函数的概念说课稿(供参考)

合集下载

《函数的概念》说课稿

《函数的概念》说课稿

《函数的概念》说课各位专家、评委:大家好!我说课的内容是数学人教版普通高中新课程标准实验教科书必修1函数第一课时。

我将从背景分析、教学目标设计、教法与学法选择、教学过程设计、教学媒体选择及教学评价设计六个方面来汇报我对这节课的教学设想.一、背景分析1.学习任务分析函数是中学数学一个重要的基本概念,其核心内涵为非空数集到非空数集的一个对应,函数思想是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础;它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础.为此本节课设定的教学重点是“函数概念的形成”.2.学情分析从学生知识层面看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过高一第一节“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证.从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力.教学中由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高.因此,我认为发展学生的抽象思维能力以及对函数概念本质的理解是本节课的教学难点.鉴于上述分析我制定了本节课的教学目标.二、教学目标设计目标了解:通过丰富实例让学生了解函数是非空数集到非空数集的一个对应;了解构成函数的三要素;理解:函数概念的本质;抽象的函数符号)(xf的意义;()f x的区别与联系;会求一f a(a为常数)与()些简单函数的定义域;经历:让学生经历函数概念的形成过程,函数的辨析过程,函数定义域的求解过程以及求函数值的过程;渗透归纳推理、发展学生的抽象思维能力;体验:通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和简洁美.[设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现了素质教育的要求.三、教法与学法选择任何一堂课都是各种不同教学方法综合作用的结果,但我们认为本堂课有以下主要的教法和学法.1.问题式教学法:本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,这刚好也符合建构主义的教学理论.2.探究式学法:新课程要求课堂教学的着力点是尊重学生的主体地位,发挥学生的主动精神,培养学生的创新能力,使学生真正成为学习的主体,结合本堂课的特点,我倡导的是探究式学法;让学生在探究问题的过程中,通过老师的引导归纳概括出函数的概念,通过问题的解决,达到熟练理解函数概念的目的,从而让学生由“被动学会”变成“主动会学”.四、教学过程设计(一).结构分析为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段:(二).教学过程课题引入20XX年9月5日0时14分,我国在西昌卫星发射中心用“长征三号乙”运载火箭,成功将“鑫诺六号”通信广播卫星送入太空。

2024年《函数的概念》说课稿(7篇)

2024年《函数的概念》说课稿(7篇)

2024年《函数的概念》说课稿(7篇)《函数的概念》说课稿1一、本课时在教材中的地位及作用教材采用北师大版(数学)必修1,函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。

__节9个课时,函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。

在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。

这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节课《函数的概念》是函数这一章的起始课。

概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。

本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。

也为进一步学习函数这一章的其它内容提供了方法和依据二、教学目标理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

三、重难点分析确定根据上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是__的难点。

四、教学基本思路及过程本节课《函数的概念》是函数这一章的起始课。

概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。

本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。

⑴学情分析一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

《函数的概念》说课稿(通用9篇)

《函数的概念》说课稿(通用9篇)

《函数的概念》说课稿(通用9篇)《函数的概念》说课稿(通用9篇)作为一位兢兢业业的人民教师,通常需要准备好一份说课稿,说课稿有助于提高教师的语言表达能力。

那么你有了解过说课稿吗?以下是小编整理的《函数的概念》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

《函数的概念》说课稿篇1一、说教材首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2.1的内容,本节课的内容是函数概念。

函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。

又是沟通代数、方程、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。

函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。

二、说学情接下来谈谈学生的实际情况。

新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。

本阶段的学生已经具备了一定的分析能力,以及逻辑推理能力。

所以,学生对本节课的学习是相对比较容易的。

三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。

(二)过程与方法通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。

(三)情感态度价值观在自主探索中感受到成功的喜悦,激发学习数学的兴趣。

四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。

而教学重点的确立与我本节课的内容肯定是密不可分的。

那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。

本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。

函数的概念说课稿

函数的概念说课稿

函数的概念说课稿各位评委、各位老师,今天我要说的课题是“函数的概念及性质”。

我将从教材分析、学情分析、教学目标分析、教法与学法、教学过程设计、教学效果评价六个方面进行说明。

一、教材分析一)教学内容函数的概念及性质”是苏教版高中数学必修1第二章第一节内容。

本节课为第一课时,主要讲解函数的概念、定义域、值域等基本内容。

这节课是后面研究函数的性质的理论基础,为后面研究指数函数、对数函数以及三角函数的图像和性质提供了研究方法和理论基础。

同时,这节课内容蕴含着数形结合等丰富的数学思想,是培养学生观察能力、概括能力、探究能力和创新意识的重要题材。

二)教材的地位和作用本节内容是继学生在初中研究了简单的一次函数、反比例函数、二次函数的基础上展开的,因此这节课有承前启后的作用,是本章和本节的重点内容之一。

三)教学重难点分析本节课的重点是函数的概念及其定义域、值域。

为了突出重点,教师应启发引导,让学生自主探索,用集合的语言描述出函数的概念,并通过课堂例题及练巩固所学知识。

本节课的难点是用集合的语言描述函数的概念。

为了突破此难点,关键是让学生理解函数自变量和变量的本质,并引导学生从集合的角度理解函数的定义域和值域。

二、学情分析通过初中函数知识的研究,学生在知识上已经具备了一定的知识经验和基础,在能力上,已经初步具备了运用数形结合思想解决问题的能力。

但数形结合的意识和思维的深刻性还有待进一步加强。

在情感方面,多数学生对教学新内容的研究,有相当的研究兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不均衡,需要教师创设民主和谐平等的课堂气氛,加以调动。

三、教学目标分析根据教学大纲的要求,本节教材的特点,学生的认知规律,确定了以下目标:1.知识与技能目标:掌握并理解函数的概念,会求一些简单函数的定义域和值域。

2.过程与方法目标:通过让学生积极参与、亲身经历用集合的语言描述函数概念的获得过程,进一步理解函数的概念,培养学生从感性上升到理性的能力,以及使用数学语言的逻辑性与严谨性。

(数学说课稿)函数的概念和图象 说课稿

(数学说课稿)函数的概念和图象  说课稿

函数的概念和图象说课稿一.本课贯彻的教学理念老师作为课堂的支架,让同学学习函数的过程成为在老师指导下让同学在学习数学的过程中,用自己的体验,用自己的思维方式,重新制造函数概念的过程。

本堂课的教学过程是呈现同学学习行为的过程,是让同学的思维得到呈现的过程。

二.说教材1.教材分析函数一章在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在学问方面,更重要的是在函数的思想、方法方面,将会让同学在今后的学习、工作和生活中受益无穷。

本小节介绍了函数概念和图象,我将本小节分为两课时,第一课时完成函数概念的教学,其次课时完成函数图象的教学。

这里我仅谈函数概念的教学。

函数的概念局部用三个实际例子设计数学情境,让同学探寻变量和变量的对应关系,结合学校学习的函数理论,在集合论的根底上,促使同学建构出函数的概念,体验结合旧学问,探究新学问,争辩新问题的欢快。

2.教学目标〔1〕学问目标1理解函数的概念,同学理解把怎样的对应关系才能称为函数;2理解函数定义域和值域的概念,并会求一些简洁函数的定义域。

〔2〕力量目标由实际问题动身,培育同学探究学问和抽象概括学问等方面的力量。

〔3〕情感目标通过对函数概念形成的探究过程培育同学发觉问题,探究问题,不断超越的创新品质3.教学重点和难点教学重点:对函数的概念的理解是重点。

本课通过同学对函数概念的建构过程和生疏稳固过程突出本课重点。

教学难点:从主观学问抽象成为客观概念是本课的难点。

本课通过老师创设多个教学情境,组织开展同学活动,老师作为同学活动的支架,解决本课的教学难点。

三.说教法曹一鸣博士认为:“突破教学模式,实现无模式教学,才是数学开展所追求的崇高境界。

〞在本课中,老师在教学过程中接受设问、引导、启发、发觉的方法,并机敏应用多媒体手段,以同学为主体,创设和谐、愉悦互动的环境,组织同学自主、合作的探究活动,引导同学探究新学问。

四.说学法首先,同学通过争辩老师在课堂上供应的实例和提出的问题,开放分析和争辩,发表个人的见解,接下来接受同学评价同学的方法提炼问题的中心思想。

八年级下册函数的说课稿8篇

八年级下册函数的说课稿8篇

八年级下册函数的说课稿8篇八年级下册函数的说课稿8篇说课稿需要明确教学手段和教学资源的准备,如多媒体课件、实物展示、活动资源等,以支持教学过程的丰富和生动性。

教学步骤和时间安排,包括教学环节的组织、师生互动的方式、学生活动及练习的设计,以确保课堂教学的有序进行。

现在随着小编一起往下看看八年级下册函数的说课稿,希望你喜欢。

八年级下册函数的说课稿(篇1)一、说教材1、地位与重要性“反函数”一节课是《高中代数》第一册的重要内容。

这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。

2、教学目标(1)使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;(2)使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系;(3)培养学生发现问题、观察问题、解决问题的能力;(4)使学生树立对立统一的辩证思维观点。

3、教学重难点重点是反函数的概念及反函数的求法。

理解反函数概念并求出函数的反函数是高一代数教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。

难点是反函数概念的接受与理解。

学生对于反函数的来历、反函数与原函数间的关系都容易产生错误的认识,必须使学生认清反函数的实质就是函数这一本质问题,才能使学生接受概念并对反函数的存在有正确的认识。

教学中复习函数概念,进而引出反函数概念,就是为突破难点做准备。

二、说教法根据本节课的内容及学生的实际水平,我采取引导发现式教学方法并充分发挥电脑多媒体的辅助教学作用。

引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。

教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。

高中数学函数的说课稿(精选5篇)

高中数学函数的说课稿(精选5篇)

高中数学函数的说课稿(精选5篇)高中数学函数的说课稿(精选5篇)作为一名教职工,时常需要用到说课稿,借助说课稿可以更好地组织教学活动。

那么大家知道正规的说课稿是怎么写的吗?下面是小编帮大家整理的高中数学函数的说课稿(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学函数的说课稿1一、教材说明本节课是人教版高中数学必修I第一章《集合与函数概念》1.2.2函数的表示方法,该课时主要学习函数的三种表示方法:解析法,图像法,列表法,以及应用函数的表示方法解决一些实际问题1.教材所处低位和作用学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所涉及的问题,而且是加深理解函数的概念的过程。

特别是在信息技术的环境下面可以使函数在数与形两方面的方式表示,因而使得学习函数的表示也是向学生渗透数形结合方法的重要过程。

2.学情分析学生的年龄特点和认知特点学生已具备的基本知识与技能二、教学目标知识与技能1.进一步理解函数概念,使学生掌握函数的三种表示法:解析法,列表法,图像法2. 能够恰当运用函数的三种表示方法,并借此解决一些实际问题:初步培养学生实际问题转化为数学问题的能力过程与方法1. 通过三种方法的学习,渗透数形结合的思想2.在运用函数解决实际问题的过程中,培养学生分析问题的能力增强学生运用数学的意识情感态度与价值:让学生体会数学在实际问题中的应用,培养学生学习兴趣三、教学重点,难点重点:函数的三种表示方法(因为学习本节课的目的就是为了掌握函数的三种不同表示方法)难点:根据不同的实际需要选择恰当的方法表示函数(因为恰当比较难把握)四、教法分析与学法指导本着以“学生发展为本”。

引导学生主动参与学习,指导学生学会学习方法,培养学生积极探索的精神,学生为主,教师指导。

整个教学过程主要用启发式教学方法,体现“分析”——“研究”——“总结”的学习环节,并以多媒体为教辅手段。

通过创设问题情境,营造学习氛围,组织学生讨论,让学生尝试探索中不断发现问题,以激发学生的求知欲,并在寻求解决问题的方法尝试的过程中获得自信心和成功感,在完成知识目标的同时,也完成情感目标的教育五、教学过程教学环节教学环节与教学内容设计意图引入定义表示法,这节课将更深入的了解、探讨这三种表示方法,先回顾函数解析法,图像法,列表法的定义;并给出一些众所周知的例子。

函数的概念优质说课稿市公开课一等奖课件名师大赛获奖课件

函数的概念优质说课稿市公开课一等奖课件名师大赛获奖课件
初中已经学过:正比例函数、反比例函数、 一次函数、二次函数等。
1.[引例1](P15)一枚炮弹发射后,通过26s落到地面击 中目的。炮弹的射高为845m,且炮弹距地面的高度h (单位:m)随时间t(单位:s)变化的规律是
h 130t 5t 2
提出下列问题: (1) 炮弹飞行1秒、8秒、15秒、25秒时距地面多高? (2) 炮弹何时距离地面最高? (3) 你能指出变量t和h的取值范畴吗?分别用集合A和 集合B表达出来。 (4) 对于集合A中的任意一种时间t,按照对应关系
P24 A 1----4做作业本上 补充:已知函数
f (x)=4x+3,g(x)=x2,
求f[f(x)],f[g(x)],g[f(x)],g[g(x)].
定义域(domain):x的取值范畴A叫做函数的定义域; 与x值相对应的y值叫做函数值。
值域(range):函数值的集合 f (x) x A B 叫做函数的值域。
函数符号 y f (x)表示“y是x的函数”,
有时简记作函数 f (x)
问题:y=1(x∈R)是函数吗?
(二)已学函数的定义域和值域
练习、 下列各组中的两个函数与否为相似
的函数?

y1
(x
3)(x x3
5)
y2 x 5
②y 1
x 1 x 1 y2
(x 1)(x 1)
③f 1
(
x)
(
2x 5)2
f2 (x) 2x 5
三、小结:
1.函数的定义 2、函数的值: 3、函数的三要素判断同一函数: 4、有关求定义域:
四、作业
例3、 已知:f (x) =x2x+3 求:f(-1), f(a),
f(x+1), f( 1 ), f(f(x)), x

人教版函数的概念说课稿

人教版函数的概念说课稿

人教版函数的概念说课稿一、说课背景与目标在高中数学课程中,函数的概念是一个核心知识点,它是理解许多后续数学概念的基础。

本次说课的内容是人教版高中数学必修一中的“函数的概念”一章。

本章节的主要目标是让学生理解函数的定义、性质和基本的函数类型,为后续学习函数的图像、性质以及应用打下坚实的基础。

二、教学内容与学情分析1. 教学内容概述本节课的教学内容主要包括以下几个方面:- 函数的定义:介绍函数的数学定义,即一个从非空数集X到非空数集Y的映射。

- 函数的表示方法:包括函数的表达式、图像、表格等表示方式。

- 函数的基本概念:如定义域、值域、单调性、奇偶性等。

- 基本初等函数:包括一次函数、二次函数、指数函数、对数函数等。

2. 学情分析高中生已经具备了一定的数学基础,能够理解集合、映射等基本概念,但函数作为一个新的概念,对学生来说可能比较抽象。

因此,在教学过程中需要结合实际例子和图形,帮助学生形象地理解函数的概念和性质。

三、教学目标1. 知识与技能目标学生能够准确理解函数的定义,掌握函数的基本表示方法,了解函数的基本概念,如定义域、值域、单调性、奇偶性等,并能够识别和分析基本初等函数。

2. 过程与方法目标通过观察、比较、归纳等方法,培养学生的抽象思维能力和逻辑推理能力。

通过解决实际问题,提高学生运用函数知识解决实际问题的能力。

3. 情感态度与价值观目标激发学生对数学学习的兴趣,培养学生的数学探究精神和合作学习的意识。

四、教学重点与难点1. 教学重点- 函数的定义和基本概念。

- 函数的表示方法和基本性质。

- 基本初等函数的识别和性质。

2. 教学难点- 函数概念的抽象性,学生可能难以理解。

- 函数性质的理解和应用,尤其是对于函数图像的解读。

五、教学方法与手段1. 启发式教学法:通过提问引导学生思考,激发学生的好奇心和探究欲。

2. 直观教学法:利用图像、表格等直观材料帮助学生理解函数的概念。

3. 讨论式教学法:组织学生进行小组讨论,通过交流和合作深化对函数概念的理解。

《函数的概念》说课稿

《函数的概念》说课稿

《函数的概念》说课稿《函数的概念》说课稿「篇一」【高考要求】:三角函数的有关概念(B)。

【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化。

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切。

【教学重难点】:终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义。

【知识复习与自学质疑】一、问题。

1、角的概念是什么?角按旋转方向分为哪几类?2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?4、弧度制下圆的弧长公式和扇形的面积公式是什么?5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?6、你能在单位圆中画出正弦、余弦和正切线吗?7、同角三角函数有哪些基本关系式?二、练习。

1.给出下列命题:(1)小于的角是锐角;(2)若是第一象限的角,则必为第一象限的角;(3)第三象限的角必大于第二象限的角;(4)第二象限的角是钝角;(5)相等的角必是终边相同的角;终边相同的角不一定相等;(6)角2 与角的终边不可能相同;(7)若角与角有相同的终边,则角(的终边必在轴的非负半轴上。

其中正确的命题的序号是2.设P 点是角终边上一点,且满足则的值是3.一个扇形弧AOB 的面积是1 ,它的周长为4 ,则该扇形的中心角= 弦AB 长=4.若则角的终边在象限。

5.在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是6.若是第三象限的角,则- ,的终边落在何处?【交流展示、互动探究与精讲点拨】例1.如图,分别是角的终边。

(1)求终边落在阴影部分(含边界)的所有角的集合;(2)求终边落在阴影部分、且在上所有角的集合;(3)求始边在OM位置,终边在ON位置的所有角的集合。

例2。

(1)已知角的终边在直线上,求的值;(2)已知角的终边上有一点A ,求的值。

2.1.1函数的概念(第一课时)说课稿

2.1.1函数的概念(第一课时)说课稿

及时反馈与调节原
[认知理论]
一切事物 都是相互联 系的辨证唯 物主义观。
4.总结提高
(1)函数的定义
一般地,设A,B是两个非空的数集,如果按某种对应法则f,对 于集合A中的每一个元数x,在集合B中都有唯一确定的元素y和它 对应,那么这样的对应叫做从A到B的一个函数(function),通常 记为
y=f(x),x∈A.
(1)每一个问题均涉及两个非空的数集A,B.
例如,在第一个问题中,一个集合A是由年份数组成,即 A={1949,1954,1959,1964,1969,1974,1979,1984,1989,1994,1999} 另一个集合B是由人口数(百万人)组成的,即 B={542,603,672,705,807,909,975,1035,1107,1177,1246}
4.总结提高过程的设计意图 指导思想与原则 认知理论
[设计意图]
[指导思想与原则 ]
使学生能够准
确理解并把握函 数的定义及函数 的三要素。
系统性与循序渐进 性相结合的原则。
[认知理论]
认识要不断 的深入和发展。
5.实践创新
例1:根据函数的定义判断下列对应是否为函数:
(1)x 2 , x 0, x R; x
古语中“函”通“含”。
(2)函数概念的分析
对于函数的意义,应从以下几个方面去理解:
(1) 对于变量x允许取的每一个值组成的集合A为函数y=f(x)的定义 域. (2)对于变量y可能取到的每一个值组成的集合B为函数y=f(x)的值 域. (3)变量x与y有确定的对应关系,即对于x允许取的每一个值,y都 有唯一确定的值与它对应。
若一物体下落2s,你能求出它下落距离吗? 这是通过代数表达式来体现:距离随时间的变化而变化

函数的说课稿

函数的说课稿

函数的说课稿一、说教材本文是高中数学课程中函数部分的教学内容,函数作为现代数学的核心概念之一,在数学体系中具有举足轻重的地位。

它不仅是连接代数与几何的桥梁,而且是研究现实世界变化规律的重要数学模型。

在本课中,我们将系统学习函数的基本概念、性质以及其应用。

(1)作用与地位函数部分的学习,旨在帮助学生建立完整的数学观念,培养他们的逻辑思维能力和解决实际问题的能力。

它是整个数学学习过程中的一个关键节点,对于学生理解数学的本质,提高数学素养具有重要意义。

(2)主要内容本节课主要围绕以下内容展开:1. 函数的定义:通过实例引出函数的概念,强调函数是一种特殊的关系,即每个输入值对应唯一的输出值。

2. 函数的性质:介绍函数的单调性、奇偶性、周期性等基本性质,并通过图像加深理解。

3. 函数的应用:通过实际例子,让学生体会函数在现实生活中的应用,激发他们的学习兴趣。

二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能:(1)理解函数的定义,能够准确描述函数的基本概念;(2)掌握函数的基本性质,能够分析并判断函数的单调性、奇偶性、周期性等;(3)能够运用函数解决简单的实际问题。

2. 过程与方法:(1)通过实例分析,培养学生观察、抽象、概括的能力;(2)通过图形表示,培养学生直观想象和空间思维能力;(3)通过小组合作,培养学生合作交流的能力。

3. 情感态度与价值观:(1)激发学生对函数学习的兴趣,培养他们勇于探索、积极进取的精神;(2)使学生认识到数学与现实生活的紧密联系,提高他们的数学应用意识。

三、说教学重难点本节课的教学重点是函数的定义和性质,难点是函数性质的判断和应用。

1. 教学重点:(1)函数的定义:让学生准确理解函数的概念,明确输入值与输出值之间的关系;(2)函数的性质:使学生掌握函数的基本性质,并能运用性质分析函数。

2. 教学难点:(1)函数性质的判断:指导学生通过观察函数图像和解析式,判断函数的单调性、奇偶性、周期性等;(2)函数的应用:引导学生运用所学知识解决实际问题,提高他们的应用能力。

高一数学教案:函数的概念4篇

高一数学教案:函数的概念4篇

高一数学教案:函数的概念高一数学教案:函数的概念精选4篇(一)教案标题:函数的概念教学目标:1. 理解函数的基本概念;2. 能够根据给定的函数定义进行函数值的计算;3. 能够掌握函数的图像表示方法。

教学准备:1. PowerPoint或黑板;2. 教材《高中数学》;3. 教学PPT或教学黑板稿。

教学步骤:步骤一:引入问题(5分钟)1. 通过生活中的例子引导学生思考“什么是函数?”;2. 引导学生记忆和理解“自变量”和“因变量”的概念。

步骤二:函数的定义(10分钟)1. 引导学生学习教科书上的函数定义;2. 解释函数的定义中自变量、因变量和对应规律的含义;3. 通过一些例子帮助学生理解函数的定义。

步骤三:函数的表示方法(10分钟)1. 引导学生学习函数的表示方法;2. 介绍函数的表格表示和解析式表示;3. 通过具体例子的计算来展示函数的表示方法。

步骤四:函数值的计算(15分钟)1. 引导学生学习函数值的计算方法;2. 通过给定函数和自变量求因变量的例子来演示函数值的计算。

步骤五:函数的图像表示(15分钟)1. 引导学生学习函数的图像表示方法;2. 通过函数表格和坐标系画出函数的图像;3. 解释图像上自变量和因变量的含义;4. 引导学生发现函数图像的特点,如单调性和奇偶性。

步骤六:练习与总结(10分钟)1. 给学生提供一些练习题,加深对函数的理解和掌握;2. 回顾课堂内容,让学生总结函数的概念和表示方法。

教学延伸:1. 引导学生进一步探究函数的性质,如定义域、值域、单调性等;2. 引导学生学习更复杂的函数概念,如反函数、复合函数等。

教学反思:通过讲解函数的概念和表示方法,学生能够初步理解函数的含义和计算方法。

在教学过程中,可以适当增加一些生动的例子和练习,培养学生的兴趣和动手能力。

在教学结束前,可以布置一些相关的课后作业,巩固学生的学习成果。

高一数学教案:函数的概念精选4篇(二)教学目标:1. 理解函数的概念,掌握函数的基本性质;2. 掌握函数的表示法:显式表示法、隐式表示法和参数表示法;3. 能够根据题目要求选择适当的函数表示法。

函数的说课稿

函数的说课稿

函数的说课稿尊敬的各位评委老师:大家好!今天我说课的内容是函数。

下面我将从教材分析、学情分析、教学目标、教学重难点、教学方法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析函数是中学数学中的重要概念之一,它不仅是数学学科的基础,也是解决实际问题的有力工具。

本节课选自人教版数学教材必修一,是函数这一章节的起始课。

在教材的编排上,通过丰富的实例引入函数的概念,让学生经历从具体到抽象、从特殊到一般的思维过程,逐步理解函数的本质。

同时,为后续学习函数的性质、函数的应用等内容奠定了基础。

二、学情分析本节课的教学对象是高一年级的学生,他们在初中阶段已经接触过函数的初步知识,对函数有一定的感性认识。

但对于函数的概念,尤其是抽象的符号表达,可能还存在理解上的困难。

这个年龄段的学生思维活跃,具有较强的好奇心和求知欲,但抽象思维能力和逻辑推理能力还有待提高。

因此,在教学中需要通过具体的实例,引导学生逐步深入地理解函数的概念。

基于以上的教材分析和学情分析,我制定了以下的教学目标:1、知识与技能目标(1)理解函数的概念,能准确判断两个变量之间是否构成函数关系。

(2)掌握函数的定义域、值域的求法。

(3)会用区间表示函数的定义域和值域。

2、过程与方法目标(1)通过对具体实例的分析,培养学生的观察、分析和归纳能力。

(2)经历函数概念的形成过程,体会从特殊到一般、从具体到抽象的数学思维方法。

3、情感态度与价值观目标(1)让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。

(2)培养学生勇于探索、敢于创新的精神。

四、教学重难点教学重点:函数的概念,函数的定义域和值域的求法。

教学难点:对函数概念的理解,尤其是函数符号的含义。

为了实现教学目标,突破教学重难点,我将采用以下的教学方法:1、讲授法:讲解函数的概念、定义域和值域的求法等基础知识。

2、启发式教学法:通过设置问题,引导学生思考,培养学生的思维能力。

3、实例分析法:通过分析具体的实例,帮助学生理解函数的概念。

函数的概念说课稿(精选)

函数的概念说课稿(精选)

函数的概念说课稿(精选)篇一:《函数概念》说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。

下面介绍我对本节课的设计和构思,请您多提宝贵意见。

我的说课有以下六个部分:一、背景分析1、学习任务分析2、学情分析学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。

另外,通过对集合的学习,学生基本适应了有效的课堂模式,初步具备了小组合作、自主探究的学习能力。

基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;教学难点为:函数概念的形成及理解。

二、教学目标设计根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。

1、知识与技能(方面)通过丰富的实例,让学生①了解函数是非空数集到非空数集的一个对应;②了解构成函数的三要素;③理解函数概念的本质;⑤会求一些简单函数的定义域。

2、过程与方法(方面)在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。

3、情感、态度与价值观(方面)让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。

三、课堂结构设计为充分调动学生的学习积极性,变被动学习为主动愉快的探究,我使用有效教学的课堂模式,课前学生通过结构化预习,完成问题生成单,课中采用师生互动、小组讨论、学生展写、展讲例题,教师点评的方式完成问题解决单,课后完成问题拓展单,课堂结构包含:复习旧知,引出课题(约2分钟)创设情境,形成概念(约5分钟)剖析概念(约12分钟)例题分析,巩固知识,小组讨论,展写例题(约8分钟)小组展讲,教师点评(约10分钟)总结反思,知识升华(约2分钟)(最后)布置作业,拓展练习。

函数的概念说课教案8篇

函数的概念说课教案8篇

函数的概念说课教案8篇在我们日常的教学生涯中,难免会遇到要写教案的情况,教案是需要结合实际的教学进度和内容的,下面是作者为您分享的函数的概念说课教案8篇,感谢您的参阅。

函数的概念说课教案篇1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国#年4月份非典疫情统计:日期#新增确诊病例数#3、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b 为从集合a到集合b的一个函数(function).记作:y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本p20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本p22第1题2.判断两个函数是否为同一函数课本p21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

《函数的概念》说课稿[规整]

《函数的概念》说课稿[规整]

《函数的概念》说课稿[规整]函数的概念是数学中最基础、最重要的概念之一,更是理解数学本质的关键所在。

在高中数学的教学中,函数的概念被视为数学课程的重头戏,教师需要通过灵活的授课方法来向学生阐述函数的基本概念及其特点,并通过多样的教学方式引导学生深入理解和掌握函数的应用。

一、引入首先,我会展示一个常见的数学问题:“有一条直线过点A和点B,如何绘制这条直线?”这个问题通过平面直角坐标系的概念可以解答。

以直线上的两个点A(x1, y1)和B(x2, y2)为例,我们可以通过两点的坐标差值计算出直线的斜率k,即k=(y2-y1)/(x2-x1),进而绘制出直线,如下图所示。

(示意图)二、引入函数的概念接着,我会介绍另一个问题:“在第一象限内,如何将一个由点组成的图形与其坐标系上的每个点一一对应?”这个问题的答案就是函数的概念。

通过将坐标系上的每个点表示为(x, y)的形式,将x看作自变量,y看作因变量,可以将一个由点组成的图形看作一个函数y=f(x)。

在函数中,自变量x是图形上的点,因变量y是对应的y坐标,通过函数的定义,不同的自变量对应不同的因变量,从而实现对每个点的一一对应。

三、函数的定义及特点在讲解函数的定义时,我将着重强调以下内容:(1)函数的定义函数是一种特殊的关系,将集合A中的元素与集合B中唯一的元素对应起来,即y=f(x),其中x是A中元素,y是B中元素,x是自变量,y是因变量,f(x)是函数,称为关于自变量x的函数。

函数有两个基本特点,即定义域和值域。

其中,定义域是自变量x可以取的值的范围;值域是因变量y可以取的值的范围。

此外,函数还具有单调性、奇偶性、周期性等特点。

四、函数的应用最后,我将演示数学中常见的函数应用——直线函数。

直线函数可表示为y=kx+b,其中,k是斜率,b是截距。

我们可以利用直线函数解决各类几何问题,例如求两点间的距离、求等腰三角形的重心坐标、求某点到某线段的距离等问题。

《函数概念》说课稿

《函数概念》说课稿

函数概念一、引言在数学中,函数概念是非常重要的一部分。

它不仅是高中阶段数学知识的重点,还是大学数学的基础概念之一。

正确地理解函数概念可以帮助我们更好地理解数学问题和现实问题,掌握函数概念也是我们多学科领域的必备技能之一。

二、函数的基本概念函数是一种特殊的关系,它把一个集合中的元素映射到另一个集合中的元素上。

在数学中,我们通常用f(x)表示一个函数。

其中,x是自变量,f(x)是因变量。

自变量的取值决定了因变量的取值。

我们可以把函数看作是一台自动售货机。

自变量是我们投入的硬币(或者其它物品),因变量是售出的商品。

只有在我们投入足够的硬币时,才能得到我们想要的商品。

三、一些特殊的函数在函数中,有一些特殊的类型。

它们是:1. 常函数常函数指的是一个函数,它的因变量始终为一个常数。

比如,f(x) = 2就是一个常函数。

无论自变量取什么值,它的因变量都为2。

常函数的图像是一条水平的直线。

2. 单位函数单位函数指的是一个函数,它的自变量和因变量相等。

比如,f(x) = x就是一个单位函数。

它的图像是一条45度斜线。

3. 反函数反函数是指一个函数,它能够把另一个函数的结果反过来。

比如,如果有一个函数f(x) = 2x,那么它的反函数f^-1(x) = x/2。

反函数的图像是原函数图像关于y = x对称得到的。

4. 复合函数复合函数指的是两个或两个以上的函数间的组合。

假设有f(x) = x^2和g(x) = x + 1,那么它们的复合函数就是f(g(x)) = (x + 1)^2。

复合函数的求解需要满足先算内层函数,再算外层函数的原则。

四、函数的性质函数的性质是指它在数学层面上的一些属性和特征。

下面是函数的几个重要性质:1. 定义域与值域函数的定义域指的是所有可以输入到函数中的自变量的集合。

值域则是函数实际输出的所有因变量的集合。

在研究函数的时候,这两个概念非常重要。

比如,f(x) = x^2的定义域为实数集,值域为非负实数集。

函数的概念说课稿

函数的概念说课稿

函数的概念说课稿work Information Technology Company.2020YEAR《函数的概念》说课稿《函数的概念》说课稿姓名:xxx 学号22201331401xxxxx 各位为老师大家好,我是来自西南大学数学与统计学院201x级x班的xxx。

今天我说课的内容是“函数的概念”。

下面我从七个方面来阐述我对“函数的概念”的教学设计。

首先,我将对教材进行简要的分析。

一、教材分析1、教材地位“函数的概念”是人教版普通高中实验教科书必修一第一章第二节第一课时的内容,是高考考查的重点内容之一,也是中学教材的一个重要的基本概念。

它不仅对前面学习的集合做了巩固和发展,而且也是学好后面指数函数、对数函数、三角函数等这些后继知识的基础和工具。

2、教学对象一方面学生在初中已经初步学习了函数的概念,探讨了函数的相关知识,有了一定的知识基础,但是这些知识基础在相当大的程度上起到负迁移的作用,使学生对函数概念的“变量说”先入为主,很难接受“对应说”。

另一方面,通过前面集合的学习,学生对集合的认识也逐渐提高,为重新定义函数,从根本上揭示函数的本质提供了一定的知识保障。

二、教学目标基于以上对教材的分析,根据数学课程标准的基本要求,考虑到学生的认知结构和心理特征,我制定目标如下:1、知识与技能目标(1)理解函数的概念,明确函数的三要素;(2)能正确判断函数是否相等,会求一些基本函数的定义域、值域;(3)掌握函数符号及区间符号的应用。

2、过程与方法目标经历函数的概念的归纳过程,培养抽象概况能力、逻辑思维能力、口语表达能力;经历习题的探索过程,培养全面思维能力。

3、情感、态度、价值观内化“对应说”对函数概念的描述;渗透数学文化思想,激发观察、分析、探求的兴趣和热情;养成严谨、全面的数学思维。

三、教学重难点基于以上教材分析以及教学目标的设定,我制定了如下重难点:1、重点:(1)函数概念的理解;(2)简单函数的定义域、值域的求法;(3)函数相等的判断;(4)区间符号的使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.1 函数的概念说课稿
尊敬的各位评委、老师们:
大家好!
今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。

下面介绍我对本节课的设计和构思,请您多提宝贵意见。

我的说课有以下六个部分:
一、背景分析
1.学习任务分析
本节课是必修1第1章第2节的内容,是函数这一章的起始课,它上承集合,下引性质,与方程、不等式、数列、三角函数、解析几何、导数等内容联系密切,是学好后继知识的基础和工具,所以本节课在数学教学中的地位和作用是至关重要的。

2.学情分析
学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。

另外,通过对集合的学习,学生基本适应了有效教学的课堂模式,初步具备了小组合作、自主探究的学习能力。

基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;
教学难点为:函数概念的形成及理解。

二、教学目标设计
根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。

1.知识与技能(方面)
通过丰富的实例,让学生
①了解函数是非空数集到非空数集的一个对应;
②了解构成函数的三要素;
③理解函数概念的本质;
④理解f(x)与f(a)(a为常数)的区别与联系;
⑤会求一些简单函数的定义域。

2.过程与方法(方面)
在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。

3.情感、态度与价值观(方面)
让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。

三、课堂结构设计
为充分调动学生的学习积极性,变被动学习为主动愉快的探究,我使用有效教学的课堂模式,课前学生通过结构化预习,完成问题生成单,课中采用师生互动、小组讨论、学生展写、展讲例题,教师点评的方式完成问题解决单,课后完成问题拓展单,课堂结构包含:
复习旧知,引出课题(约2分钟)

创设情境,形成概念(约5分钟)

剖析概念(约12分钟)
↓小组讨论,展写例题(约8分钟)例题分析,巩固知识——
小组展讲,教师点评(约10分钟)↓
总结反思,知识升华(约2分钟)

(最后)布置作业,拓展练习
四、教学媒体设计
教学中利用投影与黑板相结合的形式,利用投影直观、生动地展示实例,并能增加课堂容量;利用黑板列举本节重要内容,使学生对所学内容有一整体认识,并让学生利用黑板展写、展讲例题,有问题及时发现及时解决。

五、教学过程设计
本节课围绕问题的解决与重难点的突破,设计了下面的教学过程。

整个教学过程按四个环节展开:
首先,在第一环节——复习旧知,引出课题,先由两个问题导入新课
①初中时函数是如何定义的?
②y=1是函数吗?
[设计意图]:学生通过对这两个问题的思考与讨论,发现利用初中的定义很难回答第②个问题,从而激起他们的好奇心:高中阶段的函数概念会是什么?激发他们学习本节课的强烈愿望和情感,使他们处于积极主动的探究状态,大大提高了课堂效率。

从学生的心理状态与认知规律出发,教学过程自然过渡到第二个环节——函数概念的形成。

由于高中阶段的函数概念本身比较抽象,看不见也摸不着,不易直接给出,因此在本环节中,我主要通过学生能看见能感知的生活中的3个实例出发,由具体到抽象,由特殊到一般,一步步归纳形成函数的概念,此过程我称之为“创设情境,形成概念”。

对于这3个实例,我分别预设一个问题让学生思考与体会。

问题1:从炮弹发射到落地的0-26s时间内,集合A是否存在某一时间t,在B中没有高度h与之对应?是否有两个或多个高度与之相对应?
问题2:从1979—2001年,集合A是否存在某一时间t,在B中没有面积S与之对应?是否有两个或多个面积与它相对应吗?
问题3:从1991—2001年间,集合A中是否存在某一时间t,在B中没恩格尔系数与之对应?是否会有两个或多个恩格尔系数与对应?
[设计意图]:通过循序渐进地提问,变教为诱,以诱达思,引导学生根据问题总结3个实例的各自特点,并综合各自特点,归纳它们的公共特征,着重向学生渗透集合与对应的观点,这样,再让学生经历由具体到抽象的概括过程,用集合、对应的语言来描述函数时就显得水到渠成,难点得以突破。

函数的概念既已形成,本节课自然进入了第3个环节——剖析概念,理解概念。

函数概念的理解是本节课的重点也是难点,概念本身比较抽象,学生在理解上可能把握不准确,所以我分两个步骤来进行剖析,由具体到抽象,螺旋上升。

首先,在学生熟读熟背函数概念的基础上,我设计一个学生活动,让学生充分参与,在参与中体会学习的快乐。

我利用多媒体制作一个表格,请学号为01—05的同学填写自己上次的数学考试成绩,并提出3个问题:
问题1:若学号构成集合A,成绩构成集合B,对应关系f:上次数学考试成绩,那么由A到B能否构成函数?
问题2:若将问题1中“学号”改为“01—05的学生”,其余不变,那么由A到B能否构成函数?
问题3:若学号04的学生上次考试因病缺考,无成绩,那么对问题1学号与成绩能否构成函数?
[设计意图]:通过层层提问,层层回答,让学生对概念中关键词的把握更为准确,对函数概念的理解更为具体,为总结归纳函数概念的本质特征打下基础。

其次,我通过幻灯片的形式展示几组数集的对应关系,让学生分析讨论哪些对应关系能构成函数,在学生深刻认识到函数是非空数集到非空数集的一对一或多对一的对应关系,并能准确把握概念中的关键词后,再着重强强在这两种对应关系中,何为定义域,何为值域,值域和集合B
有什么关系,强调函数的三要素,得出两函数相等的条件。

至此,本节课的第三个环节已经完成,对于区间的概念,学生通过预习能够理解课堂上不再多讲,仅在多媒体上进行展示,但会在后面例题的使用中指出注意事项。

在本节课的第四个环节——例题分析中,我重点以例题的形式考查函数的有关概念问题,简单函数的定义域问题以及函数的求值问题,至于分段函数、复合函数的求值及定义域问题,将在下节课予以解决,本环节主要通过学生讨论、展写、展讲、学生互评、教师点评的方式完成知识的巩固,让学生成为课堂的主人。

最后,通过
——总结点评,完善知识体系
——课堂练习,巩固知识掌握
——布置作业,沉淀教学成果
六、教学评价设计
教学是动态生成的过程,课堂上必然会有难以预料的事情发生,具体的教学过程还应根据实际情况加以调整。

最后,引用赫尔巴特的一句名言结束我的说课,那就是“发挥我们教师的创造性,使教育过程成为一种艺术的事业,使我们不聪明的孩子变的聪明,使我们聪明的孩子变的更聪明”。

谢谢大家!。

相关文档
最新文档