表面积变化教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《表面积的变化》教案
教学内容:五年级第二学期“长方体和正方体表面积的变化”。基础分析:
1.教材分析:本课的教学内容是建立在学生已有的认知结构上。学生已经掌握了长方体和正方体的特征及长方体、正方体表面积的计算,在现有的老教材中,没有安排“表面积的变化”的例题教学,课后练习安排也甚少。但是,我觉得这部分的内容在生活中相当实用,因此增加了本节课的教学内容。本课的主要任务是研究几个相同的正方体(或长方体)拼起来,得到的立体图与原来几个正方体(长方体)表面积之和的关系,发现并理解其中的变化规律,培养空间观念,解决物品的包装问题。
2.学情分析:类似包装的问题学生在日常生活中经常遇到,本节课创设了“包装巧克力”的情境,使学生综合应用表面积等知识来讨论如何包装最省包装纸的问题,感受数学与实际生活的密切联系,体验解决问题策略的多样化,发展优化思想,提高解决实际问题的能力。
教学目标:
1.利用表面积等有关知识,探索并发现多个相同正方体、长方体叠放后表面积的变化规律,并能运用发现的规律解决一些简单的实际问题。
2.在操作、观察、分析、讨论等活动中,进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。
3.通过解决物品包装设计问题,进一步增强应用数学意识,体验解决问题的基本过程、方法与策略的多样化,发展优化思想。
4.激发主动探究的欲望,感受学习愉悦,逐渐养成独立思考、合作互助的习惯。
教学重难点及解决措施:
教学重点:运用发现的表面积的变化规律,解决简单的实际问题。
教学难点:探索长方体、正方体表面积的变化规律。
解决措施:从学生已有的经验出发,倡导教师为主导,学生为主体。通过实践操作、小组讨论等形式,充分调动学生学习的积极性,引导学生思考问题,让学生在实际操作与问题情境中,逐步探寻表面积的变化规律,并能运用规律解决实际问题。
教学准备:
1.合理分组,明确分工,强调合作。
2.以小组为单位,每小组准备若干个正方体的学具和若干个长方体的物品。
信息技术应用:多媒体课件
依据的理论:
根据五年级学生的年龄、心理、认知规律特点,遵循数学来源于生活,又运用于生活的原则,从学生已有的经验出发,倡导教师为主导,学生为主体,思维训练和语言表达为主线。以学生发展为本,进行探究性学习,培养学生的创新精神和实践能力。教学过程:
一、情境导入激发兴趣
问题引人:在日常生活中,当我们购买数量较多的同种物品时,往往就会选择已经包装好的组装产品。现在有一个厂家准备进行巧克力的促销活动,“买一送一”,要将2盒巧克力用纸包成一包。想设计最省纸的包装方法,怎样解决?有什么奥秘?
揭示课题:表面积的变化
【联系生活实际,激发学生探究欲望,对数学问题产生浓厚的兴趣,有利于学生积极主动地学习数学,寻找数学信息,探究数学问题。】
二、自主探究发现规律
(一)探究两个正方体拼成长方体后表面积的变化情况
1.动手操作,仔细观察
把两个体积是1立方厘米的正方体拼成一个长方体。仔细观察拼成后的长方体与原来两个正方体的体积、表面积各有什么变化?
2.小组讨论,发现规律
3.全班交流,得出结论
估计学生可能的发现:
A、体积没有发生变化。
B、两个正方体拼成一个长方体后,表面积减少了原来2个正方形面的面积。
(板书:每重叠1次减少2个面)
C、拼成的长方体的表面积比原来两个正方体的表面积之和减少了2平方厘米。
【通过动手操作,引导学生用两个相同的正方体拼出的长方体,体验到两个正方体拼成长方体后表面积减少了原来两个面的面积。】
(二)探究用若干个相同的正方体拼成大长方体后表面积的变化情况
1.仔细观察发现,完成表格填写
将3个、4个、5个的1立方厘米的正方体拼成一个长方体。仔细观察拼成后的长方体与原来几个正方体的体积、表面积又各有什么变化?(可以直接展开想象,也可以通过实物操作)(关注4个有2种拼法)
2.学生完成表格,教师巡视指导
3.结合表格,探讨规律
仔细观察表格中的数据和实物图形,你又有什么新的发现?
(板书:重叠面越多,表面积减少越多)
【进行分层弹性要求,在完成表格时可以直接“展开想象”,也可以通过“实物操作”,引导学生用3个、4个甚至更多个相同的正方体拼成长方体,探索拼成后的长方体的表面积的变化规律。学生自己猜想、操作、探究、验证,找到解决问题的方法。】(三)探究用两个相同的长方体拼成大长方体后表面积的变化情况
1.出示例题:想一想,将两盒巧克力用纸包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?
2.小组合作:讨论包装方法。
3.交流讨论:用2个相同长方体拼成一个大的长方体,你又有什么发现呢?选择哪种方法包装纸最省?为什么?
(交流时课件呈现三种不同的拼法,比较各种方法的表面积)估计学生可能的发现:
A、体积没有变,表面积变了。
B、都比原来减少了2个面的面积,但不同的拼法减少的面积就不同。
C、包装后表面积最小的那一种方法所用的包装纸最省。
(板书:重叠面越大,表面积减少越多)
4.师生共同总结:不管怎样拼,每次都会减少两个长方形面的面积;而减少的面积越大,拼成的大长方体的表面积就越小,这时所用的包装纸就最省。
【引导学生用两个相同的长方体拼成大长方体,体验到不管怎么拼,每次都会减少两个长方形面的面积;而重叠的面积越大,
拼成的大长方体的表面积就越小,这时所用的包装纸就最省。学生在学习过程中通过动手操作、观察思考、合作交流、计算验证等活动,体验并发现物体拼摆过程中表面积的变化规律,提高空间观念的积累水平,引发对数学问题的思考。】
三、运用规律内化新知
教师谈话:刚才我们通过操作发现,几个相同的正方体或长方体,拼成一个较大的长方体,表面积都减少了,而且都有一定的规律。看看谁能运用刚才发现的规律再来解决一些数学问题。
设计包装:将三盒巧克力(买二送一)用纸包成一包,可能有几种不同的包装方法?哪种包装方法用的纸最省?为什么?
1.分组讨论
2.全班交流:估计可能只讲出有3种常见的包装方法,其中的有一种包装方法用纸最省。
3.多媒体呈现:第二种用纸最省的包装方法,两盒横着上下拼,另一盒竖着拼在一起(数据特殊)。
4.观察比较,讨论交流:为什么这两种方法包装纸最省?
5.师生共同总结:拼成的长方体的表面积最小,所用的包装纸最省。在设计包装时要考虑把最大的面重叠起来,就一定要仔细观察图形的特点和数据。
【通过解决包装问题,体验策略的多样化,发展优化思想。增强应用数学意识,体验解决问题的基本过程和方法,提高解决问题的能力。】