数学版人教版七年级上册数学 压轴题 期末复习综合测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学版人教版七年级上册数学 压轴题 期末复习综合测试题

一、压轴题

1.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .

①求t 的值;

②此时OQ 是否平分∠AOC ?请说明理由;

(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;

(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).

2.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.

解决如下问题:

(1)如果4t =,那么线段13Q Q =______;

(2)如果4t <,且点3Q 表示的数为3,那么t =______;

(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.

3.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。点A 表示的数为—2,点B 表示的数为1,动点P 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设

点P运动时间为t(t>0)秒.

(1)长方形的边AD长为单位长度;

(2)当三角形ADP面积为3时,求P点在数轴上表示的数是多少;

(3)如图2,若动点Q以每秒3个单位长度的速度,从点A沿数轴向右匀速运动,与P

点出发时间相同。那么当三角形BDQ,三角形BPC两者面积之差为1

2

时,直接写出运动时

间t 的值.

4.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)

(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?

(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?

(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.

5.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.

(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;

(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t 秒:

①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;

②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?

6.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.

(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.

(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),

COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.

7.如图1,线段AB 的长为a .

(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)

(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.

(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.

8.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:

说明:[

)a,b 表示在范围a b ~中,可以取到a ,不能取到b .

根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=

⨯购买商品获得的总优惠额商品的标价

, 请问:

()1购买一件标价为500元的商品,顾客的实际付款是多少元?

()2购买一件商品,实际付款375元,那么它的标价为多少元?

()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.9.结合数轴与绝对值的知识解决下列问题:

探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是

____;

结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.

直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;

灵活应用:

(1)如果∣a+1∣=3,那么a=____;

(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;

(3)若∣a-2∣+∣a+4∣=10,则a =______;

实际应用:

已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.

(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

(2)求运动几秒后甲到A、B、C三点的距离和为40个单位长度?

10.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.

问题解决:

(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);

(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A

点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).

①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;

②若0

11.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.

(1)求点K的坐标;

(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);

相关文档
最新文档