七年级数学上册第2章有理数2.2数轴课时练习华东师大版.doc
榆林市三中七年级数学上册 第二章 有理数 2.2 数轴教案 华东师大版
数轴课程分析本节主要让学生知道数轴上有原点、正方向和单位长度,会画数轴,并用数轴上的点表示整数或分数.通过学习使学生会正确画出数轴,初步了解有理数与数轴上的点的对应关系,能将有理数用数轴上的点来表示,理解利用数轴上点的位置关系比较有理数大小的法则,从而发现和认识负数小于零,正数大于零,向学生渗透对立统一的辩证唯物主义观点以及数形结合的数学思想.教材分析1.地位与作用:数轴是继正负数、有理数之后的又一个新的概念,同时又是数形结合的一个重要范例.其重要性体现在它一方面锻炼学生的动手操作、观察分析的能力,另一方面体现代数与几何的一个结合,为下一步研究相反数、绝对值奠定基础,在数学的发展上具有重要作用.本节的学习对下一步的后继学习是非常关键的,具有承上启下的作用.2.重点与难点:本节的重点是数轴的概念,利用数轴比较数的大小;难点是从直观认识到理性认识,从而建立数轴的概念,正确地画出数轴.教法分析重视相关知识的联系,要通过复习、回忆原有知识,对照有理数中新增加的负数,联系生活经验,从温度计上得到启发,引出数轴,故采用启发诱导,自主学习与合作学习相结合的数学方法.讲解数轴概念及画法时,重点讲明原点作用,在数轴上标注负数单位时,要强调方向,并与正数单位作比较,可以多举一些实例.在讲解本节重点时,可以根据教学情况和学习练习,加深对数轴概念的理解;在通过观察数轴上点的位置关系,初步比较有理数的大小这部分内容时,要注意启发学生自己得出这一法则,并认识其合理性,重点要突出负数和零的大小比较.本节教学中涉及图形和数量的对应关系,可以向学生指明这是数学研究的一种重要方法,并注意在后继内容的教学中适时渗透.学法分析学习本节内容时应通过实践画图、交流、反思,真正掌握数轴的概念,理解用数轴可以直观地表示有理数,在数轴上比较有理数的大小,学习时应充分注意数形结合,理解数轴的定义时注意结合直观图形,如温度计,这样更容易理解.教学目标知识与技能1.认识数轴,会用数轴上的点表示有理数.2.了解数轴的概念,知道数轴的三要素,会画数轴.过程与方法从直观认识到理性认识,从而建立数轴的概念.情感态度与价值观通过数轴的学习,体会数形结合的数学思想方法,认识事物之间的联系,感受数学与生活的联系.教学重难点重点:数轴的概念.难点:从直观认识到理性认识,建立数轴的概念,正确地画出数轴.教学过程活动1:创设情境,导入新课设计意图:直接抛出数轴的名称,对应学生小学中已经接触过的用直线上的点表示数,引起学生的学习兴趣,建立初步的数轴印象.师:提问有理数包括哪些数?0是正数还是负数?在日常生活中,你能举出一些用刻度来表示物品的数量的例子吗?让学生充分讨论,明确知识是从实践中得到的,它与我们的生活息息相关;再有,数除了可以用符号表示外,还有其他表示方法,从而引出新课:数轴.活动2:学习数轴的概念,探索数轴的画法设计意图:通过教具的使用,使学生能够直观地感受数与形之间的对应关系,渗透数形结合的数学思想,通过讨论、自主学习、合作交流等形式,使学生对数轴从感性认识上升到理性认识.1.教师出示温度计,问:你会读温度计吗?温度上的刻度与数值之间有什么关系?2.教师出示图片,提出:怎样用数简明的表示树、电线杆与汽车站的相对位置关系(方向、距离)?说明:将公路看作直线,将各个事物看作点.学生动手操作,感受画数轴的过程,之后,师让学生阅读教材15页上的三段话,正确规范地理解数轴的概念,然后师生共同总结数轴的三要素.活动3:学习有理数在数轴上的表示方法设计意图:会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来,这是本节课要求学生掌握的最基本的技能,也是以后继续学习坐标系的基础.让学生通过练习感受数与形之间的对应关系,感受数学直观与抽象之间的联系.师:数轴上的点都是整数,分数或小数能用数轴上的点表示吗?生:思考后回答,然后完成教材16页练习.师:观察数轴,数轴上原点左边的数都是什么数,右边呢?学生讨论后进行归纳,最后教师作点评.活动4:课后作业下列所画数轴对不对?如果不对,指出错在哪里.【答案】①错,没有原点;②错,没有正方向;③正确; ④错,没有单位长度;⑤错,单位不统一;⑥错,正方向标错.板书设计活动1:创设情境,导入新课活动2:学习数轴的概念,探索数轴的画法.活动3:学习有理数在数轴上的表示方法.活动4:课后作业章末复习【知识与技能】1。
华东师大版初中数学七年级上册第2章有理数作业案案精典
第一节认识负数1. 七年级共有12个班,以每班50人为标准,超过的人数记为正数,不足的人数记为负数,统计的人数如下:-1、-6、+2、+4、0、-7、+3、+1、+8、-10、-8、+6,求总人数.2. 某运动员在东西方向的公路上练习跑步,跑步的情况记录如下:(向东为正,单位:m):1000,-1200,1100,-800,900.该运动员共跑的路程是多少?3. 某检修小组在一条东西走向的公路上检修公路(约定向东为正).某天,该小组从A地出发,到收工时,行走记录为(单位:千米):+15、-2、+5、-1、-10、-3、-2、+12、+4、-5.(1)你知道他们收工的时候在A地的哪一边,并且距A地多少千米吗?(2)如果汽车每千米耗油0.5升,求检修组这天耗油多少升?第二节有理数的分类1.如果收入100元记作+100元,那么支出180元记作___________;如果电梯上升了两层记作+2,那么-3表示电梯_______________。
2.某校初一年级举行乒乓球比赛,一班获胜2局记作+2,二班失败3局记作_________,三班不胜不败记作_______.3.某班在班际篮球赛中,第一场赢4分,第二场输3分,第三场赢2分,第四场输2分,结果这个班是赢了还是输了?请用有理数表示各场的得分和最后的总分。
4. 把下列各数填入相应的大括号里:-6.5,0.618,-1,+7,31,-5.2,76-,-4,0正数集合:{ …}整数集合:{ …}负分数集合:{ …}.5. 把下列各数分别填人相应的集合里.-5,43,0,-3.14,722,-12,0.1010010001…,+1.99,-(-6),3π-(1)有理数集合:{ …}(2)正数集合:{ …}(3)负数集合:{ …}(4)整数集合:{ …}(5)分数集合:{ …}.第三节 数轴1. 已知:如图在数轴上有A ,B ,C ,D 四个点:(1)请写出A ,B ,C ,D 分别表示什么数? (2)在数轴上表示出-5,0,+3,-2的点.2. 小华骑车从家出发,先向东骑行2km 到A 村,继续向东骑行3km 到达B 村,接着又向西骑行9km 到达C 村,最后回到家.试解答下列问题:(1)以家为原点,以向东方向为正方向,在下面给定的数轴上标上单位长度,并表示出家以及A 、B 、C 三个村庄的位置;(2)C 村离A 村有多远? (3)小华一共行驶了多少km ?3. 一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼. (1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置; (2)小明家与小刚家相距多远?(3)若货车每千米耗油0.05升,那么这辆货车共耗油多少升?第四节 相反数1. 若m-4的相反数是-11,求3m+1的值.2. 若7x+4与-5互为相反数,求x 的值.3. 化简下列各数:(1)-(+10); (2)+(-0.15);(3)+(+3); (4)-(-20).4. (1)2的相反数是 ,-2的相反数是(2)a 的相反数是 , -a 的相反数是(3)一位同学认为“a 一定是正数,-a 一定是负数”,你认为呢?为什么?第五节 绝对值3. 如图,a 、b 、c 在数轴上的位置如图所示,化简|a+b|-|a+c|-|c-b|4. 求绝对值大于2且小于5的所有整数的和5. 已知a 、b 、c 在数轴上的位置如图所示,化简:|2a|-|a+c|-|1-b|+|-a-b|第六节 有理数大小的比较1.如图,数轴上A ,B ,C 三点表示的数分别为a ,b ,c ,则它们的大小关系是……( )A. a >b >cB. b >c >aC. c >a >bD. b >a >c2. 若a 为有理数,则下列判断不正确的是………………………( )A. 若│a │>0,则a >0B. 若a >0,则│a │>0C. 若a <0,则-a >0D. 若0<a <1,则│a │<1 3. 大于-4的非正整数有 个.4.若0,0,a b a b ><<,则四个数,,,a b a b --从小到大排列为 .5.下列数是否存在?若存在, 请把它们找出来.(1)绝对值最小的数;(2)最小的正整数;(3)最大的负整数;(4)最小的负整数;(5)最小的整数.6. 你能写出绝对值小于227的所有整数吗?第七节 有理数的加法 0-1 11.计算:-2+1的结果是()A.1 B.-1 C.3 D.-32.一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是()A.11℃B.4℃C.18℃D.-11℃3.有理数a,b在数轴上的位置如图所示,则a+b的值()A.大于0 B.小于0 C.等于0 D.小于a4.如果□+2=0,那么“□”内应填的实数是5. 若m、n互为相反数,则m+n=6.若a、b互为相反数,则3a+3b+2=7. 绝对值小于5的所有的整数的和是8.若x的相反数是3,|y|=5,则x+y的值为9. 在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所,已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.10. 为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,-10,-12,+3,-13,-17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?11.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?12计算:1)2)第八节有理数的减法1、计算(1)13-28 (2)2.5-(-0.7)(3))41()41(--- (4)0-)61(-(5)(-8)-(+4)-(-7)-(+9)2、珠穆朗玛峰海拔高度8844m ,吐鲁番盆地的海拔高度-155m ,珠穆朗玛峰比吐鲁番盆地高 m.3、(选做题)若3b 8==, a ,且a >0,b <0,a -b = 。
最新华东师大版七年级数学上册全册课时练习(一课一练,附详细解析过程)
华东师大版七年级数学上册全册课时练习数学伴我们成长人类离不开数学 (2)人人都能学会数学 (5)2.1.1正数和负数 (6)2.1.2有理数 (10)2.2 数轴 (14)2.3 相反数 (16)2.4 绝对值 (19)2.5 有理数的大小比较 (21)2.6.1有理数的加法法则 (25)2.6.2有理数加法的运算律 (28)2.7 有理数的减法 (32)2.8 有理数的加减混合运算 (34)2.9.1有理数的乘法法则 (36)2.9.2有理数的乘法运算律 (39)2.10有理数的除法 (43)2.11有理数的乘方 (46)2.12科学记数法 (48)2.13有理数的混合运算 (50)2.14近似数 (55)2.15 用计算器进行运算 (58)3.1列代数式 (60)3.2 代数式的值 (65)3.3 整式 (67)3.4 整式的加减 (69)4.1生活中的立体图形 (73)4.2 立体图形的视图 (77)4.3立体图形的表面展开图 (80)4.4平面图形 (83)4.5.1 点和线 (88)4.5.2 线段的长短比较 (91)4.6 1. 角 (94)4.6 2. 角的比较和运算 (98)4.6 3. 余角和补角 (103)5.1.1对顶角 (109)5.1.2垂线 (113)5.1.3 同位角、内错角、同旁内角 (116)5.2.1 平行线 (119)5.2.2平行线的判定 (122)5.2.3平行线的性质 (126)数学伴我们成长人类离不开数学一、选择题1.李叔叔家客厅长6米,宽4.8米,计划在地面铺上方砖.为了美观,李叔叔想使地面都是整块方砖,请你帮忙选择一种方砖,你的选择是( )A.边长50厘米的B.边长60厘米的C.边长100厘米的D.以上都不选2.如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是( )A.41B.40C.39D.383.已知世运会、亚运会、奥运会分别于2009年、2010年、2012年举办过.若这三项运动会均每四年举办一次,则这三项运动会均不举办的年份是( )A.2070年B.2071年C.2072年D.2073年二、填空题4.某种商品每件的进价为180元,按标价的九折销售时,利润率为20%,这种商品每件标价是________元.5.假设2019年8月3日是星期六,则2019年8月18日是星期________.6.如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽分别为2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片________张才能用它们拼成一个新的正方形.三、解答题7.(8分)为了学生的卫生安全,学校给每个住宿生配一个水杯,每只水杯3元,友谊商城打九折;中百商厦“买8送1”,学校想买180只水杯,请你当“参谋”,算一算:到哪家购买较合算?请写出你的理由.8.(8分)2019年5月1日小明和爸爸一起去旅游,在火车站看到如表所示的列车时刻表:2019年5月1日××次列车时刻表始发点发车时间终点站到站时间A站上午8:20 B站次日12:20小明的爸爸用手机上网找到了以前同一车次的时刻表如下:2006年12月15日××次列车时刻表始发点发车时间终点站到站时间A站[来源:数理化网]下午14:30 B站第三日8:30比较了两张时刻表后,小明的爸爸提出了如下两个问题,请你帮小明解答:(1)现在该次列车的运行时间比以前缩短了多少小时?(2)若该次列车提速后的平均时速为每小时200千米,那么,该次列车原来的平均时速为多少?(结果四舍五入到个位)9.(10分)你玩过火柴吗?如图,用火柴棒搭正方形,所搭正方形个数n与火柴棒根数s之间有一定的关系:将下面表格补充完整并解答后面的问题:正方形个数n 1 2 3 4 5 6 …n火柴棒根数s求搭10个正方形,需要多少根火柴棒?答案1.【解析】选B.6米=600厘米,4.8米=480厘米.选项A:600÷50=12,480÷50=9.6,客厅宽不是方砖边长的整数倍,这种方砖不合适;选项B:600÷60=10,480÷60=8,客厅长和宽都是方砖边长的整数倍,这种方砖可以;选项C:600÷100=6,480÷100=4.8,客厅宽不是方砖边长的整数倍,这种方砖不合适.2.【解析】选C.三个骰子18个面上的数字的总和为:3×(1+2+3+4+5+6)=3×21=63,看得见的7个面上的数字的和为:1+2+3+5+4+6+3=24,所以看不见的面上的点数总和是63-24=39.3.【解析】选B.由于这三项运动会均每四年举办一次,所以只要每个选项与2009,2010,2012的差有一个是4的倍数,则能在这一年举办此项运动会,否则这三项运动会均不在这一年举办.因为选项B中,2071-2009=62,2071-2010=61,2071-2012=59,均不是4的倍数,所以这三项运动会均不在2071年举办.4.【解析】180×(1+20%)÷90%=240(元).答案:2405.【解析】2019年8月3日至2019年8月18日经过了15天,15÷7=2……1,所以2019年8月18日是星期日.答案:日6.【解析】本题可以动手操作,画也行,用纸片拼也行,应该取丙类纸片4张.答案:47.【解析】到中百商厦买合算.因为到友谊商城需花费:180×3×90%=486(元),到中百商厦只需买160只,就送20只,所以需花费:160×3=480(元).因为486元>480元,所以到中百商厦买合算.8.【解析】(1)原来该次列车所用时间=2×24+8.5-14.5=42(小时).现在该次列车的运行时间=24+12-8=28(小时),42-28=14(小时),所以缩短了14小时.(2)28×200÷42≈133(千米).答:(1)现在该次列车的运行时间比以前缩短了14小时,(2)原来的平均时速约为每小时133千米.9.【解析】前三个空可通过直接数得出n=1时,s=4;n=2时,s=7;n=3时,s=10.比较4,7,10,可看出后一个数比前一个数大3,故n=4时,s=13;n=5时,s=16;n=6时,s=19.观察填入的数据可看出正方形个数×3+1即为火柴棒根数,故当正方形个数为n 时,s=3n+1,所以n=10时,s=3×10+1=31.答:需要31根火柴棒.人人都能学会数学1.一件衣服的标价200元,若以6折销售,仍可获利20%,则这件衣服的进价是( )元。
华东师大版初中数学七年级上册第2章有理数课堂训练案精典
第一节 认识负数1.下列各数中,为负数的是( )A .0B .-2C .1D .21 2. 如果+9%表示“增加9%”,那么“减少6%”可以记作( ) A .-6% B .-4% C .+6% D .+4%3. 如果收入100元记作+100元,那么支出150元记作( ) A .150元 B .-150元 C .100元 D .-100元4. 在-1,+5,0,32,3.5中,正数有( ) A .1个 B .2个 C .3个 D .4个5. 在下列各组中,表示互为相反意义的量是( )A .上升与下降B .篮球比赛胜5场与负2场C .向东走3米,再向南走3米D .增产10吨粮食与减产-10吨粮食 6. 若李明同学家里去年收入3万元,记作3万元,则去年支出2万元,记作 万元.7. 若火箭发射点火前5秒记为-5秒,那么火箭发射点火后10秒应记为 。
8. 为方便记录第一小组7位同学某次数学竞赛的成绩,老师以80分为准,将超过的分数记作正数,不是的分数记作负数,记录为:+12,-5,0,+7,-13,-2,+9.请你分别写出这7位同学的实际成绩分别是 。
9. 生活中常有用正负数表示范围的情形,例如某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~22℃范围内保存才合适。
10. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作第二节 有理数的分类1、下列说法中不正确的是……………………………………………( ) A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数C .-2000既是负数,也是整数,但不是有理数D .O 是正数和负数的分界 2.下列说法正确的是( )A .有理数是指整数、分数、正有理数、零、负有理数这五类数B .有理数不是正数就是负数C .有理数不是整数就是分数;D .以上说法都正确3. 判断:①所有整数都是正数;( )②所有正数都是整数:( )③奇数都是正数;( ) ④分数是有理数: ( )4. 把下列各数填入相应的大括号内:-13.5, 2, 0, 0.128, -2.236,3.14,+27,-45,-15%,-112,227,2613. 正数集合{ …},负数集合{ …}, 整数集合{ …}, 分数集合{ …}, 非负整数集合{ …}. 5. .如果用m 表示一个有理数,那么-m 是( )A .负数 B.正数 C.零 D.以上答案都有可能对 6. -206不是( )A .有理数 B.负数 C.整数 D.自然数 7. 一潜水艇所在的高度为-100米,如果它再下潜20米,则高度是_______,如果在原来的位置上再上升20米,则高度是________第三节 数轴1.每个有理数都可以用数轴上的以下哪项来表示( )A.一个点B.线C.单位D.长度2.下列图形中不是数轴的是( )3.下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间4.在数轴上,原点及原点右边的点表示的数是( )A.正数B.整数C.非负数D.非正数 5.在数轴上,0和-1之间表示的点的个数是( )A.0个B.1个C.2个D.无数个 6.如下图所示:写出A 、B 、C 、D 、E 所表示的数.7、画出数轴,表示下列有理数.3.5 -2 5。
七年级数学第二章有理数2.2数轴提升作业华东师大版
数轴一.选择题(共8小题)1.如图所示,在数轴上点A表示的数可能是()A.1。
5 B.﹣1.5 C.﹣2。
6 D.2.62.数轴上表示﹣4的点到原点的距离为()A.4 B.﹣4 C. D.3.如图,如果数轴上A,B两点之间的距离是8,那么点B表示的数是()A.5 B.﹣5 C.3 D.﹣34.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣2。
6 C.﹣1。
4 D.2。
65.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N6.在数轴上到原点距离等于2的点所表示的数是()A.﹣2 B.2 C.±2 D.不能确定7.如图,A.B两点在数轴上表示的数分别为A。
b,下列式子成立的是()A.ab>0 B.a+b<0 C.(b﹣1)(a+1)>0 D.(b﹣1)(a﹣1)>08.如图,数轴上点A,B,C,D表示的数中,绝对值相等的两个点是()A.点A和点C B.点B和点C C.点A和点D D.点B 和点D二.填空题(共7小题)9.(数轴上的点A到原点的距离是6,则点A表示的数为_________.10.在数轴上点P表示的数是2,那么在同一数轴上与点P相距5个单位的点表示的数是_________.11.在数轴上与﹣3的距离等于4的点表示的数是_________.12.如图,A。
B两点在数轴上,点A对应的数为2,若线段AB 的长为3,则点B对应的数为_________.13.数轴上到﹣3的距离等于2的数是_________.14.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2013,且AO=2BO,则a+b的值为_________.15.如图,数轴上的点P表示的数是﹣1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是_________.三.解答题(共5小题)16.上海杨浦大桥中孔跨径A,B间的距离为602米.(1)如果以AB的中点O为原点,向右为正方向,取适当的单位长度画数轴,那么A,B两点在数轴上所表示的数是互为相反数吗?(2)如果以左塔A为原点,那么塔B所表示的数是多少?17.数轴上离原点距离小于2的整数点的个数为x,离原点距离不大于3的整数点的个数为y,离原点距离等于4的整数点的个数为z,求x﹣y﹣z的值.18.已知数轴上点A对应的数是1,点B对应的数是﹣2,乌龟从A点出发以每秒1个单位长度的速度爬行,小白兔从B点出发以每秒3个单位长度的速度运动,若它们同时出发运动3秒,此时请回答:(1)当它们相距最远时,乌龟和小白兔所在的位置对应的数分别是多少?(2)当它们相距最近时,乌龟和小白兔所在的位置对应的数分别是多少?19.已知数a与数b互为相反数,且在数轴上表示数A.b的点A.B之间的距离为2010个单位长度,若a<b,求A。
华东师大版七年级数学上册《2章 有理数 2.2 数轴 利用数轴比较数的大小》优质课课件_24
例:将有理数3、0 、156 、-4按 从小到大的顺序排列,用“<”
号连接起来。 左
大
小于
解:
-4大<于0<1
5 6
<3
例:比较下列各数的大小:
-1.3, 0.3 , -3 , -5
(3) 3 >-4
2
(数轴上, 3 所对应的点在-4所对应的点的右侧).
2
游戏二: 学生身临其境感受数轴的魅力
下列各数是否存在?如果存在,把它们找出来:
1.最大的正整数
2.最小的负整数
3.最大的负整数
4.最小的整数
突破难点:
1.你会比较- 4 与- 3 的大小吗? 54
2.比较-2.33,-2 1, - 20的大小。 1 39
-2 3 =-2.3
- 20 =-2.2 9
化难为易: 比较下列各数的大小:
-1.5 , 0.6 , -3 , -2
解:将这些数分别在数轴上表示出来:
-3 -2-1.5
0.6
-3 –2 –1 0 1 2 3 4
可以得到: -3 < -2 < -1.5 < 0.6
课堂小结,回扣目标
1、正数都_大_于__零; 2、负数都小__于__零; 3、正数都_大_于__负数; 4、在数轴上表示两个数,右边的数总比左边的 数_大__.
华东师范大学出版社 (2011课标版)
2.2.2在数轴上比较数的大小
旧知回顾,引入目标: 1.规定_原__点____、__正__方__向___、 _单__位__长__度___的_直__线____叫做数轴.
七年级数学上册第2章有理数2.2数轴习题课件新版华东师大版
2
从左到右串成糖葫芦状,写在○内的数字依次为:__________.
【解析】从左到右的数字依次为+6,1 ,0,-4.5,-5.
2
答案:+6,1 ,0,-4.5,-5
2
5.如图,已知数轴上点A表示的数为-3,
(1)将点A向右移动2个单位长度,那么终点表示的数为_____, 终点表示的数比原来变______(填“大”或“小”). (2)将点A向左移动2个单位长度,那么终点表示的数为_____, 终点表示的数比原来变______(填“大”或“小”).
2
(1)按从小到大的顺序用“<”把这些数连接起来.
(2)A与B,D与E,F与G之间分别有怎样的位置关系?
【解析】(1)各数用数轴上的点表示,如图所示:
根据数轴上右边的数总比左边的数大,各数的大小关系按从小 到大的顺序用“<”连接为:-3.5<-2<- 1<0<0.5<2<
2
3.5. (2)观察数轴可知A与B,D与E,F与G到原点的距离都分别相等.
2.2 数 轴
1.了解数轴的概念及其三个要素,会画数轴. 2.掌握用数轴上的点表示有理数,能比较有理数的大小.(重点) 3.通过数轴的学习,体会数形结合的思想方法. (难点)
1.数轴的定义 规定了_原__点__、_正__方__向__和_单__位__长__度__的直线. 2.数轴的画法 (1)画直线、定原点:画一条直线(通常画成水平位置),在这 条直线上_任__取__一点作为原点,用这点表示数_0_. (2)确定正方向:规定直线上从原点向_右__为正方向,画上箭 头,则相反方向为_负__方__向__.
3. 数轴上两点A,B分别表示数-2和3,则A,B两点间的距离是 ______个单位长度. 【解析】表示数-2的点A在原点的左边,距原点2个单位长度, 表示数3的点B在原点的右边,距原点3个单位长度,所以A,B 两点间的距离是5个单位长度. 答案:5
七年级数学华东师大版上册课件:第2章《有理数》测试卷 (共36张PPT)
20. (8 分)计算(能用简便运算的尽量用简便算法): (1)(-125)×32×(-1)3×(-0.25); 解:原式=(-125×8)×(4×0.25)=-1000; (2)25-(-21+41-81)÷116; 解:原式=25-(-21×16+14×16-18×16)=32+8 -4+2=38;
20
三、解答题(共 66 分) 19. (8 分)已知一组数:|-2|,-2,+(-0.5), -1.5,1.5,0. (1)画一条数轴,并把这些数用数轴上的点表示出 来;
21
(2)把这些数分别填在下面对应的集合中: 负数集合:{ -2,+(-0.5),-1.5, …}; 分数集合:{ +(-0.5),-1.5,1.5, …}; 非负数集合:{ |-2|,1.5,0, …}; (3)请将这些数按从小到大的顺序排列(用“<” 号连接). 解:(1)略. (3)-2<-1.5<+(-0.5)<0<1.5<|-2|.
第2章《有理数》测试卷
1
(时间:100 分钟 满分:120 分)
一、选择题(每小题 3 分,共 30 分)
1. 下列各数互为倒数的是( C )
A.5 和-51
B.2 和-2
C.-1 和-1
D.0.01 和 10
2
2. 下列说法不正确的是( B ) A.a 的相反数是-a B.任何有理数的平方都是正数 C.在有理数中绝对值最小的数是零 D.在有理数中没有最大的数
15
12. 研究表明:一只苍蝇的腹内细菌多达 2845 万 个,用科学记数法表示为 2.8×107 个,此时精确到 _百__万___位.
13. 若|a|=-a,那么 2a 一定是_非__正__数___ (填“非 正数”或“非负数”).
华东师大版七年级数学上册第二章 2.2.1 数轴 同步测试题(含答案)
华东师大版七年级数学上册第二章 2.2.1 数轴同步测试题一、选择题1.关于数轴,下列说法最准确的是()A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.在下图中,表示数轴正确的是()A BC D3.如图,数轴上点A表示的数是()A.-1 B.0 C.1 D.2 4.如图,数轴上蝴蝶所在点表示的数可能为()A.3 B.2 C.1 D.-1 5.数轴上的点A在原点的左侧,且距原点2个单位长度,则点A表示的数为( ) A.-4 B.-2 C.2 D.4 6.在数轴上表示数-3,0,5,2,-1的点中,在原点右边的有() A.0个B.1个C.2个D.3个7.数轴上原点及原点左边的点表示( )A .正数B .负数C .非正数D .非负数8.如图,数轴上表示a ,b ,c 三个有理数的点分别是A ,B ,C ,则下列结论中正确的是(A )A .a ,b ,c 三个数中有两个正数,一个负数B .a ,b ,c 三个数中有两个负数,一个正数C .a ,b ,c 三个数都是正数D .a ,b ,c 三个数都是负数9.如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( )A .0B .1C .2D .310.在数轴上点A 表示-4,如果把原点向负方向移动1个单位长度,那么在新数轴上点A 表示的数是( )A .-2B .-3C .-4D .-5二、填空题11.在数轴上与原点距离2.5个单位长度的点所表示的有理数是______.12.数轴上表示-122与223的两点之间表示整数的点有______个.13.数轴上原点及原点左边的点表示______. 三、解答题14.如图,指出数轴上的点A ,B ,C 所表示的数,并把-4,32,5这三个数分别用点D ,E ,F在数轴上表示出来.15.邮递员从邮局出发,先向西骑行3 km到达A村,继续向西骑行2 km到达B村,然后向东骑行9 km到达C村,最后回到邮局.(1)如图,请在以邮局为原点,向东为正方向,1 km为1个单位长度的数轴上表示出A,B,C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共行驶了多少千米?16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是______;②从-2到2有5个整数,分别是______;③从-3到3有7个整数,分别是______;④从-200到200有______个整数;(2)根据以上规律,直接写出:从-2.9到2.9有5个整数,从-10.1到10.1有______个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为2 020厘米的线段AB,则线段AB 盖住的整数点有______个.参考答案一、选择题1.关于数轴,下列说法最准确的是(D)A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.在下图中,表示数轴正确的是(A)A BC D3.如图,数轴上点A表示的数是(C)A.-1 B.0 C.1 D.2 4.如图,数轴上蝴蝶所在点表示的数可能为(D)A.3 B.2 C.1 D.-15.数轴上的点A在原点的左侧,且距原点2个单位长度,则点A表示的数为(B) A.-4 B.-2 C.2 D.46.在数轴上表示数-3,0,5,2,-1的点中,在原点右边的有(C)A.0个B.1个C.2个D.3个7.数轴上原点及原点左边的点表示(C)A.正数B.负数C.非正数D.非负数8.如图,数轴上表示a,b,c三个有理数的点分别是A,B,C,则下列结论中正确的是(A)A.a,b,c三个数中有两个正数,一个负数B.a,b,c三个数中有两个负数,一个正数C.a,b,c三个数都是正数D.a,b,c三个数都是负数9.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是(D)A.0 B.1 C.2 D.310.在数轴上点A表示-4,如果把原点向负方向移动1个单位长度,那么在新数轴上点A 表示的数是(B)A.-2 B.-3 C.-4 D.-5二、填空题11.在数轴上与原点距离2.5个单位长度的点所表示的有理数是±2.5.12.数轴上表示-122与223的两点之间表示整数的点有5个.13.数轴上原点及原点左边的点表示非正数. 三、解答题14.如图,指出数轴上的点A ,B ,C 所表示的数,并把-4,32,5这三个数分别用点D ,E ,F 在数轴上表示出来.解:点A ,B ,C 所表示的数分别是-2.5,0,4;-4,32,5这三个数分别用点D ,E ,F 在数轴上表示如图所示.15.邮递员从邮局出发,先向西骑行3 km 到达A 村,继续向西骑行2 km 到达B 村,然后向东骑行9 km 到达C 村,最后回到邮局.(1)如图,请在以邮局为原点,向东为正方向,1 km 为1个单位长度的数轴上表示出A ,B ,C 三个村庄的位置;(2)C 村离A 村有多远?(3)邮递员一共行驶了多少千米?解:(1)如图所示.(2)C 村离A 村的距离为4+3=7(km ). (3)邮递员一共行驶了3+2+9+4=18(km ). 16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是-1,0,1;②从-2到2有5个整数,分别是-2,-1,0,1,2;③从-3到3有7个整数,分别是-3,-2,-1,0,1,2,3;④从-200到200有401个整数;(2)根据以上规律,直接写出:从-2.9到2.9有5个整数,从-10.1到10.1有21个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为2 020厘米的线段AB,则线段AB 盖住的整数点有2020或2021个.。
七年级数学上册第2章有理数2.2数轴1数轴作业课件新版华东师大版
3.如图,在数轴上点A表示的数可能是( C ) A.1.5 B.-1.5 C.-2.6 D.2.6
4.以下是关于-32这个数在数轴上的位置的描述,其中正确的是( D )
A.在-3 的左边 B.在 3 的右边 C.在原点和-1 之间 D.在-1 的左边
5.数轴上的点A到原点的距离是4,则点A表示的数为(C ) A.4 B.-4 C.4或-4 D.2或-2
解:
6.(2017·扬州)若数轴上表示-1和3的两点分别是点A和点B,则点A和点 B之间的距离是( D )
A.-4 B.-2 C.2 D.4
7.(2017·福建)如图,已知A,B,C是数轴上的三个点,且点C在点B的右 侧,点A,B表示的数分别是1,3.若BC=2AB,则点C表示的下列各数的点: 212,-3,0,-114,3,-0.5.
练习2:在数轴上表示数-3,0,2.5,0.4的点中, 在原点左侧的是_-__3_.
1.下列说法正确的是( C) A.数轴是一条带箭头的射线 B.数轴一定取向右为正方向 C.数轴是一条规定了原点、单位长度和正方向的直线 D.数轴上的原点表示有理数的起点 2.在数轴上,原点及原点右边的点所表示的数是( C ) A.正数 B.负数 C.非负数 D.非正数
第2章 有理数
2.2 数轴
2.2.1 数轴
1.规定了___原_、点 正方向和 单位长度的直线叫做数轴. 练习1:如图所示的图形为四位同学画的数轴,其中正确的是( D)
2.任何一个有理数都可以用数轴上的一个点表示,原点表示__0__,表示正 数的点在原点的_右__边_,表示负数的点在原点的_左__边_.
七年级数学上册第二章有理数2.2数轴练习华东师大版(2021年整理)
七年级数学上册第二章有理数2.2 数轴练习(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第二章有理数2.2 数轴练习(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第二章有理数2.2 数轴练习(新版)华东师大版的全部内容。
2.2 数轴1.下列命题正确的是()A.数轴上的点都表示整数.B.数轴上表示5与-5的点分别在原点的两侧,并且到原点的距离都等于5个单位长度。
C。
数轴包括原点与正方向两个要素。
D.数轴上的点只能表示正数和零.2.在数轴上点A表示 - 4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是()A。
—2。
5 B.—4.5 C。
-5。
5 D.—3。
53.在数轴上原点以及原点左边的点表示的数是()A.正数 B.负数 C.零和正数 D.零和负数4。
数轴上A,B两点分别表示-10。
5和6。
9,这两点间的点表示的有理数个数是()A.17 B.16 C.15 D.以上都不对5。
数轴上表示整数的点称为整点。
某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2015厘米的线段AB,则线段AB盖住的整点的个数是()A. 2013或2014 B。
2014或2015C. 2015或2016 D。
2016或20176.关于这个数在数轴上点的位置的描述,正确的是()A.在—3的左边 B.在3的右边 C.在原点与-1之间 D.在—1的左边7。
一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是()A.+3 B.-3 C. +6 D.—98。
七年级数学上册2.2.1数轴的认识课件新版华东师大版
第2章 有理数
第1课时(kèshí) 数 轴的认识
第一页,共26页。
1 课堂(kètáng)讲数解轴
数轴上的点与有理数的对应关系
(guān xì)
2 课时(kèshí)流程数轴上两点间的距离
逐点
导讲练
课堂小 结
作业提 升
第二页,共26页。
知识点 1 数 轴
知1-导
我们在小学(xiǎoxué)学习数学时,就能用直线上依次 排列的点来表示自然数,它帮助我们认识了自然 数的大小关系.
(来自(lái zì)《典中点》)
第二十页,共26页。
知3-讲
知识点 3 数轴(shùzhóu)上两
点间的距离
例6 数轴上到表示2的点的距离是5的点表示的数是 __7_或__-__3_.
错误答案:7 错解分析:只考虑了表示2的点右侧的点,忽视(hūshì)了左侧还
有一个点;画出数轴,利用数形结合思想能克 服片面理解的误区,很直观看出数轴上与表示 2的点相距5个单位长度的点在表示2的点的两 侧,有两个点.
(来自(lái zì)《点拨》)
第八页,共26页。
总结
知1-讲
(1)画数轴的步骤:一画(直线),二取(原点),三定(正 方向),四统一(单位长度),五标数(刻度数);
(2)数轴被原点分成两个区域:①从原点向右表示正数 区域,序号顺序(shùnxù)从左至右;②从原点向左表示负数 区域,序号顺序(shùnxù)从右至左;
第四页,共26页。
知1-讲
2.数轴的画法: 一画:画一条直线(一般是水平直线); 二取:选取原点,并用这点表示数字0; 三定:确定正方向,用箭头表示(一般规定向右为正); 四统一:单位长度应统一; 五标数:在原点左右两边依次标上对应的刻度(kèdù)数.
博白县师院附中七年级数学上册 第2章 有理数2.2 数轴在数轴上比较数的大小课件 新版华东师大版
1. 把一个长方体包装盒如以下图剪开 , 再平铺成 形 , 我们把它叫做这个长方体包装盒的表面展开
请判断以下四个图形中 , 哪一个可看做一个长 包装盒的表面展开图.
√
2.将一张长 16 cm、宽 12 cm 的长方形纸板 , 设 个底面为正方形的长方体包装盒 , 可以有多种设 方案 , 比一比哪种设计方案可使其容积更大.
(四)总 结: 温度计就象一根数轴从中我们可以得到
比较有理数大小的规律 :
正数大于0 ; 负数小于0。
正数大于负数。
在数轴上表示的两个数 , 左边的数总小 于右边的数〔或者说右边的数总大于 左边的数〕。
(五)做一做 :
1、将有理数3、0、1
5 6
、-4按
从小到大的顺序排列 , 用〞<〞
号连接起来。
3.移项要改变符号
4. 列方程解应用题 一.设未知数 ; 二.分析题意找出 三.根据等量关系
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油!奥利给~
可以看出 -5 < -3 < -1.3< 0.3
(六)练一练 :
1、判断以下各式是否准确 :
√ × (1)2.9﹥-3.1;(2)0 < -14;
× √ (3)-10﹥-9; (4)-5.4 < -4.5
2、用“ <”或“>”填空: (1)3.6 —> 2.5; (2)-3 <— 0; (3)-16<— -1.6;(4)+1 —> -10; (5)-2.1 <— +2.1;(6)-9 <— -7;
系数化为1 , 得x=100, 所以2x=200,5x=500. 答 : 新工艺的废水排量为 200 t , 旧工艺的废水排量为
初中数学华东师大七年级上册(2023年新编)第2章 有理数在数轴上比较数的大小
在数轴上比较数的大小一、学习目标确定的依据1、课程标准结合数轴,会在用数轴比较有理数的大小。
2、教材分析本节课是初中数学华师大版七年级上册第2章有理数的第二部分的第二课时,是学生进一步学习有理数的基础,通过上一节数轴的学习,进一步学会如何比较数的大小,为学生下一节的学习奠定基础。
3、中招考点本节知识点较少都是较为简单的基础知识考查题型一般为填空题或解答题。
4、学情分析对于不等号链接几个有理数第一次接触,学生不会熟练的运用数轴来进一步比较数的大小关系。
二、学习目标1、知识与技能⑴使学生进一步巩固绝对值的概念⑵使学生会利用绝对值比较两个负数的大小⑶培养学生逻辑思维能力,渗透数形结合思想,注意培养学生的推理论证能力⑷掌握有理数的大小比较的两种方法——利用数轴和绝对值2、过程与方法经历利用绝对值以及利用数轴比较有理数的大小,进一步体会数形结合的数学方法,培养学生分析、归纳的能力3、情感态度价值观会把所学知识运用于解决实际问题,体会数学知识的应用价值三、评价任务向同桌说出数轴上表示的数比较法则,会用数轴比较数的大小并用不等号连接。
四、教学过程自学指导一:1、内容:17页和18页的内容。
2、时间:5分钟。
3、方法:前4分钟自学后1分钟小组讨论自学中所遇到的问题。
4、要求:自学后能独立完成下列问题:课本的第18页练习自学检测一:1、画一根数轴并把下列个数表示在数轴,并且按从左至右的顺序重新排列。
-4 -1 0 42、用“>”或“<”号填空。
(1) 0 (2)- 0(3)--(4)0 -4 (5)-7 -33.用不等号把下列数字连接起来-0.333,-,-34%,-0.3334当堂检测一1.将有理数4,0,,-4,按从小到大的顺序排列,用“<”连接起来。
2.比较下列各数的大小。
,,-3,-6课堂小结本节你学到了哪些知识,你还有哪里不懂的不明白的地方。
布置作业课本习题第4,5题。
阿拉善盟第二中学七年级数学上册 第二章 有理数 2.2 数轴知识点解读素材 华东师大版
数轴知识点1 数轴(重点)1.数轴的概念画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度.规定直线上向右的方向为正方向,就得到数轴。
如下图2.数轴的画法(1)画直线、定原点:通常原点选在直线中间,若问题中负数的个数较多时,原点选靠右些;正数的个数较多时,原点选的靠左些.(2)定方向:通常取原点向右的方向为正方向.(3)定单位长度:选取适当的长度(如0.5cm(4)标数:在数轴上依次标出1,2,3,4,-1,-2,-3,-4等各点.3.任何一个有理数都可以用数轴上的一个点来表示.注意:(1)在取原点位置和确定单位长度时,要根据题目的不同特点,灵活选取.(2)所有的有理数都可以用数轴上的点来表示,但数轴上的点不都可以表示有理数.(今后要学的无理数也可以用数轴上的点来表示)【例1】指出下图中的数轴上各点表示的数.解析读出在数轴上的点表示的有理数分两步:(1)根据点在原点的左右边确定有理数的符合;(2)根据点与原点的距离确定数值.答案 A点表示-212;B点表示-1,C点表示0;D点表示2;E点表示212.【类型突破】画出数轴,并用数轴上的点来表示下列各数:+4,-2,-4.5,113,0.答案知识点2 有理数大小的比较(重点)利用数轴可比较有理数的大小,即(1)在数轴上表示的两个数,右边的数总比左边的数大.(2)由正数、负数、0在数轴上的位置可知:正数都大于0,负数都小于0,正数大于一切负数.提示:正负数的表示方法:因为正数都大于0,反过来,大于0的数都是正数,所以可用a>0表示a是正数;反之,知道a是正数也可以表示为a>0.同理,a<0表示a是负数;反之,a是负数也可以表示为a<0.【例2】将下列各数在数轴上描出其对应点,并用“<”将它们连接起来.-312,3,-2,32,-0.5,12,1,0.解析将给出的数在数轴上表示出来,再根据数轴上两个点表示的数,右边的总比左边的大的规律来比较大小.答案在数轴上表示如下图所示.用“<”连接为:113 320.5013 222-<-<-<<<<<方法总结:比较数的大小时,利用数轴,把这些数用数轴上的点来表示,根据右边的总比左边的大比较,这种方法是数学结合思想的初步运用.【类型突破】写出所以大于132-而小于314的整数 .答案 -3,-2,-1,0,110.4 三元一次方程组一、单选题1.有甲、乙、丙三种货物,若购进甲3件,乙7件,丙1件,共需64元,若购进甲4件,乙10件,丙1件,共需79元。
华师大版 七年级数学初一上册《第二章有理数》单元试卷及答案
第二章 有理数单元测试题一. 判断题:1.有理数可分为正有理数与负有理数 . ( )2.两个有理数的和是负数,它们的积是正数,则这两个数都是负数. ( )3.两个有理数的差一定小于被减数. ( )4.任何有理数的绝对值总是不小于它本身. ( )5.若0<ab ,则b a b a -=+;若0>ab ,则b a b a +=+ . ( )二.填空题:1.最小的正整数是 ,最大的负整数是 ,绝对值最小的数是 .2.绝对值等于2)4(-的数是 ,平方等于34的数是 ,立方等于28-的数是 .3.相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 ,立方等于本身的数是 .4.已知a 的倒数的相反数是715,则a = ;b 的绝对值的倒数是312,则b = .5.数轴上A 、B 两点离开原点的距离分别为2和3,则AB 两点间的距离为 .6.若222)32(,)32(,32⨯-=⨯-=⨯-=c b a ,用“<”连接a ,b ,c 三数: .7.绝对值不大于10的所有负整数的和等于 ;绝对值小于2002的所有整数的积等于 .三.选择题:1.若a ≤0,则2++a a 等于 ( )A .2a +2B .2C .2―2aD .2a ―22.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcdb a cd p 的值是 ( ). A .3 B .2 C .1 D .03.若01<<-a ,则2,1,a aa 的大小关系是 ( ). A .21a a a << B .21a a a <<C .a a a <<21D .aa a 12<< 4.下列说法中正确的是 ( ).A. 若,0>+b a 则.0,0>>b aB. 若,0<+b a 则.0,0<<b aC. 若,a b a >+则.b b a >+D. 若b a =,则b a =或.0=+b a5.cc b b a a ++的值是 ( ) A .3± B .1±C .3±或1±D .3或16.设n 是正整数,则n )1(1--的值是 ( )A .0或1B .1或2C .0或2D .0,1或2四.计算题1.[]24)3(2611--⨯--2.23.013.0)211653(1⨯⎥⎦⎤⎢⎣⎡+--÷3.%).25()215(5.2425.0)41()370(-⨯-+⨯+-⨯-4.22320012003)21(24)23(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷-五、2++b a 与4)12(-ab 互为相反数,求代数式++-+b a ab ab b a 33)(21的值.六、 a 是有理数,试比较2a a 与的大小.七.32-12=8×152-32=8×272-52=8×392-72=8×4……观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.第二章 有理数单元测试题参 考 答 案一.判断题:×√×√√ 二.填空题:(1)1,—1,0;(2)±16,±8,—4;(3)0,±1,非负数,0和±1; (4)367-,73±;(5)1或5;(6)c <a <b . 三.选择题:(1)B (2)B (3)B (4)D (5)C (6)C 四. 1.61;2.1;3.100; 4.原题应改为223200120003)21(24)32(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷- =—34. 五.1253 六.当a <0或a >1时,a < a 2;0< a <1,a > a 2;当a =0或a =1时,a =a 2.七.n n n 8)12()12(22=--+,8000.。
2018年秋七年级数学上册 第2章 有理数 2.2 数轴讲义 (新版)华东师大版
A.3 个
B.2 个
C.1 个
D.无数个
9.在数轴上,点 A 表示-3,从点 A 出发沿数轴移动 4 个单位长度到达点
B,则点 B 表示的数是( D )
A.-7
B.1
C.4
D.-7 或 1
10.数轴上与表示-5 的点相距 2 个单位长度的点所表示的数是 -3或-7 .
11.数轴上到原点的距离小于 3 的整数的个数为 x,不大于 3 的整数的个数 为 y,等于 3 的整数的个数为 z,则 x+y+z= 14 .
6.在数轴上有三个点 A、B、C(如图),回答下列问题:
(1)将点 A 向右移动 4 个单位长度后,三个点所表示的数中,最小的数是多 少? (2)将点 C 向左移动 4 个单位长度后,三个点所表示的数中,最大的数是多 少? (3)怎样移动 A、B、C 中的其中两个点,才能使三个点表示的数相同?有几 种移动的方法? 解:(1)最小的数是点 B 所表示的数,为-5; (2)最大的数是点 A 所表示的数-1;
答:都不正确.(1)缺少原点;(2)单位长度不一致;(3)有两处错误:①缺少 正方向;②负数的排序错误,从原点依次向左应是-1,-2.
1.下列各图中,是数轴的是( D )
2.以下关于-23这个数在数轴上的位置的描述,其中正确的是( D )
A.在-3 的左边
B.在 3 的右边
C.在原点和-1 之间
D.在-1 的左边
在数轴上比较大小 在数轴上表示的两个数,右边的数总比左边的数大,即:正数都 大于 零,
负数都 小于 零,正数都 大于 负数.
自我诊断 2.某地连续四天每天的平均气温分别是:1℃、-1℃、0℃、2℃,
则平均气温中最低的是( A )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴
(30分钟50分)
一、选择题(每小题4分,共12分)
1.如图,数轴上所标出的点中,相邻两点间的距离相等,则点C表示的数为( )
A.30
B.50
C.60
D.80
2.(葫芦岛中考)下列各数中,比-1小的是( )
A.-2
B.0
C.2
D.3
3.在数轴上点A表示-4,如果把原点向负方向移动 1.5个单位长度,那么在新数轴上点A表示的数是( )
A.-5.5
B.-4
C.-2.5
D.2.5
二、填空题(每小题4分,共12分)
4.如图,A,B两点在数轴上,点A对应的数为2,若线段AB的长为3,则点B对应的数为________.
5.(泰州中考)如图,数轴上的点P表示的数是-1,将点P向右移动3个单位
长度得到点P',则点P'表示的数是________.
6.冷库A的温度是-5℃,冷库B的温度是-15℃,则温度较高的冷库是
________,若使它的温度达到-16℃的标准,应该________(填“升高”或“降低”)________℃.
三、解答题(共26分)
7.(8分)将有理数-2,1,0,-2,3在数轴上表示出来,并用“<”号连接各数.
8.(8分)在数轴上有三个点A,B,C,如图所示:
(1)将A点向右移动4个单位长度,此时该点表示的数是多少?
(2)将C点向左移动6个单位长度得到数x1,再向右移动2个单位长度得到数x2,问数x1,x2分别是多少?用“>”把表示点B,x1,x2的数连接起来.
【拓展延伸】
9.(10分)我们规定:数轴上的点向右移动1个单位长度,表示为+1,那么向左移动2个单位长度,表示为-2.如图所示,一个点从原点开始,先向右移动3个单位长度,再向右移动2个单位长度,到达的终点是表示5的
点,这个过程用算式表示为:(+3)+(+2)=+5.
(1)如果有一个点从原点开始按下列方式移动,先画图,再用算
式表示移动过程:
①向左移动1个单位长度,再向左移动2个单位长度;
②向左移动2个单位长度,再向右移动2个单位长度;
③向左移动1个单位长度,再向右移动5个单位长度;
(2)将上述①,②和③中移动到达终点表示的数用“<”连接起来.
答案解析
1.【解析】选B.每个间隔之间所表示的单位长度为100÷4=25,点C在原点右边,与原点相距两个格,因此点C表示的数为50.
2.【解析】选A.在数轴上表示-2的点在表示-1的点的左边,因此-2<-1.
3.【解析】选C.平移后点A距离原点2.5个单位长度,且在原点的左边,所以点A表示的数是-2.5.
4.【解析】因为点A距离原点2个单位长度,点B距离点A3个单位长度,所以点B距离原点5个单位长度,又因为点B在原点的右边,所以点B对应的数为
5.
答案:5
5.【解析】点P在原点左边,距离原点1个单位长度,从原点往右再2个单位长度表示的数为2.
答案:2
6.【解析】易知-5大于-15,所以冷库A温度较高,应降低11℃才达到-16℃的标准.
答案:A 降低11
7.【解析】如图所示.
由图知,-2<-2<0<1<3.
8.【解析】(1)将A点向右移动4个单位长度可以看作:先将A点向右移动3个单位长度,到达原点,再从
原点向右移动1个单位长度,此时该点表示的数是1.
(2)将C点向左移动6个单位长度可以看作:先将C点向左移动4个单位长度到达原点,再从原点向左移动2个单位长度,此时该点表示的数是-2,即x1=-2;将表示-2的点再向右移动2个单位长度,此时该点表示的数为0,即x2=0.表示点B,x1,x2的数连接起来为:0>-1>-2.
【归纳整合】数轴上点移动及其表示的数的变化关系
(1)数轴上的点向右移动,表示的数变大.
(2)数轴上的点向左移动,表示的数变小.
(3)数轴上的点先向左(右)移动,再向右(左)移动相同的单位长度时,又回到出发点,因此,前后两个数字相等.
9.【解析】(1)①如图:
算式:(-1)+(-2)=-3.
②如图:
算式:(-2)+(+2)=0.
③如图:
算式:(-1)+(+5)=+4.
(2)-3<0<+4.。