解析几何基本结论

合集下载

解析几何结论大全

解析几何结论大全

解析几何结论大全
解析几何结论大全是一个非常广泛的主题,涵盖了许多方面。

以下是一些常见的解析几何结论:
1. 两点之间的距离公式:$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
2. 直线方程:点斜式 $y-y_1=m(x-x_1)$,斜截式 $y=mx+b$,两点式$y=\frac{y_2-y_1}{x_2-x_1}x+y_1$
3. 圆的方程:$(x-a)^2+(y-b)^2=r^2$,圆心 $(a,b)$,半径 $r$
4. 圆与圆的位置关系:相交、相切、相离
5. 圆锥曲线的标准方程:椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 或 $\frac{y^2}{a^2}-
\frac{x^2}{b^2}=1$,抛物线 $y^2=2px$ 或 $x^2=2py$
6. 圆锥曲线的焦点、准线、离心率等性质
7. 空间向量的加法、数乘、向量的模
8. 向量的数量积、向量积、向量的混合积
9. 向量的坐标表示:$(a,b,c)$,向量的模 $\sqrt{a^2+b^2+c^2}$
10. 空间直角坐标系中的点 $(x,y,z)$ 与其相邻三个坐标面围成的单位体积为$\frac{1}{6}$。

以上只是解析几何的一部分结论,还有许多其他结论和定理,可以根据需要进行查阅和学习。

高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)

高中数学解析几何第一局部:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。

(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k〔1〕.倾斜角为︒90的直线没有斜率。

〔2〕.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率〔直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否那么会产生漏解。

〔3〕设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 那么当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程 1.点斜式:直线上一点P 〔x 0,y 0〕及直线的斜率k 〔倾斜角α〕求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:假设直线在y 轴上的截距〔直线与y 轴焦点的纵坐标〕为b ,斜率为k ,那么直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y = 注意:正确理解“截距〞这一概念,它具有方向性,有正负之分,与“距离〞有区别。

3.两点式:假设直线经过),(11y x 和),(22y x 两点,且〔2121,y y x x ≠≠那么直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:假设直线在x 轴,y 轴上的截距分别是a ,b 〔0,0≠≠b a 〕那么直线方程:1=+bya x ; 注意:1〕.截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

焦点相关的常用结论

焦点相关的常用结论

解析几何中焦点相关的常用结论解析几何中跟焦点及焦半径(椭圆、双曲线、抛物线上的一点与焦点的连线)、焦点弦(经过焦点的弦)有关的的问题是一类基本的、常见的问题,这于这类问题,我们一般利用第一、第二定则与C1而的距离等于⊙C的半径,∴⊙C与y轴相切。

结论3、以抛物线y2=2px (p>0)的焦点弦AB为直径的圆与抛物线的准线相切,且A、B两点的横坐标之积,纵坐标之积为定值(图3)。

证明:分别过点A、B、C向抛物线的准线l作垂线,垂足记为A1、B1、C1,与y轴交于A2、B 2,C 2,则C 到l 轴的距离|CC 1|=2||||11BB AA +,由第二定义得:|AA 1|=|AF|,|BB 1|=|BF|,∴|AA 1|+|BB 1|=|AB|,∴|CC 1|=2||AB ,即点C 到准线l 的距离等于⊙C 的半径,∴⊙C 与准线相切。

当直线AB 斜率存在时,设AB 的方程为:y=k(x -p),代入|y 1B 4tg 2x 1结论5、设AB 是椭圆12222=+by a x 的焦点弦,则当AB 垂直x 轴时|AB|min =c b 22。

证明略。

想一想:在抛物线及椭圆的焦点弦中,当该弦垂直于抛物线的对称(或椭圆的长轴)时,弦|AB|取得最小值,那么在双曲线中是否有相同的结论?结论6、过抛物线y 2=2px (p>0)的焦点F 作倾斜角为θ(θ≠0)的直线,且与抛物线交于A 、B⎩⎨⎧|结论8、我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设12222=+by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则∠ABF=2π。

证明略。

结论9、设P 是椭圆12222=+by a x 上的一动点,F 1、F 2为椭圆的两焦点,当P 位于短轴端点时,∠F 1PF 2取到最大值。

证明:设|PF 1|、|PF 2|的长分别为m,n ,则m+n=2a,在△F 1PF 2中,由余弦定理得cos ∠F 1mn 2+B K co。

解析几何中的必备结论

解析几何中的必备结论

x2 y2 C、27+18=1
) x2 y2
D、18+ 9 =1
【命题意图】本题主要考查椭圆中点弦的问题,是中档题.
【解析】设 A(x1, y1), B(x2 , y2 ) ,则 x1 + x2 =2, y1 + y2 =-2,
x12 a2
+
y12 b2
= 1

x22 a2
+
y22 b2
= 1

①-②得
.
2, 12ቤተ መጻሕፍቲ ባይዱ° :用的中间结论要优于余弦定理
;∠F1PF2
|
PF1
||
PF2
|=
2b2 1+ cosθ
,∵| PF1 |= 4 ,| PF2 |= 2,∴代入求解非常方便,这是自己所没有想到的!
S ∠F1PF2
=
1 2
|
PF1
||
PF2
|
sin θ
=
b2
tan
θ 2
⇒ 1 × 4× 2sinθ =2 tan θ
,则有
x1 2 a2

x2 2 a2

y12 b2
= 1








y22 b2
= 1
x1 + x2 =−24, y1 + y2 =−30
得,
y1 − y2 x 1 − x2
=
4b2 5a2
4b2
,从而
5a2
= 1,即 4b2
= 5a2 ,又 a2
+ b2
= 9 ,解得= a2
4= , b2

【二级结论】专题12 解析几何3

【二级结论】专题12 解析几何3

=,=(图1 图2 图3①以为直径的圆与准线相切;②以为直径的圆与轴相切;③以为直径的圆与轴相切;④分别以为直径的圆之间的关系:圆与圆外切;圆与圆既与轴相切,⼜与圆相内切.结合圆的⼏何性质易得有关直线垂直关系的结论,如图3有,①以为直径的圆的圆⼼在准线上的射影与两点的连线互相垂直,即;②以为直径的圆的圆⼼在轴上的射影与两点的连线互相垂直,即;③以为直径的圆的圆⼼在轴上的射影与两点的连线互相垂直,即;④以为直径的圆必过原点,即;⑤.【应⽤场景】AB M AF C y BF D y AB ,AF ,BF C D C D y M AB M 1A ,B A ⊥B M 1M 1AF y C 1A ,F A ⊥F C 1C 1BF y D 1B ,F B ⊥F D 1D 1A 1B 1F ⊥F A 1B 1F ⊥AB M 1运⽤焦点弦与圆有关的结论可以很⽅便的解决直线、圆、抛物线有关综合题,解题中要注意抛物线的定义、⼏何性质以及圆的⼏何性质的应⽤.【典例指引1】【反思】本题考查了抛物线的标准⽅程,抛物线的⼏何性质,以及直线和圆,直线和抛物线的位置关系的相关问题,当题设涉及直线,圆,圆锥曲线时,⼀般是直线与圆锥曲线相交于两点,需联⽴⽅程,得到根与系数的关系,⽽直线与圆经常利⽤圆的⼏何性质,得到⼀些常量,这些不变的量和圆锥曲线建⽴联系,从⽽进⼀步求解.【典例指引2】【针对训练】⼀、单选题:11. 在平⾯直⻆坐标系中,已知点,直线,动直线垂直于于点,线段的垂直平分线交于点,设的轨迹为.(1)求曲线的⽅程;(2)以曲线上的点为切点作曲线的切线,设 分别与,轴交于,两点,且恰与以定点为圆⼼的圆相切. 当圆的⾯积最⼩时,求与⾯积的⽐.12. 已知抛物线的准线为l ,记l 与y 轴交于点M ,过点M 作直线与C 相切,切点为N ,则以MN 为直径的圆的⽅程为( )A .或B .或C .或D .或13. 阿基⽶德(公元前287年---212年)是古希腊伟⼤的物理学家、数学家、天⽂学家,不仅在物理学⽅⾯贡献巨⼤,还享有“数学之神”的称号.抛物线上任意两点A 、B 处的切线交于点P ,称△为“阿基⽶德三⻆形”,当线段AB 经过抛物线焦点F 时,△具有以下特征:(1)P 点必在抛物线的准线上;(2)△为直⻆三⻆形,且;(3).若经过抛物线焦点的⼀条弦为AB ,阿基⽶德三⻆形为△,且点P 的纵坐标为4,则直线AB 的⽅程为( )A .x -2y -1=0B .2x +y -2=0C .x+2y -1=0D .2x -y -2=0(1)若的⾯积为,求的值及圆的⽅程(2)若直线与抛物线C交于P,Q两点,且,准线与y轴交于点S,点S关于直线PQ的对称点为T,求的取值范围.。

数学解析几何二级结论公式

数学解析几何二级结论公式

数学解析几何二级结论公式一、椭圆部分。

1. 焦半径公式。

- 对于椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),设F_1,F_2为左右焦点,P(x,y)为椭圆上一点。

- 当P在椭圆上时,| PF_1|=a + ex,| PF_2|=a - ex(其中e=(c)/(a),c=√(a^2)-b^{2})。

- 对于椭圆frac{y^2}{a^2}+frac{x^2}{b^2} = 1(a>b>0),设F_1,F_2为上下焦点,P(x,y)为椭圆上一点。

- | PF_1|=a+ey,| PF_2|=a - ey(其中e=(c)/(a),c=√(a^2)-b^{2})。

2. 椭圆的切线方程。

- 过椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1上一点P(x_0,y_0)的切线方程为frac{x_0x}{a^2}+frac{y_0y}{b^2} = 1。

- 过椭圆frac{y^2}{a^2}+frac{x^2}{b^2} = 1上一点P(x_0,y_0)的切线方程为frac{y_0y}{a^2}+frac{x_0x}{b^2} = 1。

3. 中点弦结论(点差法)- 设椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),弦AB的中点为M(x_0,y_0)。

- 设A(x_1,y_1),B(x_2,y_2),将A、B两点代入椭圆方程相减得:k_AB=-frac{b^2x_0}{a^2y_0}(k_AB为弦AB的斜率)。

二、双曲线部分。

1. 焦半径公式。

- 对于双曲线frac{x^2}{a^2}-frac{y^2}{b^2} = 1,设F_1,F_2为左右焦点,P(x,y)为双曲线上一点。

- 当P在双曲线右支上时,| PF_1|=ex + a,| PF_2|=ex - a(其中e=(c)/(a),c=√(a^2)+b^{2})。

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全

高中数学解析几何知识点大总结第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。

(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k(1).倾斜角为︒90的直线没有斜率。

(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k ,则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o 90=α;斜率不存在; 二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y =注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--; 注意:①不能表示与x 轴和y 轴垂直的直线; ②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+by a x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

解析几何的公理体系与几何推导

解析几何的公理体系与几何推导

解析几何的公理体系与几何推导解析几何是数学中的一个重要分支,它研究的是点、直线、平面及其相关的几何图形之间的位置、形状和运动关系。

在解析几何中,公理体系是推导几何学定理的基础,而几何推导则是通过逻辑推理和运用公理来证明几何学定理的过程。

本文将从公理体系和几何推导两个方面来解析几何的核心内容。

首先,我们来了解解析几何的公理体系。

公理是几何学中的基本假设,它们是不需要证明的前提条件。

解析几何的公理体系可以由以下几条基本公理构成:1. 点的存在性公理:空间中至少存在一个点。

2. 直线的存在性公理:空间中至少存在一条直线。

3. 平面的存在性公理:空间中至少存在一个平面。

4. 公共元素公理:如果两个不同点在一条直线上,那么它们确定这条直线。

5. 同一元素公理:每条直线上都存在无穷多个点。

6. 两点确定一条直线公理:若两点在平面上,那么它们可以唯一确定一条直线。

7. 共面公理:一条直线和一个点在同一平面上,那么经过这个点并且与给定直线垂直的直线都在该平面上。

这些公理构成了解析几何的基础,它们提供了用于描述点、直线和平面的基本规则。

接下来,我们来讨论几何推导的过程。

几何推导是通过逻辑推理和运用公理来证明几何学定理的过程。

在几何推导中,我们使用已知事实(公理、定义、定理)和逻辑运算(演绎推理、归纳推理)来推导出目标结论。

几何推导的步骤一般包括以下几个部分:1. 确定已知条件:首先,我们需要将已知的条件以及所给的几何图形明确列出。

2. 应用公理和定义:利用解析几何的公理和定义,我们可以从已知条件得出一些结论。

这些结论将成为之后推导的基础。

3. 运用几何定理:通过逻辑推理和运用几何定理,我们可以进一步推导出更多的结论。

这些定理可以是之前已经证明过的,也可以是待证目标的中间结果。

4. 逻辑推理:运用逻辑的规则,如假言推理、拒取推理、消解法等,对已有的结论进行推导,逐步达到目标结论。

5. 证明目标结论:经过一系列的推导和逻辑推理,我们可以得出结论。

解答题题型归纳之解析几何(解析版)

解答题题型归纳之解析几何(解析版)

专题五 解答题题型归纳之解析几何题型归纳一、中点弦、轨迹方程考点1.中点弦——点差法1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),离心率为√22.直线l 过点F且不平行于坐标轴,l 与C 有两交点A ,B ,线段AB 的中点为M . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线OM 的斜率与l 的斜率的乘积为定值;【分析】(Ⅰ)由题可知,c =1,e =ca =√22,再结合a 2=b 2+c 2,解出a 和b 的值即可得解;(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2),联立直线l 的方程和椭圆的方程,消去y 得到关于x 的一元二次方程,写出两根之和与系数的关系;由于M 为线段AB 的中点,利用中点坐标公式可用k 表示点M 的坐标,利用k OM =y Mx M可求出直线OM 的斜率,进而得解;【解答】解:(Ⅰ)由题意可知,c =1,e =c a =√22, ∵a 2=b 2+c 2,∴a =√2,b =1,∴椭圆的方程为x 22+y 2=1.(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 联立{y =k(x −1)x 22+y 2=1,消去y 得,(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0, 则x 1+x 2=4k22k 2+1,∵M 为线段AB 的中点,∴x M =x 1+x 22=2k 22k 2+1,y M =k(x M −1)=−k 2k 2+1,∴k OM =yM x M=−12k ,∴k OM ⋅k l =−12k ×k =−12为定值.2.已知中心在原点,一焦点为F (0,√50)的椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12.(1)求此椭圆的方程;(2)过定点M (0,9)的直线与椭圆有交点,求直线的斜率k 的取值范围.【分析】(1)设椭圆为x 2b +y 2a =1,由已知条件推导出a 2=b 2+50,6b 2a +9b =12,由此能求出椭圆.(2)设过定点M (0,9)的直线为l ,若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);若斜率k 存在,直线l 的方程为:y =kx +9,k ≠0,代入椭圆方程,由△≥0,能求出直线的斜率k 的取值范围. 【解答】解:(1)∵椭圆中心在原点,一焦点为F (0,√50),∴设椭圆为x 2b +y 2a =1,(a >b >0),a 2=b 2+c 2=b 2+50,① 把y =3x ﹣2代入椭圆方程,得 a 2x 2+b 2(3x ﹣2)2=a 2b 2,(a 2+9b 2)x 2﹣12b 2x +4b 2﹣a 2b 2=0,∵椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12,∴6b 2a 2+9b 2=12,整理,得a 2=3b 2,②由①②解得:a 2=75,b 2=25,∴椭圆为:x 225+y 275=1.(2)设过定点M (0,9)的直线为l ,①若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);②若斜率k =0,直线l 方程为y =9,与椭圆无交点; ③若斜率k 存在且不为0时,直线l 的方程为:y =kx +9,k ≠0 联立{y =kx +9x 225+y 275=1,得(3+k 2)x 2+18kx +6=0,△=(18k )2﹣24(3+k 2)≥0,解得k ≥√65或k ≤−√65.综上所述:直线的斜率k 的取值范围k ≥√65或k ≤−√65或k 不存在.考点2.轨迹方程——定义法、相关点法3.已知O 为坐标原点,圆M :x 2+y 2﹣2x ﹣15=0,定点F (﹣1,0),点N 是圆M 上一动点,线段NF 的垂直平分线交圆M 的半径MN 于点Q ,点Q 的轨迹为C . (Ⅰ)求曲线C 的方程;【分析】(Ⅰ)推导出动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆,由此能求出曲线C 的方程.【解答】解:(Ⅰ)由题意知|MQ |+|FQ |=|MN |=4, 又|MF |=2<4,∴由椭圆定义知动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆, 故2a =4,2c =2,∴曲线C 的方程是x 24+y 23=1.4.从抛物线y 2=36x 上任意一点P 向x 轴作垂线段,垂足为Q ,点M 是线段PQ 上的一点,且满足PM →=2MQ →.(1)求点M 的轨迹C 的方程;【分析】(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).利用向量关系,推出{x 0=x ,y 0=3y .,代入已知条件即可得到点M 的轨迹C 的方程.【解答】解:(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).因为PM →=2MQ →,所以(x ﹣x 0,y ﹣y 0)=2(x 0﹣x ,﹣y ),(2分) 即{x 0=x ,y 0=3y .,(3分) 因为点P 在抛物线y 2=36x 上,所以y 02=36x 0,即(3y )2=36x .所以点M 的轨迹C 的方程为y 2=4x . (5分)题型归纳二、弦长、面积考点1.弦长问题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (√3,12)在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |•|MB |=|MC |•|MD | 【解答】(Ⅰ)解:如图,由题意可得{a =2ba 2=b 2+c 23a 2+14b 2=1,解得a 2=4,b 2=1, ∴椭圆E 的方程为x 24+y 2=1;(Ⅱ)证明:设AB 所在直线方程为y =12x +m , 联立{y =12x +mx 24+y 2=1,得x 2+2mx +2m 2﹣2=0.∴△=4m 2﹣4(2m 2﹣2)=8﹣4m 2>0,即−√2<m <√2. 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则x 1+x 2=−2m ,x 1x 2=2m 2−2, |AB |=√1+14|x 1−x 2|=√54√(x 1+x 2)2−4x 1x 2=√54√4m 2−4(2m 2−2)=√10−5m 2.∴x 0=﹣m ,y 0=12x 0+m =m2,即M (−m ,m2),则OM 所在直线方程为y =−12x ,联立{y =−12x x 24+y 2=1,得{x =−√2y =√22或{x =√2y =−√22. ∴C (−√2,√22),D (√2,−√22). 则|MC |•|MD |=(2√2)⋅(2√2)=√(54m 2+52−52√2m)⋅(54m 2+52+52√2m)=√(52−54m 2)2=52−54m 2.而|MA |•|MB |=(12|AB|)2=14(10﹣5m 2)=52−5m 24.∴|MA |•|MB |=|MC |•|MD |. 2.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围.【解答】解:(Ⅰ)方法一、t =4时,椭圆E 的方程为x 24+y 23=1,A (﹣2,0),直线AM 的方程为y =k (x +2),代入椭圆方程,整理可得(3+4k 2)x 2+16k 2x +16k 2﹣12=0,解得x =﹣2或x =−8k 2−63+4k 2,则|AM |=√1+k 2•|2−8k 2−63+4k 2|=√1+k 2•123+4k 2, 由AN ⊥AM ,可得|AN |=√1+(−1k )2•123+4⋅(−1k)2=√1+k 2•123|k|+4|k|,由|AM |=|AN |,k >0,可得√1+k 2•123+4k 2=√1+k 2•123k+4k,整理可得(k ﹣1)(4k 2+k +4)=0,由4k 2+k +4=0无实根,可得k =1,即有△AMN 的面积为12|AM |2=12(√1+1•123+4)2=14449;方法二、由|AM |=|AN |,可得M ,N 关于x 轴对称,由MA ⊥NA .可得直线AM 的斜率为1,直线AM 的方程为y =x +2, 代入椭圆方程x 24+y 23=1,可得7x 2+16x +4=0,解得x =﹣2或−27,M (−27,127),N (−27,−127), 则△AMN 的面积为12×247×(−27+2)=14449;(Ⅱ)直线AM 的方程为y =k (x +√t ),代入椭圆方程, 可得(3+tk 2)x 2+2t √t k 2x +t 2k 2﹣3t =0, 解得x =−√t 或x =−t √tk 2−3√t 3+tk 2,即有|AM |=√1+k 2•|t √tk 2−3√t 3+tk 2−√t |=√1+k 2•6√t3+tk 2,|AN |═√1+1k2•6√t3+tk2=√1+k 2•6√t 3k+t k,由2|AM |=|AN |,可得2√1+k 2•6√t3+tk 2=√1+k 2•6√t3k+t k,整理得t =6k 2−3k k 3−2,由椭圆的焦点在x 轴上,则t >3,即有6k 2−3k k −2>3,即有(k 2+1)(k−2)k −2<0,可得√23<k <2,即k 的取值范围是(√23,2). 考点2.面积问题3.已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3,又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0, 当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k 2从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k 2又点O 到直线PQ 的距离d =√k 2+1,所以△OPQ 的面积S △OPQ =12d|PQ|=4√4k 2−31+4k 2,设√4k 2−3=t ,则t >0,S △OPQ =4tt 2+4=4t+4t≤1,当且仅当t =2,k =±√72等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)4.设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4,由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4>|AB |, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y 1﹣y 2|=√1+m 2•√36m (3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =2=2,|PQ |=2√r 2−d 2=2√16−4m 21+m 2=4√3m 2+4√1+m 2,则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2,当m =0时,S 取得最小值12,又11+m 2>0,可得S <24•√33=8√3,即有四边形MPNQ 面积的取值范围是[12,8√3).题型归纳三、定值、定点、定直线考点1.定值问题1.设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22), ∴直线AM 的方程为y =−√22x +√2,y =√22x −√2, 证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y 2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k (x 1−2)(x 2−2), 将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1, ∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0 从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,直线2x +y −6√3=0与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点. (1)求椭圆C 的方程;(2)如图,若直线l :y =kx +m 与椭圆C 交于E ,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.【解答】解:(1)由题意知,椭圆C 的左顶点M (﹣a ,0),上顶点N (0,b ),直线MN 的斜率k =b a=12,得a =2b ,因为点N 是线段MB 的中点,∴点B 的坐标是B (a ,2b ), 由点B 在直线2x +y −6√3=0上,∴2a +2b =3√2,且a =2b , 解得b =√3,a =2√3, ∴椭圆C 的方程为x 212+y 23=1.(2)证明:设E (x 1,y 1),F (x 2,y 2),G (x 0,y 0),将y =kx +m 代入x 212+y 23=1,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2﹣12=0, 则x 1+x 2=−8m1+4k 2,x 1⋅x 2=4m 2−121+4k 2, ∴y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2, ∵四边形OEGF 为平行四边形, ∴OG →=OE →+OF →=(x 1+x 2,y 1+y 2), 得G(−8km1+4k 2,2m1+4k 2),将G 点坐标代入椭圆C 方程得m 2=34(1+4k 2),点O 到直线EF 的距离为d =√1+k 2,EF =√1+k 2|x 1−x 2|,∴平行四边形OEGF 的面积为S =d •|EF |=|m ||x 1﹣x 2|=|m|√(x 1+x 2)2−4x 1x 2 =4|m|√3−m 2+12k 21+4k 2=4|m|√3m 21+4k 2=4√3m 21+4k 2=3√3.故平行四边形OEGF 的面积S 为定值3√3.考点2.定点问题3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),点M (2√63,﹣1)在椭圆上,椭圆C 的离心率为12.(1)求椭圆的方程;(2)设点A 为椭圆长轴的左端点,P ,Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP ,AQ 斜率分别为k 1,k 2,若k 1k 2=−14,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由已知可得:{83a +1b =1c a =12a 2=b 2+c 2,解得a 2=4,b 2=3, 所以椭圆的方程为x 24+y 23=1;(2)因为A (﹣2,0),设P (x 1,y 1),Q (x 2,y 2), 当直线的斜率存在时,设直线PQ 的方程为:y =kx +m ,联立方程组{y =kx +m x 24+y 23=1,消去y 可得:(3+4k 2)x 2x 2+8mkx +4m 2﹣12=0,所以x1+x2=−8mk3+4k2,x1x2=4m2−123+4k2,因为k1k2=−14,所以k1k2=y1x1+2⋅y2x2+2=(kx1+m)(kx2+m)(x1+2)(x2+2)=k2x1x2+mk(x1+x2)+m2 x1x2+2(x1+x2)+4=−14所以4m 2k2−12k2−8k2m2+3m2+4m2k24m2−12−16mk+12+16k2=−14,所以m2﹣mk﹣2k2=0,所以(m﹣2k)(m+k)=0,所以m=2k或m=﹣k,当m=2k时,PQ:y=k(x+2),此时直线过定点(﹣2,0)不符合题意,当m=﹣k时,PQ:y=k(x﹣1),此时过定点(1,0),当直线的斜率不存在时,PQ的方程为:x=1,所以P,Q的坐标为(1,32),(1,−32),所以k AP⋅k AQ=321−(−2)⋅−321−(−2)=−14,满足要求,综上可知:直线PQ过定点(1,0).4.已知点F1(−√2,0),圆F2:(x−√2)2+y2=16,点M是圆上一动点,MF1的垂直平分线与MF2交于点N.(1)求点N的轨迹方程;(2)设点N的轨迹为曲线E,过点P(0,1)且斜率不为0的直线l与E交于A,B 两点,点B关于y轴的对称点为B′,证明直线AB′过定点,并求△P AB′面积的最大值.【解答】解:(1)由已知得:|NF1|=|NM|,∴|NF1|+|NF2|=|MN|+|NF2|=|4,又|F1F2|=2√2,∴点N的轨迹是以F1,F2为焦点,长轴长等于4的椭圆,∴2a =4,2c =2√2,即a =2,c =√2, ∴b 2=a 2﹣c 2=4﹣2=2, ∴点N 的轨迹方程是x 24+y 22=1.证明:(2)设直线AB :y =kx +1,(k ≠0),设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则B ′(﹣x 2,y 2), 联立直线AB 与椭圆得{x 2+2y 2=4y =kx +1,得(1+2k 2)x 2+4kx ﹣2=0, 显然△=8(1+4k 2)>0, ∴x 1+x 2=−4k 1+2k ,x 1x 2=−21+2k ∴k AB ′=y 1−y2x 1+x 2,∴直线AB ′:y ﹣y 1=y 1−y2x 1+x 2(x ﹣x 1),∴令x =0,得y =x 1y 2+x 2y 1x 1+x 2=x 1(kx 2+1)+x 2(kx 1+1)x 1+x 2=2kx 1x 2x 1+x 2+1=2,∴直线AB ′过定点Q (0,2), ∴△P AB ′的面积S =12|x 1+x 2|=2|k|1+2k =21|k|+2|k|≤√22, 当且仅当k =±√22时,等号成立. ∴△P AB ′的面积的最大值是√22.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (Ⅰ)求椭圆的方程;(Ⅱ)过点S(0,−13)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以AB 为直径的圆恒过点Q ?若存在求出点Q 的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,得b =c ,又斜边长为2,即2c =2,解得c =1,故a =√2c =√2,所以椭圆方程为x 22+y 2=1.(Ⅱ)当l 与x 轴平行时,以AB 为直径的圆的方程为x 2+(y +13)2=169; 当l 为y 轴时,以AB 为直径的圆的方程为x 2+y 2=1,由{x 2+(y +13)2=169x 2+y 2=1⇒{x =0y =1, 故若存在定点Q ,则Q 的坐标只可能为Q (0,1).下证明Q (0,1)为所求:若直线l 斜率不存在,上述已经证明.设直线l :y =kx −13,A(x 1,y 1),B(x 2,y 2),由{y =kx −13x 2+2y 2−2=0⇒(9+18k 2)x 2−12kx −16=0,△=144k 2+64(9+18k 2)>0,x 1+x 2=12k18k 2+9,x 1x 2=−1618k 2+9, QA →=(x 1,y 1−1),QB →=(x 2,y 2−1),QA →⋅QB →=x 1x 2+(y 1−1)(y 2−1)=(1+k 2)x 1x 2−4k3(x 1+x 2)+169=(1+k 2)−169+18k 2−4k 3⋅12k9+18k 2+169=0,∴QA →⊥QB →,即以AB 为直径的圆恒过点Q (0,1).6.已知直线l 1是抛物线C :x 2=2py (p >0)的准线,直线l 2:3x ﹣4y ﹣6=0,且l 2与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到直线l 1和l 2的距离之和的最小值等于2.(Ⅰ)求抛物线C 的方程;(Ⅱ)点M 在直线l 1上运动,过点M 做抛物线C 的两条切线,切点分别为P 1,P 2,在平面内是否存在定点N ,使得MN ⊥P 1P 2恒成立?若存在,请求出定点N 的坐标,若不存在,请说明理由.【解答】解:(Ⅰ)作P A ,PB 分别垂直l 1和l 2,垂足为A ,B ,抛物线C 的焦点为F(0,p2), 由抛物线定义知|P A |=|PF |,所以d 1+d 2=|P A |+|PB |=|PF |+|PB |, 显见d 1+d 2的最小值即为点F 到直线l 2的距离,故d =|−2p−6|5=2⇒p =2,所以抛物线C 的方程为x 2=4y .(Ⅱ)由(Ⅰ)知直线l 1的方程为y =﹣1,当点M 在特殊位置(0,﹣1)时,显见两个切点P 1,P 2关于y 轴对称,故要使得MN ⊥P 1P 2,点N 必须在y 轴上.故设M (m ,﹣1),N (0,n ),P 1(x 1,14x 12),P 2(x 2,14x 22),抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以切线MP 1的斜率k 1=12x 1,直线MP 1的方程为y −14x 12=12x 1(x −x 1),又点M 在直线MP 1上,所以−1−14x 12=12x 1(m −x 1),整理得x 12−2mx 1−4=0, 同理可得x 22−2mx 2−4=0,故x 1和x 2是一元二次方程x 2﹣2mx ﹣4=0的根,由韦达定理得{x 1+x 2=2m x 1x 2=−4,P 1P 2→⋅MN →=(x 2−x 1,14x 22−14x 12)⋅(−m ,n +1)=14(x 2−x 1)[﹣4m +(n +1)(x 2+x 1)]=14(x 2−x 1)[−4m +2m(n +1)]=12m(x 2−x 1)(n −1),可见n =1时,P 1P 2→⋅MN →=0恒成立,所以存在定点N (0,1),使得MN ⊥P 1P 2恒成立.考点3.定直线问题7.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(√2,1),且左焦点为F 1(−√2,0) (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足|AP →|•|QB →|=|AQ →|•|PB →|,证明:点Q 总在某定直线上. 【解答】解:(Ⅰ)由题意得{c 2=22a 2+1b 2=1c 2=a 2−b 2,解得a 2=4,b 2=2, 所以椭圆C的方程为x 24+y 22=1.(Ⅱ)设点Q 、A 、B 的坐标分别为(x ,y ),(x 1,y 1),(x 2,y 2). 由题设知|AP →|,|PB →|,|AQ →|,|QB →|均不为零,记λ=|AP →||PB →|=|AQ →||QB →|,则λ>0且λ≠1又A ,P ,B ,Q 四点共线,从而AP →=−λPB →,AQ →=λQB →于是4=x 1−λx 21−λ,1=y 1−λy 21−λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ从而x 12−λ2x 221−λ2=4x①,y 12−λ2y 221−λ2=y②,又点A 、B 在椭圆C 上,即x 12+2y 12=4 ③,x 22+2y 22=4 ④, ①+②×2并结合③、④得4x +2y =4, 即点Q (x ,y )总在定直线2x +y ﹣2=0上.8.已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切. (1)求p 的值;(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN →=MA →+MB →,求证:点N 在定直线上,并求该定直线的方程. 【解答】解:(1)依题意设直线l 1的方程为y =x +p2,由已知得:圆C 2:(x +1)2+y 2=2的圆心C 2(﹣1,0),半径r =√2, 因为直线l 1与圆C 2相切, 所以圆心到直线l 1:y =x+p2的距离d=|−1+p 2|22=√2,即|−1+p2|2=√2,解得p =6或p =﹣2(舍去).所以p =6;(2)解法一:依题意设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y , 所以y =x 212,所以y ′=x6,设A(x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1.令x =0,y =−16x 12+y 1=−16×12y 1+y 1=−y 1,即l 2交y 轴于B 点坐标为(0,−y 1),所以MA →=(x 1−m ,y 1+3),(9分)MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3).设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上.解法二:设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y ,① 设A(x 1,y 1),以A 为切点的切线l 2的方程为y =k(x −x 1)+y 1②,联立①②得:x 2=12[k(x −x 1)+112x 12],因为△=144k 2−48kx 1+4x 12=0,所以k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1. 令x =0,得切线l 2交y 轴的B 点坐标为(0,−y 1), 所以MA →=(x 1−m ,y 1+3),MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3),设N 点坐标为(x ,y ),则y =3,所以点N 在定直线y =3上.题型归纳四、探索性问题考点1.是否存在定值1.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√22,点P (0,1)在短轴CD 上,且PC →•PD →=−1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA →•OB →+λPA →•PB →为定值?若存在,求λ的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,可得C (0,﹣b ),D (0,b ),又∵P (0,1),且PC →•PD →=−1, ∴{1−b 2=−1c a=√22a 2−b 2=c 2,解得a =2,b =√2,∴椭圆E 的方程为:x 24+y 22=1;(Ⅱ)结论:存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3. 理由如下:对直线AB 斜率的存在性进行讨论:①当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1, A (x 1,y 1),B (x 2,y 2),联立{x 24+y 22=1y =kx +1,消去y 并整理得:(1+2k 2)x 2+4kx ﹣2=0, ∵△=(4k )2+8(1+2k 2)>0, ∴x 1+x 2=−4k1+2k 2,x 1x 2=−21+2k 2,从而OA →•OB →+λPA →•PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(−2λ−4)k 2+(−2λ−1)1+2k 2=−λ−11+2k 2−λ﹣2.∴当λ=1时,−λ−11+2k 2−λ﹣2=﹣3,此时OA →•OB →+λPA →•PB →=−3为定值;②当直线AB 的斜率不存在时,直线AB 即为直线CD ,此时OA →•OB →+λPA →•PB →=OC →⋅OD →+PC →⋅PD →=−2﹣1=﹣3;故存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴长为2,F 是C 的左焦点,A ,B 是C 上关于x轴对称的两点,△ABF 周长的最大值为8. (1)求椭圆C 的标准方程;(2)斜率为k 且不经过原点O 的直线l 与椭圆C 交于M ,N 两点,若直线OM ,ON 的斜率分别为k 1,k 2,且k 2=k 1k 2,求直线l 的斜率,并判断|OM |2+|ON |2的值是否为定值?若为定值,试求出此定值;否则,说明理由.【分析】(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意可得|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,进而可得△ABF 周长取最大值4a =8,解得a ,b ,进而可得椭圆C 的标准方程. (2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),联立直线l 与椭圆的方程,可得关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,在化简k 2=k 1k 2,解得k ,再计算|OM |2+|ON |2,即可得答案.【解答】解:(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意|AH |≤|AF 2|,则|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,当AB 过右焦点F 2时,△ABF 周长取最大值4a =8,∴a =2, 且b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),由{x 24+y 2=1y =kx +m,得(1+4k 2)x 2+8kmx +4(m 2﹣1)=0,∴x 1+x 2=−8km 1+4k2,x 1x 2=4(m 2−1)1+4k2,由题知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m)(kx 2+m)x 1x 2=k 2+km(x 1+x 2)+m 2x 1x 2, ∴km(x 1+x 2)+m 2=0,∴−8k 2m 21+4k 2+m 2=0,∵m 2=0(舍去)或k 2=14, 此时(x 1+x 2)2=(−8km 1+4k2)2=4m 2,x 1x 2=4(m 2−1)1+4k2=2(m 2−1),则|OM|2+|ON|2=x 12+y 12+x 22+y 22=x 12+1−x 124+x 22+1−x 224=34(x 12+x 22)+2=34[(x 1+x 2)2−2x 1x 2]+2=34[4m 2−4(m 2−1)]+2=5, 故直线l 的斜率为k =±12,|OM |2+|ON |2=5. 考点2.是否存在定点3.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l过点(m3,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=−2kb9+k2,则x M=x1+x22=−kb9+k2,y M=kx M+b=9b9+k2,于是直线OM的斜率k OM=y Mx M =−9k,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(m3,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m−k3m,∴k2m2>9(m−k3m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y =−9kx ,设P 的横坐标为x P , 由{y =−9k x9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√9+k 2将点(m3,m )的坐标代入l 的方程得b =m(3−k)3,即l 的方程为y =kx +m(3−k)3,将y =−9k x ,代入y =kx +m(3−k)3,得kx +m(3−k)3=−9k x 解得x M =k(k−3)m 3(9+k 2),四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M , 于是3√9+k2=2×k(k−3)m 3(9+k 2),解得k 1=4−√7或k 2=4+√7, ∵k i >0,k i ≠3,i =1,2,∴当l 的斜率为4−√7或4+√7时,四边形OAPB 能为平行四边形.4.已知椭圆C :x 2a +y 2b =1(a >b >0)的离心率为√22,焦距为2c ,直线bx ﹣y +√2a =0过椭圆的左焦点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线bx ﹣y +2c =0与y 轴交于点P ,A ,B 是椭圆C 上的两个动点,∠APB 的平分线在y 轴上,|P A |≠|PB |.试判断直线AB 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.【分析】(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,又因为离心率为√22,从而求出b =2,又因为a 2=b 2+c 2,求出a 的值,从而求出椭圆C 的标准方程;(Ⅱ)先求出点P 的坐标,设直线AB 的方程为y =kx +m ,联立方程组,利用根与系数的关系,设A (x 1,y 1),B (x 2,y 2),得到k 1+k 2=8k(m−1)2,又因为∠APB 的平分线在y轴上,所以k 1+k 2=0,从而求出m 的值,得到直线AB 的方程为y =kx +1过定点坐标. 【解答】解:(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,∴ca=√2b =√22,解得b =2, 又∵a 2=b 2+c 2=b 2+12a 2,解得a =2√2, ∴椭圆C 的标准方程为:x 28+y 24=1;(Ⅱ)由(Ⅰ)得c =√22a =2,∴直线bx ﹣y +2c =0的方程为2x ﹣y +4=0, 令x =0得,y =4,即P (0,4), 设直线AB 的方程为y =kx +m ,联立方程组{y =kx +mx 28+y 24=1,消去y 得,(2k 2+1)x 2+4kmx +2m 2﹣8=0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−82k 2+1,则直线P A 的斜率k 1=y 1−4x 1=k +m−4x 1, 则直线PB 的斜率k 2=y 2−4x 2=k +m−4x 2, 所有k 1+k 2=2k +(m−4)(x 1+x 2)x 1x 2=2k +(m−4)(−4km)2m 2−8=8k(m−1)m 2−4,∵∠APB 的平分线在y 轴上,∴k 1+k 2=0,即8k(m−1)m 2−4=0,又|P A |≠|PB |,∴k ≠0,∴m =1,∴直线AB 的方程为y =kx +1,过定点(0,1). 考点3.是否存在圆5.已知抛物线C :x 2=2py (p >0)的焦点为F ,M (﹣2,y 0)是C 上一点,且|MF |=2. (Ⅰ)求C 的方程;(Ⅱ)过点F 的直线与抛物线C 相交于A ,B 两点,分别过点A ,B 两点作抛物线C 的切线l 1,l 2,两条切线相交于点P ,点P 关于直线AB 的对称点Q ,判断四边形P AQB 是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由. 【解答】解:(Ⅰ)抛物线C :x 2=2py (p >0)的焦点为F (0,p2),准线方程为y =−p2,M (﹣2,y 0)是C 上一点,且|MF |=2,可得4=2py 0,y 0+p2=2, 解得p =2,即抛物线的方程为x 2=4y ; (Ⅱ)由F (0,1),设l AB :y =kx +1, 代入x 2=4y 中,得x 2﹣4kx ﹣4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1•x 2=﹣4.所以|AB|=√1+k2•|x1﹣x2|=√1+k2•√16k2+16=4(k2+1).因为C:x2=4y,即y=x 24,所以y′=12x.所以直线l1的斜率为k1=12x1,直线l2的斜率为k2=12x2.因为k1k2=x1x24=−1,所以P A⊥PB,即△P AB为直角三角形.点P关于直线AB的对称点Q,即有QA⊥QB,即四点Q,A,B,P共圆.四边形P AQB存在外接圆,所以外接圆的圆心为线段AB的中点,线段AB是直径.因为|AB|=4(k2+1),所以当k=0时线段AB最短,最短长度为4,此时圆的半径最小,且为2,面积最小,最小面积为4π.6.已知平面内一个动点M到定点F(3,0)的距离和它到定直线l:x=6的距离之比是常数√22.(Ⅰ)求动点M的轨迹T的方程;(Ⅱ)若直线l:x+y﹣3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.【分析】(Ⅰ)设M的坐标,由题意得出等式,化简得M的轨迹方程;(Ⅱ)由题意求出A,B的坐标,进而求出AB的中垂线方程,与椭圆联立求出C,D的坐标,进而求出CD的中点E的坐标,求出EA,EB,CD之间的关系,进而求出A,B,C,D是在同一个圆上,且圆心,半径都可以求出.【解答】解:(Ⅰ)设动点M (x ,y ),由题意知:√(x−3)2+y 2|x−6|=√22,整理得:x 218+y 29=1,所以动点M 的轨迹T 的方程为:x 218+y 29=1;(Ⅱ)将直线与椭圆联立:{x +y −3=0x 218+y 29=1,解得:A (0,3),B (4,﹣1),所以AB 的中点N (2,1),k CD =1,∴AB 的中垂线CD 的方程为:x ﹣y ﹣1=0,设C (x ,y ),D (x ',y '), 联立直线CD 与椭圆的方程整理:3x 2﹣4x ﹣16=0,x +x '=43,xx '=−163,∴CD =2√(x +x ′)2−4xx′=√2⋅√(43)2−4⋅(−163)=4√263, 设CD 的中点为E ,则|DE |=|CE |=12|CD|,又x E =x+x′2=23,y E =x E ﹣1=−13,所以E (23,−13),∴|EA |=√(23)2+(−13−3)2=2√263=12|CD|=|EB|,所以A ,B ,C ,D 是在同一个圆上,且以E 为圆心,以2√263为半径的圆上, 此时圆的方程:(x −23)2+(y +13)2=1049.考点4.是否存在直线7.已知抛物线y 2=2px (p >0)过点P (m ,2),且P 到抛物线焦点的距离为2,直线l 过点Q (2,﹣2),且与抛物线相交于A ,B 两点. (1)求抛物线的方程;(2)若点Q 恰为线段AB 的中点,求直线l 的方程;(3)过点M (﹣1,0)作直线MA 、MB 分别交抛物线于C ,D 两点,请问C ,D ,Q 三点能否共线?若能,求出直线l 的斜率k ;若不能,请说明理由.【解答】解:(1)抛物线y 2=2px (p >0)过点P (m ,2),可得2pm =4,即pm =2, P 到抛物线焦点的距离为2,可得√(m −p2)2+4=2,即m =p2, 解得p =2,m =1,则抛物线方程为y 2=4x ;(2)直线l 过点Q (2,﹣2),可设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=4k,由点Q (2,﹣2)恰为线段AB 的中点,可得4k=−4,即k =﹣1,满足△>0,可得直线l 的方程为y =﹣x ;(3)设(y 124,y 1),B (y 224,y 2),C (y 324,y 3),D (y 424,y 4),设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0,y 1+y 2=4k,y 1y 2=−8k+8k,由M ,A ,C 三点共线可得y1y 124+1=y 3−y 1y 324−y 124=4y3+y 1,化为y 1y 3=4,即y 3=4y 1,同理可得y 4=4y 2,假设C ,D ,Q 三点共线,可得y 3+2y 324−2=y 4−y 3y 424−y 324即y 3y 4+2(y 3+y 4)+8=0,可得2y 1y 2+y 1+y 2y 1y 2+1=0,即k−4k−4+1−2k−2+1=0,解得k =−23,所以当直线l 的斜率为−23,C ,D ,Q 三点共线.8.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为2,且过点(1,√22).(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为△BMN 的垂心,若存在,求出直线l 的方程;若不存在,说明理由.【分析】(1)由题意知焦距和过的点的坐标及a ,b ,c 之间的关系求出椭圆的方程;(2)由(1)可得B ,F 的坐标假设存在这样的直线满足体积设直线方程,求出两根之和及两根之积,由垂心可得垂直关系,即数量积为0求出直线l 的方程.【解答】解:(1)由题意知:2c =2,1a +12b =1,a 2=b 2+c 2,解得:a 2=2,b 2=1, 所以椭圆的方程为:x 22+y 2=1;(2)假设存在这样的直线l ,使得F 为△BMN 的垂心,由(1)得B (0,1),F (1,0),∴k BF =﹣1,由题意可得l ⊥BF ,NF ⊥BM ,设直线l 的方程为:y =x +m ,M (x ,y ),N (x ',y '), 联立直线与椭圆的方程整理得:3x 2+4mx +2m 2﹣2=0,∴△=16m 2﹣4×3×(2m 2﹣2)>0,可得m 2<3,即−√3<m <√3,且x +x '=−4m 3,xx '=2m 2−23,yy '=xx '+m (x +x ')+m 2 ∵FN →⋅BM →=(x '﹣1,y ')(x ,y ﹣1)=xx '﹣x +yy '﹣y '=xx '+yy '﹣x ﹣(x '+m )=2xx '+(m ﹣1)(x +x ')+m 2﹣m =2•2m 2−23−(m ﹣1)⋅4m 3+m 2﹣m =3m 2+m−43, 因为NF ⊥BM ,所以NF →⋅BM →=0,所以3m 2+m ﹣4=0,解得:m =1或m =−43,当m =1过了B 点,所以舍去所以存在直线l:y=x−43符合F为△BMN的垂心.。

高中数学知识点总结(第九章 平面解析几何 第二节 两直线的位置关系)

高中数学知识点总结(第九章 平面解析几何 第二节 两直线的位置关系)

第二节 两直线的位置关系一、基础知识1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在, 设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=x 2-x 12+y 2-y 12.(2)点到直线的距离公式点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两平行直线间的距离公式两条平行直线Ax +By +C 1=0与Ax +By +C 2=0 间的距离d =|C 1-C 2|A 2+B 2.二、常用结论(1)与直线Ax +By +C =0(A 2+B 2≠0)垂直或平行的直线方程可设为: ①垂直:Bx -Ay +m =0;②平行:Ax +By +n =0. (2)与对称问题相关的四个结论:①点(x ,y )关于点(a ,b )的对称点为(2a -x,2b -y ).②点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x,2b -y ). ③点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). ④点(x ,y )关于直线x +y =k 的对称点为(k -y ,k -x ),关于直线x -y =k 的对称点为(k +y ,x -k ).考点一 两条直线的位置关系[典例] 已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.[解] (1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得⎩⎪⎨⎪⎧m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.[解题技法]1..由一般式确定两直线位置关系的方法[题组训练]1.已知直线4x+my-6=0与直线5x-2y+n=0垂直,垂足为(t,1),则n的值为() A.7B.9C.11 D.-7解析:选A由直线4x+my-6=0与直线5x-2y+n=0垂直得,20-2m=0,m=10.直线4x+10y-6=0过点(t,1),所以4t+10-6=0,t=-1.点(-1,1)又在直线5x-2y+n=0上,所以-5-2+n=0,n=7.2.(2019·保定五校联考)直线l1:mx-2y+1=0,l2:x-(m-1)y-1=0,则“m=2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C由l1∥l2得-m(m-1)=1×(-2),得m=2或m=-1,经验证,当m=-1时,直线l1与l2重合,舍去,所以“m=2”是“l1∥l2”的充要条件,故选C.考点二距离问题[典例](1)过点P(2,1)且与原点O距离最远的直线方程为()A.2x+y-5=0B.2x-y-3=0C.x+2y-4=0 D.x-2y=0(2)若两平行直线l1:x-2y+m=0(m>0)与l2:2x+ny-6=0之间的距离是5,则m +n=()A .0B .1C .-2D .-1[解析] (1)过点P (2,1)且与原点O 距离最远的直线为过点P (2,1)且与OP 垂直的直线,因为直线OP 的斜率为1-02-0=12,所以所求直线的斜率为-2,故所求直线方程为2x +y -5=0.(2)因为l 1,l 2平行,所以1×n =2×(-2),1×(-6)≠2×m ,解得n =-4,m ≠-3,所以直线l 2:x -2y -3=0.又l 1,l 2之间的距离是 5,所以|m +3|1+4=5,解得m =2或m =-8(舍去),所以m +n =-2,故选C.[答案] (1)A (2)C[解题技法]1.点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. 2.两平行线间的距离的求法(1)利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式. [题组训练]1.已知点P (2,m )到直线2x -y +3=0的距离不小于25,则实数m 的取值范围是________________.解析:由题意得,点P 到直线的距离为|2×2-m +3|22+12≥25,即|m -7|≥10,解得m ≥17或m ≤-3,所以实数m 的取值范围是(-∞,-3]∪[17,+∞).答案:(-∞,-3]∪[17,+∞)2.如果直线l 1:ax +(1-b )y +5=0和直线l 2:(1+a )x -y -b =0都平行于直线l 3:x -2y +3=0,则l 1,l 2之间的距离为________.解析:因为l 1∥l 3,所以-2a -(1-b )=0,同理-2(1+a )+1=0,解得a =-12,b =0,因此l 1:x -2y -10=0,l 2:x -2y =0,d =|-10-0|12+-22=2 5.答案:25考点三 对称问题[典例] 已知直线l :2x -3y +1=0,点A (-1,-2). (1)求点A 关于直线l 的对称点A ′的坐标;(2)求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. [解] (1)设A ′(x ,y ),再由已知得 ⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,所以A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′方程为9x -46y +102=0.[变透练清] 1.变结论在本例条件下,则直线l 关于点A (-1,-2)对称的直线l ′的方程为________________.解析:法一:在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上. 易知M ′(-3,-5),N ′(-6,-7), 由两点式可得 l ′的方程为2x -3y -9=0. 法二:设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为 P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. 答案:2x -3y -9=02.(2019·合肥四校联考)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a --3=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.答案:6x -y -6=0[解题技法]1.中心对称问题的两个类型及求解方法 (1)点关于点对称若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1进而求解.(2)直线关于点对称①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程; ③轨迹法,设对称直线上任一点M (x ,y ),其关于已知点的对称点在已知直线上. 2.轴对称问题的两个类型及求解方法 (1)点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称, 由方程组⎩⎪⎨⎪⎧A ×x 1+x 22+B ×y 1+y22+C =0,y 2-y 1x 2-x 1×⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[课时跟踪检测]1.过点(1,0)且与直线x -2y -2=0垂直的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选C 因为直线x -2y -2=0的斜率为12,所以所求直线的斜率k =-2.所以所求直线的方程为y -0=-2(x -1), 即2x +y -2=0.2.已知直线l 1:2ax +(a +1)y +1=0和l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B.13或-1 C.13D .-1解析:选B 因为直线l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或-1.3.若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2) 解析:选C 设P (x,5-3x ),则d =|x -5+3x -1|12+-12=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故P (1,2)或(2,-1).4.(2018·揭阳一模)若直线l 1:x -3y +2=0与直线l 2:mx -y +b =0关于x 轴对称,则m +b =( )A.13 B .-1 C .-13D .1解析:选B 直线l 1:x -3y +2=0关于x 轴对称的直线为x +3y +2=0.由题意知m ≠0. 因为mx -y +b =0,即x -y m +bm=0,且直线l 1与l 2关于x 轴对称,所以有⎩⎨⎧-1m=3,bm =2,解得⎩⎨⎧m =-13,b =-23,则m +b =-13+⎝⎛⎭⎫-23=-1. 5.点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( )A .-32B.54 C .-65D.56解析:选D 由题意,知⎩⎨⎧3-11+2·k =-1,2=k ·⎝⎛⎭⎫-12+b ,解得⎩⎨⎧k =-32,b =54.∴直线方程为y =-32x +54,它在x 轴上的截距为-54×⎝⎛⎭⎫-23=56.故选D. 6.(2019·成都五校联考)已知A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .2x +y -7=0B .x +y -5=0C .2y -x -4=0D .2x -y -1=0解析:选B 由|P A |=|PB |得点P 一定在线段AB 的垂直平分线上,根据直线P A 的方程为x -y +1=0,可得A (-1,0),将x =2代入直线x -y +1=0,得y =3,所以P (2,3),所以B (5,0),所以直线PB 的方程是x +y -5=0,选B.7.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3 2B .22C .3 3D .42解析:选A 依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0.根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2. 8.已知点A (1,3),B (5,-2),在x 轴上有一点P ,若|AP |-|BP |最大,则P 点坐标为( )A .(3.4,0)B .(13,0)C .(5,0)D .(-13,0)解析:选B 作出A 点关于x 轴的对称点A ′(1,-3),则A ′B 所在直线方程为x -4y -13=0.令y =0得x =13,所以点P 的坐标为(13,0).9.经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.解析:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0得x =0,y =2,即P (0,2).因为l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.答案:4x +3y -6=010.已知点P 1(2,3),P 2(-4,5)和A (-1,2),则过点A 且与点P 1,P 2距离相等的直线方程为________.解析:当直线与点P 1,P 2的连线所在的直线平行时,由直线P 1P 2的斜率k =3-52+4=-13,得所求直线的方程为y -2=-13(x +1),即x +3y -5=0.当直线过线段P 1P 2的中点时,因为线段P 1P 2的中点坐标为(-1,4),所以直线方程为x =-1.综上所述,所求直线方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-111.直线x -2y +1=0关于直线x =1对称的直线方程是________.解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=012.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=013.已知△ABC 的三个顶点是A (1,1),B (-1,3),C (3,4). (1)求BC 边的高所在直线l 1的方程;(2)若直线l 2过C 点,且A ,B 到直线l 2的距离相等,求直线l 2的方程.解:(1)因为k BC =4-33+1=14,又直线l 1与BC 垂直,所以直线l 1的斜率k =-1k BC =-4,所以直线l 1的方程是y =-4(x -1)+1,即4x +y -5=0.(2)因为直线l 2过C 点且A ,B 到直线l 2的距离相等, 所以直线l 2与AB 平行或过AB 的中点M , 因为k AB =3-1-1-1=-1,所以直线l 2的方程是y =-(x -3)+4,即x +y -7=0. 因为AB 的中点M 的坐标为(0,2), 所以k CM =4-23-0=23,所以直线l 2的方程是y =23(x -3)+4,即2x -3y +6=0. 综上,直线l 2的方程是x +y -7=0或2x -3y +6=0.。

高考数学常用二级结论:解析几何、立体几何(收藏)

高考数学常用二级结论:解析几何、立体几何(收藏)

S OQ Pα 高考数学常用二级结论:解析几何、立体几何(收藏)一、解析几何30.过圆222(0)x y r r +=>上一点000(,)P x y 的切线方程为:200x x y y r +=;若0P 在圆O 外,则直线200x x y y r +=是切点弦所在直线方程.31.切线长公式:过圆220x y Dx Ey F ++++=外一点000(,)P x y 引切线,切线长PT =.32.椭圆与双曲线中的焦点三角形12PF F ∆.(1)椭圆中当点P 在短轴端点时,12PF F ∠最大,12PF F ∆的面积最大.(2)12F PF θ∠=,则椭圆中122tan 2PF F S b θ∆=:双曲线中122cot 2PF F S b θ∆=.(3)12PF F α∠=,21PF F α∠=,则椭圆中1tan tan 221e e αβ-=+:双曲线中1tan cot 221e eαβ-=-+ 33.焦半径公式,点000(,)P x y 在圆锥曲线上. (1)椭圆22221(0)x y a b a b +=>>,210()a PF e x a ex c =+=+,220()a PF e x a ex c=-=-. (2)双曲线22221(0,0)x y a b a b -=>>,210()a PF e x a ex c =+=+,220()a PF e x a ex c=-=-,点P 在右支上. (3)抛物线22(0)y px p =>,02p PF x =+.二、立体几何34.一条斜线从一个角顶点出发与两边所成的角相等,则该斜线在该角所在平面上的射影在角平子于线上;若该斜线上一点到角两边距离相等,则该斜线在该角所在平面上的射影在角平分线上.35.斜三棱柱体积:012V s h s a ==底斜棱柱,其中0s 是一个侧面面积,a 是该侧面与说对棱距离. 36.三余弦定理:从平面α内一点O 出发的斜线OP 在α内的射影为OQ ,OS α⊂,1POQ θ∠=,2SOQ θ∠=,POS θ∠=,则12cos cos cos θθθ=. 37.正四面体的棱长为a ,其高为3h a =;体积为312V a =斜棱柱;内切球与外切球半径之比为13. 38.棱长为a 的正方体内切球半径为1r ,外接球半径为2r ,与十二条棱均相切的球半径为3r,则12r a =,22r,22r=,且1231r r r =::39.长方体(,,)a b c 中,(1)对角线长l =(2)表面积为S ab bc ca +=+;(3)一条对角线与过同一顶点的三个面所成角为,,αβγ,则222cos cos cos 1αβγ+=+;(4)一条对角线与过同一顶点的三条棱所成角为,,αβγ,则222cos cos cos 2αβγ+=+;(5)长方体外接球直径2R40.正三棱椎P ABC -中,则有PA BC ⊥,PB AC ⊥,PC AB ⊥,P 在底面的射影是ABC ∆的中心.41.在三棱椎P ABC -中,设顶点P 在底面的射影为H .(1)若PA BC ⊥,PB AC ⊥,则PC AB ⊥.(2)若PA BC ⊥,PB AC ⊥,则H 为ABC 的垂心.(3)若PA PB PC ==,则H 为ABC 的外心.。

新高考卷解析几何热门考题汇编(学生版)

新高考卷解析几何热门考题汇编(学生版)

新高考卷解析几何热门考题汇编选填部分一、基本原理1.圆中与距离最值有关的常见的结论结论1. 圆外一点A 到圆上距离最近为AO -r ,最远为AO +r ;结论2. 过圆内一点的弦最长为圆的直径,最短的弦为与过该点的直径垂直的弦;结论3. 直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d +r ,最近为d -r ;从圆外任一点P (x 0,y 0)向圆引两条切线,圆心C ,两切点A ,B ,我们把线段PA ,PB 的长度叫做切线长,设圆的半径为r ,则有:结论4.切线长的计算:PA =PB =PC 2−r 2,当半径给定,切线长最小等价于PC 最小.结论5. 过圆外一点P 向圆O 引两条切线,切点记为A ,B ,则四边形ABPO 面积的最值等价于圆心到点P 的距离最值.结论6. 圆上两点与圆外一点的连线的夹角(圆外一点为顶点)中,以这两条直线为切线时最大.结论7. 圆上一点、圆心与圆外一点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论8. 圆上一点、圆外两点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.2.椭圆三定义1.椭圆的第二定义:a 2−cx =a (x −c )2+y 2⇒(x −c )2+y 2a 2c−x=ca①. ①式表明椭圆上的点P 到右焦点F 2的距离与到直线x =a 2c 的距离之比是离心率e .2.角度形式焦半径:上加下减.QF 2 =b 2a -c ⋅cos θ,PF 2 =b 2a +c ⋅cos θ,AB =2ab 2a 2-c 2⋅cos 2θ3.第三定义假设A ,B 是椭圆上任意两点且关于坐标原点中心对称,那么椭圆上任意点P (不与A ,B 重合)到A ,B 点的斜率之积为一个定值.证明:设A ,B 的坐标分别为(x 0,y 0),(−x 0,−y 0),P (x ,y ),则由于三点均在椭圆上,故满足:x 20a 2+y 20b 2=1,x 2a 2+y 2b 2=1,即x 20a 2+y 20b 2=x 2a 2+y 2b 2⇒y −y 0x −x 0⋅y +y 0x +x 0=−b 2a2.3.椭圆焦点三角形焦点三角形主要结论:椭圆定义可知:ΔPF 1F 2中,(1). |PF 1|+|PF 2|=2a ,|F 1F 2|=2c .(2). 焦点三角形的周长为L =2a +2c .(3).|PF 1||PF 2|=2b 21+cos ∠F 1PF 2.(4). 焦点三角形的面积为:S =12|PF 1||PF 2|sin ∠F 1PF 2=b 2tan ∠F 1PF 22.①设F 1、F 2是椭圆C :x 2a 2+y 2b 2=1a >b >0 的左、右焦点,P 是椭圆C 上的一个动点,则当P 为短轴端点时,∠F 1PF 2最大.②.S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;(5). 假设焦点ΔPF 1F 2的内切圆半径为r ,则S =(a +c )r .(6).焦半径公式:设P (x 0,y 0)是椭圆上一点,那么|PF 1|=a +ex 0,|PF 2|=a −ex 0,进一步,有PF 1 •PF 2 =a 2-ex 2∈b 2,a 2推导:根据两点间距离公式:|PF 1|=(x 0+c )2+y 2,由于x 20a 2+y 20b2=1,(a >b >0)代入两点间距离公式可得|PF 1|=(x 0+c )2+b 21−x 20a2,整理化简即可得|PF 1|=a +ex 0. 同理可证得|PF 1|=a −ex 0.(7).设P (x 0,y 0)是椭圆上一点,那么PF 1 ⋅PF 2 =b 2−c 2+e 2x 20,由于x 0∈[0,a 2],故我们有PF 1 •PF 2 =b 2-c 2+e 2x 2∈b 2-c 2,b 2(8)若约定椭圆x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为左、右焦点;顶点P (x 0,y 0)在第一象限;∠PF 2F 1=α,∠PF 1F 2=β(α>β),∠F 1PF 2=γ,则对于椭圆,离心率e =2c 2a =ca =sin γsin α+sin β=sin (α+β)sin α+sin β4.双曲线焦点三角形1.如图,F 1、F 2是双曲线的焦点,设P 为双曲线上任意一点,记∠F 1PF 2=θ,则△PF 1F 2的面积S =b 2tan θ2.OF 1F 2Pxy .2.离心率e =2c 2a =ca =sin γsin α−sin β=sin (α+β)sin α−sin β.3.焦半径公式:如图,对于双曲线,PF 1 =ex 0+a ,PF 2 =ex 0−a ,对双曲线,其焦半径的范围为c −m ,+∞ .4.双曲线中,焦点三角形的内心I 的轨迹方程为x =a (−b <y <b ,y ≠).5.已知具有公共焦点F 1,F 2的椭圆与双曲线的离心率分别为e 1,e 2,P 是它们的一个交点,且∠F 1PF 2=2θ,则有sin θe 12+cos θe 22=1.6.如图,过焦点F 2的弦AB 的长为t ,则ΔABF 1的周长为4m +2t .5.双曲线的渐近线1.双曲线x 2a 2−y 2b 2=1中,右焦点为F 2,作F 2P 垂直于渐近线y =b a x ,垂足为P ,则点P 在双曲线的右准线上,且P 的坐标为a 2c ,abc,且OP =a ,F 2P =b ,F 2O =c .2.过双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点F 且与渐近线y =ba x 垂直的直线分别交C 的两条渐近线于P 、Q 两点,则OF =c ,FQ =b ,OQ =a .(1)当1<e <2时,设∠FOQ =α,则tan α=ba,tan2α=2tan α1−tan 2α=2⋅b a 1−b a2=2aba 2−b 2,PQ =a ⋅tan2α=2a 2b a 2−b 2,PF =PQ −FQ =2a 2b a 2−b 2−b =bc 2a 2−b2,OP =a 2+2a 2b a 2−b 22=ac 2a 2−b 2.进一步,若QF =λFP(0<λ<1),则e 2=2λ+1(2)当e >2时,设M 是直线PQ 与y 轴的交点,∠MOQ =β,则tan β=a b,tan2β=2βtan 1-2βtan =2⋅a b 1-a b 2=2ab b 2-a 2,PQ =a ⋅tan2β=2a 2bb 2−a 2,OP =a 2+2a 2b b 2−a 22=ac 2b 2−a2,MQ =a tan β=a 2b ,PM=PQ -MQ =2a 2b b 2−a 2-a 2b =a 2c 2b b 2−a 2OM =a 2b 2+a 2=ac b ,MF =ac b 2+c 2=c 2b.进一步:若FP =λFQ λ>0,λ≠1 ,则e 2=2λλ−16.抛物线焦半径假设抛物线方程为y 2=2px .过抛物线焦点的直线l 与抛物线交于A ,B 两点,其坐标分别为A (x 1,y 1),B (x 2,y 2).性质1.|AF |=x A +p 2,|BF |=x B +p2,|AB |=x A +x B +p .性质2.抛物线y 2=2px 的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:x 1x 2=p 24,y 1y 2=−p 2.一般地,如果直线l 恒过定点M (m ,0)与抛物线y 2=2px (p >0)交于A ,B 两点,那么x A x B =m 2,y A y B =−2pm .于是,若OA ⊥OB ⇒AB 恒过定点(2p ,0).性质3.已知倾斜角为θ直线的l经过抛物线y2=2px的焦点F,且与抛物线交于A,B两点,则(1)|AF|=p1−cosθ,|BF|=P1+cosθ,1|FA|+1|FB|=2p.(2)|AB|=2psin2θ,SΔOAB=p22sinθ,|AB|=2p1+1k2.性质4.抛物线的通径(1).通径长为2p.(2).焦点弦中,通径最短.(3).通径越长,抛物线开口越大.性质5.已知直线l经过抛物线y2=2px的焦点F,且与抛物线交于A,B两点,若弦AB中点的坐标为(x0,y0),则|AB|=2x0+p 2.性质6.以焦点弦为直径的圆与准线相切.7.抛物线中的阿基米德三角形如图,假设抛物线方程为x2=2py(p>0),过抛物线准线y=−p2上一点P(x0,y0)向抛物线引两条切线,切点分别记为A,B,其坐标为(x1,y1),(x2,y2). 则以点P和两切点A,B围成的三角形PAB中,有如下的常见结论:结论1.直线AB过抛物线的焦点F.结论2.直线AB的方程为x0x=2p y0+y2=p(y0+y).结论3.过F的直线与抛物线交于A,B两点,以A,B分别为切点做两条切线,则这两条切线的交点P (x0,y0)的轨迹即为抛物线的准线.结论4.PF⊥AB.结论5.AP⊥PB.结论6.直线AB的中点为M,则PM平行于抛物线的对称轴.二.试题汇编1.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知⊙O 1:(x -2)2+(y -3)2=4,⊙O 1关于直线ax +2y +1=0对称的圆记为⊙O 2,点E ,F 分别为⊙O 1,⊙O 2上的动点,EF 长度的最小值为4,则a =( )A.-32或56B.-56或32C.-32或-56D.56或322.(福建省厦门市2023届高三下学期第二次质量检测)圆O 为锐角△ABC 的外接圆,AC =2AB =2,点P 在圆O 上,则BP ⋅AO的取值范围为( )A.-12,4B.0,2C.-12,2D.0,43.(广东省2023届高考一模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),点B 的坐标为0,b ,若C 上的任意一点P 都满足PB ≥b ,则C 的离心率取值范围是( )A.1,5+12B.5+12,+∞ C.1,2D.2,+∞4.(广东省佛山市2023届高三教学质量检测(一))已知双曲线C 的中心位于坐标原点,焦点在坐标轴上,且虚轴比实轴长.若直线4x +3y -20=0与C 的一条渐近线垂直,则C 的离心率为( )A.54B.43C.53D.745.(广东省广州市2023届高三综合测试(一))已知抛物线C 的顶点为坐标原点O ,焦点F 任x 铀上,过点2,0 的且线交C 于P ,Q 两点,且OP ⊥OQ ,线段PQ 的中点为M ,则直线MF 的斜率的取大值为( )A.66B.12C.22D.16.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)已知F 1,F 2分别是双曲线Γ:x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,过F 1的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,CB=3F 2A ,BF 2平分∠F 1BC ,则双曲线Γ的离心率为( )A.7B.5C.3D.27.(湖北省武汉市2023届高三下学期二月调研)设A ,B 是半径为3的球体O 表面上两定点,且∠AOB =60°,球体O 表面上动点P 满足PA =2PB ,则点P 的轨迹长度为( )A.121111π B.4155π C.6147π D.121313π8.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线上,PF 1⊥PF 2,圆O :x 2+y 2=94(a 2+b 2),直线PF 1与圆O 相交于A ,B 两点,直线PF 2与圆O 相交于M ,N 两点.若四边形AMBN 的面积为9b 2,则C 的离心率为( )A.54B.85C.52D.21059.(江苏省南京市、盐城市2023届高三下学期一模)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 的两条弦AB ,CD 相交于点P (点P 在第一象限),且AB ⊥x 轴,CD ⊥y 轴.若PA :PB :PC :PD =1:3:1:5,则椭圆E 的离心率为( )A.55B.105C.255D.210510.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))已知椭圆x 2a 2+y 2b 2=1a >b >0的右焦点为F c ,0 ,点P ,Q 在直线x =a 2c 上,FP ⊥FQ ,O 为坐标原点,若OP ⋅OQ =2OF 2,则该椭圆的离心率为( )A.23B.63C.22D.3211.(2023年湖北省八市高三(3月)联考)如图,F 1,F 2为双曲线的左右焦点,过F 2的直线交双曲线于B ,D 两点,OD =3,E 为线段的DF 1中点,若对于线段DF 1上的任意点P ,都有PF 1 ⋅PB ≥EF 1 ⋅EB成立,且△BF 1F 2内切圆的圆心在直线x =2上.则双曲线的离心率是()A.43B.3C.2D.3212.(山东省青岛市2023届高三下学期第一次适应性检测)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,直线y =3x 与C 的左、右两支分别交于A ,B 两点,若四边形AF 1BF 2为矩形,则C 的离心率为( )A.3+12B.3C.3+1D.5+113.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知一个抛物线形拱桥在一次暴雨前后的水位之差是1.5m ,暴雨后的水面宽为2m ,暴雨来临之前的水面宽为4m ,暴雨后的水面离桥拱顶的距离为( )A.0.5mB.1mC.1.5mD.2m多选14.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知曲线C :x 24+y 22m 2-4=1( )A.若m >2,则C 是椭圆B.若-2<m <2,则C 是双曲线C.当C 是椭圆时,若m 越大,则C 越接近于圆D.当C 是双曲线时,若m 越小,则C 的张口越大15.(广东省2023届高考一模)已知拋物线E :y 2=8x 的焦点为F ,点F 与点C 关于原点对称,过点C 的直线l 与抛物线E 交于A ,B 两点(点A 和点C 在点B 的两侧),则下列命题正确的是( )A.若BF 为△ACF 的中线,则AF =2BF B.若BF 为∠AFC 的角平分线,则AF =6C.存在直线l ,使得AC =2AFD.对于任意直线l ,都有AF +BF >2CF16.(广东省佛山市2023届高三教学质量检测(一))设单位圆O 与x 轴的左、右交点分别为A 、B ,直线l :x cos θ-y sin θ+1=0(其中0<θ<π)分别与直线x +1=0、x -1=0交于C 、D 两点,则( )A.θ=2π3时,l 的倾斜角为π6B.∀θ∈0,π ,点A 、B 到l 的距离之和为定值C.∃θ∈0,π ,使l 与圆O 无公共点D.∀θ∈0,π ,恒有OC ⊥OD17.(广东省广州市2023届高三综合测试(一))平面内到两定点距离之积为常数的点的轨迹称为卡西尼卵形线,它是1675年卡西尼在研究土星及其卫星的运行规律时发现的,已知在平面直角坐标系xOy 中,M (-2,0),N (2,0),动点P 满足|PM |⋅|PN |=5,则下列结论正确的是( )A.点P 的横坐标的取值范围是-5,5 B.OP 的取值范围是1,3C.△PMN 面积的最大值为52D.PM +PN 的取值范围是25,518.(广东省深圳市2023届高三第一次调研)已知抛物线C :y 2=2x 的准线为l ,直线x =my +n 与C 相交于A 、B 两点,M 为AB 的中点,则( )A.当n =12时,以AB 为直径的圆与l 相交B.当n =2时,以AB 为直径的圆经过原点OC.当AB =4时,点M 到l 的距离的最小值为2D.当AB =1时,点M 到l 的距离无最小值19.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)已知直线l :y =k x +2 交y 轴于点P ,圆M :x -2 2+y 2=1,过点P 作圆M 的两条切线,切点分别为A ,B ,直线AB 与MP 交于点C ,则( )A.若直线l 与圆M 相切,则k =±1515B.当k =2时,四边形PAMB 的面积为219C.直线AB 经过一定点D.已知点Q 74,0,则CQ 为定值20.(湖北省武汉市2023届高三下学期二月调研)若椭圆x 2m 2+2+y 2m 2=1(m >0)的某两个顶点间的距离为4,则m 的可能取值有( )A.5B.7C.2D.221.(江苏省南京市、盐城市2023届高三下学期一模)已知点A -1,0 ,B 1,0 ,点P 为圆C :x 2+y 2-6x -8y +17=0上的动点,则( )A.△PAB 面积的最小值为8-42 B.AP 的最小值为22C.∠PAB 的最大值为5π12D.AB ⋅AP的最大值为8+4222.(山东省济南市2023届高三下学期3月一模)在平面直角坐标系xOy 中,由直线x =-4上任一点P 向椭圆x 24+y 23=1作切线,切点分别为A ,B ,点A 在x 轴的上方,则( )A.∠APB 恒为锐角B.当AB 垂直于x 轴时,直线AP 的斜率为12C.|AP |的最小值为4D.存在点P ,使得(PA +PO )⋅OA=023.(山东省青岛市2023届高三下学期第一次适应性检测)已知A 、B 是平面直角坐标系xOy 中的两点,若OA =λOB λ∈R ,OA ⋅OB =r 2r >0 ,则称B 是A 关于圆x 2+y 2=r 2的对称点.下面说法正确的是( )A.点1,1 关于圆x 2+y 2=4的对称点是-2,-2B.圆x 2+y 2=4上的任意一点A 关于圆x 2+y 2=4的对称点就是A 自身C.圆x 2+y -b 2=b 2b >0 上不同于原点O 的点M 关于圆x 2+y 2=1的对称点N 的轨迹方程是y =12bD.若定点E 不在圆C :x 2+y 2=4上,其关于圆C 的对称点为D ,A 为圆C 上任意一点,则AD AE为定值24.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知圆的方程为(x -m )2+(y -m )2=m 2,对任意的m >0,该圆( )A.圆心在一条直线上 B.与坐标轴相切C.与直线y =-x 不相交D.不过点1,1填空25.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知曲线f x =x 3-3x 2+6x +2在点P 处的切线与在点Q 处的切线平行,若点P 的纵坐标为1,则点Q 的纵坐标为__________.26.(福建省福州市普通高中2023届高三毕业班质量检测(二检))已知椭圆C :x 212+y 26=1,直线l 与C在第二象限交于A ,B 两点(A 在B 的左下方),与x 轴,y 轴分别交于点M ,N ,且|MA |:|AB |:|BN |=1:2:3,则l 的方程为__________.27.(福建省厦门市2023届高三下学期第二次质量检测)写出与直线x =1, y =1,和圆x 2+y 2=1都相切的一个圆的方程________.28.(福建省厦门市2023届高三下学期第二次质量检测)不与x 轴重合的直线l 过点N (x N ,0)(xN ≠0),双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上存在两点A 、B 关于l 对称,AB 中点M 的横坐标为x M .若x N =4x M ,则C 的离心率为____________.29.(广东省2023届高考一模)已知动圆N 经过点A -6,0 及原点O ,点P 是圆N 与圆M :x 2+(y -4)2=4的一个公共点,则当∠OPA 最小时,圆N 的半径为___________.30.(广东省佛山市2023届高三教学质量检测(一))抛物线C :y 2=8x 的焦点为F ,准线为l ,M 是C 上的一点,点N 在l 上,若FM ⊥FN ,且MF =10,则NF =______.31.(广东省深圳市2023届高三第一次调研)若椭圆上的点到焦点距离的最大值是最小值的2倍,则该椭圆的离心率为_________.32.(广东省深圳市2023届高三第一次调研)设a >0,A 2a ,0 ,B 0,2 ,O 为坐标原点,则以OA 为弦,且与AB 相切于点A 的圆的标准方程为____;若该圆与以OB 为直径的圆相交于第一象限内的点P (该点称为直角△OAB 的Brocard 点),则点P 横坐标x 的最大值为______.33.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)已知M 1,2 为抛物线C :y 2=2px p >0 上一点,过点T 0,1 的直线与抛物线C 交于A ,B 两点,且直线MA 与MB 的倾斜角互补,则TA ⋅TB =__________.34.(湖北省武汉市2023届高三下学期二月调研)若两条直线l 1:y =3x +m ,l 2:y =3x +n 与圆x 2+y 2+3x +y +k =0的四个交点能构成矩形,则m +n =____________.35.(湖北省武汉市2023届高三下学期二月调研)设F 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,A ,B 分别为双曲线E 的左右顶点,点P 为双曲线E 上异于A ,B 的动点,直线l :x =t 使得过F 作直线AP 的垂线交直线l 于点Q 时总有B ,P ,Q 三点共线,则t a的最大值为____________.36.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知点P 在抛物线C :y 2=2px p >0 上,过P 作C 的准线的垂线,垂足为H ,点F 为C 的焦点.若∠HPF =60°,点P 的横坐标为1,则p =_______.37.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)过点-1,0 作曲线y =x 3-x 的切线,写出一条切线的方程_______.38.(江苏省南京市、盐城市2023届高三下学期一模)已知抛物线y 2=4x 的焦点为F ,点Р是其准线上一点,过点P 作PF 的垂线,交y 轴于点A ,线段AF 交抛物线于点B .若PB 平行于x 轴,则AF 的长度为____________.39.(江苏省南京市、盐城市2023届高三下学期一模)直线x =t 与曲线C 1:y =-e x +ax a ∈R 及曲线C 2:y =e -x +ax 分别交于点A ,B .曲线C 1在A 处的切线为l 1,曲线C 2在B 处的切线为l 2.若l 1,l 2相交于点C ,则△ABC 面积的最小值为____________.40.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))已知圆C :x 2-2x +y 2-3=0,过点T 2,0 的直线l 交圆C 于A ,B 两点,点P 在圆C 上,若CP ∥AB ,PA ⋅PB =12,则AB =________41.(2023年湖北省八市高三(3月)联考)已知抛物线y 2=2px (p >0)的焦点为F ,过点F 的直线与该抛物线交于A ,B 两点,AB =52,AB 的中点纵坐标为2,则p =__________.42.(山东省济南市2023届高三下学期3月一模)已知圆C 1:x 2+y 2=2关于直线l 对称的圆为圆C 2:x 2+y 2+2x -4y +3=0,则直线l 的方程为______.43.已知O 为坐标原点,在抛物线y 2=2px p >0 上存在两点E ,F ,使得△OEF 是边长为4的正三角形,则p =______.44.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知抛物线y2=4x和椭圆x2+a2y2=1(a>b>0)相交于A,B两点,且抛物线的焦点F也是椭圆的焦点,若直线AB过点F,则椭圆的b2离心率是__________.。

(完整版)解析几何知识点总结

(完整版)解析几何知识点总结

抛物线的标准方程、图象及几何性质:0>p1、定义:2、几个概念:① p 的几何意义:焦参数p 是焦点到准线的距离,故p 为正数; ② 焦点的非零坐标是一次项系数的14;③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。

④ 通径:2p3、如:AB 是过抛物线)0(22>=p px y 焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,l MN ⊥,N 为垂足,l BD ⊥,l AH ⊥,D ,H 为垂足,求证:(1)DF HF ⊥; (2)BN AN ⊥; (3)AB FN ⊥;(4)设MN 交抛物线于Q ,则Q 平分MN ; (5)设),(),,(2211y x B y x A ,则221p y y -=,22141p x x =; (6)pFB FA 2||1||1=+; (7)D O A ,,三点在一条直线上(8)过M 作AB ME ⊥,ME 交x 轴于E ,求证:||21||AB EF =,||||||2FB FA ME ⋅=;1、 双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。

第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数)1(>e e 的点的轨迹。

两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。

常数叫做离心率。

注意: a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。

||221F F a =表示两条射线;||221F F a >没有轨迹;2、 双曲线的标准方程①焦点在x 轴上的方程:22221x y a b -=(a>0,b>0); ②焦点在y 轴上的方程:22221y x a b-= (a>0,b>0);③当焦点位置不能确定时,也可直接设椭圆方程为:mx 2-ny 2=1(m ·n<0); ④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程. 3、双曲线的渐近线:①求双曲线12222=-b y a x 的渐近线,可令其右边的1为0,即得02222=-b y a x ,因式分解得到。

二级结论专题11 解析几何2

二级结论专题11  解析几何2

二级结论专题11解析几何2二级结论1:圆锥曲线中的定值问题【结论阐述】1.在椭圆中:已知椭圆22221(0)x y a b a b+=>>,定点00(,)P x y (000x y ≠)在椭圆上,设A ,B 是椭圆上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k +=.则直线AB 的斜率2020=AB b x k a y .2.在双曲线C :22221(0,0)x y a b a b-=>>中,定点00(,)P x y (000x y ≠)在双曲线上,设A ,B 是双曲线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PBk k +=.则直线AB 的斜率2020=AB b x k a y -.3.在抛物线C :22(0)y px p =>,定点00(,)P x y (000x y ≠)在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k +=.则直线AB 的斜率0=AB p k y -.【应用场景】在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点P (非顶点)与曲线上的两动点A ,B 满足直线PA 与PB 的斜率互为相反数(倾斜角互补),则直线AB 的斜率为定值.【典例指引1】1.已知点P 在抛物线2:4C y x =上,过点P 作两条斜率互为相反数的直线交抛物线C 于A 、B 两点,若直线AB 的斜率为1-,则点P 坐标为()A .()1,2B .()1,2-C .(2,D .(2,-【典例指引2】2.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点为12,F F ,椭圆的离心率为12,点2⎛ ⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)点T 为椭圆C 上的点,若点T 在第一象限,且2TF 与x 轴垂直,过T 作两条斜率互为相反数的直线分别与椭圆C 交于点M ,N ,探究直线MN 的斜率是否为定值?若为定值,请求之;若不为定值,请说明理由.【针对训练】3.已知抛物线2:4C y x =,点Q 在x 轴上,直线:(2)240l m x y m ---+=与抛物线C 交于M ,N 两点,若直线QM 与直线QN 的斜率互为相反数,则点Q 的坐标是_____.(2022·山西晋中·高二期末)4.已知点()2,1P -是椭圆2222:1(0)x y C a b a b +=>>上的一点,且椭圆C 的离心率2e =.(1)求椭圆C 的标准方程;(2)两动点,A B 在椭圆C 上,总满足直线PA 与PB 的斜率互为相反数,求证:直线AB 的斜率为定值.5.已知椭圆2222:1(0)x y C a b a b+=>>过点31,2A ⎛⎫ ⎪⎝⎭,且离心率e 为12(1)求椭圆C 的方程;(2)E 、F 是椭圆上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.6.已知动点M 到直线+2=0x 的距离比到点(1,0)F 的距离大1.(1)求动点M 所在的曲线C 的方程;(2)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率互为相反数,证明直线AB 的斜率为定值,并求出这个定值;7.如图,已知9(,3)4M 是抛物线()2:20C y px p =>上一点,直线AM ,BM 的斜率互为相反数,与抛物线C 分别交于A ,B 两点,且均在M 点的下方.证明:直线AB 的斜率为定值.8.已知()1,2A 为抛物线22(0)y px p =>上的一点,E ,F 为抛物线上异于点A 的两点,且直线AE 的斜率与直线AF 的斜率互为相反数.求直线EF 的斜率.9.已知点)Q,点P 是圆C :22(x y 12+=上的任意一点,线段PQ 的垂直平分线与直线CP 交于点M .()1求点M 的轨迹方程;()2过点()A 作直线与点M 的轨迹交于点E ,过点()B 0,1作直线与点M 的轨迹交于点F(E,F 不重合),且直线AE 和直线BF 的斜率互为相反数,直线EF 的斜率是否为定值,若为定值,求出直线EF 的斜率;若不是定值,请说明理由.10.已知,椭圆C 过点35A ,22⎛⎫⎪⎝⎭,两个焦点为()0,2,()0,2-,,E F 是椭圆C 上的两个动点,直线AE 的斜率与AF 的斜率互为相反数.()1求椭圆C 的方程;()2求证:直线EF 的斜率为定值.(2022沙坪坝·重庆八中)11.在平面直角坐标系xOy 中,设点()00,M x y 是椭圆22:1205x y C +=上一点,以M 为圆心的一个半径2r =的圆,过原点作此圆的两条切线分别与椭圆C 交于点P 、Q .(1)若点M 在第一象限且直线,OP OQ 互相垂直,求圆M 的方程;(2)若直线,OP OQ 的斜率都存在,且分别记为12,k k .求证:12k k 为定值;(3)探究22OP OQ +是否为定值,若是,则求出OP OQ ⋅的最大值;若不是,请说明理由.(2022沙坪坝·重庆南开中学)12.已知椭圆2222:1(0)x y E a b a b +=>>的左右焦点为1F 、2F ,离心率2e =,过圆2221:C x y b +=上一点Q (Q 在y 轴左侧)作该圆的切线,分别交椭圆E 于A 、B 两点,交圆2222:C x y a +=于C 、D 两点(如图所示).当切线AB 与x 轴垂直时,2CDF V 的面积为3.(1)求椭圆E 的标准方程;(2)(ⅰ)求ABO 的面积的最大值;(ⅱ)求证:2AC AF +为定值,并求出这个定值.13.已知双曲线()222210,0x y a b a b-=>>过点()3,2A -,且离心率e =(1)求该双曲线的标准方程:(2)如果B ,C 为双曲线上的动点,直线AB 与直线AC 的斜率互为相反数,证明直线BC 的斜率为定值,并求出该定值.(2021全国高考真题)14.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.二级结论2:圆锥曲线中的定点问题【结论阐述】若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.(1)对于椭圆22221x y a b+=(0a b >>)上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222()(+a b aa b -.同理,当以AB 为直径的圆过左顶点(,0)a -时,直线AB l 过定点2222()(+a b a a b --.(2)对于双曲线22221(0,0)x y a b a b-=>>上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222(+)(,0)a b aa b-.同理,对于左顶点(,0)a -,则定点为2222(+)(,0)a b aa b --.(3)对于抛物线22(0)y px p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则弦AB所在直线过点(2,0)p .同理,抛物线22(0)x py p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则直线AB 过定点(0,2)p .【应用场景】一般情况下,若方程(),0f x y =中含有一个或者多个参数,当x 取某个常数0x 时,求得的y 也是一个与参数无关的常数0y ,这样就可以说方程(),=0f x y 对应的曲线经过定点()00,x y .有时圆锥曲线中的定点问题,可以充分考虑几何性质,从特殊情况出发,对可能的定点有初步的判断,争取确定出定点,这样可以转化为有方向、有目标的一般性证明题,从而找到解决问题的突破口.【典例指引1】(2022·安徽蚌埠·高二期末)15.已知直线l 与抛物线24y x =交于不同的两点A ,B ,O 为坐标原点,若直线,OA OB 的斜率之积为1-,则直线l 恒过定点()A .(4,0)B .(0,4)C .(0,4)-D .(4,0)-【典例指引2】16.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上.(Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【反思】在分析直线方程时,要考虑直线的特殊情况,注意分类讨论.要想整理得出k 和m 的关系,需要借助韦达定理建立关于k 和m 方程,注意化简运算的技巧.【针对训练】17.已知双曲线2212y x -=,点()1,0A -,在双曲线上任取两点P 、Q 满足AP AQ ⊥,则直线PQ 恒过定点__________;(2022·四川巴中·一模)18.已知椭圆C :22221x y a b+=(a >b >0)的左、右焦点分别为1F ,2F ,点31,2M ⎛⎫ ⎪⎝⎭满足122MF MF a +=,且12MF F △的面积为32.(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为P ,不过点P 的直线l 交C 于A ,B 两点,若PA PB ⊥,证明直线l 恒过定点.19.已知椭圆22132x y E +=:的左右顶点分别为A ,B ,点P 为椭圆上异于A ,B 的任意一点.(1)证明:直线PA 与直线PB 的斜率乘积为定值;(2)设()(0Q t t ≠,,过点Q 作与x 轴不重合的任意直线交椭圆E 于M ,N 两点.问:是否存在实数t ,使得以MN 为直径的圆恒过定点B ?若存在,求出t 的值;若不存在,请说明理由.(2022届黑龙江省哈尔滨市高三上学期检测)20.已知抛物线的顶点为原点,焦点F 在x 轴的正半轴,F 到直线20x y -+=的距离点()()000,0N x y y >为此抛物线上的一点,52NF =.直线l 与抛物线交于异于N的两点A ,B ,且2NA NB k k ⋅=-.(1)求抛物线方程和N 点坐标;(2)求证:直线AB 过定点,并求该定点坐标.(2022届河南省焦作市高三上学期开学考试)21.在PAB 中,已知()2,0A -、()2,0B ,直线PA 与PB 的斜率之积为34-,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设Q 为曲线C 上一点,直线AP 与BQ 交点的横坐标为4,求证:直线PQ 过定点.(2022届陕西省西安市高三上学期模拟)22.已知与圆22:(1)3C x y ++=相切的直线l ,过抛物线2:2(0)E x py p =>的焦点F ,且直线l 的倾斜角为23π.(1)求抛物线E 的方程;(2)直线1l 与抛物线E 交于点A ,B 两点,且A ,B 关于直线y x =+对称,在12y x=-上是否存在点N ,使得以AB 为直径的圆恰好过点N ,若存在,求出点N 的坐标;否则,请说明理由.(2022届河南省名校联盟高三上学期阶段性测试)23.已知椭圆22:143x y C +=的右焦点为F ,直线l 与椭圆C 交于A ,B 两点.(1)若AM MB =,且直线l 的斜率为4,求直线OM (点O 为坐标原点)的斜率.(2)若直线FA ,FB 的斜率互为相反数,且直线l 不与x 轴垂直,探究:直线l 是否过定点?若是,求出该定点坐标;若不是,请说明理由.24.过点(0,2)D 的任一直线l 与抛物线220C :x py(p )=>交于两点,A B ,且4OA OB =-.(1)求p 的值.(2)已知,M N 为抛物线C 上的两点,分别过,M N 作抛物线C 的切线12l l 和,且12l l ⊥,求证:直线MN 过定点.(2022届上海市进才中学高三上学期12月联考)25.在平面直角坐标系xOy 中,动点M 到直线4x =的距离等于点M 到点(1,0)D 的距离的2倍,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知斜率为12的直线l 与曲线C 交于A 、B 两个不同点,若直线l 不过点31,2P ⎛⎫ ⎪⎝⎭,设直线PA PB 、的斜率分别为PA PB k k 、,求PA PB k k +的值;(3)设点Q 为曲线C 的上顶点,点E 、F 是C 上异于点Q 的任意两点,以EF 为直径的圆恰过Q 点,试判断直线EF 是否经过定点?若经过定点,请求出定点坐标;若不经过定点,请说明理由.(2022届广东省茂名市五校联盟高三上学期联考)26.已知椭圆C :()222210x y a b a b +=>>的左、右焦点分别为1F ,2F .离心率等于3,点P 在y 轴正半轴上,12PF F △为直角三角形且面积等于2.(1)求椭圆C 的标准方程;(2)已知斜率存在且不为0的直线l 与椭圆C 交于A ,B 两点,当点A 关于y 轴的对称点在直线PB 上时,直线l 是否过定点?若过定点,求出此定点;若不过,请说明理由.二级结论3:圆锥曲线中的定直线问题【结论阐述】1.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y ya b+=上;2.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y ya b+=上;3.已知抛物线22y px =(>0)p ,定点00(,)P x y 不在抛物线上,过点P 的动直线交抛物线于,A B 两点,在直线AB 上取点Q ,满足||||=.||||AP AQ PB QB则点Q 在定直线00()y y p x x =+上.【应用场景】定直线问题是指因图形变化或点的移动而产生的动点在定直线上的问题.证明动点在定直线上是圆锥曲线的常规题型,解决这类问题的核心在于确定定点的轨迹,主要方法有:(1)设点法:设点的轨迹,通过已知点轨迹,消去参数,从而得到轨迹方程;(2)待定系数法:设出含参数的直线方程、待定系数法求解出系数;(3)验证法:通过特殊点位置求出直线方程,对一般位置再进行验证.【典例指引1】27.如图,椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F 上顶点为A ,过点A与2AF 垂直的直线交x 轴负半轴于点Q ,且1F 恰是2QF 的中点,若过A ,Q ,2F 三点的圆与直线:30l x -=相切.(1)求椭圆C 的方程;(2)设M ,N 为椭圆C 的长轴两端点,直线m 过点()4,0P 交C 于不同两点G ,H ,证明:四边形MNHG 的对角线交点在定直线上,并求出定直线方程.【反思】解决直线与圆锥曲线相交的相关问题时,关键在于将目标条件转化为交点的坐标间的关系,交点坐标的韦达定理上去可得以解决.【典例指引2】(2022江苏南通·高二开学考试)28.已知双曲线C :22221x y a b-=(0a >,0b >)实轴端点分别为()1,0A a -,()2,0A a ,右焦点为F ,离心率为2,过1A 点且斜率1的直线l 与双曲线C 交于另一点B ,已知1A BF △的面积为92.(1)求双曲线的方程;(2)若过F 的直线l '与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.【针对训练】29.已知椭圆()2222:10x y E a b a b+=>>过点),且离心率为2.(1)求椭圆E 的方程;(2)过右焦点F 且不与x 轴重合的直线与椭圆交于M ,N 两点,已知()3,0D ,过M 且与y 轴垂直的直线与直线DN 交于点P ,求证:点P 在一定直线上,并求出此直线的方程.30.已知点P 是离心率为12的椭圆C :22221x y a b+=(0a b >>)上位于第一象限内的点,过点P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N 两点,交直线by x a=-于Q ,R 两点,记OMQ 与ONR 的面积分别为1S ,2S ,且12S S +=(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆C 的上、下顶点分别为1B ,2B ,过点()0,1D 的直线与椭圆相交于E ,F 两点,证明:直线2EB ,1FB 的交点G 在一定直线上,并求出该直线方程.【反思】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.31.已知椭圆()2222:10x y C a b a b+=>>的右焦点1F 与抛物线24y x =的焦点重合,原点到过点()(),0,0,A a B b -的直线距离是7(1)求椭圆C 的方程(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,过1F 作1PF 的垂线与直线l 交于点Q ,求证:点Q 在定直线上,并求出定直线的方程32.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()0,1.如图所示,斜率为()0k k >且过点()1,0-的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,若F 在射线OE 上,且2OG OE OF =⋅.(1)求椭圆C 的标准方程;(2)求证:点F 在定直线上.【反思】求定线问题常见的方法有两种:(1)从特殊入手,求出定直线,再证明这条线与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定直线.33.已知椭圆22:142x y C +=,点()4,1P 为椭圆外一点.(1)过原点作直线交椭圆C 于M 、N 两点,求直线PM 与直线PN 的斜率之积的范围;(2)当过点P 的动直线l 与椭圆C 相交于两个不同点A 、B 时,线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅ ,证明:点Q 总在某定直线上.【反思】利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、的形式;(5)代入韦达定理求解.参考答案:1.A【分析】设点()00,P x y 、()11,A x y 、()22,B x y ,求得直线AB 的斜率为1241AB k y y ==-+,可得124y y +=-,再由直线PA 和PB 的斜率互为相反数可求得0y 的值,进而可求得0x 的值,由此可求得点P 的坐标.【详解】设点()00,P x y 、()11,A x y 、()22,B x y ,则直线AB 的斜率为12221212414AB y y k y y y y -===--+,可得124y y +=-,同理可得直线PA 的斜率为014PA k y y =+,直线PB 的斜率为024PB k y y =+,PAPB k k =- ,所以,()()01020y y y y +++=,则12022y y y +=-=,20014y x ∴==,因此,点P 的坐标为()1,2.故选:A.【点睛】本题考查利用抛物线中直线的斜率关系求点的坐标,考查点差法的应用,属于中等题.2.(1)22143x y +=;(2)直线MN 的斜率为定值,且定值为12.【分析】(1)根据椭圆的离心率及所过的点求出椭圆参数a 、b ,即可得椭圆标准方程.(2)由题设得31,2T ⎛⎫⎪⎝⎭,法一:设TM 为3(1)2y k x -=-,联立椭圆方程应用韦达定理求M的坐标,根据TM 与TN 斜率关系求N 的坐标,应用两点式求斜率;法二:设MN 为y kx m =+,()()1122,,,M x y N x y ,联立椭圆方程,应用韦达定理及0TM TN k k +=得到关于参数m 、k 的方程,即可判断是否为定值.(1)由题意,12c a =则2a c =,又===b ,所以椭圆C 的方程为2222143x y c c +=,代入⎛ ⎝⎭有22331412+=c c ,解得1c =,所以2b a ==,故椭圆的标准方程为22143x y +=;(2)由题设易知:31,2T ⎛⎫⎪⎝⎭,法一:设直线TM 为3(1)2y k x -=-,由221433(1)2x y y k x ⎧+=⎪⎪⎨⎪-=-⎪⎩,消去y ,整理得()2223348412302k x k k x k k ⎛⎫++-+--= ⎪⎝⎭,因为方程有一个根为1x =,所以M 的横坐标为22412334M k k x k --=+,纵坐标()223121291286M M k k y k x k --+=-+=+,故M 为2222412312129,3486k k k k k k ⎛⎫----+ ⎪++⎝⎭,用k -代替k ,得N 为2222412312129,3486k k k k k k ⎛⎫+--++ ⎪++⎝⎭,所以12M N MN M N y y k x x -==-,故直线MN 的斜率为定值12.法二:由已知直线MN 的斜率存在,可设直线MN 为y kx m =+,()()1122,,,M x y N x y ,由22143x y y kx m⎧+=⎪⎨⎪=+⎩,消去y ,整理得()2223484120k x kmx m +++-=,所以21212228412,3434km m x x x x k k -+=-=++,而12123322011TM TN y y k k x x --+=+=--,又1122,kx m y kx m y =+=+,代入整理得()()1212123322022kx x m x x k x x m ⎛⎫⎛⎫+-+-+--= ⎪ ⎪⎝⎭⎝⎭,所以()24832(21)0-++-=k k m k ,即(21)(232)0--+=k k m ,若2320k m -+=,则直线MN 过点T ,不合题意,所以210k -=.即12k =,故直线MN 的斜率为定值12.【点睛】关键点点睛:第二问,设直线方程并联立椭圆方程,应用韦达定理及0TM TN k k +=得到关于直线斜率的方M 、N 程,或求出的坐标,应用两点式求斜率.3.(2,0)-【分析】将直线l 方程代入抛物线C 中,得到关于y 的一元二次方程,设出M ,N 两点坐标,利用韦达定理写出12y y +,12y y 的关系,利用斜率坐标公式结合已知条件,得到 0+=QM QN k k ,即可求解Q 的坐标.【详解】易知2m ≠,由(2)240m x y m ---+=得22y x m =+-,代入抛物线方程得24802y y m --=-,设()11,M x y ,()22,N x y ,则1242y y m +=-①,128y y =-②.设(,0)Q a ,则11QM y k x a =-,22QN y k x a=-,依题意有1 1QM QN yk k x a +=+-220yx a =-,所以()()12210y x a y x a -+-=,即211222022y y y a y a m m ⎛⎫⎛⎫+-+⋅+-= ⎪ ⎪--⎝⎭⎝⎭,整理并把①②代入可得2a =-,故Q 点的坐标为(2,0)-.故答案为:(2,0)-.4.(1)22182x y +=(2)证明见解析【分析】(1)根据已知条件列方程组,解方程组求得22,a b ,从而求得椭圆C 的标准方程.(2)设出直线PA 的方程并与椭圆方程联立,由此求得A x ,同理求得B x ,从而化简求得直线AB 的斜率A BAB A By y k x x -=-为定值.(1)由题可知22222411c a a b c a b⎧=⎪⎪⎪-=⎨⎪⎪+=⎪⎩,解得2282a b ⎧=⎨=⎩,从而粚圆方程为22182x y +=.(2)证明设直线PA 的斜率为k ,则():12PA y k x +=-,21y kx k =--,联立直线与椭圆的方程,得()221248y k x x y ⎧+=-⎨+=⎩,整理得()(2221416k x k +-+()28)161640k x k k ++-=,从而2216164214A k k x k +-=+,于是2288214A k k x k+-=+,由题意得直线PB 的斜率为k -,则():12PB y k x +=--,21y kx k =-+-,同理可求得2288214B k k x k --=+,于是A BAB A B y y k x x -=-()2121A B A Bkx k kx k x x ----+-=-()4A B A Bk x x kx x +-=-2221644114.16214k k k k k k-⋅-+==-+即直线AB 的斜率为定值.5.(1)22143x y +=;(2)证明见解析,12.【分析】(1)根据椭圆离心率的公式,结合代入法、椭圆中,,a b c 的关系进行求解即可;(2)设出直线方程与椭圆方程联立,求出E 、F 两点坐标,最后根据直线斜率的公式进行求解即可.(1)根据题意,22222914112a bc e a a b c ⎧⎪+=⎪⎪⎪==⎨⎪=+⎪⎪⎪⎩,解得2,1a b c ===,∴椭圆C 的方程为:22143x y +=;(2)证明:设直线AE 的方程为:()312y k x -=-,由()22312143y k x x y ⎧-=-⎪⎪⎨⎪+=⎪⎩,得()()2223442341230k x k k x k k +--+--=,显然1是该方程的根,因此有22224123412313434x x k k k k E E k k ----⋅=⇒=++,()2222412312129,34234k k k k E k k ⎛⎫----+ ⎪∴ ⎪++⎝⎭,由题可知直线AF 的方程为()312y k x -=--,同理可得()2222412312129,34234k k k k F k k ⎛⎫+--++ ⎪ ⎪++⎝⎭,()()222222221212912129234234121412341232423434EF k k k k k k k k k k k k k k k -++--+-++∴===+----++,∴直线EF 的斜率为定值,且这个定值为12.【点睛】关键点睛:利用一元二次方程根与系数关系求出两点坐标是解题的关键.6.(1)24y x =(2)证明见解析,1-.【分析】(1)由抛物线的定义即可求解;(2)分别设出直线,PA PB 的方程,与抛物线方程联立,求出点A B 、坐标,再求直线AB 的斜率即可.【详解】(1)已知动点M 到直线+2=0x 的距离比到点(1,0)F 的距离大1,等价于动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,由抛物线的定义可得:动点M 的轨迹是以(1,0)F 为焦点,以直线1x =-为准线的抛物线,可得=2p ,抛物线开口向右,∴曲线C 的方程为24y x =.(2)设直线PA 的斜率为k ,∵直线PA 的斜率与直线PB 的斜率互为相反数,∴直线PB 的斜率为k -,则:2(1)PA l y k x -=-,:2(1)PB l y k x -=--,联立方程组22=(1)=4y k x y x--⎧⎨⎩,整理得2-4-4+8=0ky y k ,即[](24)(2)0ky k y +--=,42ky k-=或=2y (舍)可得22(2)42(,)k kA k k--联立方程组22=(1)=4y k x y x---⎧⎨⎩,整理得24480ky y k +--=,即[](24)(2)0ky k y ++-=,42ky k--=或=2y (舍)可得22(2)42(,)k kB k k+--则222242421(2)(2)ABk kk k k k k k k ----==-+--即直线AB 的斜率为定值1-.【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.7.证明见解析.【分析】设出直线MA 和MB 的方程,与抛物线方程联立求出点A B ,的坐标,再求直线AB 的斜率即可.【详解】证明:∵9(,3)4M 是抛物线()2:20C y px p =>上一点,∴9924p =⨯,得=2p ,∴抛物线方程为24y x =,设直线MA 的方程为93()4y k x -=-,由293=()4=4y k x y x--⎧⎪⎨⎪⎩,得241290y y k k -+-=,即4[(3)](3)0y y k +--=,解得43A y k=-或3A y =(舍)∵直线AM ,BM 的斜率互为相反数,∴直线BM 的方程为93(4y k x -=--,同理可得43B y k=--,∴224424433344B A B A AB B A B A B A y y y y k y y x x y y k k =====------+--+,∴直线AB 的斜率为定值23-,8.1-【分析】先利用已知条件求出抛物线得方程,然后利用直线斜率公式求直线,AE AF 的斜率,在由直线AE 的斜率与直线AF 的斜率互为相反数,求出124y y +=-,在根据2121214==+EF y y k x x y y --即可求出答案.【详解】设()11,E x y ,()22,F x y ,∵点()1,2A 为抛物线()220y px p =>上的一点,∴42p =,解得=2p ,∴24y x =,同时,有211=4y x ,222=4y x ,()()()()()()11111111112+22444====11+21+2+2AE y y y x k x x y x y y ------,同理,22224==1+2AF y k x y --,∵直线AE 的斜率与直线AF 的斜率互为相反数,∴1244=+2+2y y -,即124y y +=-,()22222121212121212144===44=1+EF y y y y y y k x x y y y y y y ------∴=-,故直线EF 的斜率为1-.9.(1)22x y 13+=;(2)定值【分析】(1)根据中垂线的性质得出MQ MP =,然后计算出MC MQ +=,结合椭圆的定义得知点M 的轨迹为椭圆,可得出a 和c 的值,进而求得b 的值,于是可得出点M 的轨迹方程;(2)设直线AE的方程为(y k x =+,则直线BF 的方程为1y kx =-+,将直线AE 、BF 的方程分别与曲线E 的方程联立,利用韦达定理求出的点,E F 的坐标,然后利用两点间的斜率公式求出直线EF 的斜率,从而证明结论.【详解】(1)如下图所示,连接MQ,则MC MQ MC MP CP +=+==又CQ =M 的轨迹是以,C Q 为焦点的椭圆,因为22a c ==1a c b ===.故点M 的轨迹方程是2213x y +=;(2)设直线AE的方程为(y k x =+,则直线BF 的方程为1y kx =-+,由(2233y k x x y ⎧=⎪⎨+=⎪⎩,消去y 整理得()222231930k x x k +++-=.设交点()11,E x y 、()22,F x y ,则1x()1111x y k x ==+=.由22133y kx x y =-+⎧⎨+=⎩,消去y 整理得()223160k x kx +-=,则222222613,11313k k x y kx k k-==-+=++.所以,1212EFy y k x x -===-故直线EF的斜率为定值,其斜率为3-.【点睛】(1)求动点的轨迹方程,一般有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即可得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.(2)当直线与椭圆的两个交点中有一个是定点时,我们常用动直线的斜率表示另一个动交点的坐标,进而讨论与动交点相关的数学问题(常称为知点求点法).10.(1)22y x 1106+=;(2)见解析【分析】()1由焦点坐标求得2c =,可设椭圆方程为22221y xa b +=,可得22222591444a b a b ⎧+=⎪⎨⎪=+⎩,解方程即可;()2设()11,E x y ,()22,F x y ,设直线AE 的方程为3522y k x ⎛⎫=-+ ⎪⎝⎭,代入221106y x +=,求出点E 的坐标,再将k 换为k -,求出F 的坐标,即可求出直线的斜率,再化简即可得结果.【详解】()1由题意c 2=,可设椭圆方程为22221y x a b +=,22222591444a b a b ⎧+=⎪⎨⎪=+⎩,解得210a =,26b =,∴椭圆的方程为221106y x +=.()2设()11E x ,y ,()22F x ,y ,设直线AE 的方程为3522y k x ⎛⎫=-+ ⎪⎝⎭,代入221106y x +=得()()22233353533()30022k x k k x k ++-+-+-=,()123353352k k x k -∴=-+,113522y kx k ∴=-+,又直线AE 的斜率与AF 的斜率互为相反数,再上式中以k -代k ,可得()223353352k k x k ---=-+,2235y kx k 22∴=-++,∴直线EF 的斜率()()()()()2212212121223353353333523523133533533352352k k k k k k k k k x x k y y k k k k k x x x x k k ----⎛⎫-+-+ ⎪++-++-⎝⎭====--------+++.【点睛】本题考查了椭圆的方程,直线与椭圆的关系,考查了运算求解能力,化归与转化思想的应用,属于难题.求椭圆标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.11.(1)()()22224x y -+-=;(2)证明见解析;(3)是,252.【分析】(1)由切线性质得OM =,由此可求得M 点坐标,从而得圆方程.(2)设切线方程为y kx =,由直线与圆相切得出k 的方程,结合韦达定理得12k k ,并结合M 在椭圆上可得.(3)当直线OP OQ ,不落在坐标轴上时,设()()1122,,P x y Q x y ,,利用1214k k =-可得22221212116y y x x =,利用,P Q 在椭圆上可求得2212x x +及2212y y +,从而得22OP OQ +,当直线OP OQ ,有一条落在坐标轴上求出22OP OQ +,从而得定值,再由基本不等式得最大值.【详解】(1)OM ==则22008x y +=,又2200220012058x y x y ⎧+=⎪⎨⎪+=⎩,又000,0x y >>,故解得0022x y =⎧⎨=⎩,所以()2,2M ,所以圆M 的方程为()()22224x y -+-=(2)因为直线12::OP y k x OQ y k x ==,与圆M 相切,所以直线1:OP y x k =与圆()()2200:4M x x y y -+-=联立,可得()()222210100012240k x x k y x x y +-+++-=同理()()222222000012240k x x k y x x y +-+++-=,由判别式为0,可得12k k ,是方程()2220004240xk x y k y --+-=的两个不相等的实数根,∴20122044y k k x -=-因为点00(,)M x y 在椭圆C 上,所以220054x y =-,所以1214k k =-;(3)(i )当直线OP OQ ,不落在坐标轴上时,设()()1122,,P x y Q x y ,,因为12410k k +=,所以22221212116y y x x =,因为()()1122,,,P x y Q x y 在椭圆C 上.所以2222221212121554416x x y y x x ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭整理得221220x x +=,所以22125y y +=所以2225OP OQ +=.(ii )当直线落在坐标轴上时,圆M 方程为22(2)(2)4x y -+-=,易求得2225OP OQ +=,综上:2225OP OQ +=,所以|()2212522OP OQ OP OQ ⋅≤+=所以OP OQ ⋅的最大值为252.【点睛】本题考查直线与圆相切,直线与椭圆相交问题,考查学生的运算求解能力,逻辑思维能力,对斜率积为定值问题,解题关键是设出切线方程y kx =,利用直线与圆相切得出关于k 的二次方程,由韦达定理得出结论;设()()1122,,P x y Q x y ,,由斜率积为定值求得坐标的关系,并结合点M 在椭圆上求得22OP OQ +的值,注意分类讨论.12.(1)2214x y +=;(2)(ⅰ)1;(ⅱ2.【分析】(1)由三角形面积得()3c b c +=+222a c b -=求得,,a b c 后得椭圆方程;(2)(ⅰ)直线AB 的斜率不会为零,设其方程为x ty m =+,由直线与圆相切求得,t m 的关系,设()()1122,,,A x y B x y ,直线方程与椭圆方程联立,消元后求出判别式的值(利用,t m 关系),应用韦达定理,得弦长AB ,计算OAB 面积,应用基本不等式得最大值;(ⅱ)CQ c ==,AC CQ AQ AQ =-=,用A 点坐标表示出2,AQ AF ,计算可得.【详解】(1)2CD c ==,于是有2()3CDF S c b c =+=+ 又222,2c a b c a =-=,解得2,1c a b ===,所以椭圆E 的标准方程为2214x y +=.(2)(ⅰ)因Q 在y 轴左侧,故直线AB 的斜率不会为零,设其方程为x ty m =+,由直线AB 与圆1C 2211m t =⇒=+,由2244x ty m x y =+⎧⎨+=⎩消去x 得()2224240t y tmy m +++-=,()()()222222444416448t m t m t m ∆=-+-=+-=,设()()1122,,,A x y B x y ,则12||AB y y =-=所以()2231212||124OABt S AB b t ++⋅=⋅⋅=≤=+ ,当且仅当213t+=,即t =时取等号.故ABO 的面积的最大值为1.(ⅱ)因点()11,A x y 在椭圆E 上,且在y 轴左侧,故10x <,221114x y +=,由(1)CQ c ==故12AC CQ AQ x =-====,2122AF x ====-,故2112222AC AF x +=+-=为定值.【点睛】本题考查求椭圆标准方程,考查直线与椭圆相交问题.求椭圆标准方程的关键是列出关于,,a b c 的方程组,解得,,a b c ,直线与椭圆相交一般是设交点坐标,设直线方程,直线方程与椭圆方程联立,消元后应用韦达定理,由韦达定理的结果求弦长等等.13.(1)221832x y -=(2)证明见解析,6【分析】(1)根据双曲线的离心率及双曲线过点A 可得方程;(2)设点B 与点C 的坐标,根据直线AB 与直线AC 的斜率互为相反数,可得直线BC 的斜率.【详解】(1)由题意22941a b c a ⎧-=⎪⎪⎨⎪=⎪⎩,解得28a =,232b =,故双曲线方程为221832x y -=(2)设点()11,B x y ,()22,C x y ,设直线AB 的方程为()23y k x -=+,代入双曲线方程,得()()()222423232320kxk k x k --+-+-=,2126434k k x k +∴-+=-,21234124k k x k ++=-,21222484k k y k ++=-,222234122248,44k k k k B k k ⎛⎫++++∴ ⎪--⎝⎭同理222234122248,44k k k k C k k ⎛⎫-+-+ ⎪--⎝⎭,4868BC kk k∴==.14.(1)()221116y x x -=≥;(2)0.【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值.【详解】(1)因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一]【最优解】:直线方程与双曲线方程联立如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB =-=-.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21(2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-.因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.[方法二]:参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=,故直线AB 的斜率与直线PQ 的斜率之和为0.[方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆.设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=.又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得:[]2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=,其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦.由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解;方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.15.A【分析】设出直线方程x my t =+,联立抛物线方程,得到12124,4y y m y y t +==-,进而得到。

解析几何经典结论

解析几何经典结论

圆锥曲线的常见性质1.圆锥曲线的定义:【例1】椭圆定义的演绎:圆222x y a +=伸缩椭圆22221(0)x y a b a b+=>>,令222b a c =-,可得2a =(第一定义ce a x c==-(第二定义). 【例2;定圆上一动点与圆外一定点所连线段的中垂线与其半径的交点的轨迹是双曲线;类似地,将定圆推广为直线(无穷大圆)【例3】圆的一些性质向圆锥曲线的演绎:(Ⅰ)圆的直径所对的圆周角为直角可以推广为:对于椭圆22221x y a b+=上关于原点对称的两点100200(,),(,)P x y P x y --,椭圆上任意一点M (异于点12,P P )满足1222MP MP b k k a⋅=-;在双曲线中类似的结论为1222MP MP b k k a ⋅=.(假定斜率存在)(Ⅱ)圆的垂径定理可以推广为:椭圆22221x y a b+=的弦AB 及其中点M 满足22AB OM b k k a ⋅=-;双曲线中类似的结论为22AB OM b k k a⋅=.(假定斜率存在)(Ⅲ)圆的切线定理可以推广为:椭圆22221x y a b +=上点00(,)P x y 处的切线l 满足l OP k k ⋅= 22b a-;双曲线中类似的结论为22l OP b k k a ⋅=.(假定斜率存在)(Ⅳ)圆222x y r +=上的点00(,)P x y 处的切线方程为200x x y y r +=;椭圆22221x y a b+=上点00(,)P x y 处的切线方程为00221x x y ya b+=;双曲线22221x y a b -=上点00(,)P x y 处的切线方程为00221x x y y a b-=;抛物线22y px =上点00(,)P x y 处的切线方程为00()y y p x x =+.2.圆锥曲线的焦半径、焦点弦:【例1】椭圆中,以焦半径为直径的圆与长轴为直径的圆相切;双曲线中,以焦半径为直径的圆与实轴为直径的圆相切;抛物线中,以焦半径为直径的圆与顶点处的切线(无穷大圆)相切.【例2】椭圆、双曲线的焦点在切线上射影的轨迹是以原点为圆心,半径长为a 的圆;抛物线的焦点在切线上射影的轨迹是顶点处的切线(无穷大圆).【例3】过圆锥曲线的准线上一点向原曲线作切线,则相应焦点与该点及切点的连线互相垂直.【例4】过圆锥曲线准线上的一点作原曲线的割线,则相应焦点与该点的连线平分焦点相对于割线两交点张角的外角.【例5】圆锥曲线的任意两焦点弦端点所在直线交点的轨迹是准线.【例6】椭圆、抛物线的焦点弦的两个焦半径倒数之和为定值:112||||AF BF ep+=; 双曲线的焦点弦的两个焦半径倒数之和或之差为定值:112||||AF BF ep+=(,A B 在同支),112||||AF BF ep-=(,A B 在异支). 【例7】(Ⅰ)圆锥曲线的焦点弦长为222|1cos |epe θ-; (Ⅱ)圆锥曲线互相垂直的焦点弦长的倒数之和为定值2|2|2e ep-.【例8】圆锥曲线焦点弦的中垂线与长轴(或实轴、或抛物线对称轴)的交点到焦点的距离与焦点弦长之比是定值2e . 【例9】圆锥曲线的焦点弦端点在相应准线上投影与另一端点的交叉连线交于定点,且此定点平分该焦点所对应的焦准距线段.。

高中数学解析几何二级结论及证明

高中数学解析几何二级结论及证明

高中数学解析几何二级结论及证明高中数学解析几何是一门研究形体的基本几何结构和空间性质的学科,它也是构成现代数学的基础,这门学科有着许多有趣的结论和证明。

在本文中,我们将讨论高中数学解析几何中的二级结论及其证明。

首先,让我们来看看中心角平分定理。

中心角平分定理是题主介绍高等数学解析几何中的一个重要定理,它指出:“在构成一个角的直径(弦)内,平分角,直径(弦)上的两个点之间可以分别连接直线从而构成两条不同的角。

”也就是说,如果一个角的边和它的中心点都是连接的,那么该角的边可以被平分。

该定理的证明是一个很有趣的概念,需要使用到数学原理和推理能力。

接下来,咱们来看看三角形平行四边形定理。

三角形平行四边形定理指出:“如果三角形的三条边都同时垂直于一个外接四边形的四条边,那么我们可以将三角形的三条边都平移到外接四边形的四条边上,使得三角形的三条边与外接四边形的四条边重合。

”三角形平行四边形定理的证明也同样需要数学原理和推理能力的支撑,特别是需要使用三角形不等式的概念。

最后,我们来看看高中数学解析几何中的洛必达点到直线距离定理。

该定理指出:“由一个洛必达点(洛必达点是一个给定点和平面不垂直的直线之间的交点)到某一直线的距离等于该直线与给定平面之间的距离。

”洛必达点到直线距离定理的证明也需要使用数学原理和推理能力,其中包括利用向量概念计算洛必达点到直线上某一点的距离。

综上所述,高中数学解析几何中的二级结论和它们的证明都是非常有趣的概念,他们不仅是这门科学发展所必须掌握的基础知识,而且也是认识几何宇宙的重要基石。

除了以上讲述的三个结论,还有很多其他重要的定理和证明,如叉乘定理、泰勒定理等。

未来我们将继续探讨更多关于高中数学解析几何的结论和证明,以及它们对我们研究几何宇宙的重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何基本结论理论1、2设P (x °,y °)为抛物线y =2px,(p . 0)上一定点,PA 、PB 为它的任意两条弦,宀,2分别是PA 、PB 的倾斜角,则(1 )当tan:1 tan 〉2二定值t 时,直线AB 过定点2)当tan:-1 - tan:• 2二定值t 时,直线 AB 过定点(注意:这里,我把(% • y 2)和y i y 2看成是两个参数团,只要找到这两个参数团的关系, 从而把两个参数团减少为一个,就可以得到定点问题。

对于(i ),我们可以得到下面的过程:对于(2),完全可仿照上面过程。

对于(3),则要麻烦一些。

由tant =tan (:^ :■ 2)(先讨论tan : i ,ta n : 2,tan (〉i 匕辽)都 存在的情况),知道:2p2p y o y iy 。

y 22p (2y 。

% y ?)tant22i _ 2p______ 2p y o +y °(y i 十丫2)十丫』2 —4py o y i y o y ?2p x0 …,- y o );( X o2y o,一y或有定向k = P ; ( 3)当①亠二2二定值t 时,直线AB 过定点y oX o 一2% tant,一yo 2P tant )或有定向 k = —P 。

y o证明思路:设 A (x i ,y i ), B (x 2,y 2),则 k AB 二2p y i y 2所以 I AB : y - y i = 2p (x_x i )化简:(% ⑴-価2二2px(*)kPAkPB2p 2py o y i y o y ? 2y oy o (y iy ?) yy4p 2F 面只需把--y 。

2 - y o (y iy 2)代入(*)即可。

k^■ k i = 0(「c 0,,= -1)。

TT设直线AB 上一点M ,满足BM = ■ MA ,证明线段PM 的中点在y 轴上;当'=1时,若点P 的坐标为(1,-1),求/ PAB 为钝角时点A 的纵坐标y 1的取值范 围。

对于椭圆也有类似的结论,但过于复杂,下面仅罗列几条简单结论。

1、设 P (X 0,y °)为椭圆可得这两个参数团的关系。

代入(*)即可。

考过的试题。

题1、(2005山东22)点A 、B 为抛物线y 2 =2px ( p . 0 )上原点以外的两个不同的点, 直线OA 和OB 的倾斜角分别为 二打、二:2变化且二° 匕2为定值(0 ::: V :::二)物线交于A,B 两点。

当PA 、PB 的斜率存在且倾斜角互补时,证明直线 *y的斜率是非零常数。

题4、( 2000北京春)点 A 、B 为抛物(p ・0 )上原点以外的两个动点, OA _OB , OM _ AB ,求点 M 的 题5、( 2005天津21)抛物线C 的方2y 二ax (a 0),过抛物线C 上一点Q O\xP (X °, y °)(X 。

= 0)作斜率为 k, k 2 的两条直线分别交抛物线 C 于 A(x 1, y 1)> B(x 2, y 2)两P 、A 、B 三点互不相同),且满(1)求抛物线C 的焦点坐标和准线方程;(2) (3)时,证明直线AB 恒过定点。

抛物线交于(P 0)上任一点P (x 0,y 0)(y 0 0)作两条直线与抛线 已 轨迹方程。

AB2 2斜率存在时,有k AB = - ~y °X 。

);2X4、设P(x °,y 0)为双曲线-- a2笃=1(a 0,b 0)上一定点,PA 、PB 为它的任意两条b 2弦,〉i , 〉2分别是PA 、 PB 的倾斜角,则当tan ■ tan = 0时,直线AB 有定向b 2X o 2a y o5、设P(x 0, y 0)为双曲线2 X 2a2-y _=1(a 0,b 0)上一定点,PA 、PB 为它的任意两条 b 2弦,:\,〉2分别是PA 、PB 的倾斜角,则当tan -ta n 〉2 =T 时,直线 AB 过定点爲 =1(a . b . 0)上一定点, PA 、PB 为它的任意两条弦, 宀,:• 2分别是 bb 2xPB 的倾斜角,则当tan:-1 - tan:・2二0时,直线AB 有定向k厂0 ;a y 。

PA 、(1)求点A 、B 的坐标, 证明思路: 其中的k 换成一 k 即得B 的坐标。

设直线PA 的斜率为k ,则只需求出A 点的坐标,再把(2)把直线 | PA : y - y 02X = k(x-X 0)代入椭圆— a 2•爲=1,得关于X 的方程,b 2而这个方程的一个根已经知道是x =x 0 ,则另一个根可由韦达定理求得。

以下理论的证明类似。

2 x2、设P(x 0, y 0)为椭圆 二a2y 2 =1(a b 0)上一定点,PA 、PB 为它的任意两条弦,PA 、PB 的倾斜角,则当tan 〉1 tan 「2二-1时,直线 AB 过定点2,2 a …b '22a b2a X0 , - 2a-b 2 -b 2y o );3、设P(X o ,y °)为椭圆2X~2a2爲=1(a b 0)上一定点,b 2PA 、PB 为它的任意两条弦, >i ,-2分别是PA 、PB 的倾斜角,则当tan : i tan 2b 2脊时,直线AB 有定向(当ABax 2 y^a 2 (除去点(-a,O), (a,O))(等腰三角形、中位线)(见双曲线部分的证明)。

设F 1QF 2的内切圆为圆 M ,则Q 到圆M 的切线长为定值a-c ;2 2关于双曲线:设双曲线X - y 2 =1(a 0,b 0),两焦点F i (-c,O)、F 2(C ,0),点Q 在双a b曲线上,关于.F 1QF 2有如下性质: (1) F 1QF 2的内心记为M ,则x 轴于圆M 切于定点;(2)过焦点F 1作• F 1QF 2的角平分线的垂线,垂足为P ,则P 点的轨迹方程是2 2 2a ba ::;-b )- 2 ,2 x 0 , — 2 ,2 yo 'a—b a —b2x 6、设P(x o ,y °)为双曲线—a2-爲=1(a ■ O,b ■ O)上一定点, bPA 、PB 为它的任意两条 弦,:-1,- 2分别是PA 、 PB 的倾斜角,则当tan :1 tan _:i 2b 2 2时,直线AB 有定向a(当AB 斜率存在时,有kABX o2 2理论2、设椭圆务 召=1(a b ■ 0),两焦点RGc,。

)、a bF 2(C ,0),点Q 在椭圆上,关于F 1QF 2 (常称焦点三角形)有如下性质:(1) 当点Q 为短轴端点时,.F J QF 2达最大。

证明思路:记QF^ m,QF 2二n ,则cos. F 1QF2/2『“二⑴ n)2—2mn — 4c22mn 2mn2 24b, _ 2b 2m n 严 n )22当m =n 时取得。

(2)过焦点F ,作.F ,QF 2的外角平分线的垂线,垂足为 P ,贝U P 点的轨迹方程是(3)x y = a (除去点(-a,O),(a,O))证明思路: 延长F i P ,交QF 2于点N ,则QF i =QN ,则NF ? =2a ,连接OP ,则|0P | 丄 NF 2 | = a 。

2 考过的试题:2x题1、( 2005辽宁21)已知椭圆 —aF 2 (c,0) (c 0),Q 是椭圆外的动点,满足| F 1Q $ 2a ,点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足PT TF 2 =0,|TF 2心0。

—■c (1 )设x 为点P 的横坐标,证明IRPUa x ;a(2)求点T 的轨迹C 的方程;Z F 1MF 2的正切值;若不存在,请说明理由。

(c 0),且椭圆上存在点P ,使得直线PF |与直线PF 2垂直。

(1)求实数m 的取值范围;(2)设L 是相应于焦点F 2的准线,直线PF 2与L 相交于点Q ,若型』=2 - 3,求直|PF 2|线PF 2的方程。

理论3、设F 为圆锥曲线焦点,其相应准线为丨,作一直线交圆锥曲线于 A 、P 两点,交丨于 M ,贝U FM 平分• AFP (或其外角)。

推论1、设过圆锥曲线焦点 F 作一直线与圆锥曲线相交于 P 、Q 两点,A 为圆锥曲线除2•当=1( a ■ b ■ 0)的左、右焦点分别是 F^-c,。

)与b(3) 试问:在点T 的轨迹C 上,是否存在点2,使.F 1MF 2的面积S = b ,若存在,求2题2、( 2004全国IV 卷21)设椭圆—y 2 = 1的两个焦点是 F 1 (-c,0)与F 2(C,0)P、Q外任一点,连结AP、AQ分别交相应焦点F的准线L于M、N两点,则.MFN =90。

2 2推论2、椭圆笃•爲=1(a . b ■ 0)的右准线丨与x轴的交点为A , Q是椭圆右准线丨上a b异于点A的任意一点,A,、A2分别是椭圆的左右顶点,直线QA「QA2与椭圆的另一个交点分别为M、N,则直线MN与x轴交于定点。

相关文档
最新文档