证明圆地切线方法
证明圆的切线方法
证明圆的切线方法(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除证明圆的切线方法我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有:一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=BC,∴∠3=∠4.⌒⌒∴BD=DE,∠1=∠2.又∵OB=OE,OF=OF,∴△BOF≌△EOF(SAS).∴∠OBF=∠OEF.∵BF与⊙O相切,∴OB⊥BF.∴∠OEF=900.∴EF与⊙O相切.说明:此题是通过证明三角形全等证明垂直的例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与⊙O相切.证明一:作直径AE,连结EC.∵AD是∠BAC的平分线,∴∠DAB=∠DAC.∵PA=PD,∴∠2=∠1+∠DAC.∵∠2=∠B+∠DAB,∴∠1=∠B.又∵∠B=∠E,∴∠1=∠E∵AE是⊙O的直径,∴AC⊥EC,∠E+∠EAC=900.∴∠1+∠EAC=900.即OA⊥PA.∴PA与⊙O相切.证明二:延长AD交⊙O于E,连结OA,OE.∵AD是∠BAC的平分线,⌒⌒∴BE=CE,∴OE⊥BC.∴∠E+∠BDE=900.∵OA=OE,∴∠E=∠1.∵PA=PD,∴∠PAD=∠PDA.又∵∠PDA=∠BDE,∴∠1+∠PAD=900即OA⊥PA.∴PA与⊙O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切.证明一:连结OD.∵AB=AC,∴∠B=∠C.∵OB=OD,∴∠1=∠B.∴∠1=∠C.∴OD∥AC.∵DM⊥AC,∴DM⊥OD.∴DM与⊙O相切证明二:连结OD,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=AC,∴∠1=∠2.∵DM⊥AC,∴∠2+∠4=900∵OA=OD,∴∠1=∠3.∴∠3+∠4=900. DC即OD⊥DM.∴DM是⊙O的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线证明:连结OC、BC.∵OA=OC,∴∠A=∠1=∠300.∴∠BOC=∠A+∠1=600.又∵OC=OB,∴△OBC是等边三角形.D∴OB=BC.∵OB=BD,∴OB=BC=BD.∴OC⊥CD.∴DC是⊙O的切线.说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.证明:连结OC∵OA2=OD·OP,OA=OC,∴OC2=OD·OP,OC OP OD OC . 又∵∠1=∠1,∴△OCP ∽△ODC.∴∠OCP=∠ODC.∵CD ⊥AB ,∴∠OCP=900.∴PC 是⊙O 的切线.说明:此题是通过证三角形相似证明垂直的例6 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F. 求证:CE 与△CFG 的外接圆相切.分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为此我们取FG 的中点O ,连结OC ,证明CE ⊥OC 即可得解.证明:取FG 中点O ,连结OC.∵ABCD 是正方形,∴BC ⊥CD ,△CFG 是Rt △∵O 是FG 的中点,∴O 是Rt △CFG 的外心.∵OC=OG ,∴∠3=∠G ,∵AD ∥BC ,∴∠G=∠4.∵AD=CD ,DE=DE ,∠ADE=∠CDE=450,∴△ADE ≌△CDE (SAS )∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900.即CE⊥OC.∴CE与△CFG的外接圆相切二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线证明二:连结DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC ,BD=CD ,∴∠1=∠2.∵DE ⊥AB ,DF ⊥AC ,∴DE=DF.∴F 在⊙D 上. ∴AC 与⊙D 相切.说明:证明一是通过证明三角形全等证明DF=DE 的,证明二是利用角平分线的性质证明DF=DE 的,这类习题多数与角平分线有关.例8 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900.求证:CD 是⊙O 的切线.证明一:连结OA ,OB ,作OE ⊥CD ,E 为垂足.∵AC ,BD 与⊙O 相切,∴AC ⊥OA ,BD ⊥OB. ∵AC ∥BD ,∴∠1+∠2+∠3+∠4=1800.∵∠COD=900,∴∠2+∠3=900,∠1+∠4=900.∵∠4+∠5=900.∴∠1=∠5.∴Rt △AOC ∽Rt △BDO.∴OD OC OB AC =.∵OA=OB , ∴ODOC OA AC =. 又∵∠CAO=∠COD=900,O∴△AOC∽△ODC,∴∠1=∠2.又∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.证明二:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F.∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB.∵AC∥BD,∴∠F=∠BDO.又∵OA=OB,∴△AOF≌△BOD(AAS)∴OF=OD.∵∠COD=900,∴CF=CD,∠1=∠2.又∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.证明三:连结AO并延长,作OE⊥CD于E,取CD中点F,连结OF.∵AC与⊙O相切,∴AC⊥AO.∵AC∥BD,∴AO ⊥BD.∵BD 与⊙O 相切于B ,∴AO 的延长线必经过点B.∴AB 是⊙O 的直径.∵AC ∥BD ,OA=OB ,CF=DF ,∴OF ∥AC ,∴∠1=∠COF.∵∠COD=900,CF=DF ,∴CF CD OF ==21.∴∠2=∠COF.∴∠1=∠2.∵OA ⊥AC ,OE ⊥CD ,∴OE=OA.∴E 点在⊙O 上. ∴CD 是⊙O 的切线说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A 、O 、B 三点共线.此题较难,需要同学们利用所学过的知识综合求解.以上介绍的是证明圆的切线常用的两种方法供同学们参考.。
几何中的圆的切线角度定理
几何中的圆的切线角度定理圆的切线角度定理是几何学中的一个重要定理,它描述了切线与圆之间的关系。
在本文中,我们将介绍这个定理的基本概念、证明过程以及一些应用示例。
1. 圆的切线角度定理概述圆的切线角度定理,也叫圆的切线垂直定理,是指切线与半径的夹角是90度。
简言之,当一条直线切过一个圆的一点时,它与从该点到圆心的半径之间的夹角是90度。
这是一个非常重要的性质,在解决与圆有关的几何问题时经常用到。
2. 圆的切线角度定理的证明圆的切线角度定理的证明可以通过数学推导来完成。
设在圆O中,有一条切线AB,切点为M,连接OM作射线,任取点N使得ON=OA。
我们需要证明∠OMB=90度。
证明:由于AM是圆的切线,我们可以得到∠MAB=90度(因为切线与半径垂直)。
又由于ON=OA,所以得到ON=OB,因此∠ONB=∠BON,同时由三角形ONB的角度之和为180度,我们可以得到∠ONB=∠BON=(180-90)/2=45度。
所以∠OMB=90度,即证明了圆的切线角度定理。
3. 圆的切线角度定理的应用示例圆的切线角度定理在解决实际问题中具有广泛的应用。
下面我们给出一些示例来说明其具体应用。
例1:已知圆O的半径为5cm,在圆上任取一点A,连接AO并延长,直到与圆相交于点B。
求证AB是圆的切线,并计算切点M与切线的夹角。
证明:连接BM并延长,交圆于点C。
由于OC是半径,所以OC=OB=5cm。
又由于OC和OB相等且OM为切线,所以根据切线角度定理可知∠OMB=90度。
例2:在一个半径为8cm的圆O中,点A、B、C、D依次排列,且相邻两点连线合起来正好构成一个正方形ABCD。
求证AC是圆的切线。
证明:连接O与C、O与A,设∠AOC=x度。
由于正方形ABCD的对角线互相垂直,所以∠BAC=∠BCA=90度,根据圆的切线角度定理,我们需要证明OC与AC的夹角为90度。
在△OAC中,∠AOC+∠ACO+∠OAC=180度,即x+90+90=180,解得x=0度。
圆的切线的判定方法
圆的切线的判定方法圆的切线是指与圆相切的一条直线。
切线是圆的重要性质之一,有广泛的应用。
本文将介绍圆的切线的判定方法,帮助读者更好地理解和应用这一概念。
首先,我们来看一个圆的定义:圆是由平面上所有与一个给定点的距离相等的点组成的集合。
一个圆上的每一点都与圆心的距离相等,这个距离被称为半径,记作r。
在判定圆的切线之前,我们先来了解圆的一些基本性质。
首先,我们知道圆的直径是连接圆上任意两点且经过圆心的线段。
直径的长度等于半径的两倍。
其次,圆上的任意两条弦(不包括直径)的中垂线都经过圆心。
有了这些准备知识,我们现在来介绍圆的切线的判定方法。
方法一:直接判定法假设有一条直线与圆相交于两个点A和B。
如果直线上的任意一点到圆心的距离等于半径r,那么这条直线就是圆的切线。
具体地说,直线AB是圆的切线,当且仅当直线段OA和OB的长度都等于r(O为圆心)。
方法二:切线的判别式法设直线y=kx+b与圆x²+y²=r²相交于点P(x₁,y₁),则该直线是圆的切线当且仅当以下条件成立:1. P在圆上,即满足x₁²+y₁²=r²;2. 直线的斜率k满足关系式k = -x₁/y₁。
方法三:半径垂直判定法设直线y=kx+b与圆x²+y²=r²相交于点P(x₁,y₁),则该直线是圆的切线当且仅当:1. 直线过圆心O,即满足方程kx₁+b=0;2. 圆心到直线的垂线的长度等于半径r,即满足关系式|x₁k+b|/√(k²+1)=r。
通过上述判定方法,我们可以判断直线是否为圆的切线。
如果满足判定条件,那么这条直线与圆相切;反之,如果不满足判定条件,那么这条直线与圆存在交点但不相切。
圆的切线在几何学和物理学中都有广泛的应用。
在几何学中,圆的切线可以帮助我们解决许多与圆相关的问题,如判断两个圆是否相切、求解切线方程等等。
在物理学中,例如光学中的折射定律和牛顿运动定律中的弹道问题都需要涉及到圆的切线。
实用圆切线方程的证明
关于圆的切线方程及相关公式的证明一、点P(x 0,y 0)在圆上1、在圆的标准方程(x-a) 2+(y-b) 2=r 2上,则过点P(x 0,y 0)的切线方程为(x 0-a) (x-a) +(y 0-b) (y-b) =r 2或(x 0-a) (x-x 0) +(y 0-b) (y-y 0) =0证明:∵P(x 0,y 0)在圆上,(x 0-a) 2+(y 0-b) 2=r 2,圆心O(a,b),OP 的斜率ax by k --=00 ∴切线的斜率为k1-,切线方程)(0000x x by a x y y ----=-0))(())((0000=--+--y y b y x x a x ① (x 0-a) 2+(y 0-b) 2=r 2 ②①+②得出(x 0-a )(x -x 0+x 0-a)+(y 0-b)(y -y 0+y 0-b)= r 2 (x 0-a) (x -a) +(y 0-b) (y -b) =r 22、在圆的特殊方程x 2+y 2=r 2上,则过点P(x 0,y 0)的切线方程为x 0x + y 0y ==r 2(当a=0,b=0)3、在圆的一般方程x 2+y 2+Dx+Ey+F=0(D 2+E 2-4F >0)上,则过点P(x 0,y 0)的切线方程为x 0x + y 0y + D ×(2x x + )+ E ×(2y y + )+ F =0证明:x 2+y 2+Dx+Ey+F=0 化成圆的标准方程 44)2()2(2222FE D Ey Dx -+=+++∵P(x 0,y 0)在圆上,44)2()2(222020FE D Ey Dx -+=+++,OP 的斜率2200Dx Ey k ++=∴切线的斜率为k1-,切线方程)(220000x x Ey D x y y -++-=-0))(2())(2(0000=-++-+y y Ey x x Dx ①44)2()2(222020FE D Ey Dx -+=+++②①+②得出44)2)(2()2)(2(22000000FE D Ey y y Ey Dx x x Dx -+=++-++++-+4442)(42)(22200200FE D E y y E y y D x x D x x -+=++⨯++++⨯+x 0x + y 0y + D ×(2x x + )+ E ×(2y y + )+ F =0二、点P(x 1,y 1)在圆外1、切线长22121)()(r b y a x PA --+-= (标准方程(x-a) 2+(y-b) 2=r 2) 证明:用勾股定理。
圆的切线和切线定理
圆的切线和切线定理圆是几何中常见的形状之一,有很多有趣的性质和定理。
其中一个重要的定理就是圆的切线定理,它描述了切线与圆的关系以及相应的性质。
接下来,我们将详细介绍这个定理。
一、切线的定义在介绍切线定理之前,先给出切线的定义。
对于一个圆,如果从圆外的一点引一条直线,该直线与圆仅有一个交点,那么这个交点与圆的弧上的点之间的线段就是切线。
切线与圆相切于一个点,与该点处的切点重合。
二、切线定理的规定切线定理是关于切线和切线外一点与圆的关系的重要定理。
根据切线定理,以下规定成立:规定1:切线与半径的垂直性。
切线与半径的相交点处的半径垂直于切线。
规定2:切线与切线之间的垂直性。
如果两条切线分别与两个圆相切于同一点,那么这两条切线互相垂直。
规定3:切线长度的规律性。
如果从圆的外一点引两条切线,那么这两条切线的长度相等。
三、切线定理的证明以下是对切线定理的证明:首先,证明规定1。
设圆的半径为r,交点为A。
连接A与圆心的线段,记为OA。
根据垂直定理,如果OA与切线AD垂直,那么OA与圆上任意一点(如点B)处的切线BC也是垂直的。
因此,切线与半径的垂直性得证。
接下来,证明规定2。
设圆的两个切点分别为A和B,切线分别为AD和BC。
连接OA和OB,并延长这两条线段相交于点C。
根据垂直定理,如果AD与BC垂直,那么OA与OB也垂直。
根据垂直线的性质,切线AD与切线BC的垂直性得证。
最后,证明规定3。
设从点P引两条切线分别与圆交于点A和点B,切线长度分别为AD和BE。
连接圆心O与点A、点B,并连接OA和OB。
由于圆心到切点的距离相等,即OA = OB。
通过几何推理,可以得出三角形OAD和三角形OBE是全等的,因此AD = BE。
切线长度的规律性得证。
四、切线定理的应用切线定理在几何问题中的应用十分广泛。
它可以帮助我们解决一些与圆相关的问题,例如求解切线的长度、判断两条切线是否相互垂直等。
总结:切线定理是关于切线和切线外一点与圆的关系的重要定理。
证明圆的切线的两种方法
证明圆的切线的两种方法方法一:利用圆的性质和向量的知识证明。
首先,根据圆的性质可知,圆心到切点的线段与切线垂直。
设圆心为O,切点为A,切线为l,则OA垂直于l。
又因为向量OA与向量l的内积为0,即OA·l=0,所以向量OA与l互相垂直。
又因为圆心到切点的线段与切线垂直,所以向量OA与切线方向相同。
因此,切线的方向可以表示为向量l=λOA,其中λ为常数。
再根据圆的性质可知,向量OA与圆的半径向量R的夹角为90度,即OA·R=0。
因此,向量l=λOA与向量R的内积也为0,即l·R=0。
这就证明了切线与圆的半径向量垂直。
方法二:利用微积分的知识证明。
首先,设圆的方程为(x-a)+(y-b)=r,其中(a,b)为圆心坐标,r为半径。
假设切线的斜率为k,则切线的方程为y=kx+c,其中c为常数。
为了使切线与圆相切,需要满足两个条件:一是切线经过圆上的某个点,即(x-a)+(y-b)=r;二是切线与圆的半径向量垂直,即切线的斜率为-k=-(x-a)/(y-b)。
将这两个条件代入切线方程y=kx+c中,得到(x-a)+(kx+c-b)=r,且k=-(x-a)/(y-b)。
将k代入上式,整理得到(x-a)+(c-b)/(1+k)=r。
由于切点坐标(x,y)满足(x-a)+(y-b)=r,因此有(x-a)+(c-b)/(1+k)=(x-a)+(y-b),即(c-b)/(1+k)=(y-b)。
将k带入上式,有c-b=±r/√(1+k)。
因此,切线的方程可以表示为y=±r/√(1+k)x+(b-c)/√(1+k),即y=±(r/√(1+k))x+(b-c)/√(1+k)。
这就证明了切线的方程。
- 1 -。
证明圆的切线的七种常用方法
证明圆的切线的七种常用方法类型1、有公共点:连半径,证垂直方法1、勾股定理逆定理法证垂直1.如图,⊙O的直径AB=12,点P是AB延长线上一点,且PB=4,点C是⊙O上一点,PC=8. 求证:PC是⊙O的切线.方法2、特殊角计算法证垂直2. 如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD =5,求⊙O 的直径.方法3、等角代换法证垂直3.如图,在Rt△ABC中,∠C=90°,D为BC 的中点,以AC 为直径的⊙O交AB于点E . 求证:DE是⊙O 的切线.方法4、平行线性质法证垂直4.如图,已知四边形OABC的三个顶点A ,B ,C在以O为圆心的半圆上,过点C 作CD ⊥AB,分别交AB,AO 的延长线于点D,E,AE交半圆O于点F,连接CF,且∠E=30°,点B是︵AC的中点.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)求证:CF=OC;(3)若⊙O的半径是6,求DC的长.AB POCACBPD OAEBDOCA O F ECDB方法5、全等三角形法证垂直5.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF .求证:BF 是⊙O 的切线.类型2、无公共点:作垂直,证半径方法6、角平分线性质法证半径6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 是AB 上一点,DE =DC ,以点D 为圆心,BD 长为半径作OD ,AB =5,EB =2. (1)求证:AC 是OD 的切线;(2)求线段AC 的长.方法7、全等三角形法证半径7.如图,四边形ABCD 中,∠A =∠ABC =90°,AD +BC =CD ,以AB 为直径作⊙O . 求证:⊙O 与边CD 相切.A OBCD F A B C D EA OB C D。
证明圆的切线方法
证明圆的切线方法我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有:一、若直线l 过⊙O 上某一点A ,证明l 是⊙O 的切线,只需连OA ,证明OA ⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F.求证:EF 与⊙O 相切.证明:连结OE ,AD.∵AB 是⊙O 的直径,∴AD ⊥BC.又∵AB=BC ,∴∠3=∠4.∴BD=DE,∠1=∠2. 又∵OB=OE ,OF=OF ,∴△BOF ≌△EOF (SAS ).∴∠OBF=∠OEF.∵BF 与⊙O 相切,∴OB ⊥BF.∴∠OEF=900.∴EF 与⊙O 相切.说明:此题是通过证明三角形全等证明垂直的⌒ ⌒例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD.求证:PA 与⊙O 相切.证明一:作直径AE ,连结EC.∵AD 是∠BAC 的平分线,∴∠DAB=∠DAC.∵PA=PD ,∴∠2=∠1+∠DAC.∵∠2=∠B+∠DAB ,∴∠1=∠B.又∵∠B=∠E ,∴∠1=∠E∵AE 是⊙O 的直径,∴AC ⊥EC ,∠E+∠EAC=900.∴∠1+∠EAC=900.即OA ⊥PA.∴PA 与⊙O 相切.证明二:延长AD 交⊙O 于E ,连结OA ,OE.∵AD 是∠BAC 的平分线, ∴BE=CE ,∴OE ⊥BC.∴∠E+∠BDE=900.∵OA=OE ,∴∠E=∠1.∵PA=PD ,∴∠PAD=∠PDA.又∵∠PDA=∠BDE,⌒ ⌒∴∠1+∠PAD=900即OA⊥PA.∴PA与⊙O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切.证明一:连结OD.∵AB=AC,∴∠B=∠C.∵OB=OD,∴∠1=∠B.∴∠1=∠C.∴OD∥AC.∵DM⊥AC,∴DM⊥OD.∴DM与⊙O相切证明二:连结OD,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=AC,∴∠1=∠2.∵DM⊥AC,∴∠2+∠4=900∵OA=OD,∴∠1=∠3.∴∠3+∠4=900. DC即OD ⊥DM. ∴DM 是⊙O 的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.例4 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上.求证:DC 是⊙O 的切线证明:连结OC 、BC.∵OA=OC ,∴∠A=∠1=∠300.∴∠BOC=∠A+∠1=600.又∵OC=OB ,∴△OBC 是等边三角形.∴OB=BC.∵OB=BD ,∴OB=BC=BD.∴OC ⊥CD. ∴DC 是⊙O 的切线. 说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.例5 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP.求证:PC 是⊙O 的切线.证明:连结OC∵OA 2=OD ·OP ,OA=OC ,∴OC 2=OD ·OP ,OCOP OD OC . 又∵∠1=∠1,∴△OCP ∽△ODC.∴∠OCP=∠ODC.∵CD ⊥AB ,∴∠OCP=900.∴PC 是⊙O 的切线.说明:此题是通过证三角形相似证明垂直的例6 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F.求证:CE 与△CFG 的外接圆相切.分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为此我们取FG 的中点O ,连结OC ,证明CE ⊥OC 即可得解.证明:取FG 中点O ,连结OC.∵ABCD 是正方形,∴BC ⊥CD ,△CFG 是Rt △∵O 是FG 的中点,∴O 是Rt △CFG 的外心.∵OC=OG ,∴∠3=∠G ,∵AD ∥BC ,∴∠G=∠4.∵AD=CD ,DE=DE ,∠ADE=∠CDE=450,∴△ADE ≌△CDE (SAS )∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900.即CE⊥OC.∴CE与△CFG的外接圆相切二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线证明二:连结DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠1=∠2.∵DE ⊥AB ,DF ⊥AC ,∴DE=DF.∴F 在⊙D 上. ∴AC 与⊙D 相切.说明:证明一是通过证明三角形全等证明DF=DE 的,证明二是利用角平分线的性质证明DF=DE 的,这类习题多数与角平分线有关.例8 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900. 求证:CD 是⊙O 的切线.证明一:连结OA ,OB ,作OE ⊥CD ,E 为垂足.∵AC ,BD 与⊙O 相切,∴AC ⊥OA ,BD ⊥OB.∵AC ∥BD ,∴∠1+∠2+∠3+∠4=1800.∵∠COD=900, ∴∠2+∠3=900,∠1+∠4=900.∵∠4+∠5=900.∴∠1=∠5.∴Rt △AOC ∽Rt △BDO.∴OD OCOB AC =.∵OA=OB ,∴OD OCOA AC=.又∵∠CAO=∠COD=900,∴△AOC ∽△ODC ,∴∠1=∠2.又∵OA ⊥AC ,OE ⊥CD,O∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.证明二:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F.∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB.∵AC∥BD,∴∠F=∠BDO.又∵OA=OB,∴△AOF≌△BOD(AAS)∴OF=OD.∵∠COD=900,∴CF=CD,∠1=∠2.又∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.证明三:连结AO并延长,作OE⊥CD于E,取CD中点F,连结OF.∵AC与⊙O相切,∴AC⊥AO.∵AC∥BD,∴AO⊥BD.∵BD与⊙O相切于B,∴AO的延长线必经过点B.∴AB是⊙O的直径.∵AC∥BD,OA=OB,CF=DF,∴OF ∥AC ,∴∠1=∠COF.∵∠COD=900,CF=DF ,∴CF CD OF ==21.∴∠2=∠COF.∴∠1=∠2.∵OA ⊥AC ,OE ⊥CD ,∴OE=OA.∴E 点在⊙O 上. ∴CD 是⊙O 的切线说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A 、O 、B 三点共线.此题较难,需要同学们利用所学过的知识综合求解.以上介绍的是证明圆的切线常用的两种方法供同学们参考.。
圆的切线性质与判定
圆的切线性质与判定圆是平面上具有特殊性质的图形,它有着多种有趣的性质与判定方法。
其中,圆的切线性质是一项重要的研究内容,具有广泛的应用价值。
本文将从圆的切线的定义开始,逐步介绍圆的切线的性质与判定方法。
一、圆的切线定义切线是一条直线,与圆的某一点相切,且与圆在该点处的切点处于圆的内部。
切点即为切线与圆的交点,切线与半径的夹角为直角。
圆的切线是圆与切点处切线共线的直线。
二、圆的切线性质1. 切线与半径的关系在圆上,以切点为顶点的切线与半径垂直。
2. 切线长度圆的切线长度等于切点到圆心的距离的两倍。
3. 切线的唯一性一个圆上的切线最多只能有两条,并且与该圆在切点处共线。
4. 外切线与内切线若一条直线与圆有且仅有一个公共切点,则称该直线为圆的外切线;若一条直线与圆有两个公共切点,则称该直线为圆的内切线。
5. 切线相交性质若两条切线与圆的切点不同,则这两条切线相交于圆的外部;若两条切线与圆的切点相同,则这两条切线相交于圆的内部。
三、圆的切线判定方法1. 分析法根据切线的定义,通过分析问题中的圆与切点的位置关系,可以判断出切线的存在与否。
2. 考察斜率法假设切点的坐标为(x1, y1),圆心的坐标为(a, b),可以根据斜率公式计算切线的斜率,若斜率存在且符合条件,则该直线为圆的切线。
3. 使用代数方程法对于已知的圆方程和直线方程,可以通过联立方程求解的方式来得到切线方程。
通过判断解的情况,可以判定直线与圆的关系。
四、应用举例1. 圆的切线应用于建筑设计中,可以帮助确定柱体或钟表的刚性支撑结构。
2. 在地理测量学中,圆的切线可以用于研究山脉的坡度和高度。
3. 圆的切线应用于计算机图形学中,用于控制曲线与圆弧的形状和运动轨迹。
总结:圆的切线性质与判定是一个重要且有趣的数学问题,它具有广泛的应用领域。
通过切线的定义和性质,我们可以了解切线在圆上的位置关系和特点。
掌握圆的切线判定方法,可以应用于实际问题的求解和分析中。
过圆外一点作圆的切线的两种方法
过圆外一点作圆的切线是一个有趣且具有一定难度的几何问题。
在数学几何中,有两种方法可以用来找到过圆外一点作圆的切线,分别是几何构造法和解析几何法。
在本文中,我将探讨这两种方法,并对其进行全面评估,以帮助你深入理解这一概念。
1. 几何构造法几何构造法是通过几何图形的构造和推导来寻找问题的解。
在求解过圆外一点作圆的切线时,我们可以利用几何构造法来找到两种方法,即内切和外切。
我们来看内切的情况。
设圆的圆心为O,外点为P。
我们可以通过以下步骤来构造过外点P作圆的内切线:a. 以外点P为圆心,画一条与圆相切的直线L,相切点为T。
b. 连接PT,可得到过外点P作圆的内切线。
接下来,我们来看外切的情况。
同样假设圆的圆心为O,外点为P。
通过以下步骤可以构造过外点P作圆的外切线:a. 以外点P为圆心,画一条与圆相切的直线L,相切点为T。
b. 连接PT,可得到过外点P作圆的外切线。
通过几何构造法,我们可以清晰地看到过圆外一点作圆的内切线和外切线的构造过程,从而更好地理解这一概念。
2. 解析几何法解析几何法是通过坐标系和方程来寻找问题的解。
在求解过圆外一点作圆的切线时,我们同样可以利用解析几何法来找到两种方法。
设圆的方程为(x-a)²+(y-b)²=r²,外点P的坐标为(x₀, y₀)。
我们可以通过以下步骤来求解过外点P作圆的切线方程:a. 联立圆的方程和外点P到圆的距离公式,可得到切线方程。
b. 根据切线方程,可以求解出与圆相切的直线方程。
通过解析几何法,我们可以用数学的方式来推导出过圆外一点作圆的切线方程,从而更加深入地理解这一概念。
总结回顾通过本文的讨论,我们深入探讨了过圆外一点作圆的切线的两种方法,即几何构造法和解析几何法。
在几何构造法中,我们通过构造图形和推导过程来寻找切线;而在解析几何法中,我们通过坐标系和方程来求解切线方程。
这两种方法各有特点,可以帮助我们更全面、深刻地理解这一几何问题。
圆的切线与切点的判断方法
圆的切线与切点的判断方法圆是几何学中的基本图形之一,其特点是由一条曲线组成,其上的每一点到圆心的距离都相等。
在圆的研究中,切线和切点是重要的概念。
本文将探讨圆的切线与切点的判断方法。
一、圆的切线切线是指与圆相切的直线。
在圆上任取一点P,连接该点与圆心O,得到一条线段OP。
若线段OP与圆的曲线只有一个交点,那么OP就是圆的切线。
如何判断一条直线是否是圆的切线呢?我们可以通过以下方法进行判断。
1. 利用切线的性质圆的切线与半径垂直。
因此,如果一条直线与圆的半径垂直,那么这条直线就是圆的切线。
2. 利用切线与半径的关系设圆的半径为r,圆心为O,切点为A,切线为l。
如果直线l与半径OA的夹角等于直线l与圆心O的夹角,那么直线l就是圆的切线。
3. 利用切线的斜率设圆的方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标。
设直线的斜率为k,直线方程为y=kx+c。
将直线方程代入圆的方程,得到一个关于x的二次方程。
如果该二次方程有且只有一个实根,那么直线就是圆的切线。
二、切点的判断方法切点是指切线与圆的曲线相交的点。
在确定切线之后,我们可以通过以下方法判断切点的位置。
1. 利用切线与半径的关系设切点为A,圆心为O,切线为l。
连接OA并延长,使其与切线l交于点B。
根据切线与半径的性质,OA与OB相等。
因此,切点A就是位于延长线上的点。
2. 利用切线与圆的交点设切点为A,切线为l。
在切线上任取一点C,并连接OC。
将OC延长至与圆的曲线相交于点D。
根据切线与圆的性质,AD与CD相等。
因此,切点A就是位于AD上的点。
3. 利用切线的斜率设切点为A,切线方程为y=kx+c。
将切线方程代入圆的方程,得到一个关于x的二次方程。
解该二次方程,得到两个解x1和x2。
将x1和x2代入切线方程,分别得到对应的y1和y2。
因此,切点A的坐标为(x1,y1)和(x2,y2)。
总结通过以上的方法,我们可以判断一条直线是否是圆的切线,并确定切点的位置。
证明圆的切线的七种常用方法-圆的切线证明7种方法
证明圆的切线的七种常用方法证明一条直线是圆的切线的方法及辅助线的作法1、连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“连半径,证垂直”2、作垂直,证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”类型一、有公共点:连半径,证垂直方法1、勾股定理逆定理法证垂直1.如图,AB为⊙O的直径,点P为AB延长线上一点,点C为圆⊙O上一点,PC=8,PB =4,AB=12,求证:PC是⊙O的切线.方法2、特殊角计算法证垂直2、如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求∠P的度数;(2)求证:P A是⊙O的切线;(3)若PD=5,求⊙O的直径.方法3、等角代换法证垂直3、如图,已知Rt △ABC 中,∠C =90°,D 为BC 的中点,以AC 为直径的⊙O 交AB 于点E 。
求证:DE 是⊙O 的切线;方法4、平行线性质法证垂直4、如图,已知平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF .且︒=∠30E ,点B 是的中点(1)判断直线DE 与半圆O 的位置关系,并说明理由;(2)求证CF=OC(2)若半圆O 的半径为6,求DC 的长.方法5 全等三角形法证垂直5、如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF ,求证:BF 是⊙O 的切线。
A B O D CF类型二、无公共点:做垂直,证半径方法6 角平分线的性质法证半径6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D ,AB =5,EB =2.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.方法7 全等三角形法证半径7.已知四边形ABCD 中,∠BAD =∠ABC =90°,CD BC AD =+,以AB 为直径的⊙O 。
证明圆的切线方法
证明圆的切线方法圆是一个平面图形,由一组固定点与它们到另一个点(圆心)的距离相等所形成的一条曲线。
在几何学中,圆的切线是与圆上某一点相切的直线。
证明圆的切线在我们日常生活和技术应用中经常用于解决问题,比如在机械工程、物理学、数学等领域。
圆的切线是与圆上某一点相切的直线。
为了证明圆的切线,我们需要了解以下一些基本概念:切点:切线与圆相切的点称为切点。
半径:从圆心到圆上任意一点的线段称为半径。
切线定理:如果一直线与圆相交,那么它的切点处的切线垂直于该直线。
下面我们来证明圆的切线定理。
设圆的圆心为O,切点为P,切线与圆相交于点Q,连接PO、QO两线段,如图所示:在三角形OPQ中,OP为半径,所以∠OQP=90°。
同时,因为OPP'Q是菱形,所以∠PP'Q=∠P'OQ。
又因为切线与半径垂直,所以∠P'OQ=90°,因此∠PP'Q=90°。
因此,P'Q与切线相垂直,即切线在切点处垂直于半径。
下面我们来证明切线只有一个。
为了证明,我们需要使用反证法,假设切线有两个,分别为l1和l2。
由于l1和l2均与圆上的同一点P相切,因此l1和l2一定共线。
因此,从圆心O到切点P的半径垂直于l1和l2,且这两个半径共线,这是不可能的,因此假设不成立,切线只有一个。
在证明过程中,我们需要使用一些基础的几何工具,比如直线垂直、菱形特性等,同时需要根据形状和条件进行适当的化简和简化,这也有助于我们更好地理解和掌握证明过程。
除了圆的切线定理,我们还可以使用其他方法来证明圆的性质,比如介弧定理、切线角定理等,这些方法可以帮助我们深入理解圆的性质,并在问题解决中灵活应用。
(完整版)证明圆的切线经典例题
证明圆的切线方法及例题证明圆的切线常用的方法有:一、若直线I过O O上某一点A,证明I是O O的切线,只需连OA,证明OA丄I 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直•例1 如图,在厶ABC中,AB=AC ,以AB为直径的O O交BC于D ,交AC于E, B为切点的切线交0D延长线于F.求证:EF与O 0相切.证明:连结OE, AD.•/ AB是O 0的直径,••• AD 丄BC.又••• AB=BC ,•••/ 3= / 4.——• BD=DE,/ 1 = / 2.又••• OB=OE , OF=OF ,•••△ BOF ◎△ EOF ( SAS)•••/ OBF= / OEF.••• BF与O O相切,• OB 丄BF.•••/ OEF=9O°.• EF与O O相切.说明:此题是通过证明三角形全等证明垂直的例2 如图,AD 是/ BAC 的平分线, 求证:PA与O O 相切.证明一:作直径AE ,连结EC.•/ AD 是/ BAC 的平分线, •••/ DAB= / DAC. •/ PA=PD , •••/ 2= / 1+ / DAC.•••/ 2= / B+ / DAB , •••/ 1 = / B.•/ AE 是O O 的直径,• AC 丄 EC ,/ E+ / EAC=90°. •••/ 1 + / EAC=90°. 即OA 丄PA. • PA 与O O 相切.•/ PA=PD , •••/ PAD= / PDA. 又•••/ PDA= / BDE,证明二:延长AD 交O O 于E ,连结•/ AD 是/ BAC 的平分线, •BE=CE ,• OE 丄 BC.•••/ E+/ BDE=90 0.•/ OA=OE , •••/ E=/ 1. PP 为BC 延长线上一点,且 PA=PD.说明:例3 求证:证明一证明二•••/ 1 + / PAD=90°即OA丄PA.• PA与O O相切此题是通过证明两角互余,证明垂直的如图,AB=AC,AB是O O的直径,DM与O O相切.:连结OD.-AB=AC ,•/ B= / C.-OB=OD ,•/ 仁/ B.•/ 仁/C.•OD // AC.-DM 丄AC,•DM 丄OD.•DM与O O相切:连结OD, AD.•/ AB是O O的直径,•AD 丄BC.又••• AB=AC,• / 1= / 2.•/ DM 丄AC ,•/ 2+Z 4=90°,解题中要注意知识的综合运用O O交BC于D, DM丄AC于M • / 3+/4=90°.即0D 丄DM. ••• DM 是O O 的切线解题中注意充分利用已知及图上已知例4 如图,已知:AB 是O 0的直径,点 D 在AB 的延长线上.求证:DC 是O 0的切线 证明:连结OC 、BC.•/ OA=OC ,•••/ A= / 1= / 30°.•••/ BOC= / A+ / 1= 60°. 又••• OC=OB , • △ OBC 是等边三角形 • OB=BC. •/ OB=BD , • OB=BC=BD. • OC 丄 CD. • DC 是O O 的切线.说明:此题是根据圆周角定理的推论例5 如图,AB 是O O 的直径,CD 丄AB ,且OA 2=OD • OP. 求证:PC 是O O 的切线. 证明:连结OC•/ OA 2=OD • OP , OA=OC ,说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,C 在O O 上,且/ CAB=30 °, BD=OB ,3证明垂直的,此题解法颇多,但这种方法较• OC2=OD • OP,OC op ODOC .又•••/ 1= / 1,•••△ OCP s\ODC.•••/ OCP= / ODC.•/ CD 丄AB ,•••/ OCP=9O°.• PC是O O的切线.说明:此题是通过证三角形相似证明垂直的例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与厶CFG的外接圆相切分析:此题图上没有画出△ CFG的外接圆,但△ CFG是直角三角形,圆心在斜边FG的中点, 证明:为此我们取FG的中点O,连结. OC,证明CE丄OC即可得解.取FG中点O,连结OC.T ABCD是正方形,• BC 丄CD , △ CFG 是Rt△•/ O是FG的中点,EC • O是Rt A CFG的外心.•/ OC=OG ,•••/ 3= / G,•/ AD // BC,• / G= / 4.•/ AD=CD , DE=DE ,/ ADE= / CDE=45°,• △ ADE CDE (SAS)•••/ 4= / 1,Z 1 = / 3.•••/ 2+ / 3=90°, •••/ 1 + / 2=90°.即CE 丄OC.• CE 与厶CFG 的外接圆相切、若直线I 与O O 没有已知的公共点, 又要证明I 是O O 的切线,只需作OA 丄I ,A 为垂足,证明 OA 是O O 的半径就行了,简称:"作垂直;证半径”例7 如图,AB=AC , D 为BC 中点,O D 与AB 切于E 点. 求证:AC 与O D 相切.证明一:连结DE ,作DF 丄AC , F 是垂足.••• AB 是O D 的切线,• DE 丄 AB. •/ DF 丄 AC , •••/ DEB= / DFC=90°. •/ AB=AC , •••/ B= / C. 又••• BD=CD ,•••△ BDE 也厶 CDF (AAS ) • DF=DE.• AC 是O D 的切线连结DE , AD ,作DF 丄AC , F 是垂足.••• AB 与O D 相切, • DE 丄 AB.•/ AB=AC , BD=CD , •/ DE 丄 AB , DF 丄 AC , ••• DE=DF.证明二: 負B C••• F 在O D 上.• AC与O D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关•例8 已知:如图,AC, BD与O O切于A、B,且AC // BD,若/ COD=9O0. 求证:CD 是O O的切线.证明一:连结OA , OB,作OE丄CD , E为垂足.•••/ 4+ / 5=90°.•••/ 1 = / 5.• Rt△AOC s Rt△BDO.•AC OC"OB OD.•/ OA=OB ,•AC OC…OA OD.又•••/ CAO= / COD=90°,• △ AOC ODC ,•••/ 1 = / 2.又••• OA 丄AC , OE 丄CD,••• OE=OA.••• E点在O O上.• CD是O O的切线.证明二:连结OA , OB,作OE丄CD于E,延长DO交CA延长线于F.••• AC,BD 与O O 相切,• AC 丄OA , BD 丄OB.•/ AC // BD ,•••/ F=Z BDO.又••• OA=OB ,•△ AOF ◎△ BOD(AAS• OF=OD.•••/ COD=9O°,• CF=CD,/ 1= / 2.又••• OA 丄AC , OE 丄CD ,• OE=OA.• E点在O O上.• CD是O O的切线.证明三:连结AO并延长,作OE丄CD于E ,取CD中点F ,连结OF.••• AC与O O相切,• AC 丄AO.•/ AC // BD , • AO 丄BD.••• BD与O O相切于B,• AO的延长线必经过点• AB是O O的直径.•/ AC // BD , OA=OB ,B.CF=DF ,••• OF // AC ,•••/ 仁/COF.•••/ COD=90°, CF=DF ,1•OF —CD CF .2•••/ 2=Z COF.•••/ 仁/2.•/ OA 丄AC , OE 丄CD,•O E=OA.•E点在O O上.•C D是O O的切线说明:证明一是利用相似三角形证明/ 1 = / 2,证明二是利用等腰三角形三线合一证明/ 1 = / 2.证明三是利用梯形的性质证明/ 1= / 2,这种方法必需先证明A、0、B三点共线.以上介绍的是证明圆的切线常用的两种方法供同学们参考11。
圆的切线方程公式证明
已知:圆的方程为:(x - a)²+ (y - b)²= r², 圆上一点P(x0, y0)解:圆心C(a, b)直线CP的斜率:k1 = (y0 - b) / (x0 - a)因为直线CP与切线垂直, 所以切线的斜率:k2 = -1/k1 = - (x0 - a) / (y0 - b)根据点斜式, 求得切线方程:y - y0 = k2 (x - x0)y - y0 = [- (x0 - a) / (y0 - b)] (x - x0)整理得:(x - x0)(x0 - a) + (y - y0)(y0 - b) = 0 (注意:这式也是很好用的切线方程公式) 展开后: x0x - ax + ax0 + y0y - by + by0 - x0²- y0²= 0 ~ (1)因为点P在圆上, 所以它的坐标满足方程:(x0 - a)²+ (y0 - b)²= r²化简: x0²- 2ax0 + a²+ y1²- 2by0 + b²= r²移项: - x0²- y0²= -2ax0 - 2by0 + a²+ b²- r²~ (2)由(2)代入(1), 得: x0x - ax + ax0 + y0y - by + by0 + (-2ax0 - 2by0 + a²+ b²- r²) = 0化简, (x0x - ax - ax0 + a²) + (y0y - yb - by0 + b²) = r²整理, (x0 - a)(x - a) + (y0 - b)(y - b) = r²类似地, 对於圆的一般方程:x²+ y²+ Dx + Ey + F = 0, 过圆上的点的切线方程.2. 已知:圆的方程为:x²+ y²+ Dx + Ey + F = 0, 圆上一点P(x0, y0)解:圆心C( -D/2, -E/2 )直线CP的斜率:k1 = (y0 + E/2) / (x0 + D/2)因为直线CP与切线垂直, 所以切线的斜率:k2 = -1/k1 = - (x0 + D/2) / (y0 + E/2)根据点斜式, 求得切线方程:y - y0 = k2 (x - x0)y - y0 = [- (x0 + D/2) / (y0 + E/2)] (x - x0)整理得:x0x + y0y + Dx/2 + Ey/2 - Dx0/2 - Ey0/2 -x0²- y0²= 0 ~ (3)因为点P在圆上, 所以它的坐标满足方程:x0²+ y0²+ Dx0 + Ey0 + F = 0移项: - x0²- y0²= Dx0 + Ey0 + F ~ (4)由(4)代入(3), 得: x0x + y0y + Dx/2 + Ey/2 - Dx0/2 - Ey0/2 + Dx0 + Ey0 + F = 0整理, x0x + y0y + D(x + x0)/2 + E(y + y0)/2 + F = 03a. 已知:圆的方程为:(x - a)²+ (y - b)²= r², 圆外一点P(x0, y0)解: 圆心C(a, b), 设切点为M则切线长PM = √(CP²- MC²) (根据勾股定理)= √[(x0 - a)²+ (y0 - b)²- r²] (CP:两点间距离公式求得, MC:半径长)类似地, 对於圆的一般方程:x²+ y²+ Dx + Ey + F = 0, 过圆外的点的切线长....3b. 已知:圆的方程为:x²+ y²+ Dx + Ey + F = 0 , 圆外一点P(x0, y0)解: 圆心C( -D/2, -E/2 ), 设切点为M则切线长PM = √(CP²- MC²) (根据勾股定理)= √[ (x0 + D/2)²+ (y0 + E/2)²- ((√(D²+E²-4F))/2)²](半径:r=(√(D²+E²-4F)) / 2)= √(x0²+ y0²+ Dx0 + Ey0 + F)。
(完整版)证明切线两种方法
(完满版)证明切线两种方法证明切线的两种方法朱元生判断直线与圆相切是有关圆的问题中经常会遇到的问题,现将常用的两种思路与方法说明以下:一、运用判判定理是证明切线最常用的方法,即若是直线与圆有交点,那么连接交点与圆心得半径,只要证明这条半径与该直线垂直即可.这种方法可简单概括为: 连半径 , 证垂直 .例 1 如图 1,在△ABC 中 ,AB=AC, 以 AB 为直径的⊙ O 交 BC 于点 D,过点 D 作 DE ⊥AC 于 E.求证 :DE 是⊙ O 的切线 .解析 : 由题设可知 ,DE 与⊙ O 有交点 D,要证明 DE 是⊙ O 的切线 ,只要连接OD, 证明 OD⊥ DE 即可 .证明 : 连接 OD.∵OB=OD,∴∠ OBD= ∠ODB.∵AB=AC,∴∠ ABC= ∠ ACB.∴∠ ODB= ∠ACB.∴OD ∥AC.∴∠ ODE= ∠DEC.∵DE ⊥ AC,∴∠ DEC=90 0.∴∠ ODE=90 0, 即 OD ⊥ DE.∴DE 是⊙ O 的切线 .二、当不明确直线与圆的交点个数或交点的地址时,可以经过圆心作直线的垂线,尔后证明圆心到直线的距离等于圆的半径即可.这种方法可简单概括为: 作垂线 ,证半径 .例 2 如图 2,在 Rt △AOB 中 ,AO= 3 5 ,BO= 6 5 ,以点O为圆心,6为半径作⊙O.求证 :AB 是⊙ O 的切线 .解析 : 由题设知 ,⊙ O 与直线 AB 是独立的 ,既没有指明交点个数 ,也没有指明交点地址,这时要证明 AB 是⊙ O 的切线 ,只能证明圆心O 到直线 AB 的距离等于圆的半径 6 即可 .证明 :过点 O 作 OC⊥ AB 于点 C.在 Rt△ AOB中,AO=3 5,BO= 65,由勾股定理 ,得AB= OA2OB 23262 5515.依照三角形面积公式,得1AB OC1OA OB. 22∴OC= OA OB 35 6 5 6 .AB15∴点 O 到直线 AB 的距离等于⊙ O 的半径 .∴AB 是⊙ O 的切线 .图 3[牛刀小试 ]如图 3,,点 O 是等腰三角形ABC 底边 BC 的中点 ,假设 AB 是⊙ O 的切线 ,试证明 AC 也是⊙ O 的切线 .提示 : 设点 D 为 AB 与⊙ O 的切点 ,连接 OD,过点 O 作 OE⊥ AC 于点 E,证明 OE=OD 即可 .。
证明切线的依据
1、已知条件中直线与圆若有公共点,且存在连接公共点的半径,可直接根据“经过直径的一端,并且重直于这条直径的直线是圆的切线”来证明,口诀是“见半径,证垂直”。
2、条件中若给出了直线和圆的公共点,但没有给出过这个点的半径,则连结公共点和圆心,然后根据“经过半径的外端目重直于这条半径的直线是圆的切线”这个定理来证明,口诀是“连半径,证垂直”。
3、已知条件若没有给出了直线和圆的公共点,则过圆心向这条直线引垂线,然后根据“到圆心的距离等于半径的直线是圆的切线”这个定理来证明,口诀是“作垂直。
证半径”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明圆的切线方法
我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识围,证明圆的切线常用的方法有:
一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.
例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.
求证:EF与⊙O相切.
证明:连结OE,AD.
∵AB是⊙O的直径,
∴AD⊥BC.
又∵AB=BC,
∴∠3=∠4.
⌒⌒
∴BD=DE,∠1=∠2.
又∵OB=OE,OF=OF,
∴△BOF≌△EOF(SAS).
∴∠OBF=∠OEF.
∵BF与⊙O相切,
∴OB⊥BF.
∴∠OEF=900.
∴EF与⊙O相切.
说明:此题是通过证明三角形全等证明垂直的
例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切.
证明一:作直径AE,连结EC.
∵AD是∠BAC的平分线,
∴∠DAB=∠DAC.
∵PA=PD,
∴∠2=∠1+∠DAC.
∵∠2=∠B+∠DAB,
∴∠1=∠B.
又∵∠B=∠E,
∴∠1=∠E
∵AE是⊙O的直径,
∴AC⊥EC,∠E+∠EAC=900.
∴∠1+∠EAC=900.
即OA⊥PA.
∴PA与⊙O相切.
证明二:延长AD交⊙O于E,连结OA,OE.
∵AD是∠BAC的平分线,
⌒⌒
∴BE=CE,
∴OE⊥BC.
∴∠E+∠BDE=900.
∵OA=OE,
∴∠E=∠1.
∵PA=PD,
∴∠PAD=∠PDA.
又∵∠PDA=∠BDE,
∴∠1+∠PAD=900
即OA⊥PA.
∴PA与⊙O相切
说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.
证明一:连结OD.
∵AB=AC,
∴∠B=∠C.
∵OB=OD,
∴∠1=∠B.
∴∠1=∠C.
∴OD∥AC.
∵DM⊥AC,
∴DM⊥OD.
∴DM与⊙O相切
证明二:连结OD,AD.
∵AB是⊙O的直径,
∴AD⊥BC.
又∵AB=AC,
∴∠1=∠2.
∵DM⊥AC,
∴∠2+∠4=900
∵OA=OD,
∴∠1=∠3. D
C
∴∠3+∠4=900.
即OD⊥DM.
∴DM是⊙O的切线
说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,
解题中注意充分利用已知及图上已知.
例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.
求证:DC是⊙O的切线
证明:连结OC、BC.
∵OA=OC,
∴∠A=∠1=∠300.
∴∠BOC=∠A+∠1=600.
又∵OC=OB,
∴△OBC是等边三角形.
D ∴OB=BC.
∵OB=BD,
∴OB=BC=BD.
∴OC⊥CD.
∴DC是⊙O的切线.
说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.
例5 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP . 求证:PC 是⊙O 的切线. 证明:连结OC
∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP ,
OC
OP
OD OC
. 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线.
说明:此题是通过证三角形相似证明垂直的
例6 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F.
求证:CE 与△CFG 的外接圆相切.
分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG
的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.
证明:取FG中点O,连结OC.
∵ABCD是正方形,
∴BC⊥CD,△CFG是Rt△
∵O是FG的中点,
∴O是Rt△CFG的外心.
∵OC=OG,
∴∠3=∠G,
∵AD∥BC,
∴∠G=∠4.
∵AD=CD,DE=DE,
∠ADE=∠CDE=450,
∴△ADE≌△CDE(SAS)
∴∠4=∠1,∠1=∠3.
∵∠2+∠3=900,
∴∠1+∠2=900.
即CE⊥OC.
∴CE与△CFG的外接圆相切
二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥
l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”
例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.
求证:AC与⊙D相切.
证明一:连结DE,作DF⊥AC,F是垂足.
∵AB是⊙D的切线,
∴DE⊥AB.
∵DF⊥AC,
∴∠DEB=∠DFC=900.
∵AB=AC,
∴∠B=∠C.
又∵BD=CD,
∴△BDE≌△CDF(AAS)
∴DF=DE.
∴F在⊙D上.
∴AC是⊙D的切线
证明二:连结DE,AD,作DF⊥AC,F是垂足.
∵AB与⊙D相切,
∴DE⊥AB.
∵AB=AC,BD=CD,
∴∠1=∠2.
∵DE⊥AB,DF⊥AC,
∴DE=DF.
∴F在⊙D上.
∴AC与⊙D相切.
说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.
例8 已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.
求证:CD是⊙O的切线.
证明一:连结OA,OB,作OE⊥CD,E为垂足.
∵AC,BD与⊙O相切,
∴AC⊥OA,BD⊥OB.
∵AC∥BD,
∴∠1+∠2+∠3+∠4=1800.
O
∵∠COD=900,
∴∠2+∠3=900,∠1+∠4=900.
∵∠4+∠5=900.
∴∠1=∠5.
∴Rt△AOC∽Rt△BDO.
∴
OD
OC
OB AC =
. ∵OA=OB ,
∴
OD
OC
OA AC =
. 又∵∠CAO=∠COD=900, ∴△AOC ∽△ODC , ∴∠1=∠2.
又∵OA ⊥AC ,OE ⊥CD, ∴OE=OA. ∴E 点在⊙O 上.
∴CD 是⊙O 的切线.
证明二:连结OA ,OB ,作OE ⊥CD 于E ,延长DO 交CA 延长线于F. ∵AC ,BD 与⊙O 相切, ∴AC ⊥OA ,BD ⊥OB. ∵AC ∥BD , ∴∠F=∠BDO. 又∵OA=OB ,
∴△AOF ≌△BOD (AAS ) ∴OF=OD.
∵∠COD=900,
∴CF=CD ,∠1=∠2.
又∵OA ⊥AC ,OE ⊥CD ,
∴OE=OA.
∴E 点在⊙O 上. ∴CD 是⊙O 的切线.
证明三:连结AO 并延长,作OE ⊥CD 于E ,取CD 中点F ,连结OF.
∵AC 与⊙O 相切,
∴AC ⊥AO.
∵AC ∥BD ,
∴AO ⊥BD.
∵BD 与⊙O 相切于B ,
∴AO 的延长线必经过点B.
∴AB 是⊙O 的直径.
∵AC ∥BD ,OA=OB ,CF=DF ,
∴OF ∥AC ,
∴∠1=∠COF.
∵∠COD=900,CF=DF ,
∴CF CD OF ==21. ∴∠2=∠COF.
∴∠1=∠2.
∵OA⊥AC,OE⊥CD,
∴OE=OA.
∴E点在⊙O上.
∴CD是⊙O的切线
说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A、O、B三点共线.
此题较难,需要同学们利用所学过的知识综合求解.
以上介绍的是证明圆的切线常用的两种方法供同学们参考.。