典型电动机控制原理图及解说
精心整理的10例电控原理图,附带讲解,建议收藏!
精心整理的10例电控原理图,附带讲解,建议收藏!一、缺辅助触点的交流接触器应急接线当交流接触器的辅助触点损坏无法修复而又急需使用时,采用图12中所示的接线方法,可满足应急使用要求。
按下SB1,交流接触器KM吸合。
放松按钮SB1后,KM的触点兼作自锁触点,使接触器自锁,因此KM仍保持吸合。
图中SB2为停止按钮,在停止时,按动SB2的时间要长一点。
否则,手松开按钮后,接触器又吸合,使电动机继续运行。
这是因为电源电压虽被切断,但由于惯性的作用,电动机转子仍然转动,其定子绕组会产生感应电动势,一旦停止按钮很快复位,感应电动势直接加在接触器线圈上,使其再次吸合,电动机继续运转。
接触器线圈电压为380V时,可按图12(a)所示接线;接触器线圈电压为220V时,可按图12(b)接线。
图12(a)的接线还有缺陷,即在电动机停转时,其引出线及电动机带电,使维修不大安全。
因此,这种线路只能在应急时采用,并在维修电动机时,应断开控制电动机的总电源开关QS,这一点应特别注意。
图12 缺辅助触点的交流接触器应急接线二、速电动机2Y/2Y接线方法图8所示是2Y/2Y电动机双速定子线组的引出线接线方法。
按图8(a)连接是一种转速,按图8(b)连接得到另一种转速。
图8 双速电动机2Y/2Y接线方法图8 双速电动机2Y/2Y接线方法三、电动机接线一般常用三相交流电动机接线架上都引出6个接线柱,当电动机铭牌上标为Y形接法时,D6、D4、D5相连接,D1~D3接电源;为△形接法时,D6与D1连接,D4与D2连接,D5与D3连接,然后D1~D3接电源。
可参见图1所示连接方法连接。
图1 三相交流电动机Y形和△形接线方法四、三相吹风机接线有部分三相吹风机有6个接线端子,接线方法如图2所示。
采用△形接法应接入220V三相交流电源,采用Y形接法应接入380V三相交流电源。
一般3英寸、3.5英寸、4英寸、4.5英寸的型号按此法接。
其他吹风机应按其铭牌上所标的接法连接。
电机正反转控制原理电路图、电路分析及相关资料
双重联锁(按钮、接触器)正反转控制电路原理图电机双重联锁正反转控制一、线路的运用场合Array正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。
如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;圈板机的辊子的正反转;电梯、起重机的上升与下降控制等场所。
二、控制原理分析(1)、控制功能分析:怎样才能实现正反转控制?为什么要实现联锁?电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。
由于将两相相序对调,故须确保2个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
为安全起见,常采用按钮联锁(机械)和接触器联锁(电气)的双重联锁正反转控制线路(如原理图所示);使用了(机械)按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。
另外,由于应用的(电气)接触器间的联锁,所以只要其中一个接触器得电,其长闭触点(串接在对方线圈的控制线路中)就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护的电机,同时也避免在调相时相间短路造成事故,烧坏接触器。
(2)、工作原理分析:A、正转控制:按下SB1常闭触头先断开(对KM2实现联锁)SB1常开触头闭合KM1线圈得电KM1电机M启动连续正转工作KM1KM1联锁触头断开(对KM2实现联锁)B、反转控制:M失电,停止正转SB2按下线圈得电SB2KM2电机M启动连续反转工作KM2主触头闭合KM2联锁触头断开(对KM1实现联锁)C、停止控制:按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转;三、双重联锁正反转控制线路的优点接触器联锁正反转控制线路虽工作安全可靠但操作不方便;而按钮联锁正反转控制线路虽操作方便但容易产生电源两相短路故障。
电动机控制原理图
三相异步电动机启动控制原理图1、三相异步电动机的点动控制点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。
所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。
典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。
点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。
其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。
点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。
按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。
当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。
在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。
2.三相异步电动机的自锁控制三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。
接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。
它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。
欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。
“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。
因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即电动机接通电源但不转动)的现象,以致损坏电动机。
常用电机控制电路图
SB2
KM1
KM2
KT1 KM2
KT2
KM3 KT3 KM4
KM3 KM4
KM1 KT1 KM2 KT2 KM3 KT3 KM4
图2-15(c)
第二十二页,共33页。
(c) 电路 的动
作 (dò ngz uò) 时序
FR SB1
SB2
KM1
KM2
KT1 KM2
KT2
KM3 KT3 KM4
KM1
KM3 KM4
L1 L2 L3
QS FU
KM2
KM1 R
FR
M
第二页,共33页。
控制线路:
1、基本原理:用时间继电器 KT控制KM1、KM2切换。
2、KM1、KM2允许同时吸合, 但是电动机正常运行后,一 般(yībān)应该将KM1释放, 以降低运行损耗。
3、图2-8(a)为KM1不退出 的控制线路。
4、图2-8(b)为KM1退出而 KT 不退出的控制线路。
SB2
KM1
1、按时间原则(yuánzé)控 制
M
KT1
KT2
KT3
KM4 3R
KM3
KM1 KT1 KM2 KT2 KM3 KT3 KM4
2R
(a)基本(jīběn)电
KM2 1R
图2-15时间原则控制路(kòngzhì)转子电路串
电阻起动控制(kòngzhì)线路
第十八页,共33页。
基 本 电 路
KM1 KM2 KT
KM2先通电,KM1后断电(duàn diàn); KM1,KM2同时切换; KM1先断电(duàn diàn),KM2
后通电
第八页,共33页。
自锁回路(huílù)的转换
电机正反转控制原理电路图、电路分析及相关
双重联锁(按钮、接触器)正反转控制电路原理图电机双重联锁正反转控制一、线路的运用场合Array正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。
如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;圈板机的辊子的正反转;电梯、起重机的上升与下降控制等场所。
二、控制原理分析(1)、控制功能分析:怎样才能实现正反转控制?为什么要实现联锁?电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。
由于将两相相序对调,故须确保2个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
为安全起见,常采用按钮联锁(机械)和接触器联锁(电气)的双重联锁正反转控制线路(如原理图所示);使用了(机械)按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。
另外,由于应用的(电气)接触器间的联锁,所以只要其中一个接触器得电,其长闭触点(串接在对方线圈的控制线路中)就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护的电机,同时也避免在调相时相间短路造成事故,烧坏接触器。
(2)、工作原理分析:A、正转控制:按下SB1常闭触头先断开(对KM2实现联锁)SB1常开触头闭合KM1线圈得电KM1电机M启动连续正转工作KM1KM1联锁触头断开(对KM2实现联锁)B、反转控制:M失电,停止正转SB2按下线圈得电SB2KM2电机M启动连续反转工作KM2主触头闭合KM2联锁触头断开(对KM1实现联锁)C、停止控制:按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转;三、双重联锁正反转控制线路的优点接触器联锁正反转控制线路虽工作安全可靠但操作不方便;而按钮联锁正反转控制线路虽操作方便但容易产生电源两相短路故障。
电机正反转控制原理电路图、电路分析及相关资料(电工进网作业证考试)
双重联锁(按钮、接触器)正反转控制电路原理图电机双重联锁正反转控制一、线路的运用场合Array正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。
如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;圈板机的辊子的正反转;电梯、起重机的上升与下降控制等场所。
二、控制原理分析(1)、控制功能分析:怎样才能实现正反转控制?为什么要实现联锁?电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。
由于将两相相序对调,故须确保2个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
为安全起见,常采用按钮联锁(机械)和接触器联锁(电气)的双重联锁正反转控制线路(如原理图所示);使用了(机械)按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。
另外,由于应用的(电气)接触器间的联锁,所以只要其中一个接触器得电,其长闭触点(串接在对方线圈的控制线路中)就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护的电机,同时也避免在调相时相间短路造成事故,烧坏接触器。
(2)、工作原理分析:A、正转控制:按下SB1常闭触头先断开(对KM2实现联锁)SB1常开触头闭合KM1线圈得电KM1电机M启动连续正转工作KM1KM1联锁触头断开(对KM2实现联锁)B、反转控制:M失电,停止正转SB2按下线圈得电SB2KM2电机M启动连续反转工作KM2主触头闭合KM2联锁触头断开(对KM1实现联锁)C、停止控制:按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转;三、双重联锁正反转控制线路的优点接触器联锁正反转控制线路虽工作安全可靠但操作不方便;而按钮联锁正反转控制线路虽操作方便但容易产生电源两相短路故障。
17张经典动态图带您看懂电动机运行原理,明白的都是大神
17张经典动态图带您看懂电动机运⾏原理,明⽩的都是⼤神电动机电动机是⼀种旋转式电动机器,它将电能转变为机械能,它主要包括⼀个⽤以产⽣磁场的电磁铁绕组或分布的定⼦绕组和⼀个旋转电枢或转⼦。
在定⼦绕组旋转磁场的作⽤下,其在电枢⿏笼式铝框中有电流通过并受磁场的作⽤⽽使其转动。
这些机器中有些类型可作电动机⽤,也可作发电机⽤。
它是将电能转变为机械能的⼀种机器。
通常电动机的作功部分作旋转运动,这种电动机称为转⼦电动机;也有作直线运动的,称为直线电动机。
右⼿螺旋定则(安培定则):⽤右⼿握住通电螺线管,让四指指向电流的⽅向,那么⼤拇指所指的那⼀端是通电螺线管的N极。
线圈通电后,转⼦中的电流与⽓隙中的磁场发⽣相互作⽤,换向器不断改变线圈电流⽅向,作⽤在线圈的磁场⼒推动转⼦旋转:电动机⼯作原理:直流电机的设计中,如果采⽤两个线圈(两极),在静⽌状态时,线圈与磁场平衡,线圈产⽣的转动⼒矩⽆法克服磁场的阻⼒,转动不起来,除⾮使⽤外⼒破坏这种平衡。
所以通常不采⽤偶数个电极,主要还是启动⽅⾯的考虑:电动机的分类按⼯作电源分类可分为直流电动机和交流电动机。
其中交流电动机还分为单相电动机和三相电动机。
按结构及⼯作原理分类可分为直流电动机,异步电动机和同步电动机。
同步电动机还可分为永磁同步电动机、磁阻同步电动机和磁滞同布电动机。
异步电动机可分为感应电动机和交流换向器电动机。
感应电动机⼜分为三相异步电动机、单相异步电动机和罩极异步电动机等。
交流换向器电动机⼜分为单相串励电动机、交直流两⽤电动机和推斥电动机。
直流电动机按结构及⼯作原理可分为⽆刷直流电动机和有刷直流电动机。
有刷直流电动机可分为永磁直流电动机和电磁直流电动机。
电磁直流电动机⼜分为串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。
永磁直流电动机⼜分为稀⼟永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。
按起动与运⾏⽅式分类电动机按起动与运⾏⽅式可分为电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。
电动机定子绕组串联电阻启动控制电路原理图解
电动机定子绕组串联电阻启动控制电路原理图解
电动机启动时,在电动机定子绕组中串联电阻,由于电阻上产生电压降,加在电动机绕组上的电压低于电源电压,待启动后,再将电阻短接,使电动机在额定电压下运行,达到安全启动的目的。
定子绕组串联电阻启动控制线路如图所示。
当启动电动机时,按下按
钮SB1,接触器KM1线圈得电吸合,使电动机串入电阻降压启动。
这时时间继电器KT线圈也得电,KT常开触点经过延时后闭合,使KM2线圈得电吸合。
KM2主触点闭合短接启动电阻,使电动机在全电压下运行。
停机时,按下停机按钮SB2即可。
常用电动机控制电路原理图全解
三相异步电机启动常见方法1、定时自动循环控制电路说明:(技师一)1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。
2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。
3、简述电路工作原理。
注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。
定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。
按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。
同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。
当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。
KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。
这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。
因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。
与按钮SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。
热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。
2、顺序控制电路(范例)顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。
按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。
电工知识:典型电机正反转和自锁控制电路及接线图,值得学习!
电工知识:典型电机正反转和自锁控制电路及接线图,值得学习!为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制电路。
电动机可逆运行控制电路线路分析如下:一、正向启动:1、合上空气开关QF接通三相电源2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接通电动机,电动机这时的相序是L1、L2、L3,即正向运行。
二、反向启动:1、合上空气开关QF接通三相电源2、按下反向启动按钮SB2,KM2通电吸合并通过辅助触点自锁,常开主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。
三、互锁环节:具有禁止功能在线路中起安全保护作用1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。
当正转接触器KM1线圈通电动作后,KM1的辅助常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路环节称为互锁环节。
2、按钮互锁:在电路中采用了控制按钮操作的正反传控制电路,按钮SB2、SB3都具有一对常开触点,一对常闭触点,这两个触点分别与KM1、KM2线圈回路连接。
例如按钮SB2的常开触点与接触器KM2线圈串联,而常闭触点与接触器KM1线圈回路串联。
按钮SB3的常开触点与接触器KM1线圈串联,而常闭触点压KM2线圈回路串联。
这样当按下SB2时只能有接触器KM2的线圈可以通电而KM1断电,按下SB3时只能有接触器KM1的线圈可以通电而KM2断电,如果同时按下SB2和SB3则两只接触器线圈都不能通电。
这样就起到了互锁的作用。
四、电动机正向(或反向)启动运转后,不必先按停止按钮使电动机停止,可以直接按反向(或正向)启动按钮,使电动机变为反方向运行。
常见电动机控制电路图
电机启动常见方法1、定时自动循环控制电路说明:(技师一)1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。
2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。
3、简述电路工作原理。
注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。
定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。
按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。
同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。
当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。
KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。
这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。
因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。
与按钮SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。
热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。
2、顺序控制电路(范例)顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。
按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。
电动机控制原理图
FU1 12
FU2 34
急停按钮SB1,起动按钮SB2 时间继电器KT1,KT2,KT3 交流接触器KM1,KM2,KM2短接接触器 交流接触器KM4为电源接触器
EL SB1
1
2
急停
FR
95
96
SB2 KM1
1
2
KM4
KM2
KM4
KM3
A1
A2
KM4
KM3
KT1
A1
A2
KT1
KM1
A1
A2
KM1
T0
( Y002 )
Y002
( Y000 ) ( Y001 )
17
( END )
Y/△起动转化为PLC控制线路图
日期
电动机控制原理图
11/08/02 文件名:DJKZ-QDBJ.SCH
第4页
设计 朱健 审核
版本 V1.0
注明
Y/△起动控制方式比较
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W XY
Y000 X001 0
X000
( Y000 )
X001 0
X000 2
4
( END )
5
(a)方法1
(b)方法2
电动机 的起保停梯形 图(起动优 先)
( RST Y000 ) ( SET Y000 )
( END )
X000起动按 钮 X001停止按 钮 Y000电机输 出
X000 X002 X003
空气开 关
电动机控制原理图解
电动机控制原理图解
以下是一个简单的电动机控制原理图解:
在图中,电动机被连接到电源和控制电路。
电源为电动机提供所需的电流和电压。
控制电路起到控制电动机启动、停止、变速、反转等功能的作用。
控制电路主要由开关和控制器组成。
开关用于打开或关闭电路,控制电动机的启停。
控制器通过接收输入信号,并根据输入信号做出相应的控制动作,从而控制电动机运行状态。
在电动机控制系统中,通常还会有传感器用于监测电动机的转速、电流、温度等参数信息,并通过反馈信号提供给控制器。
控制器根据传感器反馈的信息,可以调整电动机的运行状态,以保证电动机的安全运行。
总结来说,电动机控制原理图中的电源为电动机提供电力,开关和控制器用于控制电动机的启停和运行状态,传感器则用于监测电动机的参数并提供反馈信号,从而实现对电动机的控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、定时自动循环控制电路说明:1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。
2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。
3、简述电路工作原理。
注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。
定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。
按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。
同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。
当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。
KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。
这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。
因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。
与按钮SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。
热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。
2、顺序控制电路(范例)顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。
按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。
停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。
本电路只有满足M1电动机先起动的条件,才能起动M2电动机。
图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。
KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。
停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。
本电路只有满足M1电动机先起动的条件,才能起动M2电动机。
3、电动机顺序控制电路说明:1、本电路起动顺序是先M1电动机,后M2电动机;停止顺序则相反。
2、PLC(三菱FX0N、FX1N),编程器连接及通电操作。
3、清零操作;程序写入操作;根据梯形图写出指令表。
4、主机上用导线连接电动机顺序控制。
电动机顺序控制电路工作原理:合上电源开关QS,按下起动按钮SB1,接触器K M1得电吸合并自保,M1电动机起动运转。
KM1的另一动合触点闭合,为接触器KM2得电作准备。
按下起动按钮SB2,接触器KM2得电吸合并自保,M2电动机起动运转。
起动顺序是先KM1吸合,M1电动机起动运转;后KM2吸合,M2电动机起动运转。
停车顺序是:只有先按下按钮SB4,使接触器KM2断电释放,KM2的动合触点断开,M2电动机停转后再按S B3,M1电动机才能停止运转。
热继电器FR1、FR2常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。
4、异步电动机可逆控制电路(范例)可逆控制电路(范例)电路工作原理:(图A)按下SB2,KM1得电吸合,电动机起动正转。
按下SB1,KM1断电释放,电动机停转。
按下SB3,KM2得电吸合,电动机起动反转。
按下SB1,KM2断电释放,电动机停转。
缺点:不能同时按下SB2 、SB3按钮,否则电源将短路,电动机无法工作。
原因:主电路接触器KM1、KM2连接到电动机M的是两种相序的电源,若同时吸合,在接触器连接点上电源被短路。
(图B)原理同图A。
在KM1线圈电路中串接了KM2的一个动断触点:同样,在KM2线圈电路中串接了KM1的一个动断触点。
这两个动断触点称互锁触点,这种互锁称电气互锁。
保证了任何时候只有一只接触器吸合,避免了电源短路。
缺点:必须先按停止按钮S B1,电动机停转后,才能起动电动机的另一旋转方向。
(图C)在上图基础上增加了由起动按钮的动断触点构成的机械互锁。
如:按下SB2,串接在KM2线圈电路中SB2动断触点断开了KM2线路。
保证了两个接触器不能同时吸合,又能不按停止按钮直接起动电动机另一旋转方向。
5、双重连锁可逆控制电路说明:1、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。
2、简述电路工作原理双重连锁可逆控制电路工作原理:按起动按钮SB2,KM1吸合并自保,电动机正转。
与按钮SB2常触开点并联的KM1触点为自保触点。
按起动按钮SB3,KM1断电释放,KM2吸合并自保,电动机反转。
SB1为停止按钮。
电路由按钮SB2、SB3的动断触点实现了机械联锁,串联在交流接触器线圈KM1、KM2中的KM2、KM1辅助动断触点实现了电气联锁。
串联在控制电路中的FR动断触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
6、限位开关控制自动往复电路(1)限位开关控制自动往复电路(1)工作原理:按起动按钮SB2,KM1吸合并自保,电动机正转,带动机械设备左移。
当撞块碰压行程开关SQ2时,KM1断电,KM2得电吸合并自保,电动机反转,机械设备右移。
当撞块碰压行程开关SQ1时,KM2断电,KM1得电,电动机又正转左移。
SB1为停止按钮。
电路由按钮SB2、SB3及行程开关SQ1、 SQ2的动断触点实现了机械联锁,串联在交流接触器线圈KM1、KM2中的KM2、KM1辅助触点实现了电气联锁。
串联在控制电路中的FR常闭触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
7、限位开关控制自动往复电路(2)限位开关控制自动往复电路(2)电路工作原理:按起动按钮SB2,KM1吸合并自保,电动机正转,带动机械设备左移。
当撞块碰压行程开关SQ2时,KM1断电,KM2得电吸合并自保,电动机反转,机械设备右移。
当撞块碰压行程开关SQ1时,KM2断电,KM1得电,电动机又正转左移。
SB1为停止按钮。
电路由按钮SB2、SB3及行程开关SQ1、 SQ2的动断触点实现了机械联锁,串联在交流接触器线圈KM1、KM2中的KM2、KM1辅助触点实现了电气联锁。
串联在控制电路中的FR常闭触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
SQ3、SQ4S是左移和右移的终端位置行程开关。
8、星形—三角形起动控制电路星形—三角形起动控制电路工作原理:按起动按钮SB2,接触器KM1、KM3和时间继电器KT线圈得电吸合并自保,电动机星形(Y)接法起动。
当KT预定延时时间结束时,KM3线圈电路中的通电延时断开的动断触点断开,KM3断电释放,电动机星接(Y)起动结束。
此时,KM2线圈电路中的通电延时闭合的动合触点闭合。
KM2线圈得电吸合,电动机改为三角形(△)接法运转。
串联在接触器线圈KM3、KM2电路中的KM2、KM3辅助动合触点实现了电气联锁。
串联在控制电路中的FR动断触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
星形—三角形起动控制电路(2)星形—三角形起动控制电路(3)星形—三角形起动控制电路(3)工作原理:按起动按钮SB2,接触器KM3、KM1和时间继电器KT线圈得电吸合并自保,电动机星形(Y)接法起动。
当KT预定延时时间结束时,KM3线圈电路中的通电延时断开的动断触点断开,KM3断电释放,电动机星接(Y)起动结束,KM2线圈得电吸合,电动机改为三角形(△)接法运转。
串联在控制电路中的FR动断触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
9、自耦变压器减压起动起动控制电路自耦变压器减压起动控制电路工作原理:合上电源开关,按起动按钮SB2,接触器KM1线圈得电吸合并自保,将自耦变压器T接入,电动机定子绕组经自耦变压器供电减压起动;同时,KT线圈得电吸合,计时开始。
当KT整定延时时间结束时,其通电延时闭合的动合触点闭合,使中间继电器KA的线圈得电吸合并自保,KM1断电释放,其主触点断开; KM2线圈得电吸合,其主触点闭合,自耦变压器被切除,电动机全压运行。
自耦变压器减压起动起动控制电路(2)10、时间原则能耗制动控制电路时间原则能耗制动控制电路工作原理:合上电源开关,按起动按钮SB2,接触器KM1线圈得电吸合并自保,电动机起动运转。
当按停止按钮SB1时,KM1线圈断电释放,其主触点断开,定子绕组断电;同时,KM2、KT线圈得电吸合并,KM2主触点闭合,电动机二相定子绕组接入直流电源进行能耗制动。
使电动机转速迅速下降,当机转接近零时,时间继电器KT延时时间到。
其通电延时断开的动断触点断开,使KM2、KT线圈相继断电释放,制动过程结束。
RP为调节制动力大小的限流电阻。
时间原则能耗制动控制电路(2)11、电动机电容制动制动控制电路12、4/2极双速电动机起动电路4/2极双速电动机起动控制电路工作原理:图中KM1为三角形接法(△)接触器,KM2、 KM3为双星形接法(YY)接触器。
合上电源开关,按起动按钮SB2,接触器KM1、KT线圈相继得电吸合并自保,电动机定子绕组接成三角形接法(△)4极起动;经一定时间延时后,KT的通电延时断开的动断触点断开,KM1断电释放,KT的通电延时闭合的动合触点闭合,KM2、 KM3线圈得电吸合并自保,电动机定子绕组接成双星形接法(YY)2极运转。
由于双速电动机定子绕组的接线原因,换极的同时应改变电源的相序。
13、4/2极双速电动机起动电路(2)4/2极双速电动机起动控制电路工作原理:图中KM1为三角形接法(△)接触器,KM2、 KM3为双星形接法(YY)接触器。
合上电源开关,按起动按钮SB2,接触器KM1、KT线圈相继得电吸合并自保,电动机定子绕组接成三角形接法(△)4极起动;经一定时间延时后,KT的通电延时断开的动断触点断开,KM1断电释放,KT的通电延时闭合的动合触点闭合,KM2、 KM3线圈得电吸合并自保,电动机定子绕组接成双星形接法(YY)2极运转。
由于双速电动机定子绕组的接线原因,换极的同时应改变电源的相序。
串联在控制电路中的FR动断触点,是在电动机过负载或缺相过热时热继电器将控制电路自动断开,保护了电动机。
14、CW6140普通车床控制电路CW6140普通车床控制线路分析与故障处理:一、线路分析1、主电路分析主电路有两台电动机,M1为主电动机,M2为冷却泵电动机,QS为电源开关。