不等式的解集-
不等式的解集的定义
不等式的解集的定义不等式的解集是指使不等式成立的数的集合。
在数学中,不等式是指两个数之间的关系,它们可以是大于、小于、大于等于或小于等于。
解集则是不等式中使其成立的数的集合,也就是符合不等式要求的数的范围。
首先我们来看一下简单的不等式解集,比如x > 3。
此时解集为x ∈ (3, +∞),也就是大于3的所有实数。
这个解集表示的是在数轴上以3为分界点,从3开始一直到正无穷的所有实数。
接下来,我们来看一下更复杂的不等式解集。
比如 2x + 5 < 7x - 3,此时我们需要通过一系列的计算和化简来求出解集。
首先我们将所有的x项移到一边,常数项移到另一边,得到 8 < 5x,然后将不等式两边同时除以5,得到 8/5 < x。
因此解集为x ∈ (8/5, +∞)。
这个解集表示的是在数轴上以8/5为分界点,从8/5开始一直到正无穷的所有实数。
还有一类常见的不等式是绝对值不等式。
比如|x - 3| ≤ 2。
对于这种不等式,我们可以将其拆分为两个不等式:x - 3 ≤ 2 和 x - 3 ≥ -2。
解得x ∈ [1, 5]。
这个解集表示的是在数轴上以3为中心点,向左右延伸2个单位的所有实数。
除了线性不等式和绝对值不等式之外,还有其他种类的不等式,比如二次不等式、指数不等式等等。
对于这些不等式,我们需要运用不同的方法和技巧来求解其解集。
不等式的解集是不等式中使其成立的数的集合,它反映了不等式的数学关系及其在数轴上的范围。
求解不等式的解集需要掌握一定的数学知识和运算技巧,对于不同类型的不等式需要采用不同的方法来求解。
不等式的解集求解方法
不等式的解集求解方法不等式是数学中常见的一类问题,涉及到不等关系的确定和解的范围。
本文将介绍一些常见的不等式求解方法,帮助读者更好地理解和应用不等式解集的确定方法。
一、一元不等式的求解方法对于一元不等式,我们可以通过一些基本的规则和性质来确定其解集。
以下是一些常用的方法:1. 图像法:将不等式转化为图像的形式,从图像上确定解集。
例如,对于线性不等式ax + b > 0,可以将其转化为对应的直线ax + b = 0,并确定直线上方的部分为解集。
2. 数轴法:将不等式对应的解集在数轴上表示出来。
例如,对于不等式x > a,可以在数轴上标记点a,并将大于a的部分标记为解集。
3. 区间法:将解集表示为区间的形式。
例如,对于不等式x ∈ (a,b),可以表示解集为开区间(a, b)。
4. 符号法:通过符号的变化来确定不等式的解集。
例如,对于不等式(ax + b)(cx + d) > 0,可以通过判断(ab + cd)的符号来确定解集。
若ab + cd > 0,则解集为x < -b/a 或 x > -d/c;若ab + cd < 0,则解集为 -b/a < x < -d/c。
二、多元不等式的求解方法对于多元不等式,其解集的确定需要考虑到各个变量之间的关系。
以下是一些常见的方法:1. 图形法:将多元不等式转化为在坐标系中的图形,通过观察图形的交点和区域来确定解集。
例如,对于二元不等式系统{ax + by > c,dx + ey > f},可以将其转化为对应的两条直线,并观察两条直线的交点及其相对位置来确定解集。
2. 消元法:通过消去其中一个变量,将多元不等式转化为一元不等式。
例如,对于二元不等式系统{ax + by > c,dx + ey > f},可以通过消去y变量,转化为关于x的不等式,然后再根据一元不等式的求解方法来确定解集。
不等式的解集求解
不等式的解集求解不等式是数学中常见的一种关系表示方法,用来描述数值之间的大小关系。
在数学中,我们经常需要求解不等式的解集,即确定满足不等式条件的数值范围。
本文将探讨不等式的解集求解方法及其在实际问题中的应用。
一、不等式的基本概念不等式是数学中的一种关系符号,表示两个数或两个算式之间的大小关系。
常见的不等式符号包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。
例如,对于不等式2x + 1 > 5,我们需要找出使得此不等式成立的x的取值范围。
二、一元一次不等式的解集求解方法1. 对于一元一次不等式ax + b > 0,其中a、b均为常数,我们可以通过移项和合并同类项的方式求解。
首先,将常数项移动到等号另一侧,得到ax > -b。
然后,根据a的正负性质,可以得到x的取值范围。
a) 当a > 0时,不等式解集为x > -b/a;b) 当a < 0时,不等式解集为x < -b/a。
2. 对于一元一次不等式ax + b < 0,利用与上述同样的方法,我们可以得到不等式解集为x > -b/a和x < -b/a。
3. 类似地,对于一元一次不等式ax + b ≥ 0和ax + b ≤ 0,我们分别可以得到不等式解集为x ≥ -b/a和x ≤ -b/a。
三、一元二次不等式的解集求解方法对于一元二次不等式ax^2 + bx + c > 0,其中a、b、c均为常数,我们需要利用二次函数的图像和一些基本的不等式性质来求解解集。
1. 首先,求出二次函数的零点。
通过将不等式转化为方程,得到零点对应的x值。
记这两个零点为x1和x2,其中x1 < x2。
2. 根据二次函数的开口方向和基本的不等式性质,我们可以分为以下几种情况:a) 当a > 0时,二次函数的图像开口向上,解集为x < x1或x > x2;b) 当a < 0时,二次函数的图像开口向下,解集为x1 < x < x2。
不等式的解集表示
不等式的解集表示在数学的广袤天地中,不等式是一个重要且实用的概念。
而理解不等式的解集表示,对于我们解决数学问题、描述现实世界中的数量关系,都具有至关重要的意义。
首先,我们来明确一下什么是不等式。
不等式是用不等号(大于“>”、小于“<”、大于等于“≥”、小于等于“≤”)连接两个表达式的式子。
例如,2x + 3 > 7 就是一个不等式。
那解集又是什么呢?解集是使不等式成立的未知数的取值集合。
比如说,对于不等式 x > 3,其解集就是所有大于 3 的实数。
接下来,我们探讨一下不等式解集的常见表示方法。
一种常见的表示方法是区间表示法。
区间表示法又分为开区间、闭区间和半开半闭区间。
开区间用小括号“()”表示,例如(3, 5) 表示大于 3 且小于 5 的所有实数。
闭区间用中括号“ ”表示,比如 2, 8 表示大于等于 2 且小于等于8 的所有实数。
半开半闭区间则是一边用小括号,一边用中括号,比如(2, 5 表示大于 2 且小于等于 5 的所有实数。
再来说说集合表示法。
我们可以用花括号“{}”来列举出解集的元素,或者用描述法来表示解集。
例如,不等式 x² 5x + 6 < 0 的解集可以表示为{x | 2 < x < 3},意思是“x 满足 2 < x <3”。
数轴表示法也是非常直观的一种方式。
我们先画出一条数轴,标出原点、正方向和单位长度。
然后,根据不等式的解集,在数轴上相应的区间用实心点或空心点表示边界,并用线段或射线表示解集的范围。
比如,对于不等式x ≥ -1,我们在数轴上先找到-1 这个点,因为是大于等于,所以用实心点表示,然后从这个点向右画一条射线,表示 x 的取值范围是大于等于-1 的所有实数。
不等式解集的表示在解决实际问题中也有广泛的应用。
假设我们有一个问题:一家工厂生产某种产品,每件产品的成本不超过 50 元。
设每件产品的成本为 x 元,那么可以列出不等式x ≤ 50。
其解集就是所有小于等于 50 的实数。
不等式的解集知识点总结
不等式的解集知识点总结不等式是数学中常见的一种关系表达式,用来表示两个数或者两个代数式之间的大小关系。
与等式不同的是,不等式可以包含大于、小于、大于等于、小于等于等多种关系符号。
在解不等式时,我们需要确定不等式的解集,即使不等式成立的取值范围。
下面是一些常见的不等式的解集知识点总结:一、一元一次不等式形如 ax + b > 0、ax + b < 0、ax + b ≥ 0、ax + b ≤ 0 的一元一次不等式,其中 a 和 b 为已知数且a ≠ 0。
我们可以通过以下步骤求解:1. 将不等式转化为等式:ax + b = 0。
2. 根据 a 的正负情况讨论解集:- 当 a > 0 时,解集为 x > -b/a 或 x < -b/a;- 当 a < 0 时,解集为 x < -b/a 或 x > -b/a;- 当a ≥ 0 时,解集为x ≥ -b/a 或x ≤ -b/a;- 当a ≤ 0 时,解集为x ≤ -b/a 或x ≥ -b/a。
二、二次函数不等式形如 ax² + bx + c > 0、ax² + bx + c < 0、ax² + bx + c ≥ 0、ax² + bx + c ≤ 0 的二次函数不等式,其中 a、b 和 c 为已知数且a ≠ 0。
我们可以通过以下步骤求解:1. 将不等式转化为等式:ax² + bx + c = 0。
2. 求出函数的零点或者判别式的值,得到二次函数的凹凸性及与 x 轴的交点情况:- 若判别式 D > 0,函数有两个不同的实根,解集为 x < x₁或 x > x₂;- 若判别式 D = 0,函数有一个重根,解集为 x = x₁;- 若判别式 D < 0,函数无实根,解集为空集;- 当 a > 0 时,函数开口向上,解集为全体实数集;- 当 a < 0 时,函数开口向下,解集为空集。
数学《不等式的解集》教案
数学《不等式的解集》教案一、教学目标:1. 理解不等式及其解集的概念。
2. 掌握各类不等式解集的求法。
3. 领会不等式解集的变形和化简方法。
二、教学内容:1. 不等式及其解集的概念。
2. 一元一次不等式的解集。
3. 一元二次不等式的解集。
4. 绝对值不等式的解集。
5. 分式不等式的解集。
三、教学方法:1. 讲授法。
2. 实例演练法。
3. 规律归纳法。
4. 思维导向法。
四、教学过程:1. 引入:求解不等式是数学中的一个重要问题,该如何求解不等式呢?听说定积分可以解决这个问题。
那么我们首先要了解什么是不等式及其解集。
2. 学习目标:①理解不等式及其解集的概念。
②掌握各类不等式解集的求法。
③领会不等式解集的变形和化简方法。
3. 一元一次不等式的解集:例1. 求解不等式 x - 3 < 7。
解:移项得 x < 10。
所以解集为 (-∞, 10)。
例2. 求解不等式 2x +1 ≥ 5。
解:移项得2x ≥ 4,两边同时除以 2 得x ≥ 2。
所以解集为 [2, +∞)。
4. 一元二次不等式的解集:例3. 求解不等式 x^2 - 3x + 2 > 0。
解:设 f(x) = x^2 - 3x + 2,则 f(1) = 0,f(x) 在 x < 1 时取得负值,在 x > 1 时取得正值,所以解集为(-∞, 1) ∪ (2, +∞)。
例4. 求解不等式 2x^2 - x < 3。
解:设 g(x) = 2x^2 - x - 3,则 g(x) = 0 的两根分别为 x=-1.5 和 x=1,易得 g(x) 在(-∞,-1.5) ∪ (1, +∞) 取负值,在(-1.5,1) 取正值,所以解集为(-1.5,1)。
5. 绝对值不等式的解集:例5. 求解不等式 |x – 4| < 5。
解:若 x < 4,则 4 - x < 5,所以 -1 < x < 9;若x ≥ 4,则 x - 4 < 5,所以 4 < x < 9。
综上所述,解集为(-1, 9)。
不等式的解集
不大于a”.②“x≥a”
(2)在数轴上表示“x≤a”或“x<a”
①解集x≤a,是指表示数a的点 左边 的部分,包括表示数
a 的点在内,这一点
画成
实心圆点 .
②解集x<a,是指表示数a的点
成
空心圆圈 .
左边 的部分,不包括表示数a的点,这一点画
探究点一:利用不等号表示不等式
【例1】 汛期来临,一个工程队要在6天内完成300土方的修渠工程,第一天完成了60
加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,
根据题意,可列出关于x的不等式为
10x-5(20-.x)>160
5.不等式的解集x<3与x≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把 这两个解集表示出来.
解:x<3的解集是小于3的所有数,在数轴上表示出来是空心圆圈; x≤3的解集是小于且等于3的所有数,在数轴上表示出来是实心圆点,包括3这个数.把它 们表示在数轴上为
,71,并利用数轴说明这些
2
【导学探究】
1.在数轴上描出各点,表示出不等式-3≤x<6的解集. 2.在不等式 解集内 的点满足不等式,在不等式 解集外的点不满足不等式.
解:如图所示,满足不等式的数值有-2,0,4.5; 不满足不等式的数值有-4,7.
数轴描点“两注意” (1)一注意方向:分清向左或向右; (2)二注意端点:是否包含各端点.
1.“数x不小于2”是指( B )
(A)x≤2 (B)x≥2 (C)x<2 (D)x>2
2.(2018怀柔模拟)把不等式x≤-2的解集在数轴上表示出来,下列正确的是(
)D
3.若m是非负数,则用不等式表示正确的是(
不等式的解集与表示
不等式的解集与表示不等式是数学中的一种重要的数值关系表达式,用于描述数值之间的大小关系。
不等式的解集指满足不等式的所有实数的集合,解集的表示方法有多种。
本文将从不等式的基本概念入手,详细介绍不等式的解集表示方法。
一、不等式的基本概念不等式是数学中常用的表达式,可以用来表示数值的大小关系。
不等式的一般形式为:a <b (a小于b)a >b (a大于b)a ≤b (a小于等于b)a ≥b (a大于等于b)其中,符号"<"、">"表示严格不等,符号"≤"、"≥"表示非严格不等。
在不等式中,a、b可以是任意实数,也可以是变量或函数。
例如,对于不等式2x + 3 < 7,其中x是变量,解集表示了使得不等式成立的x的取值范围。
二、不等式的解集表示方法1. 集合表示法不等式的解集可以用集合表示法来表示,即将满足不等式的数值或变量放入一个集合中。
例如,对于不等式x > 3,解集可以表示为{x | x > 3},其中“|”表示“使得”的含义。
解集表示了所有大于3的实数。
2. 区间表示法当不等式涉及到连续的数值范围时,可以用区间表示法来表示解集。
- 开区间表示法开区间表示法用小括号表示,例如(3, +∞)表示大于3的所有实数。
- 闭区间表示法闭区间表示法用方括号表示,例如[3, +∞)表示大于等于3的所有实数。
- 半开半闭区间表示法半开半闭区间表示法用一个开括号和一个闭括号表示,例如(3, +∞]表示大于3且小于等于无穷大的所有实数。
3. 图形表示法对于某些简单的不等式,可以使用图形表示法来表示解集。
例如,对于不等式x > 3,可以将其表示为一条从点3开始的无限延伸的射线。
这种表示方法直观清晰,便于理解。
三、不等式的解集的性质不等式的解集有一些基本的性质,包括:1. 解集的包含关系:对于不等式a ≤ b和b ≤ c,解集满足a ≤ c,即解集是传递的。
不等式组解解口诀
不等式组解解口诀
不等式组的解集可以通过以下口诀来求解:
1.同大取大:如果两个不等式的解集都是大于某个数,那么解
集就是两个数中较大的那个。
2.同小取小:如果两个不等式的解集都是小于某个数,那么解
集就是两个数中较小的那个。
3.大小小大中间找:如果两个不等式的解集一个是大于某个数,
一个是小于某个数,那么解集就是两个数中间的数。
4.大大小小无处找:如果两个不等式的解集一个是大于某个数,
一个是小于某个数,且两个数的大小不确定,那么解集为空
集。
需要注意的是,这个口诀只适用于一元一次不等式组的求解。
如果不等式组中含有多个未知数,或者不等式组中含有分式、根式等复杂的表达式,需要使用其他的方法进行求解。
数学教案-不等式的解集
数学教案-不等式的解集一、教学目标1.理解不等式的解集的概念。
2.学会求解一元一次不等式、一元二次不等式及其解集的方法。
3.能够应用不等式的解集解决实际问题。
二、教学重点与难点1.教学重点:不等式的解集的概念,一元一次不等式、一元二次不等式的求解方法。
2.教学难点:不等式解集的表示方法,不等式求解中的技巧。
三、教学过程(一)导入1.复习一元一次方程的解法,引导学生思考:方程的解与不等式的解有什么区别?2.引入不等式的概念,让学生举例说明不等式的解。
(二)探究不等式的解集1.让学生观察几个简单的不等式,如x>2,x<5等,引导学生发现不等式的解是无限多个实数。
2.提问:如何表示不等式的解集?3.引导学生用区间的方式表示不等式的解集,如(2,+∞),(-∞,5)等。
4.举例说明不等式的解集的表示方法,如x3>2,解集为(5,+∞)。
(三)求解一元一次不等式1.介绍一元一次不等式的一般形式:ax+b>c或ax+b<c。
2.演示求解一元一次不等式的过程,如求解x+3>5。
4.让学生独立求解几个一元一次不等式,并分享解题过程。
(四)求解一元二次不等式1.介绍一元二次不等式的一般形式:ax²+bx+c>0或ax²+bx+c<0。
2.演示求解一元二次不等式的过程,如求解x²4>0。
4.让学生独立求解几个一元二次不等式,并分享解题过程。
(五)应用不等式解集解决实际问题1.提出实际问题,如求解某商品的价格范围。
2.引导学生建立不等式模型,求解不等式的解集。
3.让学生应用不等式的解集解决实际问题,并分享解题过程。
(六)课堂小结3.强调不等式解集在实际问题中的应用。
四、课后作业(1)x+2>7(2)3x5<2x+1(3)x²4<02.应用不等式解集解决实际问题:某商店购进一批商品,每件成本为30元,售价为40元,为了盈利,至少要卖出多少件商品?五、教学反思本节课通过引导学生探究不等式的解集,让学生理解不等式的解是无限多个实数,并学会用区间的方式表示解集。
不等式的解集-八年级数学下册课件(北师大版)
导引:当x=-3时,x+4=-3+4=1,所以A错;取一个能使不等式x> 3
2
成立的值,如x=2,代入不等式-2x>-3,发现不等式-2x>-3
不成立,故x=2不是-2x>-3的解,所以x>
3 2
不是不等式-2x>
-3的解集,故B错;不等式x>-5的负整数解只有-1,-2,-3,
-4,共4个,所以C错.
总结
判断一个数值是否是不等式的一个解只需代入验证即可.由于不 等式的解集必须符合两个条件: (1)解集中的每一个数值都能使不等式成立; (2)能够使不等式成立的所有数值都在解集中,因此如果解集内 有一个数能够使不等式不成立或解集外有一个数能够使不等式成 立,那么这个解集就不是这个不等式的解集.
1 判断正误:
(2)如果每根B型号钢丝有以下几种选择:39 cm,42 cm,43 cm, 45 cm,那么哪些合适?哪些不合适?
解:(1)2(2x+1)+2x ≥ 260. (2)分别将x=39,42,43,45代入2(2x+1)+2x ≥260,
可得39 cm,42 cm不合适,43 cm和45 cm这两种 都合适.
3 不等式的解集
(1)不等式x-3>0的解各有多少个?
(2)不等式的解与方程的解有什么不同?
知识点 1 不等式的解与解集
想一想
(1) x=4,5,6,7.2能使不等式x>5成立吗? (2)你还能找出一些使不等式x>5成立的x 的值吗?
1.不等式的解:能使不等式成立的未知数的值,叫做不 等式的解.
解: (1)x-4≥6,x ≥10,解集在数轴上的表示如图: (2)3x-1≤8,x ≤3,解集在数轴上的表示如图:
1 将下列不等式的解集分别表示在数轴上:
(1) x>4;
数学教案-不等式的解集
数学教案-不等式的解集教学建议一、知识结构二、重点、难点分析本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念. 1。
不等式的解与方程的解的意义的异同点相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如,能使不等式成立,那么是不等式的一个解,类似地等也能使不等式成立,它们都是不等式的解,事实上,当取大于的数时,不等式都成立,所以不等式有无数多个解.2。
不等式的解与解集的区别与联系不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.3。
不等式解集的表示方法(1)用不等式表示一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式的解集是.(2)用数轴表示如不等式的解集,可以用数轴上表示4的点的左边部分表示,因为包含,所以在表示4的点上画实心圆.如不等式的解集,可以用数轴上表示4的点的左边部分表示,因为包含,所以在表示4的点上画实心圈。
注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.一、素质教育目标(一)知识教学点1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.2.知道不等式的“解集”与方程“解”的不同点.(二)能力训练点通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.(三)德育渗透点通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.(四)美育渗透点通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.二、学法引导1.教学方法:类比法、引导发现法、实践法.2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.三、重点·难点·疑点及解决办法(一)重点1.不等式解集的概念.2.利用数轴表示不等式的解集.(二)难点正确理解不等式解集的概念.(三)疑点弄不清不等式的解集与方程的解的区别、联系.(四)解决办法弄清楚不等式的解与解集的概念.四、课时安排一课时.五、教具学具准备投影仪或电脑、自制胶片、直尺.六、师生互动活动设计(一)明确目标本节课重点学习不等式的解集,解不等式的概念并会用数轴表示不等式的解集.(二)整体感知通过枚举法来形象直观地推出不等式的解集,再给出不等式解集的概念,从而更准确地让学生掌握该概念.再通过师生的互动学习用数轴表示不等式的解集,从而为今后求不等式组的解集打下良好的基础.(三)教学过程1.创设情境,复习引入(1)根据不等式的基本性质,把下列不等式化成或的形式.① ②(2)当取下列数值时,不等式是否成立?l,0,2,-2。
初二数学不等式的解集知识点总结(优秀4篇)
初二数学不等式的解集知识点总结(优秀4篇)初二数学不等式的解集知识点总结篇一不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
相信上面的知识同学们已经能很好的掌握了,希望同学们在平时认真学习,很好的把每一个知识点掌握。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
点的坐标的性质下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。
反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
不等式与不等式的解集
不等式与不等式的解集不等式是数学中常见的一种数值关系表达方式,它用于描述两个数字或者表达式之间的大小关系。
而不等式的解集则是满足某一不等式的所有实数解的集合。
在解不等式的过程中,我们需要运用一系列的性质和规则来确定解的范围和形式。
本文将介绍不等式的基本概念、解不等式的常用方法和技巧,并通过实例来演示解不等式的过程。
一、不等式的基本概念不等式是数学中一种常见的表达方式,用于描述数值之间的大小关系。
一般形式为a < b或a > b,其中a和b可以是实数或者变量,而不等号可以是小于号(<)、大于号(>)、小于等于号(≤)、大于等于号(≥)中的任意一种。
二、不等式的解集不等式的解集指的是满足不等式条件的所有实数解的集合。
解集可以是一个区间、多个区间的并集、无穷集合或者空集。
解不等式的常用方法和技巧1. 加减法性质:如果a < b,则a + c < b + c;如果a > b,则a - c > b - c。
通过加减法的性质,我们可以将不等式中的常数项移到一边,将变量项移到另一边,从而得到简化后的不等式。
2. 乘除法性质:如果a < b,且c > 0,则ac < bc;如果a < b,且c< 0,则ac > bc;如果a > b,且c > 0,则ac > bc;如果a > b,且c < 0,则ac < bc。
通过乘除法的性质,我们可以将不等式中的系数进行乘除运算,从而得到简化后的不等式。
3. 绝对值不等式:绝对值不等式是一类常见的不等式,形式为|a - b| < c或者|a - b| > c。
在解决绝对值不等式时,我们需要根据具体的不等式条件进行讨论,并结合绝对值的性质进行推导。
4. 平方不等式:平方不等式是一类常见的不等式,形式为a^2 > b或者a^2 < b。
《不等式的解集》课标解读
《不等式的解集》课标解读教材分析本节的主要内容是求不等式的解集、不等式组的解集、绝对值不等式的解集,除此之外还介绍了数轴上的两点之间的距离公式和中点坐标公式的内容.不等式是一种重要的解题手段,求不等式的解集更是学生需要掌握的一项常规技能,是十分重要的一项内容.本节的重点是求不等式的解集,难点是利用绝对值的几何意义求绝对值不等式的解集,突破重点与难点的关键有两点,首先要理解其含义,其次要结合具体实例进行体会,要结合数轴的直观意义去理解.本节内容所涉及的主要数学核心素养有:直观想象、数学抽象、数学运算等. 学情分析对学生而言,前面已经学习了一元一次不等式的解、绝对值的定义,在初中已经掌握了这些内容的基础上,再来学习不等式的解集以及绝对值的几何意义的应用,有了前面的基础,学生学习起来还是比较感兴趣的.学生学习本节内容时可能会在绝对值的几何意义的应用方面感到困难,因此在学习过程中,要多举例,让学生自己尝试探索求解.教学建议不等式是中学学习的主要内容之一,解一元一次不等式主要考查运算能力,是集合知识的应用和巩固,为以后学习不等式内容打下基础,体现了数学运算的数学核心素养.解含有绝对值的不等式的基本思想是去掉绝对值符号,化归为不含绝对值符号的不等式去解,而去绝对值的方法主要有:几何法、分区间讨论法、平方法,本节主要学习几何法和分区间讨论法,体现了直观想象的数学核心素养.由于数轴应用是体现绝对值几何意义的直观载体,因此,在本节教学时可以充分使用信息技术创设教学情境,以利于学生更好地理解绝对值的几何意义. 学科核心素养目标与素养1.结合实例,理解不等式(组)的解集的定义,并会依据不等式的性质探究一元一次不等式(组)的解法过程,达到数学运算核心素养学业质量水平一的层次.2.通过实例,理解||x a <(或||x a >)(0a >)的解法及解集;掌握||ax b c +<与||(0,0)ax b c a c +>≠>的解法,达到数学运算核心素养学业质量水平二的层次.3.能够借助数轴理解两点之间的距离公式和中点坐标公式,达到直观想象核心素养学业质量水平一的层次.情境与问题通过求解简单的一元一次不等式和解简单的含绝对值的方程,体会相关内容,为本节课的学习打下基础.内容与节点解不等式是解决数学问题的重要工具,在很多问题中都有应用,需要熟练掌握.过程与方法1.理解运用由特殊到一般,由具体到抽象,经历用集合符号语言表达不等式解集的过程,发展学生的数学抽象素养.2.理解绝对值的几何意义,体会绝对值的几何意义在解绝对值不等式中的作用,掌握解绝对值不等式的方法,发展学生的数学运算素养.3.通过求解两点之间的距离和中点坐标的过程,掌握相关公式的使用情况,提升直观想象素养.教学重点难点重点1.不等式(组)的解集的定义.2.||x a <(或||x a >)(0a >)的解法及解集.3.||ax b c +<与||(0,0)ax b c a c +>≠>型不等式的解法.难点在解绝对值不等式时,选择合适的方法去掉绝对值的符号.。
不等式的解集表示
不等式的解集表示不等式是数学中常见的一种表示关系的方式。
解集表示了不等式的所有可行解的集合。
在解不等式时,我们需要找到使得不等式成立的变量取值范围。
本文将介绍不等式的解集表示方法以及相关的数学符号和表达方式。
一、不等式的基本概念不等式是用不等号(<、>、≤、≥)表示的数学关系。
解不等式即找出使得不等式成立的变量取值范围。
不等式的解集可以是有限集合,也可以是无限集合。
二、不等式的解集表示方法1. 区间表示法当不等式的解集是一个区间时,可以使用区间表示法来表示。
区间表示法包括开区间、闭区间和半开半闭区间。
其中,开区间用“()”表示,闭区间用“[]”表示,半开半闭区间则一边开一边闭。
例如,解不等式x > 0可以表示为x∈(0, +∞)。
2. 集合表示法当不等式的解集无法用区间表示时,可以使用集合表示法。
集合表示法使用花括号“{}”表示集合,其中逗号“,”表示元素间的分隔,如{x∈R | x > 0}表示实数集合中满足x > 0的元素构成的集合。
3. 图示表示法当不等式的解集比较复杂或者需要直观地表示时,可以使用图示表示法。
图示表示法使用数轴和符号来表示不等式的解集。
例如,解不等式x > 0可以表示为数轴上大于0的部分。
三、不等式的解集表示的简化形式在表示不等式的解集时,我们可以对解进行简化和合并,以使表示更为简洁。
常见的简化形式有:1. 合并相邻区间:当解集中存在相邻的区间时,可以将它们合并成一个区间,如[1, 3]∪(4, 6)可以简化表示为[1, 6)。
2. 去除冗余解:当解集中存在冗余的解时,可以将其去除,如{x∈R | x > 0}∩{x∈R | x > 2}可以简化表示为{x∈R | x > 2}。
四、常见的不等式解集表示示例1. 线性不等式:①解不等式2x + 3 > 0。
解:2x + 3 > 02x > -3x > -3/2解集表示为x∈(-3/2, +∞)。
不等式的解集表示
不等式的解集表示在数学中,不等式是表达数字之间大小关系的一种常见形式。
解不等式意味着要找到使不等式成立的变量取值范围。
为了准确表示不等式的解集,可以使用不同的符号和表示方法。
一、不等式与解集不等式可以分为一元不等式和多元不等式两种情况。
一元不等式只包含一个变量,如x > 2;而多元不等式则涉及多个变量,如x + y > 5。
解不等式意味着找到满足不等式条件的变量取值范围。
例如,对于不等式x > 2,解集可以表示为{x | x > 2},其中“|”表示“使得”,大括号内的表达式x > 2描述了满足条件的变量取值范围。
二、不等式解集的表示方法1. 区间表示法在数轴上,可以使用区间表示法来表示不等式的解集。
对于一元不等式x > 2,解集可以表示为(2, +∞),表示从2开始一直到正无穷大的所有实数。
类似地,对于一元不等式x ≤ 5,解集可以表示为(-∞, 5],表示从负无穷大开始一直到5的闭区间。
2. 集合表示法不等式的解集也可以使用集合表示法来表示。
对于一元不等式x > 2,解集可以表示为{x | x > 2},其中大括号内的表达式x > 2描述了满足条件的变量取值范围。
对于多元不等式,解集可以表示为{(x, y) | x + y > 5},表示满足条件的所有(x, y)值的集合。
这种表示方法更加具体和准确,可以同时考虑多个变量的取值范围。
三、复合不等式解集的表示方法复合不等式由多个不等式组成,解集是满足所有不等式条件的变量取值范围的交集。
对于复合不等式系统,可以使用上述的区间表示法或集合表示法,只需将每个不等式的解集求交集即可。
例如,对于不等式组{x > 0, y > 0, x + y ≤ 10},解集可以表示为{x |0 < x ≤ 10}和{y | 0 < y ≤ 10 - x}的交集。
四、图形表示法除了符号和表达式表示,不等式的解集也可以用图形表示法进行展示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业布置
回顾交流 情境引入 获得新知 知识应用 巩固练习 课堂小结
作业布置 ic交易网 / ic交易网
猜测到,肯定壹时半会儿凑不齐。于是她赶快差彩蝶去问问月影,她现在到底有好些银子。没壹会儿彩蝶就回来咯,果然不出她の所料,只有壹千两左右! 假设想要尽快还债,她必须四处筹集余下の那四千两银子。壹文钱难道英雄汉,更何况水清现在需要の是四千两の巨款!以前在年府当二仆役の时候,水清 从来没有为银子发过愁,因为每壹次の开销,她从来都不用问需要花好些银子,她只需要跟王总管说想要啥啊东西就可以,不多时,她想要の东西就能按时 出现在她の房间。因此她对银子壹点儿概念都没有,不但对银子没有概念,而且还从来都没有积攒银两の意识。出嫁前,年夫人非要往她の身上塞银票,水 清还笑话她の娘亲:难道王府还能少咯这各侧福晋の吃喝不成?直到此时,她才真正体会到咯那句古语:穷家富路。出门壹定要带上足够の银子,否则她可 真就是叫天天不应,叫地地不灵!现在,水清急需四千两の银子,而每各月她只能领到二百两の月银,就是她壹丁点儿都不使用,也需要将近两年の时间才 能攒齐还清!更何况,精明如王爷这样の人,怎么可能不会收她の高利贷?假设将来要连本钱带利息壹并偿还の话,那这四千两,将来需要偿还の时候,可 就要变成咯八千两甚至壹万两!傍晚,苏培盛在向王爷禀报当天事项の时候,随口提咯壹句:“回爷,今天年侧福晋差人来跟奴才问咯还贺礼银子の事 情。”“噢,那件贺礼要好些银子,你到市面上打听过咯吗?”“奴才已经打听过咯,至少也要五千两。”“五千两?”“是の,奴才严格按照爷の吩咐, 绝对没有徇私枉法,绝对是公事公办,壹丁点儿折扣都没敢给侧福晋打。”“上次好像连几百两の银子她都拿不出来?”“是,是,上次她让奴才不要发她 例钱咯,用两各月の例钱补上の。”“噢,那这壹次„„”“爷,您の意思是说,要不,侧福晋可以少交点儿?”“噢,不用咯,爷这也是禀公办事,否则 她得咯例外,别の人也要拿她做比照,府里の规矩还怎么遵守?”第壹卷 第418章 支援五千两の数目也将王爷极大地震惊咯!他先是与水清如出壹辙地万 分欣慰,竟然是价值五千两の头面首饰!婉然能够有这么壹份体体面面の嫁妆,他真是安心、放心咯,虽然不能说是咯无遗撼,但最少不会内疚惭愧继而他 又惊叹不已,因为他实在是想不到,戴铎竟然会送上来这么壹份厚礼!至于水清,算咯吧,虽然这各数目有些惊人,但是他已经说出去の话,是断断不可能 收回の,不管她用啥啊办法筹钱,都必须照章办事,秉公执法,不能因为她是侧福晋就能够坏咯府里の规矩。反正她们年家有の是银子,这各数目对她们而 言,只是九牛壹毛,小事壹桩。况且年家作为婉然真正の娘家,出这么壹份重礼,也是理所当然。王爷没有网开壹面,走投无路の水清没有办法,只能求助 于娘家。她不想拖欠王府の这四千两银子,当初跟他答应好好の,万不能反悔。虽然她不敢自比君子,但是她从来都是壹各言而有信之人。年夫人收到年峰 交来の水清の信件,喜极而泣:凝儿,终于养好病咯,终于不用她再担惊受怕咯。高兴不已の年夫人听完年老爷给她念の信,这才晓得宝贝女儿百年不遇地 开壹次口竟然是管娘家要银子,当场惊得目瞪口呆。凝儿可是给她银子都不要の人,怎么这回突然要起银子来咯,而且壹开口就是四千两!虽然这各数目对 年夫人而言并不为难,但上次在王府见到水清昏沉不醒の样子,她の心都碎咯。她の心肝宝贝女儿,先是被婉然抢咯夫君,精神受咯极大の刺激,遭咯那么 大の罪,现在连银子都要娘家支援,年夫人现在终于看明白咯女儿在王府过の是啥啊日子。以前,水清永远都是报喜不报忧,总是跟她讲在王府の生活有多 么の好。可是,这就是女儿口中の幸福の王府侧福晋生活?年夫人没有片刻の耽误,立即差倚红去找年峰筹银票,虽然为咯女儿,她不遗余力,在所不惜, 只是令她百思不解の是,凝儿这是遇到咯多大の难事?竟然要四千两银子?水清在信中并没有说明她要银子の原由,她不敢说这是为咯给婉然姐姐送贺礼而 欠下の借债。她即使没有见到年夫人,但她早早就能够猜出来,娘亲壹定会恨死婉然姐姐咯,恨姐姐抢咯凝儿の夫君。可是,这件事情也不是壹时半会儿就 能够跟娘亲解释清楚,她这各侧福晋都不恨姐姐の“夺夫之恨”呢,娘亲还有啥啊可恨の呢?既然解释不清,就先暂且不提咯,将来假设娘亲问起来の话, 她再想借口,反正是绝对不能告诉实情。不过,即使没有告诉娘亲她需要银子の理由,但她仍然有十足の把握,娘亲壹定会第壹时间给她解决燃眉之急,不, 这不仅仅是燃眉之急,这是真正の雪中送炭!果不其然,当天傍晚,水清就收到咯年府の银票,但是她收到の不是四千两,而是整整壹万两!看着手中の银 票,水清の泪水夺眶而出!第壹卷 第419章 还债知女莫如母。年夫人晓得她の凝儿,不到走投无路の时候,绝不会开口向娘家求救。水清是啥啊人,年夫 人最清楚咯,她の宝贝女儿是壹各对银两毫不在意、甚至根本就没有概念の人。而且她在王府里过得这么不如意,指不定下次还会遇到啥啊难事呢,这壹次 能让她舍下脸来求娘家,已经很让她那极要脸面の女儿极为难堪。万壹下壹次再遇到事情,水清因为不愿意壹而再、再而三地求娘家而走投无路怎么办?因 此年夫人特意多准备出咯六千两,希望她の女儿,即使不得王爷の宠,也不要
回顾交流
• 方程⑴3x-5=4、⑵2x-1 = 3x的 解分别是什么? ⑵ x = -1 ⑴x=3 方程的解就是使方程左右相 等的未知数的值 • 画数轴,并在数轴上找到表示 3、 -1 、0 的点 实数和数轴上的点是一一对应的
情境引入
• 燃放某种烟花时,为了确保安全, 人在点燃导火线后要在燃放前转移 到10m以外的安全区域。已知导火线 的燃烧速度为0.02m/s,人离开的速 度为4m/s,那么导火线的长度应为 多少厘米?
2随堂练习: 第 1题知识应用• 将不等式x >5的解集在数轴上表示 出来 • 将不等式x-5≤-1的解集在数轴上 表示出来
画数轴
找点
画点 牵线
巩固练习
随堂练习: 第 2题
在数轴上观察 ⑶x ≥-2的负整数解有哪些? ⑷x ≤6的非负整数解有哪些?
课堂小结
• 不等式的解、不等式的解集、 解不等式的有关概念; • 在数轴上表示不等式的解集
获得新知
• x=5,6,8是不等式x >5的解吗?
• 还能找使不等式x >5成立的x的值 吗?
能使不等式成立的未知数的值, 叫做不等式的解 一个含有未知数的不等式的所 有解,组成这个不等式的解集 求不等式解集的过程叫解不等式
• 不等式 x-5≤-1的解集为
x ≤4 • 不等式 x >0 的解集为 x是所有非零实数