最全面最经典中考数学折叠问题集锦
九年级数学中考折叠问题精选全文
精选全文完整版(可编辑修改)专题10图形折叠问题 姓名_________折叠型问题通常是把某个图形(三角形或矩形)绕某一点或沿某一条线折叠,通过折叠后满足的条件图形求某一条线段的大小或最小值,折叠问题的解题突破点:1.折叠前后两图形全等,关于折痕成轴对称(即折痕是对称轴,对画图很重要);2.遇到折叠问题,寻找等量(即相等的线段和相等的角);3.折叠问题中的计算,一般会用到分类讨论、勾股定理和方程思想;4.确定折叠后的对应点可以用画圆(画弧)和对称的方法.1.如图所示,正方形ABCD 的边长为2,点E 为BC 边上一动点,将△ABE 沿直线AE 折叠,点B 的对应点落在点F 处,若△CFD 恰为等腰三角形,则BE 的长为_________. (32-4或332)2.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,点E ,F 分别在边AC ,BC 上,连接EF ,将△ABC 沿直线EF 折叠,点C 的对应点D 恰好落在边AB 上,若△BDF 是等腰三角形,则CF 的长为_______.(231048-或 或1312)3.如图,一张长方形纸片的长AD=4,宽AB=1,点E 在边AD 上,点F 在BC 边上,将四边形ABFE 沿直线EF 翻折后,点B 落在边AD 的三等分点G 处,则EG 等于_______.(48732425或) (如果把条件“三等分点”改为“中点”又该怎么做呢?答案:45)4.如图,在矩形纸片ABCD 中,AB=8,AD=12,点E 是AD 的中点,点F 是AB 边上的一个动点,将△AEF 沿EF 所在的直线折叠,得到△A ′EF ,连接A ′B ,若△A ′FB 为直角三角形,则AF 的长为_________(6或3)5.如图,在Rt △ABC 中,∠C=90°,∠B=30°,AB=4,点M ,N 分别是边AB ,BC 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点始终落在边AC 上,若△MNB ′为直角三角形,则BN 的长为_______.(3343或)6.如图,在Rt △ABC 中,∠C=90°,AC=12,BC=10,D 是BC 的中点,E 是AC 上一动点,将△CDE 沿DE 折叠到△C ′DE ,连接AC ′,当△AEC ′时直角三角形时,AE 的长为_________(7326或)7.如图,在矩形ABCD 中,AB=6,AD=4,点F 为BC 边的中点,点E 为AB 边上一动点,将△ADE 沿ED 折叠,点A 的对应点为点A ′,则A ′F 的最小值为__________(4-102)8.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,点D 是线段BC 上一动点,把△ABD 沿直线AD 翻折,点B 的对应点为点B ′,连接B ′C ,当△B ′CD 为直角三角形时,BD 的长为________(251或)9.如图,在△ABC中,∠C=90°,∠A=30°,BC=3,P是AB上的一动点,PE⊥AC于E,沿PE将∠A折叠,点A的对应点为D,若△BPD是直角三角形,则PA=_________(2或4)10.(2013河南)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,求BE的长。
2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)
几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。
初中数学专题:折叠问题精选40题
初中数学专题:折叠问题精选40题
初中数学分为代数、几何和概率统计三大部分。
其中几何以平面几何为主。
欧几里得曾说过这样一句话“几何是人类思维的体操”,它在训练我们逻辑能力方面起着重要的作用。
初中几何里面有一个非常重要的知识点,就是轴对称。
这个知识从初一开始学,一直到初三到中考,都会进行各种方式的考察。
它的出题形式多种多样,其中翻折折叠问题是最为普遍也是最难解答的一类方式。
尤其在中考的折叠问题中,折叠是将轴对称隐藏在题目之中,在整个题干中看不到轴对称的字眼,学生很难发现隐藏的这个知识,所以经常手足无措,不知从何入手。
解决这类问题的关键,一是要找准图形沿着那条直线折叠,这条直线就是对称轴。
二是要找准折叠前后的两个图形是谁,对应点、对应角分别是谁。
只有找准这两条,才能判断图中哪些线段是相等的,那些角是相等的,那条线段是另一条线段的垂直平分线。
解决问题的时候,才能有的放矢。
本篇文章,老师给大家精选了40道折叠问题,形式上有选择题、填空题、解答题,难度有难有易,从初一学生到即将参加中考的初三学生都能从中找到适合自己学段的题目进行练习。
中考数学几何图形折叠试题典题及解答
中考数学几何图形折叠试题典题及解答一、选择题1.德州市如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于A.4B.3C.4D.82.江西省如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,若∠DBC=°,则在不添加任何辅助线的情况下,图中45°的角虚线也视为角的边有A.6个B.5个C.4个D.3个3.乐山市如图,把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若∠FPH=90°,PF=8, PH=6,则矩形ABCD的边BC长为A.20 B.22C.24 D.304.绵阳市当身边没有量角器时,怎样得到一些特定度数的角呢动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD,我们按如下步骤操作可以得到一个特定的角:1以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;2将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE =A.60° B.° C.72° D.75°5. 绍兴市学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的如图1~4 .从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③C.③④D.①④6.贵阳市如图6-1所示,将长为20cm,宽为2cm的长方形白纸条,折成图6-2所示的图形并在其一面着色,则着色部分的面积为A.34cm2 B.36cm2C.38cm2 D.40cm2二、填空题7.成都市如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′的位置上,EC′交AD于点G.已知∠EFG=58°,那么∠BEG °.8. 苏州市如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1+∠2=100°,则∠A的大小等于______ ______度.三、解答题9.荆门市如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O0,0,A4,0,C0,3,点P是OA边上的动点与点O、A不重合.现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.设Px,0,E0,y,求y关于x的函数关系式,并求y的最大值;如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;在2的情况下,在该抛物线上是否存在点Q,使△PEQ是以P E为直角边的直角三角形若不存在,说明理由;若存在,求出点Q的坐标.10. 济宁市如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗如果相似给出证明,如不相似请说明理由;如果沿直线EB折叠纸片,点A是否能叠在直线EC上为什么11.威海市如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片AB CD,使点A与点C重合,折痕为EF.已知CE⊥AB.1求证:EF∥BD;2若AB=7,CD=3,求线段EF的长.12. 烟台市生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的阴影部分表示纸条的反面:如果由信纸折成的长方形纸条图①长为2 6 cm,宽为xcm,分别回答下列问题:为了保证能折成图④的形状即纸条两端均超出点P,试求x 的取值范围.2如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离用x表示.13. 将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.1求证:△ABE≌△AD′F;2连接CF,判断四边形AECF是什么特殊四边形证明你的结论.14.孝感市在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开如图1;第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN如图2.请解答以下问题:1如图2,若延长MN交BC于P,△BMP是什么三角形请证明你的结论.2在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合1中结论的三角形纸片BM P3设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上E、F分别为AB、CD中点为什么15.邵阳市如图①,△ABC中,∠ACB=90°,将△ABC沿着一条直线折叠后,使点A与点C重合图②.1在图①中画出折痕所在的直线l.设直线l与AB,AC分别相交于点D,E,连结CD.画图工具不限,不要求写画法2请你找出完成问题1后所得到的图形中的等腰三角形.不要求证明16.济宁市如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗如果相似给出证明,如补相似请说明理由;3如果直线EB折叠纸片,点A是否能叠在直线EC上为什么17.临安市如图,△OAB 是边长为的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.1当A′E18.南宁市如图,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB 边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x0<x<6,以DE为折线将△ADE翻折,所得的△A′DE与梯形DBCE重叠部分的面积记为y点A关于DE的对称点A′落在AH所在的直线上.1分别求出当0<x≤3与3<x<6时,y与x的函数关系式;2当x取何值时,y的值最大最大值是多少19.宁夏回族自治区如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结AE.证明:1BF=DF;2AE∥BD.参考答案一、二、°三、9. 解:1由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠OPE+∠APB=90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA.∴Rt△POE∽Rt△BPA.∴.即.∴.且当x=2时,y 有最大值.由已知,△PAB、△POE均为等腰直角三角形,可得P1,0,E0, 1,B4,3.……6分设过此三点的抛物线为y=ax2+bx+c,则∴y=.由2知∠EPB=90°,即点Q与点B重合时满足条件.直线PB为y=x-1,与y轴交于点0,-1.将PB向上平移2个单位则过点E0,1,∴该直线为y=x+1.由得∴Q5,6.故该抛物线上存在两点Q4,3、5,6满足条件.10. 证明:1∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90°,∴△PBE~△QAB.2∵△PBE~△QAB,∴∵BQ=PB,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.3点A能叠在直线EC上.由2得,∠AEB=∠CEB,∴EC 和折痕AE重合.11. 解:1证明:过C点作CH∥BD,交AB的延长线于点H;连结AC,交EF于点K,则AK=CK.∵AB∥CD,∴BH=CD,BD=CH.∵AD=BC,∴AC=BD=CH.∵CE⊥AB,∴AE=EH.∴EK是△AHC的中位线.∴EK∥CH.∴EF∥BD.2解:由1得BH∥CD,EF∥BD,∴∠AEF=∠ABD.∵AB=7,CD=3,∴AH=10.∵AE=CE,AE=EH,∴AE=CE=EH=5.∵CE⊥AB,∴CH=5=BD.∵∠EAF=∠BAD,∠AEF=∠ABD,∴△AFE∽△ADB.∴.∴.12. 解:1由折纸过程知0<5x<26,,0<x <. 2图④为轴对称图形,∴AM =.即点M与点A的距离是1 3-xcm.13. 证明:⑴由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.∴△ABE ≌△AD′F.⑵四边形AECF是菱形.由折叠可知AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC, ∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.∵AF=AE,∴四边形AECF是菱形.14. 解:1△BMP是等边三角形.证明:连结AN.∵EF垂直平分AB,∴AN = BN.由折叠知 AB = BN ,∴AN = AB = BN, ∴△ABN为等边三角形.∴∠ABN =60°. ∴∠PBN =30°.又∵∠ABM =∠NBM =30°,∠BNM =∠A =90°.∴∠BPN =60°.∠MBP =∠MBN +∠PBN =60°.∴∠BMP =60°∴∠MBP =∠BMP =∠BPM =60°.∴△BMP为等边三角形 .2要在矩形纸片ABCD上剪出等边△BMP,则BC ≥BP.在Rt△BNP中, BN = BA =a,∠PBN =30°,∴BP =. ∴b≥. ∴a≤b .∴当a≤b时,在矩形上能剪出这样的等边△BM P.3∵∠M′BC =60°, ∴∠ABM′=90°-60°=30°.在Rt△ABM′中,tan ∠ABM′ =. ∴tan30°= . ∴AM′ =.∴M′,2. 代入y=kx中 ,得k==.设△ABM′沿BM′折叠后,点A落在矩形ABCD内的点为A′.过A′作AH ⊥BC交BC于H.∵△A′BM′ ≌△ABM′, ∴∠A′BM′=∠ABM′=3 0°, A′B = AB =2.∴∠A′BH=∠M′BH-∠A′BM′=30°.在Rt△A′BH 中,A′H =A′B =1 ,BH=,∴.∴A'落在EF上.图2图315.解:1如图.等腰三角形DAC.16.1证明:∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB,∴△PBE∽△QAB.2∵△PBE∽△QAB,∴.∵BQ=PB,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.3点A能折叠在直线EC上.由2得,∠AEB=∠CEB,∴EC和折痕AE重合.17. 解:1由已知可得∠A'OE=60o , A'E=AE.由A′E设A′的坐标为0,b,则AE=A'E=b,OE=2b.∵b+2b=2+,∴b=1.∴A'、E的坐标分别是0,1与,1.2因为A'、E在抛物线上,所以所以函数关系式为y=.由=0得,.与x轴的两个交点坐标分别是-,0与,0. 3不可能使△A'EF成为直角三角形.∵∠FA'E=∠FAE=60o,若△A'EF成为直角三角形,只能是∠A'EF=90o或∠A'FE=90o.若∠A'EF=90o,利用对称性,则∠AEF=90o, A'、E、A 三点共线,O与A重合,与已知矛盾.同理若∠A'FE=90o也不可能.所以不能使△A′EF成为直角三角形.18. 解:1①当0<x≤3时,由折叠得到的△A'ED落在△ABC内部如图101,重叠部分为△A'ED.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC.∴. ∴,即.又∵FA'=FA=x,∴y=DE·A'F=·x·x.∴0<x≤3.②当3<x<6时,由折叠得到的△A'ED有一部分落在△ABC外,如图102,重叠部分为梯形EDPQ.∵FH=6-AF=6-x,A'H=A'F-FH=x-6-x=2x-6,又∵DE∥PQ,∴△A'PQ∽△A'DE.∴.∴∴.2当0<x≤3时,y 的最大值;当3<x<6时,由,可知当x=4时,y的最大值y2=9.∵y1<y2,∴当x=4时,y有最大值y最大=9.19. 证明:1能正确说明∠ADB=∠EBD或△ABF≌△ED F,∴BF=DF.2能得出∠AEB=∠DBE或∠EAD=∠BDA,∴AE∥BD.。
中考热点数学折叠问题
中考热点数学折叠问题
折叠问题是我们初中数学的重点内容,期中涉及的面非常广,三角形里面有折叠,四边形里面有折叠,圆里面有折叠,函数里面有折叠,一次折叠还不够,还有两次折叠,那折叠里面有什么规律呢?本次课程为大家准备了11种常见的折叠问题,仅供大家参考,欢迎补充。
1、一次折叠里面的周长计算
2、一次折叠与勾股定理的运用
3、一次折叠与直角三角形的分类讨论求边长
4、二次折叠利用30°求边长
5、翻折中利用对称性求边长
6、利用翻折求线段的取值范围
7、矩形翻折相似
8、等边三角形翻折相似
9、翻折当中的分类讨论
10、二次翻折求边长
11、二次函数翻折讨论。
中考数学中的折叠问题精选全文
精选全中考数学中的折叠问题文完整版(可编辑修改)近年来,在各地中考数学命题时,十分重视对图形语言、文字语音、符号语言的理解运用及相互之间的关系,相互之间的转化能力以及动手操作能力的考查。
这样,图形的折叠问题就成为一个亮点,有关翻折的考题日趋增加。
翻折问题的解决方法,抓住翻折后与翻折的图形是以折痕为轴的轴对称图形这一关键,并运用代数方程,一般均可求得。
下面我们以中考题为例,谈谈翻折问题的几例类型及解法,供大家参考。
一、以矩形为母体的翻折这种类型最多,以折痕的不同位置又可分下面几种:1、沿对角线翻折例1、(2000年山西省)已知:如图1,将矩形ABCD沿直线BD折叠,使点C 落在C’处,BC’交AD于E,AD=8,AB=4,求△BED的面积。
分析:因为BD是对称轴,∴∠CBD=∠C’BD,又AD∥BC,∴∠CBD=∠ADB,得:∠C’BD=∠ADB,∴ED=EB设ED=x,∴AD=8-x在Rt△ABE中,AB2+AE2=BE2,即42+(8-x)2=x2,∴x=5,∴ED=EB=5又BD=∴S△BED==10方法2:过E作EF⊥BD,垂足F,在得到BE=5,BD=4后,在Rt△BEF中,EF=,得S△BED=BD×EF=×4×=10方法3:∵Rt△BEF∽Rt△BDC’,∴EF:DC’=BF:BC’,得EF==(以下略)2、沿一直线翻折,使一顶点落在对边上例2、(2000年山东省)已知矩形ABCD的两边AB与BC的比为4:5,E是AB 上一点,沿CE将△EBC向上翻折,若B点恰好落在边AD上的F点,如图2,则tg∠DCF=______。
A、B、C、D、分析:因为CF=CB,∴CF:CD=5:4,得CD:DF=4:3,∴tg∠DCF==,应选(A)。
例3、(1998年台州市)如图3,矩形ABCD的长、宽分别为5和3,将顶点C 折过来,使它落在AB上的C’点(DE为折痕),那么阴影部分的面积是______。
中考数学折叠,旋转问题专题含答案
【经典例题1】如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.【解析】(1)连接AO,如右图1所示,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG==4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;(2)如图2所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.练习1-1如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB 的中点D,连接AC,CD.则下列结论中错误的是()A.AC=CD B.+=C.OD⊥AB D.CD平分∠ACB 【解析】A、过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;B、∵AC=CD',∴,由折叠得:,∴=,故②正确;C、∵D为AB的中点,∴OD⊥AB,故③正确;D、延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:D.练习1-2如图,AB是⊙O的弦,点C在上,点D是AB的中点.将在沿AC 折叠后恰好经过点D,若⊙O的半径为2,AB=8.则AC的长是()A.6B.C.2D.4【解析】如图,延长BO交⊙O于E,连接AE,OA,OD,OC,BC,作CH⊥AB 于H.∵AD=DB,∴OD⊥AB,∴∠ADO=90°,∵OA=2,AD=DB=4,∴OD==2,∵BE是直径,∴∠BAE=90°,∵AD=DB,EO=OB,∴OD∥AE,AE=2OD=4,∴AE=AD,∴=,∴=,∴∠CAE=∠CAH=45°,∴∠BOC=2∠CAB=90°,∴BC=OC=2,∵CH⊥AB,∴∠CAH=∠ACH=45°,∴AH=CH,设AH=CH=x,则BH=8﹣x,在Rt△BCH中,∵CH2+BH2=BC2,∴x2+(8﹣x)2=(2)2,∴x=6或2(舍弃),在Rt△ACH中,∵AC=,∴AC=6.故选:A.练习1-3在扇形AOB中,∠AOB=75°,半径OA=12,点P为AO上任一点(不与A、O重合).(1)如图1,Q是OB上一点,若OP=OQ,求证:BP=AQ.(2)如图2,将扇形沿BP折叠,得到O的对称点O'.①若点O'落在上,求的长.②当BO'与扇形AOB所在的圆相切时,求折痕的长.(注:本题结果不取近似值)【解析】(1)证明:∵BO=AO,∠O=∠O,OP=OQ,∴△BOP≌△AOQ(SAS).∴BP=AQ.(2)解:①如图1,点O'落在上,连接OO',∵将扇形沿BP折叠,得到O的对称点O',∴OB=O'B,∵OB=OO',∴△BOO'是等边三角形,∴∠O'OB=60°.∵∠AOB=75°,∴∠AOO'=15°.∴的长为.②BO'与扇形AOB所在的圆相切时,如图2所示,∴∠OBO'=90°.∴∠OBP=45°.过点O作OC⊥BP于点C,∵OA=OB=12,∠COB=∠OBP=45°,∴.又∵∠AOB=75°,∠COB=45°,∴∠POC=30°,∴.∴.∴折痕的长为.旋转类【经典例题2】如图1,在锐角△ABC中,AB=5,AC=42,∠ACB=45∘. 计算:求BC的长;操作:将图1中的△ABC绕点B按逆时针方向旋转,得到△A1BC1.如图2,当点C1在线段CA的延长线上时。
中考几何——折叠专项
中考几何——折叠专项【一,折叠与平行线性质结合求角度】1.如图,矩形纸片ABCD ,M 为AD 边的中点将纸片沿BM 、CM 折叠,使A 点落在1A 处,D 点落在1D 处,若130∠=︒,则(BMC ∠= )A .75︒B .150︒C .120︒D .105︒2.将长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,若35ABC ∠=︒,则DBE ∠的度数为( )A .55︒B .50︒C .45︒D .60︒3.将一张长方形纸片按如图所示的方式折叠,EC ,ED 为折痕,折叠后点A ',B ',E 在同一直线上,则CED ∠的度数为( )A .75︒B .95︒C .90︒D .60︒4.如图,将一条两边沿互相平行的纸带折叠( )A .若132∠=∠,则1108∠=︒B .若122∠=∠,则198∠=︒C .若12∠=∠,则155∠=︒D .若1122∠=∠,则140∠=︒5.如图,将对边平行的纸带按如图所示进行折叠,已知165∠=︒,则2∠的大小为( )A .115︒B .65︒C .55︒D .50︒6.如图①,在长方形ABCD 中,E 点在AD 上,并且30ABE ∠=︒,分别以BE 、CE 为折痕进行折叠并压平,如图②,若图②中AED n ∠=︒,则BCE ∠的度数为( )度.A .602n+ B .60n +C .302n +D .30n +7.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB∠的度数是.8.如图,把一张长方形纸片ABCD沿EF折叠后,点A与点A'重合(点A在BC边上),点∠+∠=︒.B落在点B'的位置上,若40∠'=︒,则12DEA9.如图1,长方形ABCD沿着直线DE和EF折叠,使得AB的对应点A',B'和点E在同一条直线上.(1)求DEF∠的度数;(2)如图2,若再次沿着直线EM和EN折叠使得A、B的对应点A''、B''分别落在DE和EF上,34∠的度数.∠=︒,求BENAEM10.如图a是长方形纸带(提示://)AD BC,将纸带沿EF折叠成图b,再沿GF折叠成图c.(1)若20DEF ∠=︒,则图b 中EGB ∠= ,CFG ∠= ; (2)若20DEF ∠=︒,则图c 中EFC ∠= ; (3)若DEF α∠=,把图c 中EFC ∠用α表示为 ;(4)若继续按EF 折叠成图d ,按此操作,最后一次折叠后恰好完全盖住EFG ∠,整个过程共折叠了9次,问图a 中DEF ∠的度数是 .【二.折叠和三角形内角和,外角和结合求角度】1.如图,三角形纸片ABC 中,80A ∠=︒,60B ∠=︒,将纸片的角折叠,使点C 落在ABC ∆内,若30α∠=︒,则β∠的度数是( )A .30︒B .40︒C .50︒D .60︒2.如图,65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在ABC ∆外,若218∠=︒,则1∠的度数为( )A .50︒B .98︒C .75︒D .80︒3.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆外的A '处,折痕为DE .如果A α∠=,CEA β∠'=,BDA γ'∠=,那么α,β,γ三个角的关系是 .4.如图,将ABC ∆纸片沿DE 折叠,使点A 落在点A '处,且A B '平分ABC ∠,A C '平分ACB ∠,若1288∠+∠=︒,则BA C '∠的度数是 .5.将纸片ABC ∆沿DE 折叠使点A 落在A '处的位置.(1)如果A '落在四边形BCDE 的内部(如图1),A ∠'与12∠+∠之间存在怎样的数量关系?并说明理由.(2)如果A '落在四边形BCDE 的外部(如图2),这时A ∠'与1∠、2∠之间又存在怎样的数量关系?并说明理由.6.动手操作:一个三角形的纸片ABC,沿DE折叠,使点A落在点A'处.观察猜想(1)如图1,若40∠+∠=︒;∠=︒,则12A若55∠+∠=︒;∠=︒,则12A若A n∠+∠=︒.∠=︒,则12探索证明:(2)利用图1,探索1∠、2∠与A∠有怎样的关系?请说明理由.拓展应用(3)如图2,把ABC∠,若12108∠+∠=︒,利∠,CA'平分ACB∆折叠后,BA'平分ABC用(2)中结论求BAC∠'的度数.【三.折叠和勾股定理结合求边长】1.如图,矩形纸片ABCD中,4AB=,3AD=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.43C.32D.22.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C'处,点B落在点B'处,其中9AB=,6BC=,则FC'的长为()A.103B.4 C.4.5 D.53.如图所示,有一块直角三角形纸片,两直角边6AB=,8BC=,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=.4.如图,矩形ABCD中,AD=5,AB=7.点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D/落在∠ABC的角平分线上时,DE的长为5.如图,将正方形纸片ABCD 沿MN 折叠,使点D 落在边AB 上,对应点为D ’,点C 落在C ’处.若AB=6,AD ’=2,则折痕MN 的长为 .6.如图,在矩形ABCD 中,点E 是边CD 的中点,将ADE ∆沿AE 折叠后得到AFE ∆,且点F 在矩形ABCD 内部.将AF 延长交边BC 于点G .若1CG GB k =,则ADAB= 用含k 的代数式表示).7.如图,在矩形纸片ABCD 中,6AB =,10BC =,点E 在CD 上,将BCE ∆沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将ABG ∆沿BG 折叠,点A 恰落在线段BF 上的点H 处,①45EBG ∠=︒;②DEF ABG ∆∆∽;③32ABG FGH S S ∆∆=;④AG DF FG +=.则下列结论正确的有( )A .①②④B .①③④C .②③④D .①②③8.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △A B G =S △F G H ;④AG+DF=FG .其中正确的是.9.如图,长方形ABCD 中,点E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F ,连接EF .若AB=6,BC=8,则DF 的长为( )10.如图,在矩形ABCD 中,AD=5,AB=8,点E 为射线DC 上一个动点,把△ADE 沿直线AE 折叠,当点D 的对应点F 刚好落在线段AB 的垂直平分线上时,则DE 的长为多少?【四.折叠综合证明类型题】FEDB CA1.综合与实践:折纸中的数学数学活动课上,老师组织各学习小组同学动手操作,大胆猜想并加以验证.动手操作:如图,将长与宽的比是2:1 的矩形纸片ABCD 对折,使得点B 与点A 重合,点C 与点D 重合,然后展开,得到折痕EF,BC 边上存在一点G,将角B 沿GH 折叠,点B落到AD 边上的点B′处,点B 在AB 边上;将角C 沿GD 折叠,点C 恰好落到B′G 上的点C′处,HG 和DG 分别交EF 于点M 和点N,B′G 交EF 于点O,连接B′M,B′N.提出猜想:①“希望”小组猜想:HG⊥DG;②“奋斗”小组猜想:B′N⊥DG;③“创新”小组猜想:四边形B′MGN 是矩形.独立思考:(1)请你验证上述学习小组猜想的三个结论;(写出解答过程)(2)假如你是该课堂的一名成员,请你在现有图形中,找出一个和四边形B′MGN 面积相等的四边形.(直接写出其名称,不必证明)2.探究学习:矩形折纸中的数学动手操作:如图1,四边形ABCD 是一张矩形纸片,AB=3cm,AD=4cm,点E,F 分别在AD,BC 边上,连接BE,DF,且BE∥DF。
中考数学复习《折叠问题》真题练习(含答案)
中考数学复习《折叠问题》真题练习(含答案)(2017贵州安顺第7题)如图,矩形纸片ABCD 中,AD =4cm ,把纸片沿直线AC 折叠,点B 落在E处,AE 交DC 于点O ,若AO =5cm ,则AB 的长为( )A .6cmB .7cmC .8cmD .9cm【答案】C .(2017江苏无锡第10题)如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( D )A .2B .54 C .53 D .75(2017新疆乌鲁木齐第9题)如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为43且60,2AFG GE BG ∠==,则折痕EF 的长为( C )A .1B .3 C. 2 D .23(2017重庆A 卷第18题)如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 的中点,则△EMN 的周长是 .(2017河南第15题)如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC∆为直角三角形,则BM 的长为 .【答案】1或212+. (2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. (2017海南第17题)如图,在矩形ABCD 中,AB =3,AD =5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .【答案】35.(2016·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1.(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a(用含a的式子表示).(2016河南)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE 折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为或.(2017甘肃兰州第26题)如图,1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:BDF△是等腰三角形;(2)如图2,过点D作DG BE∥,交BC于点G,连结FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若6AB,8AD,求FG的长.【答案】(1)证明见解析;(2) 152.【解析】试题分析: (1)根据两直线平行内错角相等及折叠特性判断;(2)①根据已知矩形性质及第一问证得邻边相等判断;②根据折叠特性设未知边,构造勾股定理列方程求解.试题解析:(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵FD∥BG,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB =6,AD =8, ∴BD =10. ∴OB =12BD =5. 假设DF =BF =x ,∴AF =AD ﹣DF =8﹣x .∴在直角△ABF 中,AB 2+A 2=BF 2,即62+(8﹣x )2=x 2, 解得x =254, 即BF =254, ∴FO =222522()54BF OB -=-=154,∴FG =2FO =152.(2017浙江金华第23题)如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段_____,_____;:ABCDAEFG S S=矩形 ______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长.(3)如图4,四边形ABCD 纸片满足,,,8,10AD BC AD BC AB BC AB CD <⊥==.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出,AD BC 的长.【答案】(1)(1)AE ;GF ;1:2;(2)13;(3)按图1的折法,则AD =1,BC =7;按图2的折法,则AD =134 ,BC =374. 【解析】试题分析:(1)由图2观察可得出答案为AE ,GF ,由折叠的轴对称性质可得出答案为1:2;(2)由EF 和EH 的长度根据勾股定理可求出FH 的长度,再由折叠的轴对称性质易证△AEH ≌△CGF ;再根据全等三角形的性质可得出AD 的长度;(3)由折叠的图可分别求出AD 和BC 的长度.(3)解:本题有以下两种基本折法,如图1,图2所示.按图1的折法,则AD =1,BC =7. 按图2的折法,则AD =134 ,BC =374.(2015年河南3分)如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 ▲ .【答案】16或45.(2015年江苏泰州3分)如图, 矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP , PE 与CD 相交于点O ,且OE =OD ,则AP 的长为 ▲ .【答案】245. (2015湖北鄂州第8题3分)如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =( )A .B .C .D .【答案】D .(2015•四川自贡,第10题4分) 如图,在矩形ABCD 中,AB 4AD 6==,,E 是AB 边的中点,F 是线段BC边上的动点,将△EBF 沿EF 所在直线折叠得到△'EB F ,连接'B D ‘,则'B D ‘的最小值是 ( A )B 'EDA BCFA . 2102-B .6C .2132-D .4(2015•绵阳第12题,3分)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =( B )A .B .C .D .(2015•四川省内江市,第14题,5分)如图,在四边形ABCD 中,AD ∥BC ,∠C =90°,E 为CD 上一点,分别以EA ,EB 为折痕将两个角(∠D ,∠C )向内折叠,点C ,D 恰好落在AB 边的点F 处.若AD =2,BC =3,则EF 的长为.(2015•浙江滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .【答案】(10,3)。
中考数学专题训练:图形的折叠问题(附参考答案)
中考数学专题训练:图形的折叠问题(附参考答案)1.如图,在平面直角坐标系中,矩形ABCD的边AD=5,OA∶OD=1∶4,将矩形ABCD沿直线OE折叠到如图所示的位置,线段OD1恰好经过点B,点C落在y轴的点C1处,则点E的坐标是( )A.(1,2) B.(-1,2)C.(√5-1,2) D.(1-√5,2)2.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是( )A.30°B.45°C.74°D.75°3.如图,在矩形ABCD中,AB=2,BC=2√5,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连接CF,则cos ∠ECF的值为( )A.23B.√104C.√53D.2√554.把一张矩形纸片ABCD按如图所示方法进行两次折叠,得到等腰直角三角形BEF.若BC=1,则AB的长度为( )A.√2B.√2+12C.√5+12D.435.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC 上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.2076.如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为__________.7.如图,在Rt△ABC纸片中,∠ACB=90°,CD是边AB上的中线,将△ACD沿CD折叠,当点A落在点A′处时,恰好CA′⊥AB.若BC=2,则CA′=_______.8.如图,点E在矩形ABCD的边CD上,将△ADE沿AE折叠,点D恰好落在边BC 上的点F处.若BC=10,sin ∠AFB=45,则DE=_____.9.如图,在扇形AOB中,点C,D在AB⏜上,将CD⏜沿弦CD折叠后恰好与OA,OB 相切于点E,F.已知∠AOB=120°,OA=6,则EF⏜的度数为________;折痕CD 的长为_______.10.如图,在矩形ABCD中,AB=5,AD=4,M是边AB上一动点(不含端点),将△ADM沿直线DM对折,得到△NDM.当射线CN交线段AB于点P时,连接DP,则△CDP的面积为______;DP的最大值为_______.11.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D →A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB′P,连接CB′,则在点P的运动过程中,线段CB′的最小值为_________.12.如图,DE平分等边三角形ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______.13.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若AGGE =73,则tan A=______.14.如图,在等边三角形ABC中,过点C作射线CD⊥BC,点M,N分别在边AB,BC上,将△ABC沿MN折叠,使点B落在射线CD上的点B′处,连接AB′,已知AB=2.给出下列四个结论:①CN+NB′为定值;②当BN=2NC时,四边形BMB′N为菱形;③当点N与C重合时,∠AB′M=18°;④当AB′最短时,MN=7√21.20其中正确的结论是__________.(填序号)15.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(1)如图1,当t=1时,求∠O′QA的大小和点O′的坐标;(2)如图2,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为3√3,则t的值可以是__________________________________________.(请直接写出两个不同....的值即可)16.如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有________.(填序号)①BD=8;②点E到AC的距离为3;③EM=103;④EM∥AC.17.综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM,BM,延长PM交CD于点Q,连接BQ.(1)如图1,当点M在EF上时,∠EMB=________;(填度数)(2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ 的数量关系,并说明理由.参考答案1.D 2.D 3.C 4.A 5.D6. 3√2-3 7.2√3 8.5 9.60°4√6 10.10 2√511.-2 12.√m2+n2 13.3√7714.①②④15.(1)∠O′QA=60°点O′的坐标为(32,√32)(2)O′E=3t-6,其中t的取值范围是2<t<3 (3)3或103(答案不唯一,满足3≤t<2√3即可) 16.①④17.(1)30°(2)∠MBQ=∠CBQ,理由略。
中考数学复习专题之折叠问题
中考数学复习专题之折叠问题1.如图,在矩形ABCD 中,点M 在AB 边上,把BCM ∆沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF EC ⊥,垂足为F ,若1CD =,2CF =,则线段AE 的长为( )A .52-B .31-C .13D .122.如图,直线EF 是矩形ABCD 的对称轴,点P 在CD 边上,将BCP ∆沿BP 折叠,点C 恰好落在线段AP 与EF 的交点Q 处,43BC =,则线段AB 的长是( )A .8B .82C .83D .10 3.如图,将矩形纸片ABCD 折叠,折痕为MN ,点M ,N 分别在边AD ,BC 上,点C ,D 的对应点分别为点E ,F ,且点F 在矩形内部,MF 的延长线交边BC 于点G ,EF 交边BC 于点H .2EN =,4AB =,当点H 为GN 的三等分点时,MD 的长为 .4.如图,对折矩形纸片ABCD ,使得AD 与BC 重合,得到折痕EF ,把纸片展平.再一次折叠纸片,使点A 的对应点A '落在EF 上,并使折痕经过点B ,得到折痕BM ,连接MF ,若MF BM ⊥,6AB cm =,则AD 的长是 cm .5.如图,正方形ABCD 的边长为10,点G 是边CD 的中点,点E 是边AD 上一动点,连接BE ,将ABE ∆沿BE 翻折得到FBE ∆,连接GF ,当GF 最小时,AE 的长是 .6.如图,正方形ABCD 的边长为10,点G 是边CD 的中点,点E 是边AD 上一动点,连接BE ,将ABE ∆沿BE 翻折得到FBE ∆,连接GF ,当GF 最小时,GF 的长是 . 7.如图,四边形ABCD 为矩形,2,3AB AD ==,点E 为边BC 上一点,将DCE ∆沿DE 翻折,点C 的对应点为点F ,过点F 作DE 的平行线交AD 于点G ,交直线BC 于点H .若点G 是边AD 的三等分点,则FG 的长是 .8.如图,在矩形ABCD 中,6AB =,8BC =,对角线AC ,BD 相交于点O ,点P 为边AD 上一动点,连接OP ,以OP 为折痕,将AOP ∆折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F .若PDF ∆为直角三角形,则DP 的长为 .9.如图,在矩形ABCD 中,5AB =,6BC =,点M ,N 分别在AD ,BC 上,且13AM AD =,13BN BC =,E 为直线BC 上一动点,连接DE ,将DCE ∆沿DE 所在直线翻折得到△DC E ',当点C '恰好落在直线MN 上时,CE 的长为 .10.如图,在矩形ABCD 中,3AB =,2BC =,M 是AD 边的中点,N 是AB 边上的动点,将AMN ∆沿MN 所在直线折叠,得到△A MN ',连接A C ',则A C '的最小值是 .11.如图,在Rt ABC ∆的纸片中,90C ∠=︒,5AC =,13AB =.点D 在边BC 上,以AD 为折痕将ADB ∆折叠得到ADB ∆',AB '与边BC 交于点E .若DEB ∆'为直角三角形,则BD 的长是 .12.如图,四边形ABCD 为矩形,23AB =,22AD =,点P 为边AB 上一点,以DP 为折痕将DAP ∆翻折,点A 的对应点为点A ',连接AA ',AA '交PD 于点M ,点Q 为线段BC 上一点,连接AQ ,MQ ,则AQ MQ +的最小值是 .13.如图,将正方形纸片ABCD 沿PQ 折叠,使点C 的对称点E 落在边AB 上,点D 的对称点为点F ,EF 交AD 于点G ,连接CG 交PQ 于点H ,连接CE .下列四个结论中:①PBE QFG ∆∆∽;②CEG CBE CDQH S S S ∆∆=+四边形;③EC 平分BEG ∠;④22EG CH GQ GD -=⋅,正确的是 (填序号即可).14.如图,抛物线212y x bx c =-++与x 轴交于(1,0)A -,B 两点,与y 轴交于点(0,2)C ,连接BC .(1)求抛物线的解析式.(2)点P 是第三象限抛物线上一点,直线PB 与y 轴交于点D ,BCD ∆的面积为12,求点P 的坐标.(3)在(2)的条件下,若点E 是线段BC 上点,连接OE ,将OEB∆沿直线OE 翻折得到OEB '∆,当直线EB '与直线BP 相交所成锐角为45︒,时,求点B '的坐标.15.如图1,抛物线2(0)y ax x c a =++≠与x 轴交于(2,0)A -,(6,0)B 两点,与y 轴交于点C ,点P 是第一象限内抛物线上的一个动点,过点P 作PD x ⊥轴,垂足为D ,PD 交直线BC 于点E ,设点P 的横坐标为m .(1)求抛物线的表达式;(2)设线段PE 的长度为h ,请用含有m 的代数式表示h ;(3)如图2,过点P 作PF CE ⊥,垂足为F ,当CF EF =时,请求出m 的值;(4)如图3,连接CP ,当四边形OCPD 是矩形时,在抛物线的对称轴上存在点Q ,使原点O 关于直线CQ 的对称点O '恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q 的坐标.16.(1)如图1,将矩形ABCD 折叠,使BC 落在对角线BD 上,折痕为BE ,点C 落在点C '处,若46ADB ∠=︒,则DBE ∠的度数为 ︒.(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.【画一画】如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点A ,B 分别落在点A ',B '处,若73AG =,求B D '的长; 【验一验】如图4,点K 在这张矩形纸片的边AD 上,3DK =,将纸片折叠,使AB 落在CK 所在直线上,折痕为HI ,点A ,B 分别落在点A ',B '处,小明认为B I '所在直线恰好经过点D ,他的判断是否正确,请说明理由.17.如图1,折纸做60︒,30︒,15︒的角步骤①:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平.步骤②:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM.同时得到了线段BN.【问题解决】(1)求证:四边形AEFD是矩形;(2)若BM交EF于点O,求证:30∠=︒;ABM【拓展探究】(3)如图2,若点M是射线AD上一个动点,将ABM∆沿BM折叠,使点A的对应点N,连接AN、DN,若5AB=,8∆是等腰三角形时,求AM的长.BC=,当AND18.综合与实践:在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动--折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM(填“是”或“不是”)线段AN的垂直平分线;请判断图中ABN∆是什么特殊三角形?答:;进一步计算出MNE∠=︒;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则GBN∠=︒;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,10AB=,26AD=,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.19.如图,在矩形ABCD中,点M,N分别是边AD,BC上的点,将矩形ABCD沿MN折叠,使点B落在CD边上的点E处(不与点C,D重合),连接BE,过点M作MH BC⊥于点H.(1)如图①,若BC AB=,求证:EBC NMH∆≅∆;(2)如图②,当2BC AB=时.①求证:~EBC NMH∆∆;②若点E为CD的三等分点,请求出AMBN的值.参考答案1.解:BC CE =,90EDC CFB ∠=∠=︒,DEC BCF ∠=∠, ()EDC CFB AAS ∴∆≅∆,2DE CF ∴==,CE BC AD ∴====,2AE AD DE ∴=-=,故选:A .2.解:四边形ABCD 是矩形,90C ∴∠=︒,由题意得:12BF BC =,//EF AB , ABQ BQF ∴∠=∠,由折叠的性质得:90BQP C ∠=∠=︒,BQ BC =, 90AQB ∴∠=︒,12BF BQ =,30BQF ∴∠=︒,30ABQ ∴∠=︒,在Rt ABQ ∆中,2AB AQ =,BQ == 4AQ ∴=,8AB =;故选:A .3.解:当13HN GN =时,2GH HN =,将矩形纸片ABCD 折叠,折痕为MN , MF MD ∴=,CN EN =,90E C D MFE ∠=∠=∠=∠=︒,DMN GMN ∠=∠,//AD BC , 90GFH ∴∠=︒,DMN MNG ∠=∠,GMN MNG ∴∠=∠,MG NG ∴=,90GFH E ∠=∠=︒,FHG EHN ∠=∠,FGH ENH ∴∆∆∽, ∴2FG GH EN HN==,24FG EN ∴==, 过点G 作GP AD ⊥于点P ,则4PG AB ==,设MD MF x ==, 则4MG GN x ==+,6CG x ∴=+,6PM ∴=,222GP PM MG +=,22246(4)x ∴+=+,解得:4x =,4MD ∴=; 当13GH GN =时,2HN GH =,FGH ENH ∆∆∽, ∴12FG GH EN HN ==,112FG EN ∴==,1MG GN x ∴==+, 3CG x ∴=+,3PM ∴=,222GP PM MG +=,22243(1)x ∴+=+,解得:4x =,4MD ∴=;故答案为:4或4.4.解:四边形ABCD 为矩形,6AB cm =,90A ∴∠=︒, 由折叠性质可得:3BE DF cm ==,6A B AB cm '==,90A EB ∠'=︒,ABM A BM ∠=∠', 在Rt △A BE '中,2A B BE '=,30BA E ∴∠'=︒60A BE ∴∠'=︒,30ABM ∴∠=︒,60AMB ∠=︒, 3tan306233AM AB cm ∴=︒⋅=⨯=,M F BM ⊥,90BMF ∴∠=︒, 30DMF ∴∠=︒,60DFM ∴∠=︒,在Rt DMF ∆中,tan 603333MD DF cm =︒⋅=⨯=, 233353AD AM DM cm ∴=+=+=.故答案为:53.5.解:将ABE ∆沿BE 翻折得到FBE ∆,10BF BA ∴==, ∴点F 在以B 为圆心,10为半径的圆上运动,∴当点G 、F 、B 三点共线时,GF 最小, 连接EG ,设AE x =,由勾股定理得,55BG =,EDG ABE EBG ABGD S S S S ∆∆∆=++梯形, ∴1111(510)105(10)10552222x x x +⨯=⨯⨯-+⨯+⨯,解得555x =, 555AE ∴=,故答案为:555.6.解:正方形ABCD 的边长为10,90C A ∴∠=∠=︒,10BC CD ==, 点G 是边CD 的中点,5CG DG ∴==,2255BG BC CG ∴=+ 将ABE ∆沿BE 翻折得到FBE ∆,10BF BA ∴==, ∴点F 在以B 为圆心,10为半径的圆上运动,∴当点G 、F 、B 三点共线时,GF 最小,5510GF BG BF ∴=-=.故答案为:5510-.7.解:①如图,过点E 作EM GH ⊥于点M ,//DE GH ,//AD BC ,∴四边形HEDG 是平行四边形,∴113HE GD AD ===,折叠, FED CED ∴∠=∠,90MED ∠=︒,即90FEM FED ∠+∠=︒, 90CED HEM ∴∠+∠=︒,HEM FEM ∴∠=∠,90EMF EMH ∠=∠=︒,ME ME =,()HEM FEM ASA ∴∆≅∆, HM M F ∴=,1EF HE ==,1EF EC ∴==,四边形ABCD 是矩形, ∴90,2C DC AB ∠=︒==,Rt EDC ∆中,2222(2)13DE DC EC +=+=, ∴3GH DE ==,ME HG ⊥,//HG DE ,∴1122DEF DEC S ME DE S DC EC ∆∆=⨯==⨯, ∴2163DC EC ME DE ⨯⨯==Rt HME ∆中,222631()3HM HE ME --, ∴232333FG HG HF HG HM =-=-=-, ②如图,当113AG AD ==时,同理可得312HE GD AD AG ==-=-=,2EC EF HE ===, ∴222(2)6DE =+=,∴222336DC EC ME DE ⨯⨯===, Rt HME ∆中,222223262()33HM HE ME =-=-=, ∴4662633FG HF HG HM HG =-=-=-=,故答案为:33或63. 8.解:如图1,当90DPF ∠=︒时,过点O 作OH AD ⊥于H ,四边形ABCD 是矩形,BO OD ∴=,90BAD OHD ∠=︒=∠,8AD BC ==, //OH AB ∴,∴12OH HD OD AB AD BD ===, 132OH AB ∴==,142HD AD ==, 将AOP ∆折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F , 45APO EPO ∴∠=∠=︒,又OH AD ⊥,45OPH HOP ∴∠=∠=︒,3OH HP ∴==,1PD HD HP ∴=-=;当90PFD ∠=︒时,6AB =,8BC =,22366410BD AB AD ∴=++=, 四边形ABCD 是矩形,5OA OC OB OD ∴====,DAO ODA ∴∠=∠,将AOP ∆折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F , 5AO EO ∴==,PEO DAO ADO ∠=∠=∠,又90OFE BAD ∠=∠=︒, OFE BAD ∴∆∆∽,∴OF OEAB BD=,∴5610OF =,3OF ∴=,2DF ∴=, PFD BAD ∠=∠,PDF ADB ∠=∠, PFD BAD ∴∆∆∽,∴PD DF BD AD =,∴2108PD =,52PD ∴=,综上所述:52PD =或1,故答案为52或1. 9.解:四边形ABCD 是矩形,5DC AB ∴==,90A ∠=︒,6AD BC ==, 123AM AD ==,123BN BC ==,AM BN ∴=,//AM BN ,∴四边形ABNM 的矩形,90NMA NMD ∴∠=∠=︒,5MN AB ==,将DCE ∆沿DE 所在直线翻折得到△DC E ', 5DC DC ∴'==,C E CE '=,2AM =,624DM AD AM ∴=-=-=,如图1,在Rt △C MD '中,2222543C M DC DM ''-=-, 532C N MN C M ∴'=-'=-=, 90CDM DCN NMD ∠=∠=∠=︒,∴四边形CDMN 是矩形,4CN DM ∴==,90CNM ∠=︒, 4NE CN CE CE =-=-,在Rt △C NE '中,222NE C N C E +'=',222(4)2CE CE ∴-+=,解得:52CE =. 如图2,在Rt △C MD '中,2222543C M DC DM '='-=-=, 538C N MN C M ∴'=+'=+=, 90CDM DCN NMD ∠=∠=∠=︒,∴四边形CDMN 是矩形,4CN DM ∴==,90CNM MNE ∠=∠=︒, 4NE CE CN CE =-=-,在Rt △C NE '中,222NE C N C E +'=',222(4)8CE CE ∴-+=, 解答:10CE =,故答案为:52或10.10.解:四边形ABCD 是矩形,3AB CD ∴==,2BC AD ==,M 是AD 边的中点,1AM MD ∴==将AMN ∆沿MN 所在直线折叠,1AM A M '∴==∴点A '在以点M 为圆心,AM 为半径的圆上,∴如图,当点A '在线段MC 上时,A C '有最小值,2210MC MD CD =+A C ∴'的最小值101MC MA '=-=-故答案为:101-11.解:在Rt ABC ∆中,222213512BC AB AC =-=-=,(1)当90EDB ∠'=︒时,如图1,过点B '作B F AC '⊥,交AC 的延长线于点F , 由折叠得:13AB AB ='=,BD B D CF ='=,设BD x =,则B D CF x '==,12B F CD x '==-,在Rt AFB ∆'中,由勾股定理得:222(5)(12)13x x ++-=,即:270x x -=,解得:10x =(舍去),27x =, 因此,7BD =.(2)当90DEB ∠'=︒时,如图2,此时点E 与点C 重合,由折叠得:13AB AB ='=,则1358B C '=-=,设BD x =,则B D x '=,12CD x =-, 在Rt △B CD '中,由勾股定理得:222(12)8x x -+=,解得:263x =, 因此263BD =.故答案为:7或263.12.解:如图,作点A 关于BC 的对称点T ,取AD 的中点R ,连接BT ,QT ,RT ,RM ,MT .四边形ABCD 是矩形,90RAT ∴∠=︒,2AR DR ==243AT AB ==,2222(2)(43)52RT AR AT ∴+=+,A ,A '关于DP 对称,AA DP ∴'⊥,90AMD ∴∠=︒,AR RD =,12RM AD ∴=MT RT RM -,42MT ∴, MT ∴的最小值为QA QM QT QM MT +=+,42QA QM ∴+QA QM ∴+的最小值为13.解:①四边形ABCD 是正方形,90A B BCD D ∴∠=∠=∠=∠=︒. 由折叠可知:90GEP BCD ∠=∠=︒,90F D ∠=∠=︒.90BEP AEG ∴∠+∠=︒, 90A ∠=︒,90AEG AGE ∴∠+∠=︒, BEP AGE ∴∠=∠.FGQ AGE ∠=∠,BEP FGQ ∴∠=∠.90B F ∠=∠=︒, PBE QFG ∴∆∆∽.故①正确;②过点C 作CM EG ⊥于M , 由折叠可得:GEC DCE ∠=∠,//AB CD ,BEC DCE ∴∠=∠,BEC GEC ∴∠=∠, 在BEC ∆和MEC ∆中,90B EMC BEC GEC CE CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()BEC MEC AAS ∴∆≅∆.CB CM ∴=,BEC MEC S S ∆∆=.CG CG =,Rt CMG Rt CDG(HL)∴∆≅∆,CMG CDG S S ∆∆∴=, CEG BEC CDG BEC CDQH S S S S S ∆∆∆∆∴=+>+四边形,∴②不正确;③由折叠可得:GEC DCE ∠=∠,//AB CD ,BEC DCE ∴∠=∠,BEC GEC ∴∠=∠,即EC 平分BEG ∠.∴③正确; ④连接DH ,MH ,HE ,如图,BEC MEC ∆≅∆,CMG CDG ∆≅∆,BCE MCE ∴∠=∠,MCG DCG ∠=∠, 1452ECG ECM GCM BCD ∴∠=∠+∠=∠=︒,EC HP ⊥,45CHP ∴∠=︒.45GHQ CHP ∴∠=∠=︒.由折叠可得:45EHP CHP ∠=∠=︒,EH CG ∴⊥.222EG EH GH ∴-=. 由折叠可知:EH CH =.222EG CH GH ∴-=.CM EG ⊥,EH CG ⊥,90EMC EHC ∴∠=∠=︒,E ∴,M ,H ,C 四点共圆,45HMC HEC ∴∠=∠=︒. 在CMH ∆和CDH ∆中,CM CD MCG DCG CH CH =⎧⎪∠=∠⎨⎪=⎩,()CMH CDH SAS ∴∆≅∆.45CDH CMH ∴∠=∠=︒, 90CDA ∠=︒,45GDH ∴∠=︒,45GHQ CHP ∠=∠=︒,45GHQ GDH ∴∠=∠=︒. HGQ DGH ∠=∠,GHQ GDH ∴∆∆∽,∴GQ GHGH GD=.2GH GQ GD ∴=⋅. 22GE CH GQ GD ∴-=⋅.∴④正确;综上可得,正确的结论有:①③④.故答案为:①③④. 14.解:(1)将(1,0)A -,(0,2)C 代入212y x bx c =-++,∴2102c b c =⎧⎪⎨--+=⎪⎩,解得322b c ⎧=⎪⎨⎪=⎩,213222y x x ∴=-++;(2)令0y =,则2132022x x -++=,解得1x =-或4x =,(4,0)B ∴,4OB ∴=,14(2)122BCD S OD ∆∴=⨯⨯+=,4OD ∴=,(0,4)D ∴-,设直线BD 的解析式为y kx b =+, ∴440b k b =-⎧⎨+=⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,联立方程组2413222y x y x x =-⎧⎪⎨=-++⎪⎩,解得37x y =-⎧⎨=-⎩或40x y =⎧⎨=⎩, (3,7)P ∴--;(3)如图1,当B '在第一象限时,设直线BC 的解析式为y k x b ''=+,∴240b k b '=⎧⎨''+=⎩,解得122k b ⎧'=-⎪⎨⎪'=⎩,122y x ∴=-+,设1(,2)2E t t -+,OH t ∴=,122EH t =-+,(0,4)D -,(4,0)B ,OB OD ∴=,45ODB ∴∠=︒,直线EB '与直线BP 相交所成锐角为45︒,//EB CD '∴,由折叠可知,4OB BO '==,BE B E '=,在Rt OHB '∆中,B H '11(2)222B E t t '∴-+-,122BE t ∴-,在Rt BHE ∆中,222112)(4)(2)22t t t -=-+-+,解得t =,04t,t ∴,B '∴; 如图2,当B '在第二象限,45BGB '∠=︒时,45ABP ∠=︒,//B G x '∴轴,将OEB ∆沿直线OE 翻折得到OEB '∆,BE B E '∴=,OB OB '=,BOE B OE '∠=∠,BOE B EO '∴∠=∠,//B E B O ''∴,B E BO '=,∴四边形B OBE '是平行四边形,4B E '∴=,1(4,2)2B t t '∴--+,由折叠可知4OB OB '==,∴平行四边形OBEB '是菱形,BE OB ∴=,∴4=,解得4t =4t =-, 04t,4t ∴=-(B '∴; 综上所述:B '的坐标为或(. 方法2:在Rt BCO ∆中,BC =::1:2CO OB BC =,BP 与x 轴和y 轴的夹角都是45︒,BP 与B E '的夹角为45︒,//B E x '∴轴或//B E y '轴,当//B E y '轴时,延长B E '交x 轴于F ,B F OB '∴⊥,CBA OB E '∠=∠,∴△OB F CBO '∆∽, ::1:2:5OF FB B O ''∴=,4OB OB '==,455FO ∴=,855B F '=,45(5B '∴,85)5; 当//B E x '轴时,过B '作B F x '⊥中交于F , B F OF '∴⊥,//B E OB ',B E '和BE 关于OE 对称,OB 和OB '关于OE 对称,//BE OB '∴,FOB OBC '∠=∠,∴△OB F BCO '∆∽, ::1:2:5B F FO OB ''∴=,4OB OB '==,455B F '∴=,855OF =,85(5B '∴-,45)5;综上所述:B '坐标为45(5,85)5或85(5-,45)5.15.解:(1)抛物线2(0)y ax x c a =++≠与x 轴交于(2,0)A -,(6,0)B 两点, ∴4203660a c a c -+=⎧⎨++=⎩,解得:143a c ⎧=-⎪⎨⎪=⎩,∴抛物线的表达式为2134y x x =-++;(2)抛物线2134y x x =-++与y 轴交于点C ,(0,3)C ∴,设直线BC 的解析式为y kx b =+,把(6,0)B 、(0,3)C 代入,得:603k b b +=⎧⎨=⎩,解得:123k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为132y x =-+,设点P 的横坐标为m ,则21(,3)4P m m m -++,1(,3)2E m m -+,2211133(3)4242h m m m m m ∴=-++--+=-+,点P 是第一象限内抛物线上的一个动点, 06m ∴<<,213(06)42h m m m ∴=-+<<;(3)如图,过点E 、F 分别作EH y ⊥轴于点H ,FG y ⊥轴于点G ,21(,3)4P m m m -++,1(,3)2E m m -+,21342PE m m ∴=-+,PF CE ⊥,90EPF PEF ∴∠+∠=︒,PD x ⊥轴,90EBD BED ∴∠+∠=︒,又PEF BED ∠=∠,EPF EBD ∴∠=∠,90BOC PFE ∠=∠=︒, BOC PFE ∴∆∆∽,∴EF OCPE BC=,在Rt BOC ∆中,22226335BC OB OC =++ 2213513))424235OC EF PE m m m m BC ∴=⨯=-+=-+, EH y ⊥轴,PD x ⊥轴,90EHO EDO DOH ∴∠=∠=∠=︒,∴四边形ODEH 是矩形,EH OD m ∴==,//EH x 轴,CEH CBO ∴∆∆∽,∴CE BCEH OB=,即35CE m ,52CE m ∴=,CF EF =,1524EF CE m ∴==, ∴25513()4542m m m =-+,解得:0m =或1m =,06m <<,1m ∴=; (4)抛物线2134y x x =-++,∴抛物线对称轴为直线1212()4x =-=⨯-, 点Q 在抛物线的对称轴上,∴设(2,)Q t ,设抛物线对称轴交x 轴于点H ,交CP 边于点G ,则3GQ t =-,2CG =,90CGQ ∠=︒,①当点O '恰好落在该矩形对角线OP 所在的直线上时,如图,则CQ 垂直平分OO ',即CQ OP ⊥,90COP OCQ ∴∠+∠=︒, 又四边形OCPD 是矩形,4CP OD ∴==,3OC =,90OCP ∠=︒, 90PCQ OCQ ∴∠+∠=︒,PCQ COP ∴∠=∠,4tan tan 3CP PCQ COP OC ∴∠=∠==, ∴4tan 3GQ PCQ CG =∠=,∴3423t -=,解得:13t =,1(2,)3Q ∴;②当点O '恰好落在该矩形对角线CD 上时,如图,连接CD 交GH 于点K ,点O 与点O '关于直线CQ 对称,CQ ∴垂直平分OO ', OCQ DCQ ∴∠=∠,//GH OC ,CQG OCQ ∴∠=∠,DCQ CQG ∴∠=∠,CK KQ ∴=,C 、P 关于对称轴对称,即点G 是CP 的中点,////GH OC PD ,∴点K 是CD 的中点,3(2,)2K ∴,32GK ∴=,32CK KQ t ∴==-,在Rt CKG ∆中,222CG GK CK +=,222332()()22t ∴+=-,解得:11t =(舍去),21t =-,(2,1)Q ∴-; ③当点O '恰好落在该矩形对角线DC 延长线上时,如图,过点O '作O K y '⊥轴于点K ,连接OO '交CQ 于点M ,点O 与点O '关于直线CQ 对称,CQ ∴垂直平分OO ', OCM O CM ∴∠=∠',90OMC O MC ∠=∠'=︒,3O C OC '==, 90O KC DOC ∠'=∠=︒,O CK DCO ∠'=∠,∴△O CK DCO '∆∽,∴O K CK CO OD CO CD ''==,即3435O K CK '==,125O K ∴'=,95CK =,924355OK OC CK ∴=+=+=, 12(5O ∴'-,24)5,点M 是OO '的中点,6(5M ∴-,12)5,设直线CQ 的解析式为y k x b ='+',则612553k b b ⎧-'+'=⎪⎨⎪'=⎩,解得:123k b ⎧'=⎪⎨⎪'=⎩,∴直线CQ 的解析式为132y x =+,当2x =时,12342y =⨯+=, (2,4)Q ∴;综上所述,点Q 的坐标为1(2,)3或(2,1)-或(2,4).16.解:(1)如图1中,四边形ABCD 是矩形,//AD BC ∴,46ADB DBC ∴∠=∠=︒, 由翻折不变性可知,1232DBE EBC DBC ∠=∠=∠=︒,故答案为23.(2)【画一画】,如图2中,【算一算】如图3中, 73AG =,9AD =,720933GD ∴=-=, 四边形ABCD 是矩形,//AD BC ∴,DGF BFG ∴∠=∠,由翻折不变性可知,BFG DFG ∠=∠,DFG DGF ∴∠=∠,203DF DG ∴==,4CD AB ==,90C ∠=︒, ∴在Rt CDF ∆中,22163CF DF CD =-=,113BF BC CF ∴=-=, 由翻折不变性可知,113FB FB ='=,2011333DB DF FB ∴'=-'=-=. 【验一验】如图4中,小明的判断不正确.理由:连接ID ,在Rt CDK ∆中,3DK =,4CD =,22345CK ∴=+=, //AD BC ,DKC ICK ∴∠=∠,由折叠可知,90A B I B ∠''=∠=︒,90IB C D ∴∠'=︒=∠,CDK ∴∆∽△IB C ', ∴CD DK CK IB B C IC =='',即435IB B C IC=='', 设3CB k '=,4IB k '=,5IC k =,由折叠可知,4IB IB k ='=,459BC BI IC k k ∴=+=+=,1k ∴=,5IC ∴=,4IB '=,3B C '=, 在Rt ICB ∆'中,3tan 4CB B IC IB '∠'==',连接ID ,在Rt ICD ∆中,4tan 5DC DIC IC ∠==, tan tan B IC DIC ∴∠'≠∠, B I ∴'所在的直线不经过点D .17.(1)证明:四边形ABCD 是矩形,AB CD ∴=,//AB CD ,90A ∠=︒,AE EB =,DF FC =,AE DF ∴=,//AE DF ,∴四边形AEFD 是平行四边形,90A ∠=︒,∴四边形AEFD 是矩形;(2)证明:如图2,设BM 与EN 交于点O ,四边形AEFD 是矩形,EF 是折痕,////EF AD BC ∴,ONB CBN ∴∠=∠,BE AE =,BO OM ∴=,由翻折可知,90MNB A ∠=∠=︒,OM OB ON ∴==,OBN ONB ∴∠=∠,OBN CBN ABM ∴∠=∠=∠, 90ABC ∠=︒,30ABM ∴∠=︒;(3)解:如图31-中,当NA ND =时,连接BN ,过点N 作NH AD ⊥于H 交BC 于F .NA ND =,NH AD ⊥,4AH HD ∴==,90BAH ABF AHF ∠=∠=∠=︒, ∴四边形ABFH 是矩形,4BF AH ∴==,5AB FH ==,90BFN ∴∠=︒,5BN BA ==,223FN BN BF ∴=-=,532HN HF FN ∴=-=-=,90ABM AMB ∠+∠=︒,90NAH AMB ∠+∠=︒,ABM NAH ∴∠=∠,90BAM AHN ∠=∠=︒,ABP HAM ∴∆∆∽,∴AM AB HN AH =,∴524AP =,52AP ∴=; 如图32-中,当AN AD =时,连接BN ,设BM 交AN 于F .8AD AN ==,5BA BN ==,BF AN ⊥,4AF FN ∴==,223BF AB AF ∴=-=,tan AP AF ABF AB BF ∠==, ∴453AP =,203AP ∴=; 如图33-中,当DA DN =时,因为BD 是线段AN 的垂直平分线,BM 也是线段AN 的垂直平分线,所以,BM 与BD 重合,所以点M 与点D 重合,8AM =;如图34-中,当NA ND =时,连接BN ,过点N 作NH AD ⊥于H 交BC 于F . 5BN =,4BF =,3FN ∴=,358NH =+=,由ABM HAN ∆∆∽,∴AM AB HN AH =,∴584AM =,10AM ∴=, 综上所述,满足条件的AM 的值为52或203或8或10. 18.解:(1)如图①对折矩形纸片ABCD ,使AD 与BC 重合,EF ∴垂直平分AB ,AN BN ∴=,AE BE =,90NEA ∠=︒,再一次折叠纸片,使点A 落在EF 上的点N 处,BM ∴垂直平分AN ,90BAM BNM ∠=∠=︒,AB BN ∴=,AB AN BN ∴==,ABN ∴∆是等边三角形, 60EBN ∴∠=︒,30ENB ∴∠=︒,60MNE ∴∠=︒, 故答案为:是,等边三角形,60;(2)折叠纸片,使点A 落在BC 边上的点H 处, 45ABG HBG ∴∠=∠=︒,15GBN ABN ABG ∴∠=∠-∠=︒,故答案为:15︒;(3)折叠矩形纸片ABCD ,使点A 落在BC 边上的点A '处, ST ∴垂直平分AA ',AO A O '∴=,AA ST '⊥,//AD BC ,SAO TA O '∴∠=∠,ASO A TO '∠=∠,ASO ∴∆≅△()A TO AAS 'SO TO ∴=,∴四边形ASA T '是平行四边形,又AA ST '⊥,∴四边形SATA '是菱形; (4)折叠纸片,使点A 落在BC 边上的点A '处, AT A T '∴=,在Rt △A TB '中,A T BT '>,10AT AT ∴>-, 5AT ∴>,点T 在AB 上,∴当点T 与点B 重合时,AT 有最大值为10, 510AT ∴<,∴正确的数值为7,9,故答案为:7,9.19.(1)证明:如图①,BE 与MN 的交点记作点O ,由折叠知,90BON ∠=︒, 90CBE BNM ∴∠+∠=︒,MH BC ⊥,90MHN ∴∠=︒,90HMN BNM ∴∠+∠=︒,CBE HMN ∴∠=∠, 四边形ABCD 为矩形,90A ABC C BHM ∴∠=∠=∠=︒=∠, ∴四边形ABHM 是矩形,AB MH ∴=,BC AB =,BC MH ∴=,在EBC ∆和NMH ∆中,C BHM BC MH CBE HMN ∠=∠⎧⎪=⎨⎪∠=∠⎩,()EBC NMH ASA ∴∆≅∆;(2)①证明:同(1)的方法得,C BHM ∠=∠,CBE HMN ∠=∠, EBC NMH ∴∆∆∽;②解:设(0)DE x x =>,点E 为CD 的三等分点, Ⅰ、当2CE DE =时,2CE x ∴=,3CD x =,2BC BA =,6BC x ∴=,同①的方法得,四边形CDMH 是矩形, 3MH CD x ∴==,由①知,EBC NMH ∆∆∽, ∴EC BC NH MH =,∴263x x NH x =,NH x ∴=, 设(0)AM y y =>,同①的方法得,四边形AMHB 是矩形, BH AM y ∴==,BN x y ∴=+,5CN BC BN x y ∴=-=-,由折叠知,EN BN x y ==+, 在Rt ECN ∆中,根据勾股定理得,222CN CE EN +=, 222(5)(2)()x y x x y ∴-+=+,73y x ∴=或0x =(舍去),73AM x ∴=,103BN x y x =+=,∴77310103x AM BN x ==, Ⅱ、当2DE CE =时,同Ⅰ的方法得.3137AM BN =,即710AM BN =或3137.。
中考数学几何图形折叠试题典题及解答
中考数学几何图形折叠试题典题及解答一、题目描述:下面是一道关于几何图形折叠的中考数学试题,请根据给出的图形进行折叠并回答相关问题。
二、题目内容:以下是一些典型的几何图形折叠试题,供同学们考试复习参考。
1. 长方形折叠在平面上给出一张长方形纸片,长为12厘米,宽为6厘米。
折叠该长方形纸片,使得长方形的两个对边重叠,然后再剪掉重叠部分。
请问最后得到的图形是什么?计算它的周长和面积。
解答:将长方形纸片对折,让两条边相重合。
然后沿着重合的边将多余的部分剪掉。
最后得到的图形是一个等边三角形。
它的周长为36厘米(等边三角形的三条边长相等,每条边长为12厘米),面积为36平方厘米(等边三角形的面积公式为:面积=(边长^2)×(根号3)/4)。
2. 圆形折叠给出一张半径为8厘米的圆形纸片,折叠该圆形纸片使得圆心与边上的一点重合,然后再剪掉重叠部分。
请问最后得到的图形是什么?计算它的周长和面积。
解答:将圆形纸片对折,使得圆心与边上的一点重合。
然后沿着重合的边将多余的部分剪掉。
最后得到的图形是一个等腰三角形。
它的周长为2πr+2r(其中r为圆的半径,即8厘米),面积为(r^2)×π(等腰三角形的面积公式为:面积=(底边×高)/2,这里的底边等于2r)。
3. 正方形折叠给出一张边长为10厘米的正方形纸片,折叠该正方形纸片使对边重叠,然后再剪掉重叠部分。
请问最后得到的图形是什么?计算它的周长和面积。
解答:将正方形纸片对折,使得对边重叠。
然后沿着重合的边将多余的部分剪掉。
最后得到的图形是一个等腰梯形。
它的周长为2a+2b(其中a和b分别为梯形的上、下底边,都等于10厘米),面积为((a+b)×h)/2(等腰梯形的面积公式为:面积=(上底+下底)×高/2,这里的高等于10厘米)。
4. 直角三角形折叠给出一张直角三角形纸片,已知直角边长为5厘米,斜边长为8厘米。
折叠该直角三角形纸片,使直角边重叠,然后再剪掉重叠部分。
中考数学折叠典型问题
中考数学折叠典型问题中考数学折叠典型问题一.解答题(共4小题)1.(2009•天津)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.2.已知一个直角三角形AOB,其中∠AOB=90°,OA=2,OB=4.将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)如图1,若折叠后使点B与点O重合,则点D的坐标为_________;(2)如图2,若折叠后使点B与点A重合,求点C的坐标;(3)如图3,若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式.3.(2009•恩施州)如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.(1)用x表示△ADE的面积;(2)求出0<x≤5时y与x的函数关系式;(3)求出5<x<10时y与x的函数关系式;(4)当x取何值时,y的值最大,最大值是多少?4.(2009•长沙)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(﹣3,0)、C(0,),且当x=﹣4和x=2时二次函数的函数值y相等.(1)求实数a,b,c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.中考数学折叠典型问题参考答案与试题解析一.解答题(共4小题)1.(2009•天津)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.分析:(Ⅰ)因为折叠后点B与点A重合,那么BC=AC,可先设出C点的坐标,然后表示出BC,AC,在直角三角形OCA中,根据勾股定理即可求出C点的纵坐标,也就求出了C点的坐标;(Ⅱ)方法同(Ⅰ)用OC表示出BC,B′C然后在直角三角形OB′C中根据勾股定理得出x,y的关系式.由于B′在OA上,因此有0≤x≤2,由此可求出y的取值范围;(Ⅲ)根据(Ⅰ)(Ⅱ)的思路,应该先得出OB″,OC的关系,知道OA,OB的值,那么可以通过证Rt△COB″∽Rt△BOA来实现.∠B″CO和∠CB″D是平行线B″D,OB的内错角,又因为∠OBA=∠CB″D,因此∠B″CO=∠OBA,即CB″∥BA,由此可得出两三角形相似,得出OC,OB″的比例关系,然后根据(1)(2)的思路,在直角三角形OB″C中求出OC的值,也就求出C点的坐标了.解答:解:(Ⅰ)如图①,折叠后点B与点A重合,则△ACD≌△BCD.设点C的坐标为(0,m)(m>0),则BC=OB﹣OC=4﹣m.∴AC=BC=4﹣m.在Rt△AOC中,由勾股定理,AC2=OC2+OA2,即(4﹣m)2=m2+22,解得m=.∴点C的坐标为(0,);(Ⅱ)如图②,折叠后点B落在OA边上的点为B′,∴△B′CD≌△BCD.∵OB′=x,OC=y,∴B'C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2.∴(4﹣y)2=y2+x2,即y=﹣x2+2.由点B′在边OA上,有0≤x≤2,∴解析式y=﹣x2+2(0≤x≤2)为所求.∵当0≤x≤2时,y随x的增大而减小,∴y的取值范围为≤y≤2;(Ⅲ)如图③,折叠后点B落在OA边上的点为B″,且B″D∥OC.∴∠OCB″=∠CB″D.又∵∠CBD=∠CB″D,∴∠OCB″=∠CBD,∵CB″∥BA.∴Rt△COB″∽Rt△BOA.∴,∴OC=2OB″.在Rt△B″OC中,设OB″=x0(x0>0),则OC=2x0.由(Ⅱ)的结论,得2x0=﹣x02+2,解得x0=﹣8±4.∵x0>0,∴x0=﹣8+4.∴点C的坐标为(0,8﹣16).2.已知一个直角三角形AOB,其中∠AOB=90°,OA=2,OB=4.将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)如图1,若折叠后使点B与点O重合,则点D的坐标为(1,2);(2)如图2,若折叠后使点B与点A重合,求点C的坐标;(3)如图3,若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式.分析:(1)由CD为△OAB的中位线,可求D点坐标;(2)设OC=m,由折叠的性质可知,△ACD≌△BCD,则BC=AC=4﹣m,OA=2,在Rt△AOC中,利用勾股定理求m的值;(3)由折叠的性质可知,△B′CD≌△BCD,依题意设OB′=x,OC=y,则B′C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,建立y与x之间的函数关系式.解答:解:(1)由折叠的性质可知,BC=OC,CD⊥OB,则CD为△OAB的中位线,所以D(1,2),故答案为:(1,2);(2)如图2,折叠后点B与点A重合,则△ACD≌△BCD,设C点坐标为(0,m)(m>0),则BC=OB﹣OC=4﹣m,于是AC=BC=4﹣m,在Rt△AOC中,由勾股定理,得AC2=OC2+OA2,即(4﹣m)2=m2+22,解得m=,所以C(0,);(3)如图3,折叠后点BB落在边OA上的点为B′,则△B′CD≌△BCD,依题意设OB′=x,OC=y,则B′C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2,即(4﹣y)2=y2+x2,即y=﹣x2+2,由点B′在边OA上,有0≤x≤2,所以,函数解析式为y=﹣x2+2(0≤x≤2).3.(2009•恩施州)如图,在△ABC中,∠A=90°,BC=10,△ABC的面积为25,点D为AB边上的任意一点(D不与A、B重合),过点D作DE∥BC,交AC于点E.设DE=x,以DE为折线将△ADE翻折(使△ADE落在四边形DBCE所在的平面内),所得的△A'DE与梯形DBCE重叠部分的面积记为y.(1)用x表示△ADE的面积;(2)求出0<x≤5时y与x的函数关系式;(3)求出5<x<10时y与x的函数关系式;(4)当x取何值时,y的值最大,最大值是多少?分析:(1)由于DE∥BC,可得出三角形ADE和ABC相似,那么可根据面积比等于相似比的平方用三角形ABC的面积表示出三角形ADE的面积.(2)由于DE在三角形ABC的中位线上方时,重合部分的面积就是三角形ADE的面积,而DE在三角形ABC中位线下方时,重合部分就变成了梯形,因此要先看0<x≤5时,DE的位置,根据BC的长可得出三角形的中位线是5,因此自变量这个范围的取值说明了A′的落点应该在三角形ABC之内,因此y就是(1)中求出的三角形ADE的面积.(3)根据(2)可知5<x<10时,A′的落点在三角形ABC外面,可连接AA1,交DE于H,交BC于F,那么AH就是三角形ADE的高,A′F就是三角形A′DE的高,A′F就是三角形A′MN的高,那么可先求出三角形A′MN的面积,然后用三角形ADE的面积减去三角形A′MN的面积就可得出重合部分的面积.求三角形A′MN的面积时,可参照(1)的方法进行求解.(4)根据(2)(3)两个不同自变量取值范围的函数关系式,分别得出各自的函数最大值以及对应的自变量的值,然后找出最大的y的值即可.解答:解:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,即S△ADE=x2;(2)∵BC=10,∴BC边所对的三角形的中位线长为5,∴当0<x≤5时,y=S△ADE=x2;(3)5<x<10时,点A′落在三角形的外部,其重叠部分为梯形,∵S△A′DE=S△ADE=x2,∴DE边上的高AH=A'H=x,由已知求得AF=5,∴A′F=AA′﹣AF=x﹣5,由△A′MN∽△A′DE知=()2,S△A′MN=(x﹣5)2.∴y=x2﹣(x﹣5)2=﹣x2+10x﹣25.(4)在函数y=x2中,∵0<x≤5,∴当x=5时y最大为:,在函数y=﹣x2+10x﹣25中,当x=﹣=时y最大为:,∵<,∴当x=时,y最大为:.4.(2009•长沙)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(﹣3,0)、C(0,),且当x=﹣4和x=2时二次函数的函数值y相等.(1)求实数a,b,c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.考点:二次函数综合题;二次函数图象上点的坐标特征;二次函数图象与几何变换.专题:压轴题.分析:(1)由题意和图形可求出函数的表达式;(2)结合抛物线内部几何关系和性质求出t值及P点坐标;(3)假设成立(1)若有△ACB∽△QNB则有∠ABC=∠QBN,寻找相似条件,判断是否满足.解答:解:(1)∵C(0,)在抛物线上∴代入得c=,∵x=﹣4和x=2时二次函数的函数值y相等,∴顶点横坐标x==﹣1,∴,又∵A(﹣3,0)在抛物线上,∴=0由以上二式得a=,b=,c=;(2)由(1)y==∴B(1,0),连接BP交MN于点O1,根据折叠的性质可得:01也为PB中点.设t秒后有M(1﹣t,0),N(1﹣,),O1)设P(x,y),B(1,0)∵O1为P、B的中点可得,,即P()∵A,C点坐标知lAC:y=,P点也在直线AC上代入得t=,即P();(3)假设成立;①若有△ACB∽△QNB,则有∠ABC=∠QBN,∴Q点在x轴上,AC∥QN但由题中A,C,Q,N坐标知直线的一次项系数为:则△ACB不与△QNB相似.②若有△ACB∽△QBN,则有 (1)设Q(﹣1,y),C(0,),A(﹣3,0),B(1,0),N()则CB=2,AB=4,AC=2代入(1)得y=2或.当y=2时有Q(﹣1,2)则QB=4⇒不满足相似舍去;当y=时有Q(﹣1,)则QB=⇒.∴存在点Q(﹣1,)使△ACB∽△QBN.综上可得:(﹣1,).。
(完整版)初中数学中的折叠问题
初中数学中的折叠问题一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC ,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD= 度.2.如图所示,一张矩形纸片沿BC 折叠,顶点A 落在点A ′处,再过点A ′折叠使折痕DE ∥BC ,若AB=4,AC=3,则△ADE 的面积是 .3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积.重合部分是以折痕为底边的等腰三角形321FEDCBAGA'C A B D6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD 按如下的顺序进行折叠:对折,展平,得折痕EF (如图①);延CG 折叠,使点B 落在EF 上的点B ′处,(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′处,(如图④);沿GC ′折叠(如图⑤);展平,得折痕GC ′,GH (如图 ⑥).(1)求图 ②中∠BCB ′的大小;(2)图⑥中的△GCC ′是正三角形吗?请说明理由.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,求四边形BCFE 的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD 折叠,使点B 落在边AD 上 不与A 、D 重合.MN 为折痕,折叠后B ’C ’与DN 交于P .(1)连接BB ’,那么BB ’与MN 的长度相等吗?为什么? (2)设BM =y ,AB ’=x ,求y 与x 的函数关系式; (3)猜想当B 点落在什么位置上时,折叠起来的梯形MNC ’B ’面积最小?并验证你的猜想.54132G D‘F C‘DB CA E二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB 是以折痕AB 为底的等腰三角形12.如图,将一宽为2cm 的纸条,沿BC ,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEAC GDFEAFDBCAEB Ba 2130°B EF AC D本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14.(1)当中线CD 等于a 时,重叠部分的面积等于 ;GEFD AEF DBC A B C 60cm(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;(3)将∠2看作180°-2∠CED ,∠1看作2∠CDE-180°,再根据三角形内角和定理来求.B'C DA B 231E B'CDB A 21图(1)C'ACBDE12C'ABCDE21GC'A BC DE由于等腰三角形是轴对称图形,所以在折叠三角形时常常会出现等腰三角形20.观察与发现:将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
中考数学折叠问题实战解答题
中考折叠问题实战四解答题1.〔XXXX10分〕把一X矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合〔E、F两点均在BD上〕,折痕分别为BH、DG.〔1〕求证:△BHE≌△DGF;〔2〕假设AB=6cm,BC=8cm,求线段FG的长.2.〔XXXX7分〕如图,ABCD是一X边AB长为2、边AD长为1的矩形纸片,沿过点B的折痕将A角翻折,使得点A落在边CD上的点A1处,折痕交边AD于点E.(1)求∠DA1E的大小;(2)求△A1BE的面积.3.〔XX省7分〕如图,直角梯形纸片ABCD中,AD//BC,∠A=90º,∠C=30º.折叠纸片使BC 经过点D,点C落在点E处,BF是折痕,且BF=CF=8.〔1〕求∠BDF的度数;〔2〕求AB的长.4.〔XXXX8分〕如图1,一X矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.〔1〕求证:AG=C′G;〔2〕如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于M,求EM的长.5.〔XXXX8分〕如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.〔1〕求证:△ABE∽△DFEABC D DA MN CBK1 〔2〕假设sin ∠DFE=13,求tan ∠EBC 的值。
6.〔XXXX6分〕如图,将矩形纸片ABCD 按如下顺序进展折叠: 对折、展平, 得折痕EF(如图①); 沿GC 折叠, 使点B 落在EF 上的点B' 处(如图②); 展平, 得折痕GC(如图③); 沿GH 折叠, 使点C 落在DH 上的点C' 处(如图④); 沿GC' 折叠(如图⑤); 展平, 得折痕GC' 、GH(如图⑥)。
(1)求图②中∠BCB' 的大小;(2)图⑥中的△GCC' 是正三角形吗?请说明理由.图⑤A C D GH A'C'图⑥A BCD G H C'图④A BCD GH C'图③A BCDEF G 图②A CD E F GB'ABCDEF 图①7.〔XX 莱芜9分〕:矩形纸片ABCD ,AB =2,BC =3。
中考数学压轴题(六)折叠问题
折叠问题折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质。
轴对称性质-----折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。
压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。
1、(2009年浙江省绍兴市)如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( )A .42°B .48°C .52°D .58°2、(2009湖北省荆门市)如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( )A .40°B .30°C .20°D .10°3、(2009年日照市)将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .4、(2009年衢州)在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为A .9.5B .10.5C .11D .15.55、(2009泰安)如图,在Rt △ABC 中,第2题图 A 'B D A C(第18题图)A CB ∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处, 若CD 恰好与MB 垂直,则tanA 的值 为 .6、(2009年上海市)在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 .7、(2009宁夏) 如图:在Rt ABC △中,90ACB ∠=°,CD 是AB 边上的中线,将ADC △沿AC 边所在的直线折叠,使点D 落在点E 处,得四边形ABCE .求证:EC AB ∥.8、(2009年清远)如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h .(1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?9、(2009恩施市)如图,在ABC △中,9010A BC ABC ∠==°,,△的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE BC ∥,交AC 于点E .设DE x =,以DE 为折线将BC NM AA图3 BMC EC B A DADE △翻折(使ADE △落在四边形DBCE 所在的平面内),所得的A DE '△与梯形DBCE 重叠部分的面积记为y .(1)用x 表示ADE △的面积;(2)求出05x <≤时y 与x 的函数关系式;(3)求出510x <<时y 与x 的函数关系式;(4)当x 取何值时,y 的值最大?最大值是多少?提示:相似、二次函数10、(2009年天津市)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;提示:画出图形,图中性质△ACD ≌△BCD,△BDC ∽△BOA,BC=AC(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;提示:画图,△COB '中由勾股定理得出函数关系式,由x 取值范围确定y 范围。
中考数学压轴题(六)折叠问题
(第18题图)MAC B 折叠问题折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质。
轴对称性质-----折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。
压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多做折叠的选择题填空题,很有必要。
1、(2009年浙江省绍兴市)如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°2、(2009湖北省荆门市)如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( ) A .40° B .30° C .20° D .10°3、(2009年日照市)将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .4、(2009年衢州)在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为 A .9.5 B .10.5 C .11 D .15.5第4题图 第5题图 第6题图 5、(2009泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 .6、(2009年上海市)在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 .7、(2009宁夏) 如图:在Rt ABC △中,90ACB ∠=°,CD 是AB 边上的中线,将ADC △沿AC 边所在的直线折叠,使点D 落在点E 处,得四边形ABCE .求证:EC AB ∥.第2题图A 'BDAC E C 第3题图A 图3B M C8、(2009年清远)如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?9、(2009恩施市)如图,在ABC △中,9010A BC ABC ∠==°,,△的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE BC ∥,交AC 于点E .设DE x =,以DE 为折线将ADE △翻折(使ADE △落在四边形DBCE 所在的平面内),所得的A DE '△与梯形DBCE 重叠部分的面积记为y .(1)用x 表示ADE △的面积;(2)求出05x <≤时y 与x 的函数关系式;(3)求出510x <<时y 与x 的函数关系式; (4)当x 取何值时,y 的值最大?最大值是多少?提示:相似、二次函数10、(2009天津)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;提示:画出图形,图中性质△ACD ≌△BCD,△BDC ∽△BOA,BC=ACB C N M AE A 'D BC AB CA(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;提示:画图,△COB '中由勾股定理得出函数关系式,由x 取值范围确定y 范围。
中考数学复习《折叠问题》
EF 6 72 ∴S△BEF=EG· S△BEG=10×24= 5
14.如图,已知在矩形 ABCD 中,点 E 在边 BC 上,BE=2CE,将矩形 沿着过点 E 的直线翻折后,点 C,D 分别落在边 BC 下方的点 C′,D′处,且 点 C′,D′,B 在同一条直线上,折痕与边 AD 交于点 F,D′F 与 BE 交于点 G.设 AB=t,那么△EFG 的周长为 2 3t .(用含 t 的代数式表示)
13.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE
折叠到DF,延长EF交AB于点G,连结DG,求△BEF的面积. 【解析】由折叠和正方形的性质,在Rt△BEG中,由勾股定理求出AG后再 求△BGE的面积,最后由△BEF与△BGE的面积关系求△BEF的面积.
解:DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°. 又∵DG=DG,∴△ADG≌△FDG(HL).∵正方形 ABCD 的边长为 12, BE=EC,∴BE=EC=EF=6.设 AG=FG=x,则 EG=x+6, BG=12-x,在 Rt△BEG 中,由勾股定理,得 EG2=BE2+BG2, 1 1 即(x+6) =6 +(12-x) ,解得 x=4.∵S△BEG=2· BE· BG=2×6×8=24,
(1)求证:△DEC≌△EDA;
(2)求DF的值; (3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶
点Q落在线段AE上,顶点M,N落在线段AC上,当线段PE的长为何值时,
矩形PQMN的面积最大?并求出其最大值.
解:(1)由矩形的性质可知△ADC≌△CEA,∴AD=CE,DC=EA, ∠ACD=∠CAE.在△DEC 与△EDA 中, CE=AD, ∵DE=ED, ∴△DEC≌△EDA(SSS) DC=EA,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学折叠问题综合训练1、如图,在矩形纸片ABCD 中,AB=12,BC=5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A′处,则AE 的长为________。
2、如图,在△ABC 中,AB=AC ,BC=8,tan ∠C=32,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D,那么BD 的长为_________。
3、如图,在Rt △ABC 纸片中,∠C=90°,AC=BC=4,点P 在AC 上运动,将纸片沿PB 折叠,得到点C 的对应点D (P 在C 点时,点C 的对应点是本身),则折叠过程对应点D 的路径长是________.4、如图,矩形ABCD 中,AB=1,E 、F 分别为AD 、CD 的中点,沿BE 将△ABE 折叠,若点A 恰好落在BF 上,则AD=_______.5、如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE,把∠B 沿AE 折叠,使点B 落在点B′处.当△CEB′为直角三角形时,BE 的长为_______。
6、如图,在三角形纸片ABC 中,∠C=90°,AC=6,折叠该纸片,使点C 落在AB 边上的D 点处,折痕BE 与AC 交于点E ,若AD=BD ,则折痕BE 的长为_______.7、如图,在Rt △ABC 中,∠B=90°,沿AD 折叠,使点B 落在斜边AC 上,若AB=3,BC=4,则BD=________ 8、.如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A′处,若∠A′BC=15°,则∠A′BD 的度数为_________。
9、如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A ′处,连接A ′C ,则∠BA ′C= _______. 10、如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,将△ABE 沿AE 折叠,使点B 落在AC 上的点B′处,又将△CEF 沿EF 折叠,使点C 落在EB′与AD 的交点C′处.则BC:AB 的值为_________。
11、如图,在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,点D 在AC 上,将△ADB 沿直线BD 翻折后,将点A 落在点E 处,如果AD ⊥ED,那么线段DE 的长为________.12、把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB=3cm ,BC=5cm,第1题第3题第4题第2题第5题第6题 第7题第9题 第8题 第10题第11题则重叠部分△DEF 的面积是_________cm2.13、在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC 的顶点B 、C 的坐标分别是(-1,-1)、(—3,—1),把△ABC 经过连续9次这样的变换得到△A′B′C′,则点A 的对应点A′的坐标是________。
14、如图,在等腰△ABC 中,AB=AC ,∠BAC=50°.∠BAC 的平分线与AB 的中垂线交于点O ,点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是_______.15、如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为________.16、如图所示,沿DE 折叠长方形ABCD 的一边,使点C 落在AB 边上的点F 处,若AD=8,且△AFD 的面积为60,则△DEC 的面积为__________。
17、如图,在Rt △ABC 中,∠ACB=90°,∠B=30°,BC=3.点D 是BC 边上的一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 于点E,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处.当△AEF 为直角三角形时,BD 的长为________。
18、如图,矩形ABCD 中,AB=15cm,点E 在AD 上,且AE=9cm,连接EC,将矩形ABCD 沿直线BE 翻折,点A 恰好落在EC 上的点A′处,则A′C=________cm.19、将矩形纸片ABCD ,按如图所示的方式折叠,点A 、点C 恰好落在对角线BD 上,得到菱形BEDF .若BC=6,则AB 的长为________.20、如图,在△ABC 中,∠C=90°,点D 在AC 上,将△BCD 沿着直线BD 翻折,使点C 落在斜边AB 上的点E 处,DC=5cm ,则点D 到斜边AB 的距离是_______cm . 21、如图,矩形纸片ABCD ,AD=2AB=4,将纸片折叠,使点C 落在AD 上的点E 处,折痕为BF ,则DE=_______. 22、如图,在平面直角坐标系中有一矩形ABCD ,其中A(0,0),B (8,0),D (0,4),若将△ABC 沿AC 所在直线翻折,点B 落在点E 处.则E 点的坐标是________. 23、如图,M 为矩形纸片ABCD 的边AD 的中点,将纸片沿BM 、CM 折叠,使点A 落在A 1处,点D 落在D 1处.若∠A 1MD 1=40°,则∠BMC 的度数为________.第12题第13题第14题第15题第16题 第17题第18题 第19题第20题第21题第22题24、如图,AD 是△ABC 的中线,∠ADC=60°,BC=6,把△ABC 沿直线AD 折叠,点C 落在C′处,连接BC′,那么BC′的长为______。
25、如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C ′处,则折痕BD 的长为_________. 26、如图所示,将边长为2的等边三角形沿x 轴正方向连续翻折2010次,依次得到点P 1,P 2,P 3…P 2010.则点P 2010的坐标是________。
27、如图,一副三角板拼在一起,O 为AD 的中点,AB=a .将△ABO 沿BO 对折于△A′BO ,M 为BC 上一动点,则A′M 的最小值为________.28、矩形纸片ABCD 中,AB=5,AD=4,将纸片折叠,使点B 落在边CD 上的B′处,折痕为AE 、在折痕AE 上存在一点P 到边CD 的距离与到点B 的距离相等,则此相等距离为_________.29、小华将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为_________ ;同上操作,若小华连续将图1的等腰直角三角形折叠n 次后所得到的等腰直角三角形(如图n+1)的一条腰长为________。
30、如图,D 是AB 边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC 上F 处,若∠B=50°,则∠BDF=________度.31如图矩形ABCD 中已知,BC= DC=1,如果将该矩形沿对角线BD 折叠,边BE 落在点F 处,那么图中的阴影部分的面积是__第23题第24题 第25题 第26题第27题 第28题第30题、32已知平面直角坐标系XOY中,点A在批物线上过A点作AB⊥x轴于点B,作AD⊥y轴于点D,将矩形AB0D设对角线对折叠后使得点A的对应点为,重叠部分(阴影)为△BDC(1)求证△BDC是等腰三角形;(2)如果点A的坐标为(1,m)求△DBC的面积。
(3)在(2)的条件下求直线BC的解析式并判断点A的象点A'是否落在已知抛物线上,请说明理由。
33.在矩形ABOD纸片中,AB=7,OB=9,将纸片AB边往下折叠,使角点B与O点重合,角点A与D点重合使得折叠限E,F若将角点B沿OD移动到位置,则E点沿OB移动到位置,F沿DA移动到位置,取交AD 于G。
(1)设O=x O=y ,求y与x的函数关系,并且写出x的值范围。
(2)当x=2时,DG的长是多少?(3)在角点B在OD上移动的过程中是否存在一点使△OB′E′≌△DGB′如果存在,请求出的符合条件的B 点的坐标.如果不存在试说明理由。
34有一矩形纸片ABCD,已知AB=5,BC=13,若将AD边向下翻折,使角点A与角点B重合,且角点D与角点C重合,取角点A新位置为,角点D的新位置为D′,且折痕与AB、OC边的交点为E、F,如图1,当角点A′在BC上滑动时,E、F点的运动位置分别为E′、F′,若BA′=x,其折叠部分图形的面积为S(如图2),求触角点AD在BC上运动时。
折叠部分图形的面积S与x的函数关系。
32(2)∵点A在批物线上。
∴,即A(1, )设C点的坐标为(0,)∵在Rt△ABD中,∴∠ABD=300,∠CBO=300,∴∴(3)设BC的直线解析式为,∴点B(1,0)C(0,)在直线上故对折叠关系可知∠∠90°过作X轴的垂线AE 垂足为E。
则∴把代入抛物线方程得,当时A点在抛物线上33(1)设0=y 则=9-y ∴则,即所求函数为: 0≤x≤7 (2)当x=2时,又∵当x=2时,则D=5。
同时可证∽∴,∴,即,(3)存在。
∵在∽条件下,当=时,△OB′E′与△DGB′全等,即当时,有,,,即或,而无意义,∴当时,,,,,,∴△OB′E′≌△DGB设,则设,,又可证:△∽△故可得,即,又可证:∽△可得:,即,当与D点重合(如图3)时,可由:,∵即:由当x=25时AG无意义舍去,∴x=1。
∴当O≤x≤1时,,其中,∴S影=当时,,(如图1)当时,=16.9(如图3) 当1≤x≤5时,过F′作点BC的垂线垂足为H (如图4)当时,(如图3)当时,(如图5)当5≤≤13时,过F′作点BC的垂线垂足为H′,可证,∴又∵,,设,则。
于是得:,∴,∴.∴当时,(如图5)当时(如图7)∴综上:。