多个相同物品的总价或面积的情况?”(例如,计算3个篮球和5个篮球的总价)这个问题与我们将要学习的整式加减密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式的加减的奥秘。

2.2整式的加减(第2课时)去括号(导学案)七年级数学上册(人教版)

2.2整式的加减(第2课时)去括号(导学案)七年级数学上册(人教版)

2.2 整式的加减(第2课时)去括号导学案1. 通过类比讨论、归纳去括号时符号变化的规律.2. 能熟练、准确地应用去括号、合并同类项将整式化简.★知识点:去括号去括号是对多项式变形. 去括号时,括号中符号的处理是难点,也是容易出错的地方,掌握去括号的关键是理解去括号的依据.1. 如果括号外的因数是,去括号后原括号内各项的符号与原来的符号.2. 如果括号外的因数是,去括号后原括号内各项的符号与原来的符号.问题:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段的行驶速度是100km/h,在非冻土地段的行驶速度可以达到120km/h,请根据这些数据回答下列问题:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5 h,如果列车通过冻土地段要t h,则这段铁路的全长可以怎样表示?冻土地段与非冻土地段相差多少km?追问1:上面的式子①②都带有括号,类比数的运算,它们应如何化简?追问2:比较上面两式,你能发现去括号时符号变化的规律吗?归纳:1. 填空(1)a+(b-c)= ;(2)a-(b+c)= ;(3)a-(b-c)= ;(4)(a+b)-(c+d)= ;(5)(a+b)-(c-d)= .2. 判断:(1)3(x+8)=3x+8(2)-3(x-8)=-3x-24(3)4(-3-2x)=-12+8x(4)-2(6-x)=-12+2x例1:化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).针对训练:化简:(1)3(a2-4a+3)-5(5a2-a+2);(2)3(x2-5xy)-4(x2+2xy-y2)-5(y2-3xy);(3)abc-[2ab-(3abc-ab)+4abc].例2:两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少?例3:先化简,再求值:已知x=-4,y=12,求5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.1. 下列去括号中,正确的是()A . a2-(2a-1)=a2-2a-1B . a2+(-2a-3)=a2-2a+3C . 3a-[5b-(2c-1)]=3a-5b+2c-1D . -(a+b)+(c-d)=-a-b-c+d2.不改变代数式的值,把代数式括号前的“-”号变成“+”号,a-(b-3c)结果应是()A. a+(b-3c)B. a+(-b-3c)C. a+(b+3c)D. a+(-b+3c)3. 已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为()A. 1B. 5C. -5D. -14. 化简:(1)12(x-0.5);(2)1515x⎛⎫--⎪⎝⎭;(3)-5a+(3a-2)-(3a-7);(4)1(93)2(1)3y y-++.5. 先化简,再求值:2(a+8a2+1-3a3)-3(-a+7a2-2a3),其中a=-2.6. 飞机的无风航速为a km/h,风速为20 km/h. 飞机顺风飞行4 h的行程是多少?飞机逆风飞行3h的行程是多少?两个行程相差多少?化简下列各式:(1)-(a -b )-(-c -d ); (2)(5a +4c +7b )+(5c -3b -6a );(3)(8xy -x 2+y 2)-(x 2-y 2+8xy ); (4)221123422x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭; (5)3x 2-[7x -(4x -3)-2x 2]; (6)3b -2c -[-4a +(c +3b )]+c ;(7)4(a +b )+2(a +b )-(a +b ); (8)3(x +y )2-7(x +y )+8(x +y )2+6(x +y )-11(x +y )2.1.(4分)(2020•重庆B 卷5/26)已知a +b =4,则代数式的值122a b ++为( ) A .3 B .1 C .0 D .-12.(4分)(2020•广东14/25)已知x =5-y ,xy =2,计算3x +3y -4xy 的值为 .1. 本节课你学习的主要内容是什么?这些内容中体现了哪些数学思想方法?2. 推导与理解去括号法则的基本依据是什么?利用去括号法则简化运算时,重点要关注什么?3. 本节课你还有哪些收获与感受?①去括号时要将括号前的符号和括号一起去掉;②去括号时首先弄清括号前是“+”还是“-”;③去括号时当括号前有数字因数应用乘法分配律,切勿漏乘.【参考答案】1. 正数;相同;2. 负数;相反.问题:100t +120(t -0.5);100t -120(t -0.5).追问1:100t +120(t -0.5)=100t +120t -120×0.5=220t -60;100t -120(t -0.5)=100t -120t +120×0.5=-20t +60.追问2:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.1.(1)a+b-c;(2)a-b-c;(3)a-b+c;(4)a+b-c-d;(5)a+b-c+d.2.(1)错;(2)错;(3)错;(4)对;例1:解:(1)8a+2b+(5a-b)= 8a+2b+5a-b=13a+b;(2)(5a-3b)-3(a2-2b)= 5a-3b-3a2+6b=-3a2+5a +3b.针对训练:解:(1)原式=3a2-12a+9-25a2+5a-10=-22a2-7a-1;(2)原式=3x2-15xy-4x2-8xy+4y2-5y2+15xy=-x2-8xy-y2;(3)原式=abc-(2ab-3abc+ab+4abc)=abc-3ab-abc=-3ab.例2:解:(1)2(50+a)+2(50-a)=100+2a+100-2a=200(km);(2)2(50+a)-2(50-a)=100+2a-100+2a=4a(km).答:两小时后两船相距200千米,两小时后甲船比乙船多航行4a千米.例3:解:原式=5xy2-(-xy2+2x2y)+2x2y-xy2 =5xy2.当x=-4,y=12时,原式=5×(-4)×2 1 2⎛⎫⎪⎝⎭=-5.1.C;2.D ;3.B ;4. 解:(1)12(x -0.5)=12x -12×0.5=12x -6;(2)1515x ⎛⎫-- ⎪⎝⎭=151(5)55x x ⎛⎫-⨯+-⨯-=-+ ⎪⎝⎭; (3)-5a +(3a -2)-(3a -7)= -5a +3a -2-3a +7=-5a +5;(4)1(93)2(1)3y y -++=119(3)2233y y ⨯+⨯-++=3y -1+2y +2=5y +1.5. 解:原式=-5a 2+5a +2.当a =-2时,原式=-8.6. 解:飞机顺风飞行的速度是(a +20) km/h ,顺风飞行4h 的行程(单位:km )为: 4(a +20)=4a +80.飞机逆风飞行的速度是(a -20) km/h ,逆风飞行3h 的行程(单位:km )为: 3(a -20)=3a -60.两个行程相差的里程(单位:km )是:4(a +20)- 3(a -20)= 4a +80-3a +60=a +140.解:(1)-a +b +c +d ;(2)-a +4b +9c ;(3)-2x 2+2y 2; (4)2562x x --; (5)5x 2-3x -3; (6)4a -2c ; (7)5a +5b ; (8)-x -y .1.【解答】解:当a +b =4时,原式111()1422a b =++=+⨯=1+2=3,故选:A .2.【解答】解:因为x =5-y ,所以x +y =5,当x +y =5,xy =2时,原式=3(x +y )-4 xy =3×5-4×2=15-8=7,故答案为:7.。

人教版七年级数学上册(RJ)第2章 整式的加减 第3课时 整式的加减

人教版七年级数学上册(RJ)第2章 整式的加减 第3课时 整式的加减

第二章 整式的加减2.2 整式的加减 第2课时 整式的加减学习目标:1.熟练进行整式的加减运算.2.能根据题意列出式子,表示问题中的数量关系.重点:熟练进行整式的加减运算.难点:能根据题意列出式子,表示问题中的数量关系.一、知识链接1.同类项:必须同时具备的两个条件(缺一不可):①所含的 相同;②相同 也相同. 合并同类项,就是把多项式中的同类项合并成一项.方法:把同类项的 相加,而 不变. 2.去括号法则:①如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 ;②如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 .去括号法则的依据实际是.二、新知预习做一做:小亮和小莹到希望小学去看望小同学,小亮买了10支钢笔和5本字典作为礼物;小莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a元,字典的售价为每本b元,文具盒的售价为每个c 元.请你计算:(1)小亮花了________元;小莹花了__________元;小亮和小莹共花___________________元.(2)小亮比小莹多花_______________元.想一想:如何进行整式的加减运算?【自主归纳】整式加减运算的基础是__________、_____________,运算结果仍是____________.三、自学自测1.求单项式24xy2xy,2-的和.5x y,22x y-,22.求2x xy467+-的差.x xy-+与231一、要点探究探究点1:整式的加减合作探究:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 .交换这个两位数的十位数字和个位数字,得到的数是 .将这两个数相加可得: + = .结论:这些和都是_________的整数倍.做一做:任意写一个三位数交换它的百位数字与个位数字,又得到一个数,两个数相减.你又发现什么规律了吗?例如:原三位数728,百位与个位交换后的数为827,由728 -827= -99.你能看出什么规律并验证它吗?任意一个三位数可以表示成100a+10b+c设原三位数为100a+10b+c,百位与个位交换后的数为100c+10b+a,它们的差为:(100a+10b+c)-( 100c+10b+a)= 100a+10b+c-100c-10b-a=99a-99c=99(a -c).议一议:在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)例2 求多项式 2453x x -+ 与多项式 2273x x -+- 的和与差.练一练:求上述两多项式的差.总结归纳:1. 几个整式相加减,如果有括号就先去括号,然后再合并同类项.2. 整式加减实际上就是:去括号、合并同类项.3. 对于运算结果,常将多项式按某个字母(如 x )的降幂(升幂)排列. 探究点2:整式的加减的应用例3 一种笔记本的单价是x 元,圆珠笔的单价是y 元.小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?例4 做大小两个长方体纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?总结归纳:整式加减解决实际问题的一般步骤:(1)根据题意列代数式;(2)去括号、合并同类项;(3)得出最后结果.例5 求2211312()()2323x x y x y --+-+的值,其中32,2=-=y x .【能力提升】有这样一道题“当a =2,b =-2时,求多项式3a 3b 3-12a 2b +b -(4a 3b 3-14a 2b -b 2)+(a 3b 3+14a 2b )-2b 2+3的值”,马小虎做题时把a =2错抄成a =-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.二、课堂小结1.已知一个多项式与的和等于,则这个多项式是( ) A .B .C .D .2.长方形的一边长等于3a+2b,相邻边比它大a-b,那么这个长方形的周长是( )A.14a+6bB.7a+3bC.10a+10bD.12a+8b3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是( ) A.二次多项式 B.三次多项式 C.五次三项式 D. 五次多项式4.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( )A.2B.-2C.4D.-4 5.已知,,则=_______________________.6.若mn=m+3,则2mn+3m-5mn+10=__________.7.计算:8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n 个小圆,又会得到什么结论?1232+-=a a A 2352+-=a a B BA 32-思路:设大圆半径为R,小圆半径依次为r1,r2,r3,分别表示两个图形的周长,再结合r1+r2+r3=R,化简式子比较大小.参考答案自主学习一、知识链接1.字母字母的指数系数字母的指数2.正数相同负数相反分配律二、新知预习做一做:(1)(10a+5b)(6a+4b+2c)(16a+9b+2c)(2)(4a+b-2c)想一想:有括号先去括号,然后再合并同类项.【自主归纳】去括号合并同类项整式三、自学自测1.和为x²y.2.差为-x²-7xy+8.课堂探究一、要点探究合作探究:10a+b 10b+a 10a+b 10b+a 11a+11b= 11(a + b) 结论:这些和都是 11 的倍数.议一议:整式的加减运算,去括号、合并同类项解: (1)原式=7a+b. (2)原式=4a-2b.2 解:4-5x2+3x +(-2x+7x2-3)=4-5x2+3x-2x+7x2-3=(-5x2+7x2)+(3x-2x)+(4-3)=2x2+x+1.练一练:-5x2+3x -(-2x+7x2-3)=4-5x2+3x+2x-7x2+3=(-5x2-7x2)+(3x+2x)+(4+3)= -12x2+5x+7.3 解:小红买笔记本和圆珠笔共花费 (3x + 2y) 元,小明买笔记本和圆珠笔共花费 (4x + 3y) 元.小红和小明一共花费(单位:元)(3x + 2y)+ (4x + 3y) = 7x+5y,则小红与小明一共花费(7x+5y)元.另解:小红和小明买笔记本共花费 (3x + 4x) 元,买圆珠笔共花费 (2y + 3y) 元.小红和小明一共花费(单位:元)(3x + 4x) + (2y + 3y) = 7x + 5y.4 解:小纸盒的表面积是 ( 2ab+2bc+2ac ) cm²;大纸盒的表面积是( 6ab+ 8bc+ 6ca ) cm²(1)做这两个纸盒共用料(单位:cm2)(2ab+2bc+2ac)+(6ab+ 8bc+ 6ca )=8ab+10bc+8ac.(2)做大纸盒比做小纸盒多用料(单位:cm2)(6ab+8bc+6ca)-(2ab+2bc+2ca)=4ab+6bc+4ac.【能力提升】解:将原多项式化简后,得-b2+b+3. 因为这个式子的值与a的取值无关,所以即使把a抄错,最后的结果都会一样.当堂检测1.A2.A3.D4.C5. -9a2+5a-46. 18. 设大圆半径为R,小圆半径依次为r1,r2,r3,则图(1)的周长为4πR,图(2)的周长为2πR+2πr1+2πr2+2π r3=2πR+2π(r1+ r2+ r3),因为2 r1+2 r2+2 r3=2R,所以r1+ r2+ r3=R,因此图(2)的周长为2πR+2πR=4πR.这两种方案,用材料一样多.将三个小圆改为n个小圆,用料还是一样多.第11页共11页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
澳门真人官网app下载
[多选]刺激物的()特点是引起无意注意的原因A.强度B.对比关系C.活动和变化D.新异性 [单选]脑血栓形成多发生于()A.大脑前动脉B.椎动脉C.颈内动脉系统D.基底动脉E.后交通动脉 [单选]从事县级行政区域内道路旅客运输经营的,向()道路运输管理机构提出申请。A、省级B、地市级C、县级 [单选,A1型题]医疗用毒性药品处方至少保存()A.1年B.2年C.3年D.5年E.7年 [问答题,简答题]发电机中性点接地变压器的参数? [单选]在行政赔偿诉讼中,举证责任的分担原则是()。A.无人承担举证责任B.谁主张谁举证C.原告负责举证D.被告负举证责任 [单选]目前整流装置比较理想的新产品中,符合发展方向的装置是()。A.氧化铜整流装置B.硒整流装置C.锗整流装置D.硅整流装置 [单选]高瓦斯矿井、低瓦斯矿井的高瓦斯区域,必须使用安全等级不低于()的煤矿许用炸药。A.1级B.2级C.3级D.4级 [单选]下列哪种原因导致的烧伤,应考虑合并吸入性损伤()A.烫伤B.热压伤C.电击伤D.氢氟酸烧伤E.煤矿瓦斯爆炸 [单选]原始取得不包括()。A.生产取得B.继承取得C.添附取得D.拾得遗失物 [单选]引起呼吸衰竭最常见的疾病是A.肺炎B.肺结核C.自发性气胸D.慢性阻塞性肺病E.支气管肺癌 [单选]下面各种设备中,能量转换和利用结合在一起的设备是:()A.锅炉B.炉窑C.列管式换热器D.热管 [单选]甲公司一次性出资300万元购买大型生产设备,预计该固定资产投资项目投资当年可获净利40万元,第2年开始每年递增5万元,投资项目有效期6年,并按直线法折旧(不考虑净残值)。该投资项目的投资回收期为()年。A.3.14B.5C.3.45D.4.56 [填空题]200号溶剂汽油是烃类化合物的混合物,由于其中芳烃含量不同,它表现的()力也不同。 [单选]常用的甲状腺显像剂()A.Tl和Tc-MIBIB.Tc-MDP和Tc-HMDPC.TcOD.Tc-DTPAE.Tc-MAA [单选]首先提出温病有新感、有伏气的医家是:().A.王安道B.郭雍C.刘河间D.朱肱 [单选,A1型题]冠内附着体基牙牙体预备时,窝洞空间大小与选择的附着体尺寸有关,一般窝洞的颊舌面与邻面洞壁与放置附着体轴壁之间应保留多大间隙,有利于附着体部件放置时调整就位道()A.0.5mmB.1.0mmC.1.5mmD.2.0mmE.2.5mm [单选]开发合同中索赔的性质属于()。A.经济补偿B.经济惩罚C.经济制裁D.经济补偿和经济制裁 [问答题,简答题]什么是初馏点? [单选]结缔组织病中最易累及肾损害的是()。A.系统性红斑狼疮B.皮肌炎C.类风湿关节炎D.强直性脊柱炎E.干燥综合征 [多选]下面哪几项是酒店运管七定式“对你人生受用4W”?()A、第一问:我要什么?B、第二问:我有什么?C、第三问:我缺什么?D、第四问:我要做什么? [单选]私人之间的通信自由和通信秘密()法律保护。A、不受B、受C、不一定受D、可能受 [多选]骨盆外测量包括()A.坐骨切迹宽度B.骶耻外径C.坐骨棘间径D.髂嵴间径E.髂棘间径 [单选]肝癌在动态CT增强扫描的时间密度曲线上特征性表现为()A.速升速降型B.速升缓降型C.缓升速降型D.缓升缓降型E.以上都不是 [问答题,案例分析题]患者男性,20岁,下颌受刀伤,流血不止。现请你现场紧急救护,做开放性伤口的止血包扎。 [单选]会计信息在()的前提下,尽可能的做到相关性,以满足投资者等财务报告使用者的决策需要。A.可靠性B.可比性C.重要性D.谨慎性 [单选]减轻农民负担工作大体经历了()个阶段。A.2B.3C.4D.5 [单选]下列不属于短期借款信用条件的是()。A.信用额度B.周转信用协议C.借款抵押D.收账期限 [问答题,简答题]储户王雷持一张2008年7月10日存入的定活两便存单10,000元,于2011年7月10日到我行办理取款业务,请计算实际支付给储户的利息?(一年期存款利率为3.5%、两年期存款利率为4.4%,三年期存款利率5.0%) [单选]下列房产税处理中,不符合房产税政策规定的是()。A:将单独作为"固定资产"核算的中央空调计入房产原值,计征房产税B:未将完全建在地面以下的地下人防设施计入房产原值,计征房产税C:将与地上房屋相连的地下停车场计入房产原值,计征房产税D:将出租的房屋按租金收入计征 [判断题]计算机制图时,夸大也是通过对制图数据进行修改来实现的。A.正确B.错误 [单选]涉烟案件调查取证方案制定的主体是()。A.烟草专卖行政主管部门B.烟草专卖行政主管部门的办案人员C.烟草专卖行政主管部门及其办案人员D.烟草专卖行政主管部门及其办案人员、公安、工商部门 [多选]新生儿肠旋转不良主要死亡原因为A.低体重儿B.合并其他严重畸形C.广泛肠坏死和穿孔D.术后肠梗阻持续存在或再发E.短肠综合征 [单选,A2型题,A1/A2型题]不需酶催化反应即可发光的发光底物是()A.吖啶酯B.三联吡啶钌C.鲁米诺或其衍生物D.4-MUPE.AMPPD [单选]膝下截肢()A.训练26~30次B.训练18~22次C.训练12~15次D.训练6~8周E.训练8~12周 [单选]以下关于哈希表的叙述中,错误的是()。A.哈希表中元素的存储位置根据该元素的关键字值计算得到B.哈希表中的元素越多,插入一新元素时发生冲突的可能性就越小C.哈希表中的元素越多,插入一个新元素时发生冲突的可能性就越大D.哈希表中插入新元素发生冲突时,需要与表中某些 [单选]关于换热器管程和壳程的介质,下列说法错误的是()。A、有腐蚀性介质走管程B、有毒性的介质走管程C、压力高的介质走壳程D、不清洁的易于结垢的介质走管程 [单选]某孕妇,25岁,孕40周,初产妇。于凌晨5时以下腹坠痛、阴道流出血性分泌物,急诊入院。孕妇自述腹痛难忍,大喊大叫,烦躁不安,但宫缩高峰时强度不够,间歇时宫壁仍不能放松,观察4小时产程无进展。你认为该产妇目前的诊断是()A.协调性子宫收缩乏力B.不协调性宫缩乏力C. [问答题,简答题]日本的化妆品,首推资生堂。近年来,它连续名列日本各化妆品公司榜首。资生堂之所以长盛不衰,与其独具特色的营销策略密不可分。八十年代以前,资生堂实行的是一种不对顾客进行细分的大众营销策略,即希望自己的每种化妆品对所有的顾客都适用。八十年代中期,资生 [单选,A1型题]上唇部疖或痈的主要危险()。A.颈部蜂窝织炎B.大脑脓肿C.眼球感染D.上颌骨骨髓炎E.海绵
相关文档
最新文档