最新七年级数学上册数学压轴题(培优篇)(Word版 含解析)

合集下载

七年级数学上册上册数学压轴题(培优篇)(Word版 含解析)

七年级数学上册上册数学压轴题(培优篇)(Word版 含解析)

七年级数学上册上册数学压轴题(培优篇)(Word版含解析)一、压轴题1.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n个()0a a≠相除记作na,读作“a的n次商”.(1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______.(2)关于除方,下列说法错误的是()A.任何非零数的2次商都等于1B.对于任何正整数n,()111n--=-C.除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D.负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______615⎛⎫=⎪⎝⎭______(4)想一想,将一个非零有理数a的n次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2.如图9,点O是数轴的原点,点A表示的数是a、点B表示的数是b,且数a、b满足()26120a b-++=.(1)求线段AB的长;(2)点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动.设点A、B同时出发,运动时间为t秒,若点A、B能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A和点B都向同一个方向运动时,直接写出经过多少秒后,点A、B两点间的距离为20个单位.3.如图,数轴上A,B两点对应的数分别为4-,-1(1)求线段AB长度(2)若点D在数轴上,且3DA DB=,求点D对应的数(3)若点A的速度为7个单位长度/秒,点B的速度为2个单位长度/秒,点O的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =4.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.5.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 6.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.7.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD的中点,若PE=QF,求t的值.8.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有条.(2)总结规律:一条直线上有n个点,线段共有条.(3)拓展探究:具有公共端点的两条射线OA、OB形成1个角∠AOB(∠AOB<180°);在∠AOB内部再加一条射线OC,此时具有公共端点的三条射线OA、OB、OC共形成3个角;以此类推,具有公共端点的n条射线OA、OB、OC…共形成个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?9.如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=_______;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=_________;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.10.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值;(2)当06t <<时,探究BON COM AOCMON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值?11.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.12.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】 【分析】(1)利用题中的新定义计算即可求出值; (2)利用题中的新定义计算即可求出值; (3)将原式变形即可得到结果; (4)根据题意确定出所求即可; (5)原式变形后,计算即可求出值. 【详解】 (1)3111111222222⎛⎫=÷÷=÷=⎪⎝⎭, ()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=, 故答案为:2,14;(2)A .任何非零数的2次商都等于1,说法正确,符合题意;B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意. 故选:B ;(3)()()()()()433333-=-÷-÷-÷-111()()33=⨯-⨯-21()3=-;611111115555555⎛⎫=÷÷÷÷÷ ⎪⎝⎭15555=⨯⨯⨯⨯45=;故答案为:21()3-,45; (4)由(3)得到规律:21()n n a a-=,所以,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于21()n a-,故答案为:21()n a-;(5)201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()2019324220202112366---⎛⎫=÷-÷---⨯ ⎪⎝⎭201820181111162966⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭201811161866⎛⎫⎛⎫=--⨯⨯ ⎪ ⎪⎝⎭⎝⎭11186=-- 29=-.【点睛】本题考查了有理数的混合运算,新定义的理解与运用;熟练掌握运算法则是解本题的关键.对新定义,其实就是多个数的除法运算,要注意运算顺序. 2.(1)18;(2)6或18秒;(3)2或38秒 【解析】 【分析】(1)根据偶次方以及绝对值的非负性求出a 、b 的值,可得点A 表示的数,点B 表示的数,再根据两点间的距离公式可求线段AB 的长;(2)分两种情况:①相向而行;②同时向右而行.根据行程问题的相等关系分别列出方程即可求解;(3)分两种情况:①两点均向左;②两点均向右;根据点A 、B 两点间的距离为20个单位分别列出方程即可求解. 【详解】解:(1)∵|a ﹣6|+(b +12)2=0, ∴a ﹣6=0,b +12=0, ∴a =6,b =﹣12,∴AB =6﹣(﹣12)=18;(2)设点A 、B 同时出发,运动时间为t 秒,点A 、B 能够重合时,可分两种情况: ①若相向而行,则2t+t =18,解得t =6; ②若同时向右而行,则2t ﹣t =18,解得t =18. 综上所述,经过6或18秒后,点A 、B 重合;(3)在(2)的条件下,即点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动,设点A 、B 同时出发,运动时间为t 秒,点A 、B 两点间的距离为20个单位,可分四种情况:①若两点均向左,则(6-t )-(-12-2t )=20,解得:t=2; ②若两点均向右,则(-12+2t )-(6+t )=20,解得:t=38; 综上,经过2或38秒时,A 、B 相距20个单位. 【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.注意分类讨论思想的应用. 3.(1)3;(2)12或74-;(3)13秒或79秒 【解析】 【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可. 【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1, ∴线段AB 的长度为:-1-(-4)=3; (2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--, 解得:x=12或x=74-, ∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+,解得:t=13或t=79, ∴13秒或79秒后,OA=3OB . 【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法. 4.(1)5cm ;(2)2a b +;(3)线段MN 的长度变化,2a b MN +=,2a b -,2b a-. 【解析】 【分析】(1)根据点M 、N 分别是AC 、BC 的中点,先求出CM 、CN 的长度,则MN CM CN =+;(2)根据点M 、N 分别是AC 、BC 的中点,12CM AC =,12CN BC =,所以()122a bMN AC BC +=+=; (3)长度会发生变化,分点C 在线段AB 上,点B 在A 、C 之间和点A 在B 、C 之间三种情况讨论. 【详解】(1)6AC cm =,M 是AC 的中点, ∴132CM AC ==(cm ),4BC cm =,N 是CB 的中点,∴122CN CB ==(cm ),∴325MN CM CN =+=+=(cm ); (2)由AC a =,M 是AC 的中点,得1122CM AC a ==,由BC b =,N 是CB 的中点,得1122CN CB b ==,由线段的和差,得222a b a bMN CM CN +=+=+=;(3)线段MN 的长度会变化.当点C 在线段AB 上时,由(2)知2a bMN +=,当点C 在线段AB 的延长线时,如图:则AC a BC b =>=,AC a =,点M 是AC 的中点,∴1122CM AC a ==,BC b =,点N 是CB 的中点,∴1122CN BC b ==,∴222a b a bMN CM CN -=-=-=当点C 在线段BA 的延长线时,如图:则AC a BC b =<= , 同理可得:1122CM AC a ==, 1122CN BC b ==, ∴222b a b aMN CN CM -=-=-=, ∴综上所述,线段MN 的长度变化,2a b MN +=,2a b -,2b a-. 【点睛】本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大. 5.(1)∠COE =20°;(2)当t =11时,AOC DOE ∠=∠;(3)m=296或10114【解析】 【分析】(1)根据角平分线的定义和垂直定义即可求出∠BOD=90°,∠BOE=∠DOE =45°,即可求出∠AOB ,再根据角平分线的定义即可求出∠BOC ,从而求出∠COE ;(2)先分别求出OC 与OD 重合时、OE 与OD 重合时和OC 与OA 重合时运动时间,再根据t 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出t 即可; (3)先分别求出OE 与OB 重合时、OC 与OA 重合时、OC 为OA 的反向延长线时运动时、OE 为OB 的反向延长线时运动时间,再根据m 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出m 即可; 【详解】解:(1)∵OD OB ⊥,OE 是BOD ∠的角平分线,∴∠BOD=90°,∠BOE=∠DOE=12∠BOD =45° ∵85AOE ∠=∴∠AOB=∠AOE +∠BOE=130° ∵OC 是AOB ∠的角平分线,∴∠AOC=∠BOC=12AOB ∠=65° ∴∠COE=∠BOC -∠BOE=20°(2)由原图可知:∠COD=∠DOE -∠COE=25°,故OC 与OD 重合时运动时间为25°÷5°=5s ;OE 与OD 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷5°=13s ; ①当05t <<时,如下图所示∵∠AOD=∠AOB -∠BOD=40°,∠COE=20° ∴∠AOD ≠∠COE∴∠AOD +∠COD ≠∠COE +∠COD ∴此时AOC DOE ∠≠∠; ②当59t <<时,如下图所示∵∠AOD=∠AOB -∠BOD=40°,∠COE=20° ∴∠AOD ≠∠COE∴∠AOD -∠COD ≠∠COE -∠COD ∴此时AOC DOE ∠≠∠; ③当913t <<时,如下图所示:OC 和OE 旋转的角度均为5t此时∠AOC=65°-5t ,∠DOE=5t -45°∵AOC DOE ∠=∠∴65-5t=5t -45解得:t=11综上所述:当t =11时,AOC DOE ∠=∠.(3)OE 与OB 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷10°=6.5s ; OC 为OA 的反向延长线时运动时间为(180°+65°)÷10=24.5s ;OE 为OB 的反向延长线时运动时间为(180°+45°)÷5=45s ;①当0 6.5m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=65°-10m ,∠BOE=45°-5m∵45AOC EOB ∠=∠ ∴65-10m =45(45-5m ) 解得:m =296; ②当6.59m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=10m -65°,∠BOE=45°-5m∵45AOC EOB ∠=∠ ∴10m -65=45(45-5m ) 解得:m =10114; ③当924.5m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=10m -65°,∠BOE=5m -45°∵45AOC EOB ∠=∠ ∴10m -65=45(5m -45) 解得:m =296,不符合前提条件,故舍去; 综上所述:m=296或10114. 【点睛】此题考查的是角的和与差和一元一次方程的应用,掌握各角之间的关系、用一元一次方程解动角问题和分类讨论的数学思想是解决此题的关键.6.13t =,233AP =或t =3,AP =11. 【解析】【分析】 根据题意可以分两种情况:①当P 向左、Q 向右运动时,根据PQ=OP+OQ+BO 列出关于t 的方程求解,再求出AP 的长;②当P 向右、Q 向左运动时,根据PQ=OP+OQ-BO 列出关于t 的方程求解,再求出AP 的长.【详解】解:∵12AB =,4OB =,∴8OA =.根据题意可知,OP=t ,OQ=2t .①当P 向左、Q 向右运动时,则PQ=OP+OQ+BO ,∴245t t ++=,∴13t =. 此时OP =13,123833AP AO OP =-=-=; ②当P 向右、Q 向左运动时,PQ=OP+OQ-BO ,∴245t t +-=,∴3t =.此时3OP =,8311AP AO OP =+=+=.【点睛】本题考查数轴、线段的计算以及一元一次方程的应用问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.7.(1)MN =40;(2)EF=35;(3)509=t 或t =12. 【解析】【分析】 (1)由MN =BM+BN =1122AB BD +即可求出答案; (2)根据EF =AD ﹣AE ﹣DF ,可求出答案;(3)可得PE =AE ﹣AB ﹣BP =52t +,DF =752t -,则QF =55722t -或75522t -,由PE =QF 可得方程,解方程即可得出答案.【详解】解:(1)∵M 为AB 的中点,N 为BD 的中点, ∴12BM AB =,12BN BD =, ∴MN =BM+BN =1122AB BD +=11804022AD =⨯=; (2)∵E 为AC 的中点,F 为BD 的中点, ∴12AE AC =,12DF BD =, ()()1111352222EF AD AE DF AD AC BD AD AD BC AD BC =--=-+=-+=-=∴ (3)运动t 秒后,AQ =AC+CQ =15+4t ,∵E 为AQ 的中点, ∴115222AE AQ t ==+, ∴1552522PE AE AB BP t t t =--=+--=+, ∵DP =DB ﹣BP =75﹣t ,F 为DP 的中点,∴175222t DF DP ==-, 又DQ =DC ﹣CQ =65﹣4t , ∴755576542222t QF DQ DF t t =-=--+=-, 或75522QF DF DQ t =-=-, 由PE =QF 得:52t +=55722t -或52t +=55722t - 解得:509=t 或t =12. 【点睛】本题考查了一元一次方程的应用以及线段的中点,找准等量关系,正确列出一元一次方程是解题的关键.8.(1)45;(2)(1)2n n -;(3)(1)2n n -;(4)共需拍照991张,共需冲印2025张纸质照片【解析】【分析】(1)根据规律可知:一条直线上有10个点,线段数为整数1到10的和;(2)根据规律可知:一条直线上有n 个点,线段数为整数1到n 的和;(3)将角的两边看着线段的两个端点,那么角的个数与直线上线段的问题一样,根据线段数的规律探究迁移可得答案;(4)把45名学生看着一条直线上的45点,每2名学生拍1张两人照看着两点成的线段,那么根据(2)的规律即可求出两人合影拍照多少张,再加上集体照即可解答共拍照片张数,然后根据两人合影冲印,集体合影45张计算总张数即可.【详解】解:(1) 一条直线上有10个点,线段共有1+2+3+……+10=45(条).故答案为:45;(2) 一条直线上有n 个点,线段共有122)3(1n n n ⋯⋯+=-+++条. 故答案为:(1)2n n -; (3)由(2)得:具有公共端点的n 条射线OA 、OB 、OC …共形成(1)2n n -个角; 故答案为:(1)2n n -; (4)解:4545-119912+=() 45×(45-1)+1×45=2025 答:共需拍照991张,共需冲印2025张纸质照片此题主要考查了线段的计数问题,体现了“具体---抽象----具体”的思维探索过程,探索规律、运用规律.解本题的关键是找出规律,此类题目容易数重或遗漏,要特别注意.9.(1)45°;(2)①30°;②∠BCE=2α,证明见解析;(3)α=45-15t ,β=45+15t ,3t 2= 【解析】【分析】(1)根据角平分线的定义即可得出答案;(2)①首先由旋转得到∠ACE=120°,再由角平分线的定义求出∠ACF ,再减去旋转角度即可得到∠DCF ;②先由补角的定义表示出∠BCE ,再根据旋转和角平分线的定义表示出∠DCF ,即可得出两者的数量关系;(3)根据α=∠FCA-∠DCA ,β=∠AC 1D 1+∠AC 1F 1,可得到表达式,再根据|α-β|=45°建立方程求解.【详解】(1)∵∠ACE=90°,CF 平分∠ACE∴∠AOF=12∠ACE=45° 故答案为:45°; (2)①当t=1时,旋转角度为30°∴∠ACE=90°+30°=120°∵CF 平分∠ACE∴∠ACF=60°,α=∠DCF=∠ACF-30°=30°故答案为:30°;②∠BCE=2α,证明如下:旋转30t 度后,∠ACE=(90+30t)度∴∠BCE=180-(90+30t)=(90-30t)度∵CF 平分∠ACE∴∠ACF=12∠ACE=(45+15t)度 ∠DCF=∠ACF-30t=(45-15t)度∴2∠DCF=2(45-15t)= 90-30t=∠BCE即∠BCE=2α(3)α=∠FCA-∠DCA=12(90+30t)-30t=45-15t β=∠AC 1D 1+∠AC 1F 1=30t+12(90-30t)=45+15t ||45βα-=︒∴3t 2=【点睛】 本题考查了角平分线,角的旋转,角度的和差计算问题,熟练掌握角平分线的定义,找出图形中角度的关系是解题的关键.10.(1)t 的值为1秒或52651秒; (2)当0<t <103时,BON COM AOC MON ∠-∠+∠∠的值是1;当103<t <6时,BON COM AOC MON∠-∠+∠∠不是定值. 【解析】【分析】(1)分两种情况:①如图所示,当0<t≤7.5时,②如图所示,当7.5<t <12时,分别根据已知条件列等式可得t 的值;(2)分两种情况,分别计算∠COM 、∠BON 和∠MON 的度数,代入可得结论.【详解】(1)当ON 与OA 重合时,t=90÷12=7.5(s )当OM 与OA 重合时,t=180°÷15=12(s )①如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-69°,可得180-15t=3(90-12t )-69,解得t=1;②如图所示,当7.5<t <12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-69°,可得180-15t=3(12t-90)-69,解得t=52651, 综上,t 的值为1秒或52651秒; (2)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t+90+12t=180,解得t=103, ①如图所示,当0<t <103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°=02790t +, ∴BON COM AOC MON ∠-∠+∠∠=0000000(9012)(9015)902790t t t +--++=000027902790t t ++=1(是定值),②如图所示,当103<t <6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON )=360°-(15t°+90°+12t°)=270°-27t°,∴BON COM AOC MON ∠-∠+∠∠=0000000(9012)(9015)9027027t t t +--+-=0000902727027t t+-(不是定值),综上所述,当0<t <103时,BON COM AOC MON ∠-∠+∠∠的值是1;当103<t <6时,BON COM AOC MON∠-∠+∠∠不是定值. 【点睛】本题主要考查了角的和差关系的计算,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.11.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.12.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.。

最新人教版数学七年级上册 有理数(培优篇)(Word版 含解析)

最新人教版数学七年级上册 有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。

灰太狼计划为全家抓5只羊,综合考虑口感和生长周期等因素,决定所抓羊的年龄之和不超过112岁且高于34岁。

请问灰太狼有几种抓羊方案?【答案】(1)解:如图:点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N 所对应的数为116.可求MN=52.所以点A所对应的数为12,点B所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.(2)解:设抓小羊x只,则老羊为(5-x)只,依题意得:解得:,则x=4,或x=5,即抓四只小羊一只老羊或抓五只小羊【解析】【分析】(1)由数轴观察知三根木棒长是20-5=15(cm),则此木棒长为5cm;(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N点移动到A点时,此时M点所对应的数为-40,美羊羊比村长爷爷大时看做当M点移动到B点时,此时N点所对应的数为116,所以可知爷爷比美羊羊大[116-(-40)]÷3=52,可知爷爷的年龄.(3)设抓小羊x只,则老羊为(5-x)只,根据“ 所抓羊的年龄之和不超过112岁且高于34岁”列不等式组,求解.2.阅读下面的材料:如图1,在数轴上A点表示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向左移动1cm到达B 点,然后向右移动6cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A、B、C三点的位置:(2)点C到点A的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示数________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示);(4)若点B以每秒3cm的速度向左移动,同时A、C点分别以每秒1cm、5cm的速度向右移动.设移动时间为t秒,试探索:CA-AB的值是否会与t的值有关?请说明理由.【答案】(1)解:点A表示-3,点B表示-4,点C表示2,如图所示,(2)5;1或-7(3)-3+x(4)解:CA-AB的值与t的值无关.理由如下:由题意得,点A所表示的数为-3+t,点B表示的数是-4-3t,点C表示的数是2+5t,∵点C的速度比点A的速度快,∴点C在点A的右侧,∴CA=(2+5t)-(-3+t)=5+4t,∵点B向左移动,点A向右移动,∴点A在点B的右侧,∴AB=(-3+t)-(-4-3t)=1+4t,∴CA-AB=(5+4t)-(1+4t)=4.【解析】【解答】(2)CA=2-(-3)=2+3=5;当点D在点A右侧时,点D表示的数是:4+(-3)=1;当点D在点A左侧时,点D表示的数是:-3-4=-7;故答案为5;1或-7.( 3 )点A表示的数为-3,则向右移动xcm,移动到(-3+x)处.【分析】(1)在数轴上进行演示可分别得出点A,点B,点C所表示的数;(2)由题中材料可知CA的距离可用右边的数减去左边的数,即CA=2-(-3);由AD=4,且点A,点D的位置不明确,则需分类讨论:当点D在点A右侧时,和当点D 在点A左侧时,两种情况;(3)向右移动x,在原数的基础上加“x”;(4)由字母t分别表示出点A,点B,点C的数,由它们的移动方向不难得出点C在点A 的右侧,点A在点B的右侧,依此计算出CA,AB的长度,计算CA-AB的值即可.3.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.4.对于有理数,定义一种新运算“ ”,观察下列各式:,,.(1)计算: ________, ________.(2)若,则 ________ (填入“ ”或“ ”).(3)若有理数,在数轴上的对应点如图所示且,求的值.【答案】(1)19;(2)(3)解:由数轴可得,,,则,,∵,∴,∴,∴,∴.【解析】【解答】(1),;(2)∵,,,∴,或综上可知,【分析】(1)根据定义计算即可;(2)分别根据定义计算a b和b a,判断是否相等;(3)由定义计算得到|a+b|=5,再根据数轴上点的位置关系判断a+b<0,再计算[(a+b)(a+b)][a+b]5.已知数轴上A,B两点对应的有理数分别是,15,两只电子蚂蚁甲,乙分别从A,B两点同时出发相向而行,甲的速度是3个单位/秒,乙的速度是6个单位/秒(1)当乙到达A处时,求甲所在位置对应的数;(2)当电子蚂蚁运行秒后,甲,乙所在位置对应的数分别是多少?(用含的式子表示)(3)当电子蚂蚁运行()秒后,甲,乙相距多少个单位?(用含的式子表示)【答案】(1)解:乙到达A处时所用的时间是(秒),此时甲移动了个单位,所以甲所在位置对应的数是(2)解:∵甲的速度是3个单位/秒,乙的速度是6个单位/秒,∴移动秒后,甲所在位置对应的数是:,乙所在位置对应的数是(3)解:由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时,,,所以,运行()秒后,甲,乙间的距离是:个单位【解析】【分析】(1)根据有理数的减法算出AB的长度,再根据路程除以速度等于时间算出乙到达A处时所用的时间,接着利用速度乘以时间算出甲移动的距离,用甲移动的距离减去其离开原点的距离即可算出其即可得出答案;(2)根据移动的方向,用甲移动的距离减去其距离原点的距离即可得出移动秒后,甲所在位置对应的数;用乙距离原点的距离减去其移动的距离即可得出移动秒后,乙所在位置对应的数;(3)由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时甲已经移动到原点右边了,乙也移动到原点左边了,即,,根据两点间的距离公式即可算出它们之间的距离.6.快递员小王下午骑摩托车从总部出发,在一条东西走向的街道上来回收送包裹.他行驶的情况记录如下(向东记为“ ”,向西记为“ ”,单位:千米):,,,,,,(1)小王最后是否回到了总部?(2)小王离总部最远是多少米?在总部的什么方向?(3)如果小王每走米耗油毫升,那么小王下午骑摩托车一共耗油多少毫升?【答案】(1)解:+2-3.5+3-4-2+2.5+2=0,∴小王最后回到了总部(2)解:第一次离总部2=2千米;第二次:2-3.5=-1.5千米;第三次:-1.5+3=1.5千米;第四次:1.5-4=-2.5千米;第五次:-2.5-2=-4.5千米;第六次:-4.5+2.5=-2千米;第七次:-2+2=0千米.所以离总部最远是4.5千米,在总部的西方向(3)解:|+2|+|-3.5|+|+3|+|-4|+|-2|+|+2.5|+|+2|=2+3.5+3+4+2+2.5+2=19千米又∵摩托车每行驶1千米耗油30毫升,∴19×30=570(毫升)∴这一天下午共耗油570毫升.【解析】【分析】(1)根据有理数的加减法,再根据正负数即可;(2)根据有理数的加减法,再根据正负数即可;(3)根据绝对值的性质,再根据正负数即可;7.已知:b是最小的正整数,且a、b满足+=0,请回答问题:(1)请直接写出a、b、c的值;(2)数轴上a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简(请写出化简过程);(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)解:∵b是最小的正整数∴b=1∵+=0∴a = -1,c=5故答案为:-1;1;5;(2)解:由(1)知,a = -1,b=1,a、b在数轴上所对应的点分别为A、B,①当m<0时,|2m|=-2m;②当m≥0时,|2m|=2m;(3)解:BC-AB的值不随着时间t的变化而变化,其值是2,理由如下:∵点A以每秒一个单位的速度向左移动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右移动,∴BC=3t+4,AB=3t+2∴BC-AB=3t+4-(3t+2)=2【解析】【分析】(1)先根据b是最小的正整数,求出b,再根据+=0,即可求出a、c的值;(2)先得出点A、C之间(不包括A点)的数是负数或0,得出m≤0,在化简|2m|即可;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.8.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。

七年级数学上册数学压轴题(培优篇)(Word版 含解析)

七年级数学上册数学压轴题(培优篇)(Word版 含解析)

七年级数学上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.2.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)(2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.3.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 .(2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 .(拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).4.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.5.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.6.尺规作图是指用无刻度的直尺和圆规作图。

七年级数学上册数学压轴题(培优篇)(Word版 含解析)

七年级数学上册数学压轴题(培优篇)(Word版 含解析)

七年级数学上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.2.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.3.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .4.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.5.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?6.如图∠AOB =120°,把三角板60°的角的顶点放在O 处.转动三角板(其中OC 边始终在∠AOB 内部),OE 始终平分∠AOD .(1)(特殊发现)如图1,若OC 边与OA 边重合时,求出∠COE 与∠BOD 的度数. (2)(类比探究)如图2,当三角板绕O 点旋转的过程中(其中OC 边始终在∠AOB 内部),∠COE 与∠BOD 的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC 边始终在∠AOB 内部),若OP 平分∠COB ,请画出图形,直接写出∠EOP 的度数(无须证明).7.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?8.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).9.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数: (2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.10.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?11.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=. 同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程; (迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现) (4)若已知50.7142857=,则2.285714= . 12.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点. ①若x A =1,x B =5,则x c = ; ②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ; (2)若AC =λCB (其中λ>0). ①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)4-,1,6;(2)能;(3)5t +,53t +;(4)3AB BC -的值不会随时间t 的变化而变化,值为10 【解析】 【分析】(1)由一次项系数、最小的正整数、单项式次数的定义回答即可,(2)计算线段长度,若AB BC =则重叠,(3)线段长度就用两点表示的数相减,用较大的数减较小的数即可, (4)根据(3)的结果计算即可. 【详解】(1)观察数轴可知,4a =-,1b =,6c =. 故答案为:4-;1;6.(2)()145AB =--=,615BC =-=,AB BC =, 则若将数轴在点B 处折叠,点A 与点C 能重合. 故答案为:能.(3)经过t 秒后43a t =--,12b t =-,6c t =+,则5AB a b t =-=+,53BC b c t =-=+.故答案为:5t +;53t +. (4)5AB t =+, ∴3153AB t =+. 又53BC t =+,∴()()315353AB BC t t -=+-+15353t t =+--10=.故3AB BC -的值不会随时间t 的变化而变化,值为10. 【点睛】本题考查列代数式求值,有理数的概念及分类,多项式的项与次数,单项式的系数与次数,在数轴上表示实数,解题的关键是用字母表示线段长度.2.(1)2412--;;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【解析】 【分析】()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在点A 右侧且与点A 的距离为12个单位长度,故点B 表示:241212-+=-;()2因为点P从点A 出发,以每秒运动2两个单位长度的速度向终点C 运动,则t 秒后点P 表示数242t(0t 18-+≤≤,令242t 12-+=,则t 18=时点P 运动到点C),而点A 表示数24-,点C 表示数12,所以()PA 242t 242t =-+--=,PC 242t 12362t =-+-=-;()3以点Q 作为参考,则点P 可理解为从点B 出发,设点Q 运动了m 秒,那么m 秒后点Q 表示的数是244m -+,点P 表示的数是122m -+,再分两种情况讨论:①点Q 运动到点C 之前;②点Q 运动到点C 之后. 【详解】()1设A 表示的数为x ,设B 表示的数是y .x 24=,x 0<∴x 24=- 又y x 12-=y 241212.∴=-+=-故答案为24-;12-.()2由题意可知:t 秒后点P 表示的数是()242t 0t 18-+≤≤,点A 表示数24-,点C表示数12()PA 242t 242t ∴=-+--=,PC 242t 12362t =-+-=-.故答案为2t ;362t -.()3设点Q 运动了m 秒,则m 秒后点P 表示的数是122m -+.①当m 9≤,m 秒后点Q 表示的数是244m -+,则()PQ 24m 4m 122m 2=-+--+=,解得m 5=或7,当m=5时,-12+2m=-2, 当m=7时,-12+2m=2, ∴此时P 表示的是2-或2;②当m 9>时,m 秒后点Q 表示的数是()124m 9--,则()()PQ 124m 9122m 2=----+=, 解得2931m 33或=, 当m=293时,-12+2m=223, 当m=313时,-12+2m=263, 此时点P 表示的数是222633或. 答:P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【点睛】本题考查了数轴上两点间的距离公式以及实数与数轴的相关概念,解题时同时注意数形结合数学思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解. 3.(1)3,3,1a -;(2)①42c -;②72-或152;③6【解析】 【分析】(1)根据两点间的距离公式解答即可;(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可.【详解】解:(1)数轴上表示2和5的两点之间的距离是523-=; 数轴上表示﹣2和﹣5两点之间的距离是()()253---=; 数轴上表示1和a 的两点之间的距离是1a -; 故答案为:3,3,1a -; (2)①∵电子蚂蚁在点A 的左侧,∴11AC c c =--=--,55BC c c =-=-, ∴1542AC BC c c c +=--+-=-;②若电子蚂蚁在点A 左侧,即1c <-,则10c +<,50c -<, ∵1511c c ,∴()()1511c c -+--=,解得:72c =-; 若电子蚂蚁在点A 、B 之间,即15c -≤≤,则10c +>,50c -<, ∵1511c c ,∴15611c c ++-=≠,故此种情况不存在;若电子蚂蚁在点B 右侧,即5c >,则10c +>,50c ->, ∵1511c c ,∴()()1511c c ++-=,解得:152c =; 综上,c 表示的数是72-或152; ③∵代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,∴当15c -≤≤时,代数式15c c 的最小值是()516--=,即代数式15c c 的最小值是6.故答案为:6.【点睛】本题考查了数轴上两点间的距离、绝对值的化简和应用以及简单的一元一次方程的解法等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键.4.(1)3.(2)存在.x的值为3.(3)不变,为2.【解析】【分析】(1)根据非负数的性质和数轴上两点间距离即可求解;(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;(3)先确定运动t秒后,A、B、C三点对应的数,再根据数轴上两点间的距离公式列方程即可求解.【详解】解:(1)∵点A、B是数轴上的两个点,它们分别表示的数是2-和1∴A,B两点之间的距离是1-(-2)=3.故答案为3.(2)存在.理由如下:①若P点在A、B之间,x+2+1-x=7,此方程不成立;②若P点在B点右侧,x+2+x-1=7,解得x=3.答:存在.x的值为3.-的值不随运动时间t(秒)的变化而改变,为定值,是2.理由如下:(3)BC AB运动t秒后,A点表示的数为-2-t,B点表示的数为1+2t,C点表示的数为6+5t.所以AB=1+2t-(-2-t)=3+3t.BC=6+5t-(1+2t)=5+3t.所以BC-AB=5+3t-3-3t=2.【点睛】本题考查了一元一次方程、数轴、非负数、两点之间的距离,解决本题的关键是数轴上动点的运动情况.5.(1)A、B位置见解析,A、B之间距离为30;(2)2或-6;(3)第20次P与A重合;点P与点B不重合.【解析】【分析】(1)点B距离原点10个单位长度,且位于原点左侧,得到点B表示的数,再根据平移的过程得到点A表示的数,在数轴上表示出A、B的位置,根据数轴上两点间的距离公式,求出A、B之间的距离即可;(2)设P点对应的数为x,当P点满足PB=2PC时,得到方程,求解即可;(3)根据第一次点P表示-1,第二次点P表示2,点P表示的数依次为-3,4,-5,6…,找出规律即可得出结论.【详解】解:(1)∵点B 距离原点10个单位长度,且位于原点左侧, ∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A , ∴点A 表示的数为20, ∴数轴上表示如下:AB 之间的距离为:20-(-10)=30; (2)∵线段OB 上有点C 且6BC =, ∴点C 表示的数为-4, ∵2PB PC =, 设点P 表示的数为x , 则1024x x +=+, 解得:x=2或-6, ∴点P 表示的数为2或-6; (3)由题意可知:点P 第一次移动后表示的数为:-1, 点P 第二次移动后表示的数为:-1+3=2, 点P 第三次移动后表示的数为:-1+3-5=-3, …,∴点P 第n 次移动后表示的数为(-1)n •n , ∵点A 表示20,点B 表示-10, 当n=20时,(-1)n •n=20; 当n=10时,(-1)n •n=10≠-10,∴第20次P 与A 重合;点P 与点B 不重合. 【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系. 6.(1)∠BOD =60°,∠COE =30°;(2)∠COE :∠BOD =12;(3)画图见解析;∠POE =30°. 【解析】 【分析】(1)∵OC 边与OA 边重合,如图1,根据角的和差和角平分线的定义即可得到结论; (2)①0°≤∠AOC<60°时,如图2,②当60°≤∠AOC≤120°时,如图3,根据角的和差和角平分线的定义即可得到结论;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BOD=β,②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,根据角的和差和角平分线的定义即可得到结论.【详解】(1)∵OC边与OA边重合,如图1,∴∠AOD=60°,∠BOD=∠AOB﹣∠AOD=120°﹣60°=60°,∵OE平分∠AOD,∴∠COE=12∠AOD=30°;(2)①0°≤∠AOC<60°时,如图2,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠COD﹣∠EOD=60°﹣12∠AOD,∵∠DOB=∠AOB﹣∠AOD=120°﹣∠AOD,∴∠COE:∠BOD=12;②当60°≤∠AOC≤120°时,如图3,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠EOD﹣∠COD=12∠AOD﹣60°,∵∠DOB=∠AOD﹣∠AOB=∠AOD﹣120°,∴∠COE:∠BOD=12;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BOD=β,∵∠AOB=120°,∠COD=60°,∴α+β=60°,∴∠AOD=60°+α,∠BOC=60°+β,∵OE始终平分∠AOD,OP平分∠COB,∴∠AOE=12∠AOD=30°+12∂,∠BOP=12∠BOC=30°+12β,∴∠POE=∠AOB﹣∠AOE﹣∠BOP=120°﹣(30°+12∂)﹣(30°+12β)=30°;②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,∵∠AOB=120°,∠COD=60°,∴∠BOC=120°﹣∠AOC=60°﹣∠BOD,∴120°﹣α=60°﹣β,∴α﹣β=60°,∴∠AOD=120°+β,∠BOC=60°﹣β,∵OE始终平分∠AOD,OP平分∠COB,∴∠DOE=12∠AOD=60°+12β,∠BOP=12∠BOC=30°﹣12β,∴∠POE=∠DOE﹣∠BOD﹣∠BOP=(60°+12∂)﹣β﹣(30°﹣12β)=30°;综上所述,∠POE=30°.【点睛】本题考查了角的计算,涉及了角平分线的定义,角平分线的性质以及等角替换等知识点,综合性较强,要求学生对各知识点熟练掌握,学会分类讨论是解题的关键.7.(1)2;(2)52x MC =+;(3)当25x =-或6x =时,有2AP CM PC -=成立. 【解析】【分析】(1)根据中点的定义,即可求出点C 的坐标;(2)先表示出点M 的数,然后利用线段上两点之间的距离,即可表示出MC 的长度; (3)分别求出AP ,MC 和PC 的长度,结合题意,分为三种情况进行讨论,即可求出x 的值.【详解】解:(1)点A 表示的数为10-,点B 表示的数为14,∴线段AB=14(10)24--=,∴点C 表示的数为:142422-÷=;(2)根据题意,点M 表示的数为:142x +, ∴线段MC 的长度为:142522x x +-=+; (3)根据题意,线段AP 的长度为:10x +,线段MC 的长度为:52x +, 线段PC 的长度为:2x -,∵2AP CM PC -=, ∴10(5)222x x x +-+=-, 整理得:15242x x -=+, ①当点P 在点C 的左边时,2x <,则20x ->, ∴15242x x -=+, 解得:25x =-; ②当点P 与点C 重合时,2x =, ∴15042x +=, 解得:10x =-(不符合题意,舍去);③当点P 在点C 的右边时,2x >,则20x -<,∴15242x x -=+, 解得:6x =.∴当25x =-或6x =时,有2AP CM PC -=成立. 【点睛】本题考查了数轴上的动点的问题,数轴上两点之间的距离,解一元一次方程,以及绝对值的意义,解题的关键是掌握数轴上两点之间的距离.8.问题(1)点C 表示的数是8或-4;问题(2)x y +的值为1,-1,5,-5;问题(3)150BOD ∠= , 30BOD ∠=;见解析.【解析】【分析】问题(1)分两种情况进行讨论,当C 在B 的左侧以及当C 在B 的右侧,并依据BC=2AB 进行分析计算.问题(2)利用2x =,3y =得到2,3x y =±=±,再进行分类讨论代入x ,y 求值. 问题(3)根据题意画出图形,利用角的和差关系进行计算,直接写出答案.【详解】解:问题(1) 点C 是数轴上一点,且BC=2AB ,结合数轴可知当C 在B 的左侧以及当C 在B 的右侧分别为-4或8.问题(2)∵2x =,3y =∴2, 3.x y =±=±情况① 当x=2,y=3时,x y +=5,情况② 当x=2,y=-3时,x y +=-1,情况③ 当x=-2,y=3时,x y +=1,情况④ 当x=-2,y=-3时,x y +=-5,所以,x y +的值为1,-1,5,-5.问题⑶【点睛】本题考查有理数与数轴,垂线的定义以及角的运算,根据题意画出图像进行分析.9.(1)∠MON 的度数为70°.(2)∠MON 的度数为62.5°.(3)t 的值为20.【解析】【分析】(1)根据角平分线的性质以及角的和差倍关系转化求出角的度数;(2)根据角平分线的性质可以求得:∠MON=12(∠AOB+∠COD)﹣∠COD,代入数据即可求得;(3)由题意得∠AON=12(20°+3t+15°),∠BOM=12(140°﹣20°﹣3t),由此列出方程即可求解.【详解】(1)∵ON平分∠AOC,OM平分∠BOC,∴∠CON=12∠AOC,∠COM=12∠BOC∠MON=∠CON+∠COM=12(∠AOC+∠BOC)=12∠AOB又∠AOB=140°∴∠MON=70°答:∠MON的度数为70°.(2)∵OM平分∠BOC,ON平分∠AOD,∴∠COM=12∠BOC,∠DON=12∠AOD即∠MON=∠COM+∠DON﹣∠COD=12∠BOC+12∠AOD﹣∠COD=12(∠BOC+∠AOD)﹣∠COD.=12(∠BOC+∠AOC+∠COD)﹣∠COD=12(∠AOB+∠COD)﹣∠COD=12(140°+15°)﹣15°=62.5°答:∠MON的度数为62.5°.(3)∠AON=12(20°+3t+15°),∠BOM=12(140°﹣20°﹣3t)又∠AON:∠BOM=19:12,12(35°+3t)=19(120°﹣3t)得t=20答:t的值为20.【点睛】本题考查了与角平分线有关的计算,根据角平分线的定义得出所求角与已知角的关系转化,然后根据已知条件求解是解决问题的关键.10.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.11.(1)143;(2)311;(3)25111,11155;(4)167【解析】【分析】(1)根据阅读材料的解答过程,循环部只有一位数时,用循环部的数除以9即为分数,进而求出答案.(2)循环部有两位数时,参照阅读材料的解答过程,可先乘以100,再与原数相减,即求得答案.(3)循环部有三位小数时,用循环部的3位数除以999;对于2.018,可先求0.18对应的分数,再除以10得0.018,再加上2得答案.(4)观察0.714285与2.285714,循环部的数字顺序是一样的,先求把0.714285×1000,把小数循环部变成与2.285714相同,再减712把整数部分凑相等,即求出答案.【详解】解:(1)612214 4.6=4+0.6=4+=+=9333故答案为:14 3(2)设x=0.272727…,①∴100x=27.272727…,②②-①得:99x=27解得:x=27 99∴x=3 11∴3 0.27=11(3)22525 0.225==999111∵1820.18=0.181818=9911 ∴2110.0181818==111055⨯ ∴11112.018=2+0.018=2+=5555 故答案为:25111, 11155(4)50.714285=7∴等号两边同时乘以1000得:5000714.285714=7 ∴5000162.285714=714.28571-712=-712=77 故答案为:167【点睛】 本题考查了有理数运算、比较大小,一元一次方程的解法.解题关键是,正确理解题意的解答过程并转化运用到循环部数字不一样的情况计算.12.(1)①3;②-3;③2A B x x +;④-1.5;(2)①421λλ-+;②11λ+x A +1+λλx B . 【解析】【分析】(1)①②分别按所给的关系式及点在数轴上的位置,计算即可;③根据①②即可得到答案;④根据平移关系用x A +5表示出x B ,再按③中关系式计算即可;(2)①根据AC =λCB ,将x A =﹣2,x B =4,λ=13代入计算即可; ②根据AC =λCB ,变形计算即可.【详解】(1)C 是AB 的中点,①∵x A =1,x B =5, ∴x c =512+=3, 故答案为:3; ②∵x A =﹣1,x B =﹣5,∴x C =512--=﹣3 故答案为:﹣3;③ x C =2A B x x +, 故答案为:2A B x x +; ④∵将点A 向右平移5个单位,恰好与点B 重合,∴x B =x A +5,∴x C =2A B x x +=52A A x x ++=1, ∴x A =﹣1.5 故答案为:﹣1.5;(2)①∵AC =λCB ,x A =﹣2,x B =4,λ=13, ∴x C ﹣(﹣2)=λ(4﹣x C )∴(1+λ)x C =4λ﹣2,∴x C =421λλ-+, 故答案为:421λλ-+; ②∵AC =λCB ∴x C ﹣x A =λ(x B ﹣x C )∴(1+λ)x C =x A +λx B∴x C =11λ+x A +1λλ+x B 故答案为:11λ+x A +1λλ+x B . 【点睛】此题考查是线段类规律题,通过探究得出数轴上两点间的任意点的坐标的规律,正确理解题意是解题的关键.。

七年级上册上册数学压轴题(培优篇)(Word版 含解析)

七年级上册上册数学压轴题(培优篇)(Word版 含解析)

七年级上册上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 2.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.3.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?4.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.5.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.6.尺规作图是指用无刻度的直尺和圆规作图。

七年级数学上册上册数学压轴题(培优篇)(Word版 含解析)

七年级数学上册上册数学压轴题(培优篇)(Word版 含解析)

七年级数学上册上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”.(1)直接写出结果:312⎛⎫= ⎪⎝⎭______,()42-=______.(2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1 B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______ (4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.3.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.4.尺规作图是指用无刻度的直尺和圆规作图。

最新七年级上册数学压轴题(培优篇)(Word版 含解析)

最新七年级上册数学压轴题(培优篇)(Word版 含解析)

最新七年级上册数学压轴题(培优篇)(Word版含解析)一、压轴题1.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。

[ 问题应用 ]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.2.已知M,N两点在数轴上所表示的数分别为m,n,且m,n满足:|m﹣12|+(n+3)2=0(1)则m=,n=;(2)①情境:有一个玩具火车AB如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A移动到点B时,点B所对应的数为m,当点B移动到点A时,点A所对应的数为n.则玩具火车的长为个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB以每秒2个单位长度的速度向右运动,同时点P和点Q从N、M出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB运动后对应的位置为A′B′.是否存在常数k使得3PQ﹣kB′A的值与它们的运动时间无关?若存在,请求出k和这个定值;若不存在,请说明理由.3.如图,数轴上点A、B表示的点分别为-6和3(1)若数轴上有一点P,它到A和点B的距离相等,则点P对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q从点P出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q点与B点的距离等于 Q点与A点的距离的2倍?若存在,求出点Q运动的时间,若不存在,说明理由.4.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______;(2)用合理的方法进行简便计算:1111 924233202033⎛⎫-++---+⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|.5.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;(应用):(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.(拓展):我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E(2,0),若F(﹣1,﹣2),求d(E,F);(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).6.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.7.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 8.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系. (3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.9.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .10.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少;(2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.11.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数;②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?12.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数【参考答案】***试卷处理标记,请不要删除一、压轴题1.[ 问题探究 ] (2)6,24;12,24;8,8;[ 问题解决](n-2)3,(n-2)2,12(n-2),8;[ 问题解决 ] 1000cm 3.【解析】【分析】[ 问题探究 ] (2)根据(1)即可填写;[ 问题解决 ] 可根据(1)、(2)的规律填写;[ 问题应用 ] 根据[ 问题解决 ]知两面涂色的为n-12(2),由此得到方程n-12(2)=96, 解得n 的值即可得到边长及面积.【详解】[ 问题探究 ](2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 6个面,因此一面涂色的共有24个;两面涂色的:在棱上,每个棱上有2个,正方体共有12 条棱,因此两面涂色的共有24个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有8 个顶点,因此三面涂色的共有8 个…[ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有_32n -() _____个小正方体;一面涂色的:在面上,共有__22n -()____个; 两面涂色的:在棱上,共有__122n -()____个; 三面涂色的:在顶点处,共_8____个。

七年级上册数学压轴题(Word版 含解析)

七年级上册数学压轴题(Word版 含解析)

七年级上册数学压轴题(Word版含解析)一、压轴题1.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。

[ 问题应用 ]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.2.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.3.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______. ()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.4.如图,数轴上A ,B 两点对应的数分别为4-,-1(1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =5.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解.(1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?6.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.7.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .8.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 9.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.10.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°:(1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?11.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

七年级数学上册 压轴解答题(培优篇)(Word版 含解析)

七年级数学上册 压轴解答题(培优篇)(Word版 含解析)

七年级数学上册 压轴解答题(培优篇)(Word 版 含解析)一、压轴题1.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______. ()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.2.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.3.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 4.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.5.如图∠AOB =120°,把三角板60°的角的顶点放在O 处.转动三角板(其中OC 边始终在∠AOB 内部),OE 始终平分∠AOD .(1)(特殊发现)如图1,若OC 边与OA 边重合时,求出∠COE 与∠BOD 的度数.(2)(类比探究)如图2,当三角板绕O 点旋转的过程中(其中OC 边始终在∠AOB 内部),∠COE 与∠BOD 的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC 边始终在∠AOB 内部),若OP 平分∠COB ,请画出图形,直接写出∠EOP 的度数(无须证明).6.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?7.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °;②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).8.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少;(2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.9.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.10.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.11.已知,,a b 满足()2440a b a -+-=,分别对应着数轴上的,A B 两点.(1)a = ,b = ,并在数轴上面出,A B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A ,点Q 到达点C 后停止运动.求点P 和点Q 运动多少秒时,,P Q 两点之间的距离为4,并求此时点Q 对应的数.12.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点.①若x A =1,x B =5,则x c = ;②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ;(2)若AC =λCB (其中λ>0).①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)2412--;;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【解析】【分析】 ()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在点A 右侧且与点A 的距离为12个单位长度,故点B 表示:241212-+=-;()2因为点P 从点A 出发,以每秒运动2两个单位长度的速度向终点C 运动,则t 秒后点P 表示数242t(0t 18-+≤≤,令242t 12-+=,则t 18=时点P 运动到点C),而点A 表示数24-,点C 表示数12,所以()PA 242t 242t =-+--=,PC 242t 12362t =-+-=-;()3以点Q 作为参考,则点P 可理解为从点B 出发,设点Q 运动了m 秒,那么m 秒后点Q 表示的数是244m -+,点P 表示的数是122m -+,再分两种情况讨论:①点Q 运动到点C 之前;②点Q 运动到点C 之后.【详解】()1设A 表示的数为x ,设B 表示的数是y .x 24=,x 0<∴x 24=-又y x 12-=y 241212.∴=-+=-故答案为24-;12-.()2由题意可知:t 秒后点P 表示的数是()242t 0t 18-+≤≤,点A 表示数24-,点C表示数12 ()PA 242t 242t ∴=-+--=,PC 242t 12362t =-+-=-.故答案为2t ;362t -.()3设点Q 运动了m 秒,则m 秒后点P 表示的数是122m -+.①当m 9≤,m 秒后点Q 表示的数是244m -+,则()PQ 24m 4m 122m 2=-+--+=,解得m 5=或7,当m=5时,-12+2m=-2,当m=7时,-12+2m=2,∴此时P 表示的是2-或2;②当m 9>时,m 秒后点Q 表示的数是()124m 9--,则()()PQ 124m 9122m 2=----+=, 解得2931m 33或=, 当m=293时,-12+2m=223, 当m=313时,-12+2m=263, 此时点P 表示的数是222633或. 答:P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【点睛】本题考查了数轴上两点间的距离公式以及实数与数轴的相关概念,解题时同时注意数形结合数学思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解.2.(1)18;(2)6或18秒;(3)2或38秒【解析】【分析】(1)根据偶次方以及绝对值的非负性求出a 、b 的值,可得点A 表示的数,点B 表示的数,再根据两点间的距离公式可求线段AB 的长;(2)分两种情况:①相向而行;②同时向右而行.根据行程问题的相等关系分别列出方程即可求解;(3)分两种情况:①两点均向左;②两点均向右;根据点A 、B 两点间的距离为20个单位分别列出方程即可求解.【详解】解:(1)∵|a ﹣6|+(b +12)2=0,∴a ﹣6=0,b +12=0,∴a =6,b =﹣12,∴AB =6﹣(﹣12)=18;(2)设点A 、B 同时出发,运动时间为t 秒,点A 、B 能够重合时,可分两种情况: ①若相向而行,则2t+t =18,解得t =6;②若同时向右而行,则2t ﹣t =18,解得t =18.综上所述,经过6或18秒后,点A 、B 重合;(3)在(2)的条件下,即点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动,设点A 、B 同时出发,运动时间为t 秒,点A 、B 两点间的距离为20个单位,可分四种情况:①若两点均向左,则(6-t )-(-12-2t )=20,解得:t=2;②若两点均向右,则(-12+2t )-(6+t )=20,解得:t=38;综上,经过2或38秒时,A 、B 相距20个单位.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.注意分类讨论思想的应用.3.(1)∠COE =20°;(2)当t =11时,AOC DOE ∠=∠;(3)m=296或10114 【解析】【分析】(1)根据角平分线的定义和垂直定义即可求出∠BOD=90°,∠BOE=∠DOE =45°,即可求出∠AOB ,再根据角平分线的定义即可求出∠BOC ,从而求出∠COE ;(2)先分别求出OC 与OD 重合时、OE 与OD 重合时和OC 与OA 重合时运动时间,再根据t 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出t 即可; (3)先分别求出OE 与OB 重合时、OC 与OA 重合时、OC 为OA 的反向延长线时运动时、OE 为OB 的反向延长线时运动时间,再根据m 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出m 即可;【详解】解:(1)∵OD OB ⊥,OE 是BOD ∠的角平分线,∴∠BOD=90°,∠BOE=∠DOE=12∠BOD =45° ∵85AOE ∠=∴∠AOB=∠AOE +∠BOE=130°∵OC 是AOB ∠的角平分线,∴∠AOC=∠BOC=12AOB ∠=65° ∴∠COE=∠BOC -∠BOE=20°(2)由原图可知:∠COD=∠DOE -∠COE=25°,故OC 与OD 重合时运动时间为25°÷5°=5s ;OE 与OD 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷5°=13s ;①当05t <<时,如下图所示∵∠AOD=∠AOB -∠BOD=40°,∠COE=20°∴∠AOD ≠∠COE∴∠AOD +∠COD ≠∠COE +∠COD∴此时AOC DOE ∠≠∠;②当59t <<时,如下图所示∵∠AOD=∠AOB -∠BOD=40°,∠COE=20°∴∠AOD ≠∠COE∴∠AOD -∠COD ≠∠COE -∠COD∴此时AOC DOE ∠≠∠;③当913t <<时,如下图所示:OC 和OE 旋转的角度均为5t此时∠AOC=65°-5t ,∠DOE=5t -45°∵AOC DOE ∠=∠∴65-5t=5t -45解得:t=11综上所述:当t =11时,AOC DOE ∠=∠.(3)OE 与OB 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷10°=6.5s ; OC 为OA 的反向延长线时运动时间为(180°+65°)÷10=24.5s ;OE 为OB 的反向延长线时运动时间为(180°+45°)÷5=45s ; ①当0 6.5m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=65°-10m ,∠BOE=45°-5m∵45AOC EOB ∠=∠ ∴65-10m =45(45-5m ) 解得:m =296; ②当6.59m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=10m -65°,∠BOE=45°-5m∵45AOC EOB ∠=∠ ∴10m -65=45(45-5m ) 解得:m =10114; ③当924.5m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=10m -65°,∠BOE=5m -45° ∵45AOC EOB ∠=∠ ∴10m -65=45(5m -45) 解得:m =296,不符合前提条件,故舍去; 综上所述:m=296或10114. 【点睛】此题考查的是角的和与差和一元一次方程的应用,掌握各角之间的关系、用一元一次方程解动角问题和分类讨论的数学思想是解决此题的关键.4.(1)30°;(2)BOC ∠+∠BOE =90°;(3)为定值2,理由见解析【解析】【分析】(1)根据差余角的定义,结合角平分线的性质可得∠BOE 的度数;(2)根据差余角的定义得到BOC ∠和AOE ∠的关系,(3)分当OE 在OC 左侧时,当OE 在OC 右侧时,根据差余角的定义得到COE ∠和AOC ∠的关系,再结合余角和补角的概念求出AOC BOC COE∠-∠∠的值. 【详解】 解:(1)如图,∵COE ∠是AOC ∠的差余角∴AOC ∠-COE ∠=90°,即AOC ∠=COE ∠+90°,又∵OE 是BOC ∠的角平分线,∴∠BOE =COE ∠,则COE ∠+90°+COE ∠+COE ∠=180°,解得COE ∠=30°;(2)∵BOC ∠是AOE ∠的差余角,∴AOE ∠-BOC ∠=90°,∵AOE ∠=AOC ∠+COE ∠,BOC ∠=∠BOE +COE ∠,∴AOC ∠-∠BOE =90°,∵AOC ∠=180°-BOC ∠, ∴180°-BOC ∠-∠BOE =90°,∴BOC ∠+∠BOE =90°;(3)当OE 在OC 左侧时,∵COE ∠是AOC ∠的差余角,∴AOC ∠-COE ∠=90°,∴∠AOE =∠BOE=90°,则AOC BOCCOE∠-∠∠=90COE BOCCOE ∠+︒-∠∠=COE COE COE ∠+∠∠=2;当OE 在OC 右侧时, 过点O 作OF ⊥AB ,∵COE ∠是AOC ∠的差余角, ∴AOC ∠=90°+COE ∠, 又∵AOC ∠=90°+COF ∠, ∴COE ∠=COF ∠, ∴AOC BOCCOE∠-∠∠=90COE BOCCOE∠+︒-∠∠=9090COE COF COE∠+︒-︒+∠∠=COE COF COE ∠+∠∠=COE COE COE ∠+∠∠=2.综上:AOC BOCCOE∠-∠∠为定值2.【点睛】本题属于新概念题,考查了余角、补角的知识,仔细观察图形理解两个角的差余角关系、互补关系是解题的关键.5.(1)∠BOD=60°,∠COE=30°;(2)∠COE:∠BOD=12;(3)画图见解析;∠POE=30°.【解析】【分析】(1)∵OC边与OA边重合,如图1,根据角的和差和角平分线的定义即可得到结论;(2)①0°≤∠AOC<60°时,如图2,②当60°≤∠AOC≤120°时,如图3,根据角的和差和角平分线的定义即可得到结论;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BOD=β,②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,根据角的和差和角平分线的定义即可得到结论.【详解】(1)∵OC边与OA边重合,如图1,∴∠AOD=60°,∠BOD=∠AOB﹣∠AOD=120°﹣60°=60°,∵OE平分∠AOD,∴∠COE=12∠AOD=30°;(2)①0°≤∠AOC<60°时,如图2,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠COD﹣∠EOD=60°﹣12∠AOD,∵∠DOB=∠AOB﹣∠AOD=120°﹣∠AOD,∴∠COE:∠BOD=12;②当60°≤∠AOC≤120°时,如图3,∵OE平分∠AOD,∴∠DOE=12∠AOD,∴∠COE=∠EOD﹣∠COD=12∠AOD﹣60°,∵∠DOB=∠AOD﹣∠AOB=∠AOD﹣120°,∴∠COE:∠BOD=12;(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BOD=β,∵∠AOB=120°,∠COD=60°,∴α+β=60°,∴∠AOD=60°+α,∠BOC=60°+β,∵OE始终平分∠AOD,OP平分∠COB,∴∠AOE=12∠AOD=30°+12∂,∠BOP=12∠BOC=30°+12β,∴∠POE=∠AOB﹣∠AOE﹣∠BOP=120°﹣(30°+12∂)﹣(30°+12β)=30°;②当60°≤∠AOC≤120°时,设∠AOC =α,∠BOD =β, ∵∠AOB =120°,∠COD =60°, ∴∠BOC =120°﹣∠AOC =60°﹣∠BOD , ∴120°﹣α=60°﹣β, ∴α﹣β=60°,∴∠AOD =120°+β,∠BOC =60°﹣β, ∵OE 始终平分∠AOD ,OP 平分∠COB , ∴∠DOE =12∠AOD =60°+12β,∠BOP =12∠BOC =30°﹣12β, ∴∠POE =∠DOE ﹣∠BOD ﹣∠BOP =(60°+12∂)﹣β﹣(30°﹣12β)=30°; 综上所述,∠POE =30°. 【点睛】本题考查了角的计算,涉及了角平分线的定义,角平分线的性质以及等角替换等知识点,综合性较强,要求学生对各知识点熟练掌握,学会分类讨论是解题的关键. 6.(1)2;(2)52x MC =+;(3)当25x =-或6x =时,有2AP CM PC -=成立. 【解析】 【分析】(1)根据中点的定义,即可求出点C 的坐标;(2)先表示出点M 的数,然后利用线段上两点之间的距离,即可表示出MC 的长度; (3)分别求出AP ,MC 和PC 的长度,结合题意,分为三种情况进行讨论,即可求出x 的值. 【详解】解:(1)点A 表示的数为10-,点B 表示的数为14, ∴线段AB=14(10)24--=, ∴点C 表示的数为:142422-÷=; (2)根据题意, 点M 表示的数为:142x +, ∴线段MC 的长度为:142522x x+-=+;(3)根据题意,线段AP 的长度为:10x +, 线段MC 的长度为:52x +, 线段PC 的长度为:2x -, ∵2AP CM PC -=, ∴10(5)222x x x +-+=-, 整理得:15242x x -=+, ①当点P 在点C 的左边时,2x <,则20x ->, ∴15242x x -=+, 解得:25x =-; ②当点P 与点C 重合时,2x =, ∴15042x +=, 解得:10x =-(不符合题意,舍去); ③当点P 在点C 的右边时,2x >,则20x -<, ∴15242x x -=+, 解得:6x =. ∴当25x =-或6x =时,有2AP CM PC -=成立. 【点睛】本题考查了数轴上的动点的问题,数轴上两点之间的距离,解一元一次方程,以及绝对值的意义,解题的关键是掌握数轴上两点之间的距离. 7.(1)65°;(2)①25°;②35°;③1AON a 2∠= 【解析】 【分析】(1)由题意可得∠COD=1AOD 2∠,∠AOD=∠AOB-∠BOD. (2)①由(1)可得∠AOC =∠COD =65°,∠AON =90°﹣∠AOC =25° ②同①可得,∠AOC =∠COD =55°,∠AON =90°﹣∠AOC =35° ③根据(2)可直接得出结论. 【详解】解:(1)∠AOD =180°﹣∠BOD =130°,∵OC 平分∠AOD ,∴∠COD =12AOD ∠=65°. 故答案为:65°;(2)①由(1)可得∠AOC =∠COD =65°, ∴∠AON =90°﹣∠AOC =25°, 故答案为:25°; ②∵∠BOD =70°,∴∠AOD =180°﹣∠BOD =110°, ∵OC 平分∠AOD , ∴∠AOC =1552AOD ∠=︒, ∵∠MON =90°,∴∠AON =90°﹣∠AOC =35°; ③ 1AON 2∠α=. 【点睛】本题考查的知识点是角的和差问题,根据所给图形找出各角之间的数量关系是解题的关键. 8.(1)2;(2)1.5;(3)4-5t 或5t-4;(4)47或45或87或85【解析】 【分析】(1)先计算出点P 到达点B 时运动的时间,再计算出点Q 相同时间内运动的路程,进而可得答案;(2)利用路程=速度×时间,分别计算出当t =0.5时点P 、Q 运动的路程,即AP 和CQ 的长,再根据PQ =AQ -AP 计算即可;(3)分点P 、Q 重合前与重合后两种情况,画出图形,根据PQ =AQ -AP (重合前)与PQ =AP -AQ (重合后)列式化简即可;(4)分点P 从点A 向点B 运动和点P 从点B 向点A 运动时两种情况,每种情况再分点P 、Q 在点C 异侧和点C 同侧,用含t 的代数式分别表示出CP 和CQ ,即可列出方程,解方程即可求出结果. 【详解】 解:(1)[]3(3)61--÷=,1112⨯+=,所以点Q 所表示的数是2;(2)当t =0.5时,AP =6×0.5=3,CQ =1×0.5=0.5,所以PQ=AQ -AP=AC+CQ -AP =4+0.5-3=1.5;(3)在点P 从点A 向点B 运动时,若点P 、Q 重合,则64t t =+,解得:45t =; 当405t ≤≤时,如图1,4645PQ AQ AP t t t =-=+-=-;当415t <≤时,如图2,6454PQ AP AC CQ t t t =--=--=-.故答案为:4-5t 或5t -4;(4)当点P 从点A 向点B 运动时,若P ,Q 两点到点C 的距离相等,则有如下两种情况: ①点P 、Q 在点C 两侧,如图3,根据题意,得:46t t -=,解得:47t =;②点P 、Q 在点C 右侧,此时P 、Q 重合,由(3)题得:45t =; 当点P 从点B 向点A 运动时,若P ,Q 两点到点C 的距离相等,也有如下两种情况: ③点P 、Q 在点C 右侧,此时P 、Q 重合,根据题意,得:()266t t --=,解得:87t =; ④点P 、Q 在点C 两侧,如图4,根据题意,得:()662t t --=,解得:85t =.综上,在整个运动过程中,当P ,Q 两点到点C 的距离相等时,47t =或45或87或85. 【点睛】本题考查了数轴上两点间的距离、线段的和差关系和一元一次方程的解法等知识,正确理解题意、全面分类、灵活运用方程思想和数形结合的思想是解题的关键. 9.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4. 【解析】 【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°; (2)∠AOE ﹣∠BOF 的值是定值 由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°, ∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°; (3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =. 故答案为4. 【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键. 10.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】 【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可; (3)将图中所有锐角求和即可求得所有锐角的和与∠AOE 、∠BOD 和∠BOD 的关系,即可解题. 【详解】(1)如图1中小于平角的角∠AOD ,∠AOC ,∠AOB ,∠BOE ,∠BOD ,∠BOC ,∠COE ,∠COD ,∠DOE .(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,11.(1)4;16;(2)83秒或8秒;(3)点P和点Q运动4,8,9或11秒时,,P Q两点之间的距离为4,此时点Q表示的数对应为20,24,25或27【解析】【分析】(1)根据非负数的性质求出a、b的值即可解决问题;(2)设运动时间为t秒,根据点P到点A的距离是点P到点B距离的2倍,分点P在点B 的左、右两侧构建方程即可解决问题;(3)设点P和点Q运动y秒时,P、Q两点之间的距离为4,分四种情形:当点P未到达C处且在Q点左侧时;当点P未到达C处且在Q点右侧时;当点P到达点C处后返回且Q在P 的左侧时;当点P 到达点C 处后返回且Q 在P 的右侧时,分别构建方程即可解决问题. 【详解】解:(1)∵a ,b 满足|4a-b|+(a-4)2=0, ∴4a-b=0,a-4=0, ∴a=4,b=16, 故答案为:4;16; 点A 、B 的位置如图所示.(2)设运动时间为t 秒,则AP=3t ,点P 表示数为4+3t ,当点P 在点B 左侧时,PB=16-(4+3t )=12-3t ,∴3t=2(12-3t ),解得t=83;当点P 在点B 右侧时,PB=4+3t-16=3t-12,∴3t=2(3t-12),解得t=8, ∴运动时间为83或8秒时,点P 到点A 的距离是点P 到点B 的距离的2倍;(3)设点P 和点Q 运动y 秒时,P 、Q 两点之间的距离为4,从运动开始到结束过程中存在如下符合题意的四种情况:当点P 未到达C 处且在Q 点左侧时,有PQ=AQ-AP ,∴12+y-3y=4,解得y=4; 当点P 未到达C 处且在Q 点右侧时,有PQ=AP-AQ ,∴3y-(12+y )=4,解得y=8; 当点P 到达点C 处后返回且Q 在P 的左侧时,有12+y+4+3y=52,解得y=9; 当点P 到达点C 处后返回且Q 在P 的右侧时,有12+y+3y-4=52,解得y=11.即点P 和点Q 运动4,8,9或11秒时,P ,Q 两点之间的距离为4,此时点Q 表示的数对应为20,24,25或27. 【点睛】本题主要考查了非负数的性质,数轴上的动点问题,一元一次方程的应用等知识,解题的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题. 12.(1)①3;②-3;③2A B x x +;④-1.5;(2)①421λλ-+;②11λ+x A +1+λλx B . 【解析】 【分析】(1)①②分别按所给的关系式及点在数轴上的位置,计算即可;③根据①②即可得到答案;④根据平移关系用x A +5表示出x B ,再按③中关系式计算即可; (2)①根据AC =λCB ,将x A =﹣2,x B =4,λ=13代入计算即可; ②根据AC =λCB ,变形计算即可. 【详解】(1)C 是AB 的中点, ①∵x A =1,x B =5,∴x c =512+=3, 故答案为:3; ②∵x A =﹣1,x B =﹣5,∴x C =512--=﹣3 故答案为:﹣3;③ x C =2AB x x +, 故答案为:2A B x x +; ④∵将点A 向右平移5个单位,恰好与点B 重合,∴x B =x A +5,∴x C =2A B x x +=52A A x x ++=1, ∴x A =﹣1.5 故答案为:﹣1.5;(2)①∵AC =λCB ,x A =﹣2,x B =4,λ=13, ∴x C ﹣(﹣2)=λ(4﹣x C )∴(1+λ)x C =4λ﹣2,∴x C =421λλ-+, 故答案为:421λλ-+; ②∵AC =λCB ∴x C ﹣x A =λ(x B ﹣x C )∴(1+λ)x C =x A +λx B∴x C =11λ+x A +1λλ+x B 故答案为:11λ+x A +1λλ+x B . 【点睛】此题考查是线段类规律题,通过探究得出数轴上两点间的任意点的坐标的规律,正确理解题意是解题的关键.。

七年级上册数学压轴题(培优篇)(Word版 含解析)

七年级上册数学压轴题(培优篇)(Word版 含解析)

七年级上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|.根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.2.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.3.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.4.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .5.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?6.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解.①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由;(2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PB PC+的值不变.7.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.8.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.9.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 10.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.11.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值12.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点.①若x A =1,x B =5,则x c = ;②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ;(2)若AC =λCB (其中λ>0).①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) 12, 12; (2) -8或12;(3) 11,-9.【解析】【分析】(1)代入两点间的距离公式即可求得AB 的长;依据点M 在A 、B 之间,结合数轴即可得出所求的结果即为A 、B 之间的距离,进而可得结果;(2)由(1)的结果可确定点M 不在A 、B 之间,再分两种情况讨论,化简绝对值即可求出结果;(3)由|m +4|+n =6可确定n 的取值范围,进而可对第2个等式进行化简,从而可得n 与m 的关系,再代回到第1个等式即得关于m 的绝对值方程,再分两种情况化简绝对值求解方程即可.【详解】解:(1)因为点A 、B 表示的数分别是﹣4、8,所以AB =()84--=12,因为点M 在A 、B 之间,所以|m +4|+|m ﹣8|=AM +BM =AB =12,故答案为:12,12;(2)由(1)知,点M 在A 、B 之间时|m +4|+|m -8|=12,不符合题意;当点M 在点A 左边,即m <﹣4时,﹣m ﹣4﹣m +8=20,解得m =﹣8;当点M 在点B 右边,即m >8时,m +4+m ﹣8=20,解得m =12;综上所述,m 的值为﹣8或12;(3)因为46m n ++=,所以460m n +=-≥,所以6n ≤,所以88n n -=-, 所以828n m -+=,所以20n m =-, 因为46m n ++=,所以4206m m ++-=,即4260m m ++-=,当m +4≥0,即m ≥﹣4时,4260m m ++-=,解得:m =11,此时n =-9;当m +4<0,即m <﹣4时,4260m m --+-=,此时m 的值不存在.综上,m =11,n =-9.故答案为:11,﹣9.【点睛】此题考查了数轴的有关知识、绝对值的化简和一元一次方程的求解,第(3)小题有难度,正确理解两点之间的距离、熟练进行绝对值的化简、灵活应用数形结合和分类讨论的数学思想是解题的关键.2.(1)125°;(2)ON 平分∠AOC ,理由详见解析;(3)∠BOM=∠NOC+40°,理由详见解析【解析】【分析】(1)根据∠MOC=∠MON+∠BOC 计算即可;(2)由角平分线定义得到角相等的等量关系,再根据等角的余角相等即可得出结论; (3)根据题干已知条件将一个角的度数转换为两个角的度数之和,列出等式即可得出结论.【详解】解: (1) ∵∠MON=90° , ∠BOC=35°,∴∠MOC=∠MON+∠BOC= 90°+35°=125°.(2)ON 平分∠AOC .理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM 平分∠BOC ,∴∠BOM=∠MOC .∴∠AON=∠NOC .∴ON 平分∠AOC .(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC .∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB =90°-(50°-∠NOC )=∠NOC +40°.【点睛】本题主要考查了角的运算、余角以及角平分线的定义,解题的关键是灵活运用题中等量关系进行角度的运算.3.(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.【解析】【分析】(1)根据两超市的促销方案,即可分别求出:当一次性购物标价总额是400元时,甲、乙两超市实付款;(2)设当标价总额是x 元时,甲、乙超市实付款一样.根据两超市的促销方案结合两超市实付款相等,即可得出关于x 的一元一次方程,解之即可得出结论;(3)设购物总额是x 元,根据题意列方程求出购物总额,然后计算若在甲超市购物应付款,比较即可得出结论.【详解】(1)甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元;(2)设购物总额是x 元,由题意知x >500,列方程:0.88x =500×0.9+0.8(x -500)∴x =625∴购物总额是625元时,甲、乙两家超市实付款相同.(3)设购物总额是x 元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x -500)=482∴x =540∴0.88x =475.2<482∴该顾客选择不划算.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.4.(1)50;(2)2BOD α∠=;(3)2α;(4)3602α︒-【解析】【分析】(1)根据“∠COD=90°,∠COE=25°”求出∠DOE 的度数,再结合角平分线求出∠AOD 的度数,即可得出答案;(2)重复(1)中步骤,将∠COE 的度数代替成α计算即可得出答案;(3)根据图得出∠DOE=∠COD-∠COE=90°-α,结合角平分线的性质以及平角的性质计算即可得出答案;(4)根据图得出∠DOE=∠COE-∠COD=α-90°,结合角平分线的性质以及平角的性质计算即可得出答案.【详解】解:(1)∵∠COD=90°,∠COE=25°∴∠DOE=∠COD-∠COE=65°又OE 平分∠AOD∴∠AOD=2∠DOE=130°∴∠BOD=180°-∠AOD=50°(2)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α 又OE 平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α (3)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α 又OE 平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α (4)∵∠COD=90°,∠COE=α∴∠DOE=∠COE-∠COD=α-90° 又OE 平分∠AOD∴∠AOD=2∠DOE=2?α-180°∴∠BOD=180°-∠AOD=360°-2α 【点睛】本题考查的是求角度,难度适中,涉及到了角平分线以及平角的性质需要熟练掌握.5.(1)2;(2)52x MC =+;(3)当25x =-或6x =时,有2AP CM PC -=成立. 【解析】【分析】(1)根据中点的定义,即可求出点C 的坐标;(2)先表示出点M 的数,然后利用线段上两点之间的距离,即可表示出MC 的长度; (3)分别求出AP ,MC 和PC 的长度,结合题意,分为三种情况进行讨论,即可求出x 的值.【详解】解:(1)点A 表示的数为10-,点B 表示的数为14,∴线段AB=14(10)24--=,∴点C 表示的数为:142422-÷=;(2)根据题意,点M 表示的数为:142x +,∴线段MC 的长度为:142522x x +-=+; (3)根据题意, 线段AP 的长度为:10x +,线段MC 的长度为:52x +, 线段PC 的长度为:2x -,∵2AP CM PC -=, ∴10(5)222x x x +-+=-, 整理得:15242x x -=+, ①当点P 在点C 的左边时,2x <,则20x ->, ∴15242x x -=+, 解得:25x =-; ②当点P 与点C 重合时,2x =, ∴15042x +=, 解得:10x =-(不符合题意,舍去);③当点P 在点C 的右边时,2x >,则20x -<, ∴15242x x -=+, 解得:6x =. ∴当25x =-或6x =时,有2AP CM PC -=成立. 【点睛】本题考查了数轴上的动点的问题,数轴上两点之间的距离,解一元一次方程,以及绝对值的意义,解题的关键是掌握数轴上两点之间的距离.6.(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关,理由见解析; (2)见解析.【解析】【分析】(1)由关于x 的方程()46n x n -=-无解.可得4n -=0,从而可求得n 的值; (2)根据线段中点的定义可知PN=12AP ,PM=12PB ,从而得到MN=12(PA+PB )=12AB ,于是可求;(3)设AB=a ,BP=b .先表示PB+PA 的长,然后再表示PC 的长,最后代入计算即可.【详解】解:(1)①∵关于x 的方程()46n x n -=-无解.∴4n -=0,解得:n=4.故AB=4.②线段MN 的长与点P 在线段AB 上的位置无关,理由如下:∵M 为线段PB 的中点,∴PM= 12PB . 同理:PN= 12AP .. ∴MN=PN+PM=12(PB+AP )= 12AB= 12×4=2. ∴线段MN 的长与点P 在线段AB 上的位置无关.(2)设AB=a ,BP=b ,则PA+PB=a+b+b=a+2b .∵C 是AB 的中点,1122BC AB a ∴== 12PC PB BC a b ∴=+=+ 2212PA PB a b PC a b ++∴==+, 所以PA PB PC+的值不变. 【点睛】 本题主要考查的是中点的有关计算,掌握线段中点的定义是解题的关键.7.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.8.(1)∠MEN =90°;(2)∠MEN =105°;(3)∠FEG =2α﹣180°,∠FEG =180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN 平分∠AEF ,EM 平分∠BEF∴∠NEF =12∠AEF ,∠MEF =12∠BEF ∴∠MEN =∠NEF +∠MEF =12∠AEF +12∠BEF =12(∠AEF +∠BEF )=12∠AEB ∵∠AEB =180°∴∠MEN =12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.9.(1)∠MON的度数为80°;(2)∠MON的度数为70°或90°;(3)t的值为21.【解析】【分析】(1)根据角平分线的定义进行角的计算即可;(2)分两种情况画图形,根据角平分线的定义进行角的计算即可;(3)根据(2)中前一种情况用含t的式子表示角度,再根据已知条件即可求解.【详解】解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=12∠AOB,∠BON=12∠BOD,即∠MON=∠MOB+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD)=12∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠BON=12∠BOD,①射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×180°﹣20°=70°;②射线OC在OB右侧时,如图:∠MON=∠MOC+∠BON+∠BOC=12∠AOC+12∠BOD+∠BOC=12(∠AOC+∠BOD)+∠BOC=12(∠AOD﹣∠BOC)+∠BOC=12×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中的第一种情况,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=12∠AOC=t°+15°.∵∠BOD =∠AOD ﹣∠BOA ,∠AOD =160°,∴∠BOD =150°﹣2t°.∵射线ON 平分∠BOD ,∴∠DON =12∠BOD =75°﹣t°. 又∵∠AOM :∠DON =2:3,∴(t+15):(75﹣t)=2:3,解得t =21. 根据(2)中的第二中情况,观察图形可知:这种情况不可能存在∠AOB=10°.答:t 的值为21.【点睛】本题考查角平分线的定义,角的计算.解决本题的关键是利用已知(已设)角,去计算或者表示未知角.10.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84 EOF x y∴︒+︒︒∠=-=(3)当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI))=12∠AOB=12×120°=60°,∠PON=12×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.11.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN =PB =×(n ﹣2).∴PM ﹣34BN =﹣34××(n ﹣2), =(不变).②12PM +34BN =+34××(n ﹣2)=34n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.12.(1)①3;②-3;③2A B x x +;④-1.5;(2)①421λλ-+;②11λ+x A +1+λλx B . 【解析】【分析】(1)①②分别按所给的关系式及点在数轴上的位置,计算即可;③根据①②即可得到答案;④根据平移关系用x A +5表示出x B ,再按③中关系式计算即可;(2)①根据AC =λCB ,将x A =﹣2,x B =4,λ=13代入计算即可; ②根据AC =λCB ,变形计算即可.【详解】(1)C 是AB 的中点, ①∵x A =1,x B =5, ∴x c =512+=3, 故答案为:3; ②∵x A =﹣1,x B =﹣5,∴x C =512--=﹣3 故答案为:﹣3;③ x C =2AB x x +, 故答案为:2A B x x +; ④∵将点A 向右平移5个单位,恰好与点B 重合,∴x B =x A +5,∴x C =2A B x x +=52A A x x ++=1, ∴x A =﹣1.5 故答案为:﹣1.5;(2)①∵AC =λCB ,x A =﹣2,x B =4,λ=13, ∴x C ﹣(﹣2)=λ(4﹣x C )∴(1+λ)x C =4λ﹣2,∴x C =421λλ-+, 故答案为:421λλ-+; ②∵AC =λCB ∴x C ﹣x A =λ(x B ﹣x C )∴(1+λ)x C =x A +λx B∴x C =11λ+x A +1λλ+x B 故答案为:11λ+x A +1λλ+x B . 【点睛】此题考查是线段类规律题,通过探究得出数轴上两点间的任意点的坐标的规律,正确理解题意是解题的关键.。

七年级数学上册全册单元测试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元测试卷(培优篇)(Word版 含解析)

七年级数学上册全册单元测试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.3.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。

七年级上册数学压轴题(培优篇)(Word版 含解析)

七年级上册数学压轴题(培优篇)(Word版 含解析)

七年级上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.2.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。

(1)例如,当n=2时,a 2=2²−32×2+247=187,则a 5=___,a 6=___; (2)第n 层比第(n+1)层多堆放多少个仪器箱;(用含n 的代数式表示)(3)假设堆放时上层仪器箱的总重量会对下一层仪器箱产生同样大小的压力,压力单位是牛顿,设每个仪器箱重54 牛顿,每个仪器箱能承受的最大压力为160牛顿,并且堆放时每个仪器箱承受的压力是均匀的。

①若仪器箱仅堆放第1、2两层,求第1层中每个仪器箱承受的平均压力; ②在确保仪器箱不被损坏的情况下,仪器箱最多可以堆放几层?为什么?3.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.4.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.5.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.6.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.7.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值. 8.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?9.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.10.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?11.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0n a b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.12.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=.同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程; (迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现) (4)若已知50.7142857=,则2.285714= .【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)8;(2)4或10;(3)t 的值为167和329【分析】(1)由数轴上点B在点A的右侧,故用点B的坐标减去点A的坐标即可得到AB的值;(2)设点C表示的数为x,再根据AC=3BC,列绝对值方程并求解即可;(3)点C位于A,B两点之间,分两种情况来讨论:点C到达B之前,即2<t<3时;点C 到达B之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A,B表示的数分别为﹣2,6∴AB=6﹣(﹣2)=8答:AB的值为8.(2)设点C表示的数为x,由题意得|x﹣(﹣2)|=3|x﹣6|∴|x+2|=3|x﹣6|∴x+2=3x﹣18或x+2=18﹣3x∴x=10或x=4答:点C表示的数为4或10.(3)∵点C位于A,B两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=16 7②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t ∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=329或t=43,其中43<3不符合题意舍去答:t的值为167和329【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.2.(1)112,91;(2)(31-2n)个;(3)①46.75N;②该仪器最多可以堆放5层.【解析】【分析】(1)把n=5,n=6分别代入n²−32n+247中进行计算.;(2)分别表示出n+1和n时的代数式,然后进行减法计算;(3)①根据公式分别求得第二层和第一层的个数,再根据第二层的总重量除以第一层的个数进行计算;②根据①中的方法进行估算,求得最多可以堆放的【详解】解:(1)当n=5时,a 5=5²−32×5+247=112, 当n=6时,a 6=6²−32×6+247=91; (2)由题意可得,n²−32n+247-[ (n+1)²−32(n+1)+247] = n²−32n+247-(n 2+2n+1−32n -32+247) = n²−32n+247-n 2-2n-1+32n+32-247 =31-2n (个)答:第n 层比第(n+1)层多堆放(31-2n )个仪器箱. (3)①由题意得,()222322247541321247-⨯+⨯-⨯+ =18754216⨯=46.75(N )答:第1层中每个仪器箱承受的平均压力是46.75N. ②该仪器箱最多可以堆放5层,理由如下. 当n=1时,a 1=216, 当n=2时,a 2=187, 当n=3时,a 3=160, 当n=4时,a 4=135, 当n=5时,a 5=112, 当n=6时,a 6=91,当n=5时,第1层中每个仪器箱承受的平均压力为:()18716013511254216+++⨯=148.5<160(N )当n=6时,第1层中每个仪器箱承受的平均压力为:()187160135112+9154216+++⨯=171.25>160(N )所以,该仪器箱最多可以堆放5层. 【点睛】本题考查了图形变化规律探究问题,要能够根据所给的公式进行分析计算,同时体现了“估算”思想,体现了“优选”思想,对这类问题能从“中点”处、“黄金分割点”处思考是解答此题的重要思想.3.(1)3.(2)存在.x 的值为3.(3)不变,为2. 【解析】 【分析】(1)根据非负数的性质和数轴上两点间距离即可求解;(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;(3)先确定运动t 秒后,A 、B 、C 三点对应的数,再根据数轴上两点间的距离公式列方程即可求解.解:(1)∵点A、B是数轴上的两个点,它们分别表示的数是2-和1∴A,B两点之间的距离是1-(-2)=3.故答案为3.(2)存在.理由如下:①若P点在A、B之间,x+2+1-x=7,此方程不成立;②若P点在B点右侧,x+2+x-1=7,解得x=3.答:存在.x的值为3.(3)BC AB-的值不随运动时间t(秒)的变化而改变,为定值,是2.理由如下:运动t秒后,A点表示的数为-2-t,B点表示的数为1+2t,C点表示的数为6+5t.所以AB=1+2t-(-2-t)=3+3t.BC=6+5t-(1+2t)=5+3t.所以BC-AB=5+3t-3-3t=2.【点睛】本题考查了一元一次方程、数轴、非负数、两点之间的距离,解决本题的关键是数轴上动点的运动情况.4.(1)∠POQ =104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或180 11或1807,使得∠POQ=12∠AOQ.【解析】【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到∠AOP=2t=4°,∠BOQ=6t=12°,利用∠POQ =∠AOB-∠AOP-∠BOQ求出结果即可;(2)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可.【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°,∴∠POQ =∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t≤15时,2t +40+6t=120, t=10;当15<t≤20时,2t +6t=120+40, t=20;当20<t ≤30时,2t =6t -120+40, t =20(舍去); 答:当∠POQ =40°时,t 的值为10或20. (3)当0≤t ≤15时,120-8t=12(120-6t ),120-8t=60-3t ,t =12; 当15<t ≤20时,2t –(120-6t )=12(120 -6t ),t=18011. 当20<t ≤30时,2t –(6t -120)=12(6t -120),t=1807. 答:存在t =12或18011或1807,使得∠POQ =12∠AOQ .【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.5.(1)30°;(2)BOC ∠+∠BOE =90°;(3)为定值2,理由见解析 【解析】 【分析】(1)根据差余角的定义,结合角平分线的性质可得∠BOE 的度数; (2)根据差余角的定义得到BOC ∠和AOE ∠的关系,(3)分当OE 在OC 左侧时,当OE 在OC 右侧时,根据差余角的定义得到COE ∠和AOC ∠的关系,再结合余角和补角的概念求出AOC BOCCOE∠-∠∠的值.【详解】解:(1)如图,∵COE ∠是AOC ∠的差余角 ∴AOC ∠-COE ∠=90°, 即AOC ∠=COE ∠+90°, 又∵OE 是BOC ∠的角平分线, ∴∠BOE =COE ∠,则COE ∠+90°+COE ∠+COE ∠=180°, 解得COE ∠=30°;(2)∵BOC ∠是AOE ∠的差余角, ∴AOE ∠-BOC ∠=90°,∵AOE ∠=AOC ∠+COE ∠,BOC ∠=∠BOE +COE ∠, ∴AOC ∠-∠BOE =90°, ∵AOC ∠=180°-BOC ∠, ∴180°-BOC ∠-∠BOE =90°, ∴BOC ∠+∠BOE =90°; (3)当OE 在OC 左侧时, ∵COE ∠是AOC ∠的差余角, ∴AOC ∠-COE ∠=90°,∴∠AOE =∠BOE=90°, 则AOC BOCCOE∠-∠∠=90COE BOCCOE ∠+︒-∠∠=COE COE COE ∠+∠∠=2;当OE 在OC 右侧时, 过点O 作OF ⊥AB ,∵COE ∠是AOC ∠的差余角, ∴AOC ∠=90°+COE ∠, 又∵AOC ∠=90°+COF ∠, ∴COE ∠=COF ∠, ∴AOC BOCCOE∠-∠∠=90COE BOCCOE∠+︒-∠∠=9090COE COF COE∠+︒-︒+∠∠=COE COF COE ∠+∠∠=COE COE COE ∠+∠∠=2.综上:AOC BOC COE∠-∠∠为定值2. 【点睛】 本题属于新概念题,考查了余角、补角的知识,仔细观察图形理解两个角的差余角关系、互补关系是解题的关键.6.13t =,233AP =或t =3,AP =11. 【解析】【分析】 根据题意可以分两种情况:①当P 向左、Q 向右运动时,根据PQ=OP+OQ+BO 列出关于t 的方程求解,再求出AP 的长;②当P 向右、Q 向左运动时,根据PQ=OP+OQ-BO 列出关于t 的方程求解,再求出AP 的长.【详解】解:∵12AB =,4OB =,∴8OA =.根据题意可知,OP=t ,OQ=2t .①当P 向左、Q 向右运动时,则PQ=OP+OQ+BO ,∴245t t ++=,∴13t =. 此时OP =13,123833AP AO OP =-=-=; ②当P 向右、Q 向左运动时,PQ=OP+OQ-BO ,∴245t t +-=,∴3t =.此时3OP =,8311AP AO OP =+=+=.【点睛】本题考查数轴、线段的计算以及一元一次方程的应用问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.7.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13= 情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.8.(1)①10°,②18°;(2)圆圆的说法正确,理由见解析.【解析】【分析】(1)①根据∠AOB 与∠COD 互余求出∠COD ,再利用角度的和差关系求出∠AOC+∠BOD=30°,最后根据∠AOC=2∠BOD 即可求出∠BOD ;②设∠BOD=x ,根据角平分线表示出∠COD 和∠BOC ,根据∠AOC=2∠BOD 表示出∠AOC ,最后根据∠AOB 与∠COD 互余建立方程求解即可;(2)分两种情况讨论:OC 靠近OA 时与OC 靠近OB 时,画出图形分类计算判断即可.【详解】解:(1)①∵∠AOB 与∠COD 互余,且∠AOB=60°,∴∠COD=90°-∠AOB=30°,∴∠AOC+∠BOD=∠AOB -∠COD=60°-30°=30°,∵∠AOC=2∠BOD ,∴2∠BOD+∠BOD=30°,∴∠BOD=10°;②设∠BOD=x ,∵OD 平分∠BOC ,∴∠BOD=∠COD=x ,∠BOC=2∠BOD=2x ,∴∠AOC=2x,∴∠AOB=∠AOC+∠COD +∠BOD=4x,∵∠AOB与∠COD互余,∴∠AOB+∠COD=90°,即4x+x=90°,∴x=18°,即∠BOD=18°;(2)圆圆的说法正确,理由如下:当OC靠近OB时,如图所示,∵∠AOB与∠COD互补,∴∠AOB+∠COD=180°,∵∠AOB=∠AOD+∠BOD,∠COD=∠BOC+∠BOD,∴∠AOD+∠BOD+∠BOC+∠BOD=180°,∵∠AOC=∠AOD+∠BOD+∠BOC,∴∠AOC+∠BOD=180°,∵∠AOC=2∠BOD,∴2∠BOD+∠BOD=180°,∴∠BOD=60°;当OC靠近OA时,如图所示,∵∠AOB与∠COD互补,∴∠AOB+∠COD=180°,∵∠AOB=∠AOD+∠BOD,∠COD=∠AOC+∠AOD,∴∠AOD+∠BOD+∠AOC+∠AOD=180°,∵∠AOC=2∠BOD,∴∠AOD+∠BOD+2∠BOD +∠AOD=180°,即3∠BOD+2∠AOD=180°,∵∠AOD不确定,综上所述,当OC靠近OB时,∠BOD的度数为60°,当OC靠近OA时,∠BOD的度数不确定,所以圆圆的说法正确.【点睛】本题考查角的计算,正确找出角之间的关系,分情况画出图形解答是解题的关键.9.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.10.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.11.(1)2,4,6;(2)4×16=64,222log 4+log 16log 64=;(3)log m+log log a a a n mn =;(4)见解析【解析】【分析】(1)根据对数的定义求解可得;(2)观察三个数字及对应的结果,找出规律;(3)将找出的规律写成一般形式;(4)设log m=x a ,log a n y =,利用n m n m a a a +=转化可推导.【详解】(1)∵224=,4 216=,6264= ∴2log 4=2,2log 16=4,2log 64=6(2)4、16、64的规律为:4×16=64∵2+4=6,∴2log 4+2log 16=2log 64(3)根据(2)得出的规律,我们一般化,为:log m+log log a a a n mn =(4)设log m=x a ,log a n y =则x a m =,y a n =∴x y x y a a mn a +==∴log mn=x+y a∴log mn=log m+log n a a a ,得证【点睛】本题考查指数运算的逆运算,解题关键是快速学习题干告知的运算法则,找出相应规律.12.(1)143;(2) 311;(3) 25111, 11155;(4)167【解析】【分析】 (1)根据阅读材料的解答过程,循环部只有一位数时,用循环部的数除以9即为分数,进而求出答案.(2)循环部有两位数时,参照阅读材料的解答过程,可先乘以100,再与原数相减,即求得答案.(3)循环部有三位小数时,用循环部的3位数除以999;对于2.018,可先求0.18对应的分数,再除以10得0.018,再加上2得答案.(4)观察0.714285与2.285714,循环部的数字顺序是一样的,先求把0.714285×1000,把小数循环部变成与2.285714相同,再减712把整数部分凑相等,即求出答案.【详解】解:(1)612214 4.6=4+0.6=4+=+=9333故答案为:14 3(2)设x=0.272727…,①∴100x=27.272727…,②②-①得:99x=27解得:x=27 99∴x=3 11∴3 0.27=11(3)22525 0.225==999111∵182 0.18=0.181818=9911∴211 0.0181818==111055∴1111 2.018=2+0.018=2+=5555故答案为:25111,11155(4)5 0.714285=7∴等号两边同时乘以1000得:5000 714.285714=7∴500016 2.285714=714.28571-712=-712=77故答案为:16 7【点睛】本题考查了有理数运算、比较大小,一元一次方程的解法.解题关键是,正确理解题意的解答过程并转化运用到循环部数字不一样的情况计算.。

最新七年级上册数学压轴题(Word版 含解析)

最新七年级上册数学压轴题(Word版 含解析)

最新七年级上册数学压轴题(Word版含解析)最新七年级上册数学压轴题(Word版含解析)一、堆放仪器箱问题我们需要研究如何堆放仪器箱,使得每层仪器箱的个数与层数之间满足一定的关系。

已知每层堆放仪器箱的个数an=n²−32n+247,其中n为整数且1⩽n<16.1) 当n=2时,an=187,则a5=5²−32×5+247=162,a6=6²−32×6+247=181.2) 第n层比第(n+1)层多堆放的仪器箱个数为an−a(n+1)=(n+1)−(n+1)²+32(n+1)−247.3) 假设每个仪器箱重54牛顿,每个仪器箱能承受的最大压力为160牛顿,并且堆放时每个仪器箱承受的压力是均匀的。

若仅堆放第1、2两层,每个仪器箱承受的平均压力为(2×54)/(2×160)=0.675.在确保仪器箱不被损坏的情况下,最多可以堆放4层。

因为当堆放第5层时,每个仪器箱承受的压力将超过160XXX,可能会被损坏。

二、数轴问题考虑数轴上点A、B、C的位置关系以及它们的数值。

1) a=-2,b=4,c=2.2) 点A与点C不能重合。

3) 设t秒后,点A到原点的距离为3t,点B到原点的距离为2t,点C到原点的距离为c。

则AB=-t,BC=t+2,因此AB=-3t/3,BC=(t+2)/3.4) 3AB-BC的值不随着时间t的变化而改变。

因为3AB-BC=-3t-2,是一个关于t的一次函数,其斜率为-3,即不随着t 的变化而改变。

三、求a、b、c问题已知b是最小的正整数,且a、b、c满足c-5+a+b=0.1) 根据条件可得a=-b+c+5,因此a、b、c不唯一。

2) x(1/x+1/x^2+5)=(x+1+2x^2)/x,化简过程如下:x(1/x+1/x^2+5)=(x+1)/x+2=(x+2x^2)/x。

3) 在条件a=-b+c+5和b=4下,设点A、B、C的坐标分别为a、4、c,点P的坐标为x。

七年级上册数学 期末试卷(培优篇)(Word版 含解析)

七年级上册数学 期末试卷(培优篇)(Word版 含解析)

七年级上册数学期末试卷(培优篇)(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF= ∠AOE.(本题所涉及的角指小于平角的角)(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求∠COF的度数;(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.【答案】(1)解:∵∠AOE+∠BOE=180°,∠BOE=15°,∴∠AOE=180°-15°=165°∴∠AOF= ∠AOE=×165°=55°∵∠AOC=∠AOE-∠COE=165°-120°=45°∴∠COF=∠AOF-∠AOC=55°-45°=10°答:∠COF的度数为10°.(2)解:设∠BOE=x,则∠BOE的余角为90°-x.∵∠FOE比∠BOE的余角大40°,∴∠FOE=130°-x∵∠COE=120°,则∠COF=x-10°,∠AOC=60°-x,∴∠AOF=∠AOC+∠COF=50°∵∠AOF= ∠AOE∴∠AOE=150°∴∠BOE=x=180°-150°=30°∴∠COF=x-10°=30°-10°=20°答:∠COF的度数为20°(3)解:∠FOC=∠BOE如图,设∠AOF=x∵∠AOF=∠AOE∴∠AOE=3x∴∠EOF=2x,∠BOE=180°-3x=3(60°-x)∵∠COE=120°∴∠AOC=120°-3x∴∠COF=∠AOC+∠AOF=120°-3x+x=2(60°-x)∴∴∠FOC=∠BOE【解析】【分析】(1)利用邻补角的定义及已知求出∠AOE、∠AOF的度数,再利用∠AOC=∠AOE-∠COE,求出∠AOC的度数,然后根据∠COF=∠AOF-∠AOC,可求得结果。

最新北师大版七年级上册数学 有理数(培优篇)(Word版 含解析)

最新北师大版七年级上册数学 有理数(培优篇)(Word版 含解析)

最新北师大版七年级上册数学有理数(培优篇)(Word版含解析)一、初一数学有理数解答题压轴题精选(难)1.阅读下面的材料:在数轴上,点A表示的数为a,点B表示的数为b,则点A到点B的距离记为AB,线段AB的长度可以用右边的数减去左边的数表示,即AB=b-a。

请根据这些知识回答以下问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm。

1)请在数轴上标出A、B、C三点的位置。

2)点C到点A的距离CA=________cm;如果数轴上有一点D,且AD=4,则点D表示的数为________;3)如果将点A向右移动xcm,则移动后的点表示的数为________;(请用代数式表示)4)如果点B以每秒2cm的速度向左移动,同时A、C点分别以每秒1cm、4cm的速度向右移动。

设移动时间为t秒,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由。

答案】1)解:如图所示:2)5;-5或33)-1+x4)解:CA-AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)-(-1+t)=5+3t,AB=(-1+t)-(-3-2t)=2+3t。

CA-AB=(5+3t)-(2+3t)=3。

CA-AB的值不会随着t的变化而变化。

解析】【解答】2)CA=4-(-1)=4+1=5(cm);设D表示的数为a。

AD=4。

1)-a|=4。

解得:a=-5或3。

___表示的数为-5或3;故答案为5,-5或3;3)将点A向右移动xcm,则移动后的点表示的数为-1+x;故答案为-1+x;分析】1)根据题意容易画出图形;2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;3)将点A向右移动xcm,则移动后的点表示的数为-1+x;4)表示出CA和AB,再相减即可得出结论。

2.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段。

七年级数学上册上册数学压轴题(培优篇)(Word版 含解析)

七年级数学上册上册数学压轴题(培优篇)(Word版 含解析)

七年级数学上册上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.2.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|.根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.3.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?4.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)(2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.5.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3(1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程)②若AB a ,AC b =,则MN =___________;(直接写出结果)(2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON .③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程) ④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果)(3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)6.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.7.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.8.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .9.如图1,点A ,B ,C ,D 为直线l 上从左到右顺次的4个点.(1) ①直线l上以A,B,C,D为端点的线段共有条;②若AC=5cm,BD=6cm,BC=1cm,点P为直线l上一点,则PA+PD的最小值为 cm;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当AQ+AE+AF=32AD时,请直接写出t的值.10.已知:∠AOB=140°,OC,OM,ON是∠AOB内的射线.(1)如图1所示,若OM平分∠BOC,ON平分∠AOC,求∠MON的度数:(2)如图2所示,OD也是∠AOB内的射线,∠COD=15°,ON平分∠AOD,OM平分∠BOC.当∠COD绕点O在∠AOB内旋转时,∠MON的位置也会变化但大小保持不变,请求出∠MON的大小;(3)在(2)的条件下,以∠AOC=20°为起始位置(如图3),当∠COD在∠AOB内绕点O以每秒3°的速度逆时针旋转t秒,若∠AON:∠BOM=19:12,求t的值.11.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MN AB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.12.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15【解析】【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解;(3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解.【详解】解:(1)∵|m ﹣12|+(n +3)2=0,∴m ﹣12=0,n +3=0,∴m =12,n =﹣3;故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n ,∴AB =3m n -=5,∴玩具火车的长为:5个单位长度,故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁,根据题意可得方程组为:40116y x x y x y -=+⎧⎨-=-⎩, 解得:1264x y =⎧⎨=⎩, 答:奶奶今年64岁;(3)由题意可得PQ =(12+3t )﹣(﹣3﹣t )=15+4t ,B 'A =5+2t ,∵3PQ ﹣kB ′A =3(15+4t )﹣k (5+2t )=45﹣5k +(12﹣2k )t ,且3PQ ﹣kB ′A 的值与它们的运动时间无关,∴12﹣2k =0,∴k =6∴3PQ ﹣kB ′A =45﹣30=15【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想.2.(1) 12, 12; (2) -8或12;(3) 11,-9.【解析】【分析】(1)代入两点间的距离公式即可求得AB 的长;依据点M 在A 、B 之间,结合数轴即可得出所求的结果即为A 、B 之间的距离,进而可得结果;(2)由(1)的结果可确定点M 不在A 、B 之间,再分两种情况讨论,化简绝对值即可求出结果;(3)由|m +4|+n =6可确定n 的取值范围,进而可对第2个等式进行化简,从而可得n 与m 的关系,再代回到第1个等式即得关于m 的绝对值方程,再分两种情况化简绝对值求解方程即可.【详解】解:(1)因为点A 、B 表示的数分别是﹣4、8,所以AB =()84--=12,因为点M 在A 、B 之间,所以|m +4|+|m ﹣8|=AM +BM =AB =12,故答案为:12,12;(2)由(1)知,点M 在A 、B 之间时|m +4|+|m -8|=12,不符合题意;当点M 在点A 左边,即m <﹣4时,﹣m ﹣4﹣m +8=20,解得m =﹣8;当点M 在点B 右边,即m >8时,m +4+m ﹣8=20,解得m =12;综上所述,m 的值为﹣8或12;(3)因为46m n ++=,所以460m n +=-≥,所以6n ≤,所以88n n -=-, 所以828n m -+=,所以20n m =-,因为46m n ++=,所以4206m m ++-=,即4260m m ++-=,当m +4≥0,即m ≥﹣4时,4260m m ++-=,解得:m =11,此时n =-9;当m +4<0,即m <﹣4时,4260m m --+-=,此时m 的值不存在.综上,m =11,n =-9.故答案为:11,﹣9.【点睛】此题考查了数轴的有关知识、绝对值的化简和一元一次方程的求解,第(3)小题有难度,正确理解两点之间的距离、熟练进行绝对值的化简、灵活应用数形结合和分类讨论的数学思想是解题的关键.3.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合.【解析】【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;(2)设P 点对应的数为x ,当P 点满足PB=2PC 时,得到方程,求解即可;(3)根据第一次点P 表示-1,第二次点P 表示2,点P 表示的数依次为-3,4,-5,6…,找出规律即可得出结论.【详解】解:(1)∵点B 距离原点10个单位长度,且位于原点左侧,∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,∴点A 表示的数为20,∴数轴上表示如下:AB 之间的距离为:20-(-10)=30;(2)∵线段OB 上有点C 且6BC =,∴点C 表示的数为-4,∵2PB PC =,设点P 表示的数为x ,则1024x x +=+,解得:x=2或-6,∴点P 表示的数为2或-6;(3)由题意可知:点P 第一次移动后表示的数为:-1,点P 第二次移动后表示的数为:-1+3=2,点P 第三次移动后表示的数为:-1+3-5=-3,…,∴点P 第n 次移动后表示的数为(-1)n •n ,∵点A 表示20,点B 表示-10,当n=20时,(-1)n •n=20;当n=10时,(-1)n •n=10≠-10,∴第20次P 与A 重合;点P 与点B 不重合.【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.4.(1)是;(2)30︒或40︒或20︒;(3)4t =或10t =或16t =;(4)2t =或12t =.【解析】【分析】(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知结论;(2)根据二倍角线的定义分2,2,2AOB AOC AOC BOC BOC AOC ∠=∠∠=∠∠=∠三种情况求出AOC ∠的大小即可.(3)当射线OP ,OQ 旋转到同一条直线上时,180POQ ︒∠=,即180POA AOB BOQ ︒∠+∠+∠=或180BOQ BOP ︒∠+∠=,或OP 和OQ 重合时,即360POA AOB BOQ ︒∠+∠+∠=,用含t 的式子表示出OP 、OQ 旋转的角度代入以上三种情况求解即可;(4)结合“二倍角线”的定义,根据t 的取值范围分04t <<,410t ≤<,1012t <≤,1218t <≤4种情况讨论即可.【详解】解:(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知一个角的角平分线是这个角的“二倍角线”;(2)当射线OC 为AOB ∠的“二倍角线”时,有3种情况,①2AOB AOC ∠=∠,60,30AOB AOC ︒︒∠=∴∠=; ②2AOC BOC ∠=∠,360AOB AOC BOC BOC ︒∠=∠+∠=∠=,20BOC ︒∴∠=,40AOC ︒∴∠=;③2BOC AOC ∠=∠,360AOB AOC BOC AOC ︒∠=∠+∠=∠=,20AOC ︒∴∠=,综合上述,AOC ∠的大小为30︒或40︒或20︒;(3)当射线OP ,OQ 旋转到同一条直线上时,有以下3种情况,①如图此时180POA AOB BOQ ︒∠+∠+∠=,即206010180t t ︒︒︒︒++=,解得4t =; ②如图此时点P 和点Q 重合,可得360POA AOB BOQ ︒∠+∠+∠=,即206010360t t ︒︒︒︒++=,解得10t =;③如图此时180BOQ BOP ︒∠+∠=,即1060(36020)180t t ︒︒︒︒︒⎡⎤+--=⎣⎦,解得16t =, 综合上述,4t =或10t =或16t =;(4)由题意运动停止时3602018t ︒︒=÷=,所以018t <≤,①当04t <<时,如图,此时OA 为POQ ∠的“二倍角线”,2AOQ POA ∠=∠,即6010220t t ︒︒︒+=⨯,解得2t =;②当410t ≤<时,如图,此时,180,180AOQ AOP ︒︒∠>∠>,所以不存在;③当1012t <≤时,如图此时OP 为AOQ ∠的“二倍角线”,2AOP POQ ∠=∠,即360202(201060360)t t t ︒︒︒︒︒︒-=⨯++-解得 12t =;④当1218t <≤时,如图,此时180,180AOQ AOP ︒︒∠>∠>,所以不存在;综上所述,当2t =或12t =时,OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”.【点睛】本题考查了一元一次方程的应用,正确理解“二倍角线”的定义,找准题中角之间等量关系是解题的关键.5.(1)①3;②12a ;(2)③40︒;④40;(3)12n 【解析】【分析】(1)①先求出BC ,再根据中点求出AM 、BN ,即可求出MN 的长;②利用①的方法求MN 即可;(2)③先求出∠BOC ,再利用角平分线的性质求出∠AOM ,∠BON ,即可求出∠MON ; ④利用③的方法求出∠MON 的度数;(3)先求出∠BOC ,利用角平分线的性质分别求出∠AOM ,∠BON ,再根据角度的关系求出答案即可.【详解】(1)①∵6AB =,2AC =,∴BC=AB-AC=4,∵M 是AC 的中点,N 是BC 的中点. ∴112AM AC ==, 122BN BC ==, ∴MN=AB-AM-BN=6-1-2=3; ②∵AB a ,AC b =,∴BC=AB-AC=a-b ,∵M 是AC 的中点,N 是BC 的中点. ∴12AM b =,1()2BN a b =-, ∴MN=AB-AM-BN=11()22a b a b ---=12a , 故答案为:12a ; (2)③∵80AOB ∠=︒,30AOC ∠=︒,∴∠BOC=∠AOB-∠AOC=50︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=15︒,∠BON=25︒,∴∠MON=∠AOB-∠AOM-∠BON=40︒;④∵80AOB ∠=︒,AOC m ∠=︒,∴∠BOC=(80-m)︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=12m ,∠BON=(40-12m )︒, ∴∠MON=∠AOB-∠AOM-∠BON=40︒, 故答案为:40;(3)∵AOB n ∠=︒,AOC m ∠=︒,∴∠BOC=∠AOC-∠AOB=(m-n)︒,∵AOC ∠和BOC ∠的角平分线分别是OM ,ON ,∴∠AOM=12m ,∠CON=1()2m n -, ∴∠MON=∠AOC-∠AOM-∠CON=111()222m m m n n ---=, 故答案为:12n .【点睛】此题考查线段的和差计算,角度的和差计算,线段中点的性质,角平分线的性质,解题中注意规律性解题思想的总结和运用.6.(1)30°;(2)BOC ∠+∠BOE =90°;(3)为定值2,理由见解析【解析】【分析】(1)根据差余角的定义,结合角平分线的性质可得∠BOE 的度数;(2)根据差余角的定义得到BOC ∠和AOE ∠的关系,(3)分当OE 在OC 左侧时,当OE 在OC 右侧时,根据差余角的定义得到COE ∠和AOC ∠的关系,再结合余角和补角的概念求出AOC BOC COE∠-∠∠的值. 【详解】 解:(1)如图,∵COE ∠是AOC ∠的差余角∴AOC ∠-COE ∠=90°,即AOC ∠=COE ∠+90°,又∵OE 是BOC ∠的角平分线,∴∠BOE =COE ∠,则COE ∠+90°+COE ∠+COE ∠=180°,解得COE ∠=30°;(2)∵BOC ∠是AOE ∠的差余角,∴AOE ∠-BOC ∠=90°,∵AOE ∠=AOC ∠+COE ∠,BOC ∠=∠BOE +COE ∠,∴AOC ∠-∠BOE =90°,∵AOC ∠=180°-BOC ∠, ∴180°-BOC ∠-∠BOE =90°,∴BOC ∠+∠BOE =90°;(3)当OE 在OC 左侧时,∵COE ∠是AOC ∠的差余角,∴AOC ∠-COE ∠=90°,∴∠AOE =∠BOE=90°, 则AOC BOC COE ∠-∠∠ =90COE BOC COE∠+︒-∠∠ =COE COE COE∠+∠∠ =2;当OE 在OC 右侧时,过点O 作OF ⊥AB ,∵COE ∠是AOC ∠的差余角,∴AOC ∠=90°+COE ∠, 又∵AOC ∠=90°+COF ∠, ∴COE ∠=COF ∠,∴AOC BOC COE ∠-∠∠ =90COE BOC COE∠+︒-∠∠ =9090COE COF COE∠+︒-︒+∠∠ =COE COF COE∠+∠∠ =COE COE COE∠+∠∠ =2.综上:AOC BOC COE∠-∠∠为定值2. 【点睛】 本题属于新概念题,考查了余角、补角的知识,仔细观察图形理解两个角的差余角关系、互补关系是解题的关键.7.(1)2;(2)存在,t=125;(3)54或127【解析】【分析】 (1)根据AB 的长度和点P 的运动速度可以求得;(2)根据题意可得:当2BP BQ =时,点P 在AB 上,点Q 在BC 上,据此列出方程求解即可;(3)分两种情况:P 为接近点A 的三等分点,P 为接近点C 的三等分点,分别根据点的位置列出方程解得即可.【详解】解:(1)∵8AB =,点P 的运动速度为2个单位长度/秒,∴当P 为AB 中点时,42=2÷(秒);(2)由题意可得:当2BP BQ =时,P ,Q 分别在AB ,BC 上,∵点Q 的运动速度为23个单位长度/秒, ∴点Q 只能在BC 上运动, ∴BP=8-2t ,BQ=23t , 则8-2t=2×23t , 解得t=125, 当点P 运动到BC 和AC 上时,不存在2BP BQ =;(3)当点P 为靠近点A 的三等分点时,如图,AB+BC+CP=8+16+8=32,此时t=32÷2=16, ∵BC+CQ=16+4=20,∴a=20÷16=54, 当点P 为靠近点C 的三等分点时,如图,AB+BC+CP=8+16+4=28,此时t=28÷2=14,∵BC+CQ=16+8=24,∴a=24÷14=127.综上:a 的值为54或127. 【点睛】 本题考查了一元一次方程的应用—几何问题,在点的运动过程中根据线段关系列出方程进行求解,需要一定的想象能力和计算能力,难度中等.8.(1)50;(2)2BOD α∠=;(3)2α;(4)3602α︒-【解析】【分析】(1)根据“∠COD=90°,∠COE=25°”求出∠DOE 的度数,再结合角平分线求出∠AOD 的度数,即可得出答案;(2)重复(1)中步骤,将∠COE 的度数代替成α计算即可得出答案;(3)根据图得出∠DOE=∠COD-∠COE=90°-α,结合角平分线的性质以及平角的性质计算即可得出答案;(4)根据图得出∠DOE=∠COE-∠COD=α-90°,结合角平分线的性质以及平角的性质计算即可得出答案.【详解】解:(1)∵∠COD=90°,∠COE=25°∴∠DOE=∠COD-∠COE=65°又OE 平分∠AOD∴∠AOD=2∠DOE=130°∴∠BOD=180°-∠AOD=50°(2)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α 又OE 平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α (3)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α 又OE 平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α(4)∵∠COD=90°,∠COE=α∴∠DOE=∠COE-∠COD=α-90° 又OE 平分∠AOD∴∠AOD=2∠DOE=2?α-180°∴∠BOD=180°-∠AOD=360°-2α 【点睛】本题考查的是求角度,难度适中,涉及到了角平分线以及平角的性质需要熟练掌握.9.(1) ①6条;②10;(2)1122MN AD BC =-,证明见解析;(3) 1t =. 【解析】【分析】(1)①根据线段的定义结合图形即可得出答案;②PA +PD 最小,即P 为AD 的中点,求出AD 的长即可;(2) 根据M ,N 分别为AC ,BD 的中点,得到12MC AC =,12BN BD =,利用MN MC BN BC =+-代入化简即可;(3) 根据C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,得到3AC =,6CD =,并可得到2EC t =,FD t =,62t EQ +=,代入AQ+AE+AF=32AD ,化简则可求出t . 【详解】解:(1) ①线段有:AB ,AC ,AD ,BC ,BD ,CD ,共6条;②∵BD =6,BC =1,∴CD=BD-BC=6-1=5,当PA +PD 的值最小时,P 为AD 的中点,∴5510PA PD AD AC CD +==+=+=;(2)1122MN AD BC =-. 如图2示:∵M ,N 分别为AC ,BD 的中点,∴12MC AC =,12BN BD = ∴MN MC BN BC =+-1122AC BD BC =+- ()12AC BD BC =+-()12AB BC BD BC =++- 1122AD BC =-; (3)如图示:∵C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,∴3AC =,6CD =, 根据E ,F 两点同时从C ,D 出发,速度是2cm/s ,1cm/s ,Q 为EF 的中点,运动时间为t , 则有:2EC t =,FD t =,6222EF AD AE FD t EQ --+=== 当AQ+AE+AF=32AD 时, 则有:32AE EQ AE AD FD AD +++-=即是:()()6932329922t t t t +-++-+-=⨯ 解之得:1t =.【点睛】 本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程.10.(1)∠MON 的度数为70°.(2)∠MON 的度数为62.5°.(3)t 的值为20. 【解析】【分析】(1)根据角平分线的性质以及角的和差倍关系转化求出角的度数;(2)根据角平分线的性质可以求得:∠MON =12(∠AOB +∠COD )﹣∠COD ,代入数据即可求得;(3)由题意得∠AON =12(20°+3t +15°),∠BOM =12(140°﹣20°﹣3t ),由此列出方程即可求解.【详解】(1)∵ON 平分∠AOC ,OM 平分∠BOC , ∴∠CON =12∠AOC ,∠COM =12∠BOC ∠MON =∠CON +∠COM =12(∠AOC +∠BOC )=12∠AOB又∠AOB=140°∴∠MON=70°答:∠MON的度数为70°.(2)∵OM平分∠BOC,ON平分∠AOD,∴∠COM=12∠BOC,∠DON=12∠AOD即∠MON=∠COM+∠DON﹣∠COD=12∠BOC+12∠AOD﹣∠COD=12(∠BOC+∠AOD)﹣∠COD.=12(∠BOC+∠AOC+∠COD)﹣∠COD=12(∠AOB+∠COD)﹣∠COD=12(140°+15°)﹣15°=62.5°答:∠MON的度数为62.5°.(3)∠AON=12(20°+3t+15°),∠BOM=12(140°﹣20°﹣3t)又∠AON:∠BOM=19:12,12(35°+3t)=19(120°﹣3t)得t=20答:t的值为20.【点睛】本题考查了与角平分线有关的计算,根据角平分线的定义得出所求角与已知角的关系转化,然后根据已知条件求解是解决问题的关键.11.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.12.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.。

七年级上册上册数学压轴题(培优篇)(Word版 含解析)

七年级上册上册数学压轴题(培优篇)(Word版 含解析)

七年级上册上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.2.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由. 3.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.4.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”.5.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)6.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.7.尺规作图是指用无刻度的直尺和圆规作图。

七年级上册数学 压轴解答题(培优篇)(Word版 含解析)

七年级上册数学 压轴解答题(培优篇)(Word版 含解析)

七年级上册数学 压轴解答题(培优篇)(Word 版 含解析)一、压轴题1.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =2.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).3.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.4.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °; ②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).5.如图1,在数轴上A 、B 两点对应的数分别是6,-6,∠DCE=90°(C 与O 重合,D 点在数轴的正半轴上)(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0<t<3)个单位后,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α. ①当t=1时,α=_________;②猜想∠BCE 和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.6.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值; (2)当06t <<时,探究BON COM AOCMON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值?7.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).8.已知:∠AOB=140°,OC,OM,ON是∠AOB内的射线.(1)如图1所示,若OM平分∠BOC,ON平分∠AOC,求∠MON的度数:(2)如图2所示,OD也是∠AOB内的射线,∠COD=15°,ON平分∠AOD,OM平分∠BOC.当∠COD绕点O在∠AOB内旋转时,∠MON的位置也会变化但大小保持不变,请求出∠MON的大小;(3)在(2)的条件下,以∠AOC=20°为起始位置(如图3),当∠COD在∠AOB内绕点O以每秒3°的速度逆时针旋转t秒,若∠AON:∠BOM=19:12,求t的值.9.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.10.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?11.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值12.已知,,a b 满足()2440a b a -+-=,分别对应着数轴上的,A B 两点. (1)a = ,b = ,并在数轴上面出,A B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A ,点Q 到达点C 后停止运动.求点P 和点Q 运动多少秒时,,P Q 两点之间的距离为4,并求此时点Q 对应的数.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)3;(2)12或74-;(3)13秒或79秒 【解析】 【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可. 【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1, ∴线段AB 的长度为:-1-(-4)=3; (2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--, 解得:x=12或x=74-, ∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+, 解得:t=13或t=79, ∴13秒或79秒后,OA=3OB .【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.2.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t=±2;(3)d(P,Q)的值为4或8.【解析】【分析】(1)根据若y1=y2,则AB∥x轴,且线段AB的长度为|x1-x2|,代入数据即可得出结论;(2)由CD∥y轴,可设点D的坐标为(1,m),根据CD=2即可得出|0-m|=2,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d(E,H)=3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD∥y轴,可设点D的坐标为(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴点D的坐标为(1,2)或(1,﹣2).【拓展】:(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴1|x|×3=3,解得:x=±2.2当点Q的坐标为(2,0)时,d(P,Q)=|3﹣2|+|3﹣0|=4;当点Q的坐标为(﹣2,0)时,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8综上所述,d(P,Q)的值为4或8.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.3.(1)30°;(2)BOC ∠+∠BOE =90°;(3)为定值2,理由见解析 【解析】 【分析】(1)根据差余角的定义,结合角平分线的性质可得∠BOE 的度数; (2)根据差余角的定义得到BOC ∠和AOE ∠的关系,(3)分当OE 在OC 左侧时,当OE 在OC 右侧时,根据差余角的定义得到COE ∠和AOC ∠的关系,再结合余角和补角的概念求出AOC BOCCOE∠-∠∠的值.【详解】解:(1)如图,∵COE ∠是AOC ∠的差余角 ∴AOC ∠-COE ∠=90°, 即AOC ∠=COE ∠+90°, 又∵OE 是BOC ∠的角平分线, ∴∠BOE =COE ∠,则COE ∠+90°+COE ∠+COE ∠=180°, 解得COE ∠=30°;(2)∵BOC ∠是AOE ∠的差余角, ∴AOE ∠-BOC ∠=90°,∵AOE ∠=AOC ∠+COE ∠,BOC ∠=∠BOE +COE ∠, ∴AOC ∠-∠BOE =90°, ∵AOC ∠=180°-BOC ∠, ∴180°-BOC ∠-∠BOE =90°, ∴BOC ∠+∠BOE =90°; (3)当OE 在OC 左侧时, ∵COE ∠是AOC ∠的差余角, ∴AOC ∠-COE ∠=90°, ∴∠AOE =∠BOE=90°, 则AOC BOCCOE∠-∠∠=90COE BOCCOE ∠+︒-∠∠=COE COE COE ∠+∠∠=2;当OE 在OC 右侧时, 过点O 作OF ⊥AB ,∵COE ∠是AOC ∠的差余角, ∴AOC ∠=90°+COE ∠, 又∵AOC ∠=90°+COF ∠, ∴COE ∠=COF ∠, ∴AOC BOCCOE∠-∠∠=90COE BOCCOE∠+︒-∠∠=9090COE COF COE∠+︒-︒+∠∠=COE COF COE ∠+∠∠=COE COE COE ∠+∠∠=2.综上:AOC BOCCOE∠-∠∠为定值2.【点睛】本题属于新概念题,考查了余角、补角的知识,仔细观察图形理解两个角的差余角关系、互补关系是解题的关键.4.(1)65°;(2)①25°;②35°;③1AON a 2∠= 【解析】【分析】(1)由题意可得∠COD=1AOD2∠,∠AOD=∠AOB-∠BOD.(2)①由(1)可得∠AOC=∠COD=65°,∠AON=90°﹣∠AOC=25°②同①可得,∠AOC=∠COD=55°,∠AON=90°﹣∠AOC=35°③根据(2)可直接得出结论.【详解】解:(1)∠AOD=180°﹣∠BOD=130°,∵OC平分∠AOD,∴∠COD=12AOD∠=65°.故答案为:65°;(2)①由(1)可得∠AOC=∠COD=65°,∴∠AON=90°﹣∠AOC=25°,故答案为:25°;②∵∠BOD=70°,∴∠AOD=180°﹣∠BOD=110°,∵OC平分∠AOD,∴∠AOC=1552AOD∠=︒,∵∠MON=90°,∴∠AON=90°﹣∠AOC=35°;③1 AON2∠α=.【点睛】本题考查的知识点是角的和差问题,根据所给图形找出各角之间的数量关系是解题的关键. 5.(1)45°;(2)①30°;②∠BCE=2α,证明见解析;(3)α=45-15t ,β=45+15t,3t2=【解析】【分析】(1)根据角平分线的定义即可得出答案;(2)①首先由旋转得到∠ACE=120°,再由角平分线的定义求出∠ACF,再减去旋转角度即可得到∠DCF;②先由补角的定义表示出∠BCE,再根据旋转和角平分线的定义表示出∠DCF,即可得出两者的数量关系;(3)根据α=∠FCA-∠DCA,β=∠AC1D1+∠AC1F1,可得到表达式,再根据|α-β|=45°建立方程求解.【详解】(1)∵∠ACE=90°,CF 平分∠ACE∴∠AOF=12∠ACE=45° 故答案为:45°; (2)①当t=1时,旋转角度为30°∴∠ACE=90°+30°=120°∵CF 平分∠ACE∴∠ACF=60°,α=∠DCF=∠ACF-30°=30°故答案为:30°;②∠BCE=2α,证明如下:旋转30t 度后,∠ACE=(90+30t)度∴∠BCE=180-(90+30t)=(90-30t)度∵CF 平分∠ACE∴∠ACF=12∠ACE=(45+15t)度 ∠DCF=∠ACF-30t=(45-15t)度 ∴2∠DCF=2(45-15t)= 90-30t=∠BCE即∠BCE=2α(3)α=∠FCA-∠DCA=12(90+30t)-30t=45-15t β=∠AC 1D 1+∠AC 1F 1=30t+12(90-30t)=45+15t ||45βα-=︒|30t|=45° ∴3t 2=【点睛】 本题考查了角平分线,角的旋转,角度的和差计算问题,熟练掌握角平分线的定义,找出图形中角度的关系是解题的关键.6.(1)t 的值为1秒或52651秒; (2)当0<t <103时,BON COM AOC MON ∠-∠+∠∠的值是1;当103<t <6时,BON COM AOC MON∠-∠+∠∠不是定值. 【解析】【分析】(1)分两种情况:①如图所示,当0<t≤7.5时,②如图所示,当7.5<t <12时,分别根据已知条件列等式可得t 的值;(2)分两种情况,分别计算∠COM 、∠BON 和∠MON 的度数,代入可得结论.【详解】(1)当ON 与OA 重合时,t=90÷12=7.5(s )当OM 与OA 重合时,t=180°÷15=12(s )①如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-69°,可得180-15t=3(90-12t )-69,解得t=1;②如图所示,当7.5<t <12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-69°,可得180-15t=3(12t-90)-69,解得t=52651, 综上,t 的值为1秒或52651秒; (2)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°, ∴15t+90+12t=180,解得t=103, ①如图所示,当0<t <103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°=02790t ,∴BON COM AOC MON ∠-∠+∠∠=0000000(9012)(9015)902790t t t +--++=000027902790t t ++=1(是定值),②如图所示,当103<t <6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON )=360°-(15t°+90°+12t°)=270°-27t°,∴BON COM AOC MON ∠-∠+∠∠=0000000(9012)(9015)9027027t t t +--+-=0000902727027t t+-(不是定值),综上所述,当0<t <103时,BON COM AOC MON ∠-∠+∠∠的值是1;当103<t <6时,BON COM AOC MON∠-∠+∠∠不是定值. 【点睛】本题主要考查了角的和差关系的计算,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.7.(1)①5;②OQ 平分∠AOC ,理由详见解析;(2)5秒或65秒时OC 平分∠POQ ;(3)t =703秒. 【解析】【分析】(1)①由∠AOC =30°得到∠BOC =150°,借助角平分线定义求出∠POC 度数,根据角的和差关系求出∠COQ 度数,再算出旋转角∠AOQ 度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ 和∠COQ 度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ =3t ,∠AOC =30°+6t ,根据角平分线定义可知∠COQ =45°,利用∠AOQ 、∠AOC 、∠COQ 角之间的关系构造方程求出时间t ; (3)先证明∠AOQ 与∠POB 互余,从而用t 表示出∠POB =90°﹣3t ,根据角平分线定义再用t 表示∠BOC 度数;同时旋转后∠AOC =30°+6t ,则根据互补关系表示出∠BOC 度数,同理再把∠BOC 度数用新的式子表达出来.先后两个关于∠BOC 的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 8.(1)∠MON的度数为70°.(2)∠MON的度数为62.5°.(3)t的值为20.【解析】【分析】(1)根据角平分线的性质以及角的和差倍关系转化求出角的度数;(2)根据角平分线的性质可以求得:∠MON=12(∠AOB+∠COD)﹣∠COD,代入数据即可求得;(3)由题意得∠AON=12(20°+3t+15°),∠BOM=12(140°﹣20°﹣3t),由此列出方程即可求解.【详解】(1)∵ON平分∠AOC,OM平分∠BOC,∴∠CON=12∠AOC,∠COM=12∠BOC∠MON=∠CON+∠COM=12(∠AOC+∠BOC)=12∠AOB又∠AOB=140°∴∠MON=70°答:∠MON的度数为70°.(2)∵OM平分∠BOC,ON平分∠AOD,∴∠COM=12∠BOC,∠DON=12∠AOD即∠MON=∠COM+∠DON﹣∠COD=12∠BOC+12∠AOD﹣∠COD=12(∠BOC+∠AOD)﹣∠COD.=12(∠BOC+∠AOC+∠COD)﹣∠COD=12(∠AOB+∠COD)﹣∠COD=12(140°+15°)﹣15°=62.5°答:∠MON的度数为62.5°.(3)∠AON=12(20°+3t+15°),∠BOM=12(140°﹣20°﹣3t)又∠AON:∠BOM=19:12,12(35°+3t)=19(120°﹣3t)得t=20答:t的值为20.【点睛】本题考查了与角平分线有关的计算,根据角平分线的定义得出所求角与已知角的关系转化,然后根据已知条件求解是解决问题的关键.9.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.10.(1)10.5°或14°或28°或31.5°;(2)74或218或212或634【解析】【分析】(1)分4种情况,根据奇分线定义即可求解;(2)分4种情况,根据奇分线定义得到方程求解即可.【详解】解:(1)如图1,∵∠MPN=42°,∵当PQ是∠MPN的3等分线时,∴∠MPQ=13∠MPN=13×42°=14°或∠MPQ=23∠MPN=23×42°=28°∵当PQ是∠MPN的4等分线时,∴∠MPQ=14∠MPN==14×42°=10.5°或∠MPQ=34∠MPN=34×42°=31.5°;∠MPQ=10.5°或14°或28°或31.5°;(2)依题意有①当3×8t=42时,解得t=74;②当2×8t=42时,解得t=218;③当8t=2×42时,解得t=212.④当8t=3×42时,解得:t=634,故当t为74或218或212或634时,射线PN是∠EPM的“奇分线”.【点睛】本题考查了旋转的性质,新定义奇分线,以及学生的阅读理解能力及知识的迁移能力.理解“奇分线”的定义是解题的关键.11.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.12.(1)4;16;(2)83秒或8秒;(3)点P和点Q运动4,8,9或11秒时,,P Q两点之间的距离为4,此时点Q表示的数对应为20,24,25或27【解析】【分析】(1)根据非负数的性质求出a、b的值即可解决问题;(2)设运动时间为t秒,根据点P到点A的距离是点P到点B距离的2倍,分点P在点B 的左、右两侧构建方程即可解决问题;(3)设点P和点Q运动y秒时,P、Q两点之间的距离为4,分四种情形:当点P未到达C处且在Q点左侧时;当点P未到达C处且在Q点右侧时;当点P到达点C处后返回且Q 在P的左侧时;当点P到达点C处后返回且Q在P的右侧时,分别构建方程即可解决问题.【详解】解:(1)∵a,b满足|4a-b|+(a-4)2=0,∴4a-b=0,a-4=0,∴a=4,b=16,故答案为:4;16;点A、B的位置如图所示.(2)设运动时间为t秒,则AP=3t,点P表示数为4+3t,当点P在点B左侧时,PB=16-(4+3t)=12-3t,∴3t=2(12-3t),解得t=83;当点P在点B右侧时,PB=4+3t-16=3t-12,∴3t=2(3t-12),解得t=8,∴运动时间为83或8秒时,点P到点A的距离是点P到点B的距离的2倍;(3)设点P和点Q运动y秒时,P、Q两点之间的距离为4,从运动开始到结束过程中存在如下符合题意的四种情况:当点P未到达C处且在Q点左侧时,有PQ=AQ-AP,∴12+y-3y=4,解得y=4;当点P未到达C处且在Q点右侧时,有PQ=AP-AQ,∴3y-(12+y)=4,解得y=8;当点P到达点C处后返回且Q在P的左侧时,有12+y+4+3y=52,解得y=9;当点P到达点C处后返回且Q在P的右侧时,有12+y+3y-4=52,解得y=11.即点P和点Q运动4,8,9或11秒时,P,Q两点之间的距离为4,此时点Q表示的数对应为20,24,25或27.【点睛】本题主要考查了非负数的性质,数轴上的动点问题,一元一次方程的应用等知识,解题的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.。

七年级上册数学 压轴解答题(培优篇)(Word版 含解析) 汇编经典

七年级上册数学 压轴解答题(培优篇)(Word版 含解析) 汇编经典

七年级上册数学 压轴解答题(培优篇)(Word 版 含解析) 汇编经典一、压轴题1.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。

(1)例如,当n=2时,a 2=2²−32×2+247=187,则a 5=___,a 6=___; (2)第n 层比第(n+1)层多堆放多少个仪器箱;(用含n 的代数式表示)(3)假设堆放时上层仪器箱的总重量会对下一层仪器箱产生同样大小的压力,压力单位是牛顿,设每个仪器箱重54 牛顿,每个仪器箱能承受的最大压力为160牛顿,并且堆放时每个仪器箱承受的压力是均匀的。

①若仪器箱仅堆放第1、2两层,求第1层中每个仪器箱承受的平均压力; ②在确保仪器箱不被损坏的情况下,仪器箱最多可以堆放几层?为什么?2.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.3.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新七年级数学上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .2.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”.3.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =4.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)(2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.5.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.6.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.7.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?8.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?9.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 10.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 11.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.12.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)3,3,1a -;(2)①42c -;②72-或152;③6 【解析】 【分析】(1)根据两点间的距离公式解答即可;(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可.【详解】解:(1)数轴上表示2和5的两点之间的距离是523-=;数轴上表示﹣2和﹣5两点之间的距离是()()253---=; 数轴上表示1和a 的两点之间的距离是1a -; 故答案为:3,3,1a -; (2)①∵电子蚂蚁在点A 的左侧,∴11AC c c =--=--,55BC c c =-=-, ∴1542AC BC c c c +=--+-=-;②若电子蚂蚁在点A 左侧,即1c <-,则10c +<,50c -<, ∵1511c c ,∴()()1511c c -+--=,解得:72c =-; 若电子蚂蚁在点A 、B 之间,即15c -≤≤,则10c +>,50c -<, ∵1511c c ,∴15611c c ++-=≠,故此种情况不存在;若电子蚂蚁在点B 右侧,即5c >,则10c +>,50c ->, ∵1511c c ,∴()()1511c c ++-=,解得:152c =; 综上,c 表示的数是72-或152; ③∵代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,∴当15c -≤≤时,代数式15c c 的最小值是()516--=,即代数式15c c 的最小值是6.故答案为:6. 【点睛】本题考查了数轴上两点间的距离、绝对值的化简和应用以及简单的一元一次方程的解法等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键. 2.(1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析【解析】 【分析】(1)根据“相伴数对”的定义,将()1,b 代入2323a b a b++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. 【详解】解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫- ⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49mn 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭将:491,94a nb n =-+=- 代入2323a b a b++=+左边=49149942336n n n -+--+= 右边=49149942336n n n -++--=+∴左边=右边∴当(),m n 是“相伴数对”时, 91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对” 【点睛】本题考查定义新运算,正确理解定义是解题关键. 3.(1)3;(2)12或74-;(3)13秒或79秒 【解析】 【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可. 【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1, ∴线段AB 的长度为:-1-(-4)=3; (2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--, 解得:x=12或x=74-, ∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+, 解得:t=13或t=79, ∴13秒或79秒后,OA=3OB . 【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.4.(1)是;(2)30︒或40︒或20︒;(3)4t =或10t =或16t =;(4)2t =或12t =. 【解析】 【分析】(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知结论;(2)根据二倍角线的定义分2,2,2AOB AOC AOC BOC BOC AOC ∠=∠∠=∠∠=∠三种情况求出AOC ∠的大小即可.(3)当射线OP ,OQ 旋转到同一条直线上时,180POQ ︒∠=,即180POA AOB BOQ ︒∠+∠+∠=或180BOQ BOP ︒∠+∠=,或OP 和OQ 重合时,即360POA AOB BOQ ︒∠+∠+∠=,用含t 的式子表示出OP 、OQ 旋转的角度代入以上三种情况求解即可;(4)结合“二倍角线”的定义,根据t 的取值范围分04t <<,410t ≤<,1012t <≤,1218t <≤4种情况讨论即可. 【详解】解:(1)若OC 为AOB ∠的角平分线,由角平分线的定义可得2AOB AOC ∠=∠,由二倍角线的定义可知一个角的角平分线是这个角的“二倍角线”; (2)当射线OC 为AOB ∠的“二倍角线”时,有3种情况,①2AOB AOC ∠=∠,60,30AOB AOC ︒︒∠=∴∠=;②2AOC BOC ∠=∠,360AOB AOC BOC BOC ︒∠=∠+∠=∠=,20BOC ︒∴∠=,40AOC ︒∴∠=;③2BOC AOC ∠=∠,360AOB AOC BOC AOC ︒∠=∠+∠=∠=,20AOC ︒∴∠=,综合上述,AOC ∠的大小为30︒或40︒或20︒;(3)当射线OP ,OQ 旋转到同一条直线上时,有以下3种情况, ①如图此时180POA AOB BOQ ︒∠+∠+∠=,即206010180t t ︒︒︒︒++=,解得4t =; ②如图此时点P 和点Q 重合,可得360POA AOB BOQ ︒∠+∠+∠=,即206010360t t ︒︒︒︒++=,解得10t =;③如图此时180BOQ BOP ︒∠+∠=,即1060(36020)180t t ︒︒︒︒︒⎡⎤+--=⎣⎦,解得16t =,综合上述,4t =或10t =或16t =;(4)由题意运动停止时3602018t ︒︒=÷=,所以018t <≤, ①当04t <<时,如图,此时OA 为POQ ∠的“二倍角线”,2AOQ POA ∠=∠, 即6010220t t ︒︒︒+=⨯,解得2t =; ②当410t ≤<时,如图,此时,180,180AOQ AOP ︒︒∠>∠>,所以不存在; ③当1012t <≤时,如图此时OP 为AOQ ∠的“二倍角线”,2AOP POQ ∠=∠, 即360202(201060360)t t t ︒︒︒︒︒︒-=⨯++- 解得 12t =;④当1218t <≤时,如图,此时180,180AOQ AOP ︒︒∠>∠>,所以不存在;综上所述,当2t =或12t =时,OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”. 【点睛】本题考查了一元一次方程的应用,正确理解“二倍角线”的定义,找准题中角之间等量关系是解题的关键. 5.(1)5cm ;(2)2a b +;(3)线段MN 的长度变化,2a b MN +=,2a b -,2b a-. 【解析】 【分析】(1)根据点M 、N 分别是AC 、BC 的中点,先求出CM 、CN 的长度,则MN CM CN =+;(2)根据点M 、N 分别是AC 、BC 的中点,12CM AC =,12CN BC =,所以()122a bMN AC BC +=+=; (3)长度会发生变化,分点C 在线段AB 上,点B 在A 、C 之间和点A 在B 、C 之间三种情况讨论. 【详解】(1)6AC cm =,M 是AC 的中点, ∴132CM AC ==(cm ),4BC cm =,N 是CB 的中点,∴122CN CB ==(cm ),∴325MN CM CN =+=+=(cm ); (2)由AC a =,M 是AC 的中点,得1122CM AC a ==,由BC b =,N 是CB 的中点,得1122CN CB b ==,由线段的和差,得222a b a bMN CM CN +=+=+=;(3)线段MN 的长度会变化.当点C 在线段AB 上时,由(2)知2a bMN +=,当点C 在线段AB 的延长线时,如图:则AC a BC b =>=,AC a =,点M 是AC 的中点, ∴1122CM AC a ==, BC b =,点N 是CB 的中点,∴1122CN BC b ==, ∴222a b a b MN CM CN -=-=-= 当点C 在线段BA 的延长线时,如图:则AC a BC b =<= , 同理可得:1122CM AC a ==, 1122CN BC b ==, ∴222b a b a MN CN CM -=-=-=, ∴综上所述,线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【点睛】本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大. 6.13t =,233AP =或t =3,AP =11. 【解析】【分析】 根据题意可以分两种情况:①当P 向左、Q 向右运动时,根据PQ=OP+OQ+BO 列出关于t 的方程求解,再求出AP 的长;②当P 向右、Q 向左运动时,根据PQ=OP+OQ-BO 列出关于t 的方程求解,再求出AP 的长.【详解】解:∵12AB =,4OB =,∴8OA =.根据题意可知,OP=t ,OQ=2t .①当P 向左、Q 向右运动时,则PQ=OP+OQ+BO ,∴245t t ++=,∴13t =. 此时OP =13,123833AP AO OP =-=-=; ②当P 向右、Q 向左运动时,PQ=OP+OQ-BO ,∴245t t +-=,∴3t =.此时3OP =,8311AP AO OP =+=+=.【点睛】本题考查数轴、线段的计算以及一元一次方程的应用问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.7.(1)2;(2)52x MC =+;(3)当25x =-或6x =时,有2AP CM PC -=成立. 【解析】【分析】(1)根据中点的定义,即可求出点C 的坐标;(2)先表示出点M 的数,然后利用线段上两点之间的距离,即可表示出MC 的长度; (3)分别求出AP ,MC 和PC 的长度,结合题意,分为三种情况进行讨论,即可求出x 的值.【详解】解:(1)点A 表示的数为10-,点B 表示的数为14,∴线段AB=14(10)24--=,∴点C 表示的数为:142422-÷=;(2)根据题意,点M 表示的数为:142x +, ∴线段MC 的长度为:142522x x +-=+; (3)根据题意,线段AP 的长度为:10x +,线段MC 的长度为:52x +, 线段PC 的长度为:2x -,∵2AP CM PC -=, ∴10(5)222x x x +-+=-, 整理得:15242x x -=+, ①当点P 在点C 的左边时,2x <,则20x ->, ∴15242x x -=+, 解得:25x =-; ②当点P 与点C 重合时,2x =,∴15042x +=, 解得:10x =-(不符合题意,舍去);③当点P 在点C 的右边时,2x >,则20x -<, ∴15242x x -=+, 解得:6x =. ∴当25x =-或6x =时,有2AP CM PC -=成立. 【点睛】本题考查了数轴上的动点的问题,数轴上两点之间的距离,解一元一次方程,以及绝对值的意义,解题的关键是掌握数轴上两点之间的距离.8.(1)45;(2)(1)2n n -;(3)(1)2n n -;(4)共需拍照991张,共需冲印2025张纸质照片【解析】【分析】(1)根据规律可知:一条直线上有10个点,线段数为整数1到10的和;(2)根据规律可知:一条直线上有n 个点,线段数为整数1到n 的和;(3)将角的两边看着线段的两个端点,那么角的个数与直线上线段的问题一样,根据线段数的规律探究迁移可得答案;(4)把45名学生看着一条直线上的45点,每2名学生拍1张两人照看着两点成的线段,那么根据(2)的规律即可求出两人合影拍照多少张,再加上集体照即可解答共拍照片张数,然后根据两人合影冲印,集体合影45张计算总张数即可.【详解】解:(1) 一条直线上有10个点,线段共有1+2+3+……+10=45(条).故答案为:45;(2) 一条直线上有n 个点,线段共有122)3(1n n n ⋯⋯+=-+++条. 故答案为:(1)2n n -; (3)由(2)得:具有公共端点的n 条射线OA 、OB 、OC …共形成(1)2n n -个角; 故答案为:(1)2n n -; (4)解:4545-119912+=() 45×(45-1)+1×45=2025 答:共需拍照991张,共需冲印2025张纸质照片【点睛】此题主要考查了线段的计数问题,体现了“具体---抽象----具体”的思维探索过程,探索规律、运用规律.解本题的关键是找出规律,此类题目容易数重或遗漏,要特别注意.9.(1)1D ;2D ,3D (2)点P 表示的数为24或212. 【解析】【分析】(1)分别计算D 1,D 2,D 3三点与M,N 的距离,再根据新定义的概念得到答案;(2)设点P 表示的数为x ,分以下情况列方程求解:①2NP NM =;②2NP NM =.【详解】解:(1)D 1M=3,D 1N=6,2D 1M=D 1N ,故D 1符合题意;D 2M=6.5,D 2N=2.5,故D 2不符合题意;D 3M=14,D 3N=5,故D 3不符合题意;因此点D 1是点,M N 的“倍联点”.又2D 2N= D 3N ,∴点N 是D 2,D 3的“倍联点”.故答案为:D 1;D 2,D 3.(2)设点P 表示的数为x ,第一种情况:当2NP NM =时,则62[6(3)]x -=⨯--,解得24x =.第二种情况:当2NP NM =时,则2(6)6(3)x -=--, 解得:212x =. 综上所述,点P 表示的数为24或212. 【点睛】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义的概念是解题的关键.10.(1)∠MON 的度数为80°;(2)∠MON 的度数为70°或90°;(3)t 的值为21.【解析】【分析】(1)根据角平分线的定义进行角的计算即可;(2)分两种情况画图形,根据角平分线的定义进行角的计算即可;(3)根据(2)中前一种情况用含t 的式子表示角度,再根据已知条件即可求解.【详解】解:(1)因为∠AOD =160°,OM 平分∠AOB ,ON 平分∠BOD ,所以∠MOB =12∠AOB ,∠BON =12∠BOD , 即∠MON =∠MOB+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD)=12∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠BON=12∠BOD,①射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×180°﹣20°=70°;②射线OC在OB右侧时,如图:∠MON=∠MOC+∠BON+∠BOC=12∠AOC+12∠BOD+∠BOC=12(∠AOC+∠BOD)+∠BOC=12(∠AOD﹣∠BOC)+∠BOC=12×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中的第一种情况,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=12∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t°.∵射线ON平分∠BOD,∴∠DON=12∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.根据(2)中的第二中情况,观察图形可知:这种情况不可能存在∠AOB=10°.答:t的值为21.【点睛】本题考查角平分线的定义,角的计算.解决本题的关键是利用已知(已设)角,去计算或者表示未知角.11.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,12.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.。

相关文档
最新文档