2019-2020学年高中数学 第三章 不等式 3.1 不等关系与不等式(1)说课稿 新人教A版必修5.doc

合集下载

2020版数学人教A版必修5学案:第三章 3.1 不等关系与不等式 Word版含解析

2020版数学人教A版必修5学案:第三章 3.1 不等关系与不等式 Word版含解析

§3.1不等关系与不等式学习目标 1.能用不等式(组)表示实际问题的不等关系.2.初步学会作差法、作商法比较两实数的大小.3.掌握不等式的基本性质,并能运用这些性质解决有关问题.知识点一不等关系现实世界中存在大量的不等关系.试用不等式表示下列关系:(1)a大于b a>b(2)a小于b a<b(3)a不大于b a≤b(4)a不小于b a≥b知识点二作差法作差法的理论依据:a>b⇔a-b>0;a=b⇔a-b=0;a<b⇔a-b<0.思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小,而且具有说服力吗?答案作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点三不等式的基本性质不等式性质:(1)a>b⇔b<a(对称性);(2)a>b,b>c⇒a>c(传递性);(3)a>b⇒a+c>b+c(可加性);(4)a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;(5)a>b,c>d⇒a+c>b+d;(6)a>b>0,c>d>0⇒ac>bd;(7)a>b>0,n∈N,n≥1⇒a n>b n;(8)a >b >0,n ∈N ,n ≥21.2≥1.( √ ) 2.ab >1⇒a >b .( × ) 3.a >b ⇔a +c >b +c .( √ )4.⎩⎪⎨⎪⎧a >b ,c >d ⇔a +c >b +d .( × )题型一 用不等式(组)表示不等关系例1 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝⎛⎭⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝⎛⎭⎫8-x -2.50.1×0.2x ≥20(x ≥2.5).反思感悟 数学中考查的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时 (1)要先读懂题,设出未知量; (2)抓关键词,找到不等关系;(3)用不等式表示不等关系.思维要严密、规范.跟踪训练1 某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系: .(不用化简) 答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *.题型二 比较大小命题角度1 作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小.解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2. 引申探究1.若a >0,b >0,a 5+b 5与a 3b 2+a 2b 3的大小关系又如何? 解 (a 5+b 5)-(a 3b 2+a 2b 3)=a 5-a 3b 2+b 5-a 2b 3 =a 3(a 2-b 2)+b 3(b 2-a 2) =(a 2-b 2)(a 3-b 3)=(a -b )2(a +b )(a 2+ab +b 2). ∵a >0,b >0,∴(a -b )2≥0,a +b >0,a 2+ab +b 2>0. ∴a 5+b 5≥a 3b 2+a 2b 3.2.对于a n +b n ,你能有一个更具一般性的猜想吗?解 若a >0,b >0,n >r ,n ,r ∈N *,则a n +b n ≥a r b n -r +a n -r b r .反思感悟 比较两个实数的大小,可以求出它们的差的符号.作差法比较实数的大小的一般步骤是:差→恒等变形→判断差的符号→下结论.作差后变形是比较大小的关键一步,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式. 跟踪训练2 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x . 命题角度2 作商法比较大小例3 若0<x <1,a >0且a ≠1,试比较|log a (1-x )|与|log a (1+x )|的大小关系. 解|log a (1-x )||log a (1+x )|=⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=||log (1+x )(1-x ),∵0<x <1,∴||log (1+x )(1-x )=-log (1+x )(1-x )=log (1+x )11-x,∵1-x 2=(1+x )(1-x )<1,且1-x >0,∴1+x <11-x, ∴log (1+x )11-x >1,即|log a (1-x )||log a (1+x )|>1,∴|log a (1+x )|<|log a (1-x )|.反思感悟 作商法的依据:若b >0,则ab >1⇔a >b .跟踪训练3 若a >b >0,比较a a b b 与a b b a 的大小. 解 a a b b a b b a =a a -b b b -a =⎝⎛⎭⎫ab a -b , ∵a >b >0, ∴ab >1,a -b >0, ∴⎝⎛⎭⎫a b a -b >1,即a a b ba b b a >1, 又∵a >b >0,∴a a b b >a b b a . 题型三 不等式的基本性质 例4 已知a >b >0,c <0,求证:c a >c b .证明 因为a >b >0,所以ab >0,1ab >0.于是a ×1ab >b ×1ab ,即1b >1a .由c <0,得c a >cb.反思感悟 有关不等式的证明,最基本的依据是不等式的8条基本性质,在解不等式时,对不等式进行有关变形的依据也是8条基本性质. 跟踪训练4 如果a >b >0,c >d >0,证明:ac >bd . 证明⎭⎪⎬⎪⎫ ⎭⎬⎫a >b >0c >0⇒ac >bc >0⎭⎬⎫c >d >0b >0⇒bc >bd >0⇒ac >bd .用好不等式性质,确保推理严谨性典例 已知12<a <60,15<b <36,求ab 的取值范围.[错解] ∵12<a <60,15<b <36,∴1215<a b <6036,∴45<a b <53. [点拨] 在确保条件的前提下,同向不等式可以相乘,但同向不等式没有相除的性质,不能臆造.确需相除,可转化为相乘.[正解] ∵15<b <36,∴136<1b <115,又12<a <60,∴1236<a b <6015,∴13<ab <4, 即ab的取值范围是⎝⎛⎭⎫13,4. [素养评析] 逻辑推理讲究言必有据.在不等式这一章,我们要对不等式进行大量的运算、变形,而运算、变形的依据就是不等式的性质.通过考问每一步是否有依据,整个推理过程是否有条理,可以使我们的理性精神和交流能力得到提升.1.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ) A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x ≥95,y >380,z >45. 2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-a D .a >b >-a >-b答案 C解析 由a +b >0,知a >-b ,∴-a <b <0. 又b <0,∴-b >0,∴a >-b >b >-a .3.已知a ,b ,c ∈R ,则下列命题正确的是( ) A .a >b ⇒ac 2>bc 2 B.a c >bc ⇒a >b C.⎭⎬⎫a >b ab <0⇒1a >1b D.⎭⎬⎫ab >0a >b ⇒1a >1b答案 C解析 当c =0时,A 不成立;当c <0时,B 不成立;当ab <0时,a >b ⇒a ab <b ab ,即1a >1b ,C 成立.同理可证D 不成立.4.若a >b >0,c <d <0,则一定有( ) A.a d >bc B.ad <b c C.a c >b d D.a c <b d 答案 B解析 因为c <d <0,所以-c >-d >0, 即1-d >1-c>0. 又a >b >0,所以a -d >b-c ,从而有a d <b c.5.比较(a +3)(a -5)与(a +2)(a -4)的大小. 解 ∵(a +3)(a -5)-(a +2)(a -4) =(a 2-2a -15)-(a 2-2a -8)=-7<0, ∴(a +3)(a -5)<(a +2)(a -4).1.比较两个实数的大小,只要求出它们的差就可以了. a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.作差法比较大小的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”; 第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论); 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,并注意不等式推导所需条件是否具备.一、选择题1.设x <a <0,则下列不等式一定成立的是( ) A .x 2<ax <a 2 B .x 2>ax >a 2 C .x 2<a 2<ax D .x 2>a 2>ax答案 B解析 ∵x 2-ax =x (x -a )>0,∴x 2>ax . 又ax -a 2=a (x -a )>0,∴ax >a 2,∴x 2>ax >a 2. 2.已知a <0,b <-1,则下列不等式成立的是( ) A .a >a b >a b 2B.a b 2>a b >aC.a b >a >a b 2D.a b >a b2>a 答案 D解析 取a =-2,b =-2,则a b =1,a b 2=-12∴a b >a b 2>a .3.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( ) A.1a <1bB .a 2>b 2 C.a c 2+1>bc 2+1 D .a |c |>b |c |答案 C解析 对于A ,若a >0>b ,则1a >0,1b <0,此时1a >1b,∴A 不成立;对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立; 对于C ,∵c 2+1≥1,且a >b , ∴a c 2+1>bc 2+1恒成立,∴C 成立; 对于D ,当c =0时,a |c |=b |c |,∴D 不成立.4.若a >b >c 且a +b +c =0,则下列不等式中正确的是( ) A .ab >ac B .ac >bc C .a |b |>c |b | D .a 2>b 2>c 2答案 A解析 由a >b >c 及a +b +c =0,知a >0,c <0,⎩⎪⎨⎪⎧a >0,b >c ,则ab >ac .5.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) A .a 2<b 2 B .a 2b <ab 2 C.1ab 2<1a 2b D.b a <a b答案 C解析 对于A ,在a <b 中,当a <0,b <0时,a 2<b 2不成立; 对于B ,当a <0,b >0时,a 2b >0,ab 2<0,a 2b <ab 2不成立; 对于C ,∵a <b ,1a 2b 2>0,∴1ab 2<1a 2b ;对于D ,当a =-1,b =1时,b a =ab=-1.6.若a >0且a ≠1,M =log a (a 3+1),N =log a (a 2+1),则M ,N 的大小关系为( ) A .M <N B .M ≤N C .M >N D .M ≥N 答案 C解析 当a >1时,a 3+1>a 2+1, y =log a x 为(0,+∞)上的增函数, ∴log a (a 3+1)>log a (a 2+1); 当0<a <1时,a 3+1<a 2+1,y =log a x 为(0,+∞)上的减函数, ∴log a (a 3+1)>log a (a 2+1), ∴当a >0且a ≠1时,总有M >N . 二、填空题7.b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式:当b >a >0且m >0时, . 答案a +mb +m >ab解析 变甜了,意味着含糖量大了,即浓度高了.8.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是 . 答案 ⎝⎛⎭⎫-32,52 解析 由函数的解析式可知0<a +b <2,-1<-a +b <1, 且2a -b =12(a +b )-32(-a +b ),结合不等式的性质可得, 2a -b ∈⎝⎛⎭⎫-32,52. 9.若x ∈R ,则x 1+x 2与12的大小关系为 . 答案x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 10.(x +5)(x +7)与(x +6)2的大小关系为 . 答案 (x +5)(x +7)<(x +6)2 解析 因为(x +5)(x +7)-(x +6)2 =x 2+12x +35-(x 2+12x +36)=-1<0. 所以(x +5)(x +7)<(x +6)2. 三、解答题11.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,试用不等式(组)将题中的不等关系表示出来.解 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N ).12.设x ,y ,z ∈R ,比较5x 2+y 2+z 2与2xy +4x +2z -2的大小. 解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2) =4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1 =(2x -1)2+(x -y )2+(z -1)2≥0, ∴5x 2+y 2+z 2≥2xy +4x +2z -2, 当且仅当x =y =12且z =1时取等号.13.已知a >b >0,c <d <0,e <0,求证:e a -c >eb -d .证明 ∵c <d <0,∴-c >-d >0, 又∵a >b >0,∴a +(-c )>b +(-d )>0, 即a -c >b -d >0,∴0<1a -c <1b -d,又∵e <0,∴e a -c >eb -d.14.若x >0,y >0,M =x +y 1+x +y ,N =x 1+x +y1+y ,则M ,N 的大小关系是( )A .M =NB .M <NC .M ≤ND .M >N答案 B解析 ∵x >0,y >0,∴x +y +1>1+x >0,1+x +y >1+y >0, ∴x 1+x +y <x 1+x ,y 1+x +y <y1+y,故M =x +y 1+x +y =x 1+x +y +y 1+x +y <x 1+x +y1+y=N ,即M <N .15.已知实数x ,y 满足-4≤x -y ≤-1,-1≤4x -y ≤5,则9x -3y 的取值范围是 . 答案 [-6,9]解析 设9x -3y =a (x -y )+b (4x -y )=(a +4b )x -(a +b )y ,∴⎩⎪⎨⎪⎧ a +4b =9,a +b =3⇒⎩⎪⎨⎪⎧a =1,b =2,∴9x -3y =(x -y )+2(4x -y ),∵-1≤4x -y ≤5,∴-2≤2(4x -y )≤10, 又-4≤x -y ≤-1, ∴-6≤9x -3y ≤9.。

高中数学名师讲义:第三章 3.1 不等关系与不等式 Word版含答案

高中数学名师讲义:第三章 3.1 不等关系与不等式 Word版含答案

均值不等式[新知初探]1.均值定理 如果a ,b ∈R +当且仅当a =b 时,等号成立,以上结论通常称为均值不等式.对任意两个正实数a ,b ,数a +b2称为a ,b 的算术平均值(平均数),数ab 称为a ,b 的几何平均值(平均数).均值定理可叙述为:两个正实数的算术平均值大于或等于它的几何平均值.[点睛] (1)“a =b ”是a +b2≥ab 的等号成立的条件.若a ≠b ,则a +b2≠ab ,即a +b2>ab .(2)均值不等式a +b2≥ab 与a 2+b 2≥2ab 成立的条件不同,前者a >0,b >0,后者a ∈R ,b ∈R.2.利用均值不等式求最值(1)两个正数的积为常数时,它们的和有最小值; (2)两个正数的和为常数时,它们的积有最大值.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立( ) (2)若a ≠0,则a +4a≥2a ·4a=4( ) (3)若a >0,b >0,则ab ≤⎝⎛⎭⎪⎫a +b 22( )解析:(1)错误.任意a ,b ∈R ,有a 2+b 2≥2ab 成立,当a ,b 都为正数时,不等式a +b ≥2ab 成立.(2)错误.只有当a >0时,根据均值不等式,才有不等式a +4a≥2a ·4a=4成立. (3)正确.因为ab ≤a +b2,所以ab ≤⎝⎛⎭⎪⎫a +b 22.答案:(1)× (2)× (3)√2.已知f (x )=x +1x-2(x >0),则f (x )有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2答案:B3.对于任意实数a ,b ,下列不等式一定成立的是( ) A .a +b ≥2ab B.a +b2≥abC .a 2+b 2≥2ab D.b a +a b≥2答案:C4.已知0<x <1,则函数y =x (1-x )的最大值是________. 答案:14[典例] (1)已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定(2)若a>b>1,P=lg a·lg b,Q=12(lg a+lg b),R=lga+b2,则P,Q,R的大小关系是________.[解析] (1)因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m ≥2a-1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.(2)因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.[答案] (1)A (2)P<Q<R[活学活用]已知a,b,c都是非负实数,试比较a2+b2+b2+c2+c2+a2与2(a+b+c)的大小.解:因为a2+b2≥2ab,所以2(a2+b2)≥(a+b)2,所以a2+b2≥22(a+b),同理b2+c2≥22(b+c), c2+a2≥22(c+a),所以a2+b2+b2+c2+c2+a2≥22[(a+b)+(b+c)+(c+a)],即a2+b2+b2+c2+c2+a2≥2(a+b+c),当且仅当a=b=c时,等号成立.[典例] 设a,b,c都是正数,求证:ab(a+b)+bc(b+c)+ca(c+a)≥6abc.[证明] 因为a,b,c都是正数,所以ab(a+b)+bc(b+c)+ca(c+a)=a2b+ab2+b2c+bc 2+c 2a +ca 2=(a 2b +bc 2)+(b 2c +ca 2)+(c 2a +ab 2)≥2a 2b 2c 2+2a 2b 2c 2+2a 2b 2c 2=6abc ,所以原不等式成立,当且仅当a =b =c 时,等号成立.[活学活用]已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1≥8.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bca.同理,1b -1≥2ac b ,1c -1≥2ab c.上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2ab c =8,当且仅当a =b =c =13时,取等号.[典例] (1)(2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. (3)已知x >0,y >0,1x +9y=1,求x +y 的最小值.[解] (1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由均值不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. (2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32, 当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.(3)∵1x +9y=1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x+9xy+10,又∵x >0,y >0, ∴y x +9xy+10≥2y x ·9xy+10=16, 当且仅当y x=9xy,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎪⎨⎪⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.[活学活用]1.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5解析:选 C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝⎛⎭⎪⎫5+2a b+2b a≥6×(5+4)=54,当且仅当2ab=2ba时等号成立,∴9m≤54,即m≤6,故选C.2.若x>0,y>0,且x+4y=1,则xy的最大值为________.解析:1=x+4y≥24xy=4xy,∴xy≤116,当且仅当x=4y=12时等号成立.答案:1 16[典例] 某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?[解] (1)设铁栅长为x米,一堵砖墙长为y米,而顶部面积为S=xy,依题意得,40x +2×45y+20xy=3 200,由均值不等式得3 200≥240x×90y+20xy=120xy+20xy,=120S+20S.所以S+6S-160≤0,即(S-10)(S+16)≤0,故S≤10,从而S≤100,所以S的最大允许值是100平方米,(2)取得最大值的条件是40x=90y且xy=100,求得x=15,即铁栅的长是15米.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N +),求当每台机器运转多少年时,年平均利润最大,最大值是多少.解:每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元. 故当每台机器运转5年时,年平均利润最大,最大值为8万元.层级一 学业水平达标1.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x ≥2B .当x >0时,x +1x≥2C .当x ≥2时,x +1x的最小值为2D .当0<x ≤2时,x -1x无最大值解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x≥2不成立;由均值不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x≥2解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1B.1a +1b ≥1C.1a +1b<2 D.1a +1b≥2解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab≥214=1. 4.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bc B.a +d2<bc C.a +d2=bcD.a +d2≤bc解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.若x >0,y >0,且2x +8y=1,则xy 有( )A .最大值64B .最小值164C .最小值12D .最小值64解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.若a >0,b >0,且1a +1b=ab ,则a 3+b 3的最小值为________.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2ab3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.答案:4 27.已知0<x <1,则x (3-3x )取得最大值时x 的值为________.解析:由x (3-3x )=13×3x (3-3x )≤13×⎝ ⎛⎭⎪⎫3x +3-3x 22=34,当且仅当3x =3-3x ,即x =12时等号成立. 答案:128.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:因为x >0,所以x +1x≥2.当且仅当x =1时取等号,所以有x x 2+3x +1=1x +1x+3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15.答案:⎣⎢⎡⎭⎪⎫15,+∞9.(1)已知x <3,求f (x )=4x -3+x 的最大值; (2)已知x ,y 是正实数,且x +y =4,求1x +3y的最小值.解:(1)∵x <3, ∴x -3<0, ∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x+-x +3≤-243-x-x +3=-1,当且仅当43-x =3-x ,即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x=3xy,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. 10.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6. 证明:因为a >0,b >0,c >0, 所以b a +ab ≥2,c a +a c ≥2,b c +c b≥2,所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =b c, 即a =b =c 时,等号成立. 所以b +c a +c +a b +a +bc≥6. 层级二 应试能力达标1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab |解析:选A ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).2.已知实数a ,b ,c 满足条件a >b >c 且a +b +c =0,abc >0,则1a +1b +1c的值( )A .一定是正数B .一定是负数C .可能是0D .正负不确定解析:选B 因为a >b >c 且a +b +c =0,abc >0,所以a >0,b <0,c <0,且a =-(b +c ), 所以1a +1b +1c =-1b +c +1b +1c ,因为b <0,c <0,所以b +c ≤-2bc , 所以-1b +c ≤12bc ,又1b +1c ≤-21bc, 所以-1b +c +1b +1c ≤12bc-21bc=-32bc<0,故选B.3.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则a +b2cd的最小值为( )A .0B .1C .2D .4解析:选 D 由题意,知⎩⎪⎨⎪⎧a +b =x +y ,cd =xy ,所以a +b2cd=x +y 2xy=x 2+y 2+2xy xy=x 2+y 2xy+2≥2+2=4,当且仅当x =y 时,等号成立. 4.设a ,b 是实数,且a +b =3,则2a+2b的最小值是( ) A .6B .4 2C .2 6D .8解析:选B ∵a ,b 是实数,∴2a>0,2b>0, 于是2a+2b≥2 2a·2b=2 2a +b=223=42,当且仅当a =b =32时取得最小值4 2.5.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的最大值为________. 解析:x +1x -1≥a 恒成立⇔⎝ ⎛⎭⎪⎫x +1x -1min ≥a ,∵x >1,即x -1>0, ∴x +1x -1=x -1+1x -1+1≥2x -1x -1+1=3, 当且仅当x -1=1x -1,即x =2时,等号成立. ∴a ≤3,即a 的最大值为3. 答案:36.若正数a ,b 满足a +b =1,则13a +2+13b +2的最小值为________. 解析:由a +b =1,知13a +2+13b +2=3b +2+3a +2a +b +=79ab +10,又ab ≤⎝ ⎛⎭⎪⎫a +b 22=14(当且仅当a =b =12时等号成立),∴9ab +10≤494,∴79ab +10≥47. 答案:477.某厂家拟在2016年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销售量是1万件.已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2016年该产品的利润y (单位:万元)表示为年促销费用m 的函数; (2)该厂家2016年的促销费用为多少万元时,厂家的利润最大?解:(1)由题意,可知当m =0时,x =1,∴1=3-k ,解得k =2,∴x =3-2m +1, 又每件产品的销售价格为1.5×8+16xx元,∴y =x ⎝⎛⎭⎪⎫1.5×8+16x x-(8+16x +m )=4+8x -m=4+8⎝⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+m ++29(m ≥0). (2)∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时等号成立, ∴y ≤-8+29=21,∴y max =21.故该厂家2016年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.8.已知k >16,若对任意正数x ,y ,不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立,求实数k 的最小值.解:∵x >0,y >0,∴不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立等价于⎝ ⎛⎭⎪⎫3k -12x y +k y x ≥2恒成立.又k >16, ∴⎝ ⎛⎭⎪⎫3k -12xy+k y x≥2k ⎝⎛⎭⎪⎫3k -12,∴2k ⎝⎛⎭⎪⎫3k -12≥2,解得k ≤-13(舍去)或k ≥12,∴k min =12.。

高中数学教学课例《3.1不等关系与不等式(1)》课程思政核心素养教学设计及总结反思

高中数学教学课例《3.1不等关系与不等式(1)》课程思政核心素养教学设计及总结反思
高中数学教学课例《3.1 不等关系与不等式(1)》教学设计 及总结反思
学科
高中数学
教学课例名
《3.、三角等内容有着密切的联系.
在高考题中不等式常与其他知识交汇呈现,因此不等式
在高考中占有比较重要的地位。而本节课是本章的起始
课,学好本节课是学习本章的基础。通过学习有助于学 教材分析
(3)练习巩固 4、联系实际,探索研究 在教学中,我们提倡让学生在问题解决中学习,在问题 探索中学习,从而使学生建构起对知识的理解,因此在 下一环节中,我设计了一个生活实际问题,让学生在问 题探索中学习新知。 能否用所学知识准确表示“糖水加糖甜更甜”的现象? 下面通过复习实数的基本理论,利用数轴数形结合,归 纳总结得出比较两个实数(式)大小的方法,学生容易 接受。 然后给出两组比较简单的作差比较,师生合作完成,教 师板书,学生回答,再总结提炼步骤方法。并变式练习, 一方面可以巩固作差比较法,另一方面,渗透了分类讨 论的数学思想,为课后的能力作业给予一点启示。 例 3、比较下面两组代数式的大小: 步骤:作差→变形→判号→结论. 其中变形是关键,常用的变形手段有提公因式、分解因 式、通分、配方、有理化等. 最后通过例 4,可以先让学生尝试,教师巡视学生解答 情况,最后通过幻灯片展示标准过程,指出学生易错点, 强调关键点。对本题的教学既是对实际探索问题的解 决,前后呼应;也是对作差比较法的进一步巩固,突破
教学策略选 教师的主导作用,主要教会学生清晰的思维和严谨的推 择与设计 理。 为了更好地体现课堂教学中“教师为主导,学生为主 体”的教学关系和“以人为本,以学定教”的教学理 念,在本节课的教学过程中,我将紧紧围绕教师组织— —启发引导,学生探究——交流发现,组织开展教学活 动。我设计了以下六个环节,层层深入,在教学中注意 关注整个过程和全体学生,充分调动学生积极参与教学 过程的每个环节。

高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4

高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4

2.已知
a>b>0,求证:
a b>
b a.
证明:因为 a>b>0,所以 a> b >0.①又因为 a>b>0,两边同
乘正数a1b,得1b>1a>0.②
①②两式相乘,得
a b>
b a.
利用不等式性质求代数式的取值范围
已知-1<x<4,2<y<3. (1)求 x-y 的取值范围; (2)求 3x+2y 的取值范围. 【解】 (1)因为-1<x<4,2<y<3,所以-3<-y<-2,所以 -4<x-y<2. (2)由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以 1<3x +2y<18.
A.ad>bc
B.ac>bd
C.a-c>b-d
D.a+c>b+d
解析:选 D.令 a=2,b=-2,c=3,d=-6,可排除 A,B,
C.由不等式的性质 5 知,D 一定成立.
若 x<1,M=x2+x,N=4x-2,则 M 与 N 的大小关系为 ________.
解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2), 又因为 x<1,所以 x-1<0,x-2<0,所以(x-1)(x-2)>0,所 以 M>N. 答案:M>N
1.雷电的温度大约是 28 000 ℃,比太阳表面温度的 4.5 倍 还要高.设太阳表面温度为 t ℃,那么 t 应满足的关系式是 ________. 解析:由题意得,太阳表面温度的 4.5 倍小于雷电的温度, 即 4.5t<28 000. 答案:4.5t<28 000

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5

为函数 y=1x在(-∞,0)上单调递减,a<b<0,所以1a>1b,
故 D 正确.
答案:D
5.若 x>1,y>2,则: (1)2x+y>________; (2)xy>________. 解析:(1)x>1⇒2x>2,2x+y>2+2=4;(2)xy>2. 答案:(1)4 (2)2
类型 1 用不等式(组)表示不等关系 [典例 1] 分别写出满足下列条件的不等式: (1)一个两位数的个位数字 y 比十位数字 x 大,且这 个两位数小于 30; (2)某电脑用户计划用不超过 500 元的资金购买单价 分别为 60 元的单片软件 x 片和 70 元的盒装磁盘 y 盒.根 据需要,软件至少买 3 片,磁盘至少买 2 盒. 解:(1)y>x>0,30>10x+y>9,且 x,y∈N*; (2)x≥3,y≥2,60x+70y≤500,且 x,y∈N*.
同向 5
可加性
ac>>db⇒a+c⑫>b+d
同向同正 6
可乘性
ac>>db>>00⇒ac⑬>bd
7
可乘方性 a>b>0⇒an>bn(n∈N,n≥1)
8
可开方性
nn
a>b>0⇒ a> b(n∈N,n≥2)
[思考尝试·夯基] 1.思考义是指 x 不小于 2.( ) (2)若 a<b 或 a=b 之中有一个正确,则 a≤b 正 确.( ) (3)若 a>b,则 ac>bc 一定成立.( ) (4)若 a+c>b+d,则 a>b,c>d.( )
解析:(1)正确.不等式 x≥2 表示 x>2 或 x=2,即 x 不小于 2,故此说法是正确的.(2)正确.不等式 a≤b 表示 a<b 或 a=b.故若 a<b 或 a=b 中有一个正确,则 a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式 两端同乘以一个正数时,不等号方向不变,因此由 a>b, 则 ac>bc,不一定成立,故此说法是错误的.(4)错误.取 a=4,c=5,b=6,d=2,满足 a+c>b+d,但不满足 a >b,故此说法错误.

高中数学 第3章 不等式 3.1 不等式的基本性质教学案(含解析)高一第一册数学教学案

高中数学 第3章 不等式 3.1 不等式的基本性质教学案(含解析)高一第一册数学教学案

3.1 不等式的基本性质(1)不等式的定义用数学符号“>”“<”“≥”“≤”“≠”连接两个数或代数式,这些含有这些不等号的式子叫做不等式.(2)关于a≥b和a≤b的含义①不等式a≥b应读作:“a大于或等于b”,其含义是a>b或a=b,等价于“a不小于b”,即若a>b或a=b中有一个正确,则a≥b正确.②不等式a≤b应读作:“a小于或等于b”,其含义是a<b或a=b,等价于“a不大于b”,即若a<b或a=b中有一个正确,则a≤b正确.(3)不等式中常用符号语言2(1)如果a-b是正数,那么a>b;即a-b>0⇔a>b;(2)如果a-b等于0,那么a=b;即a-b=0⇔a=b;(3)如果a-b是负数,那么a<b,即a-b<0⇔a<b.3.不等式的基本性质性质1: 若a>b,则b<a;(自反性),a>b⇔b<a.性质2:若a>b,b>c,则a>c;(传递性)性质3:若a>b,则a+c>b+c;(加法保号性)性质4:若a>b,c>0,则ac>bc;(乘正保号性)若a>b,c<0,则ac<bc;(乘负改号性)性质5:若a>b,c>d,则a+c>b+d;(同向可加性)性质6:若a>b>0,c>d>0,则ac>bd;(全正可乘性)性质7:如果a>b>0,那么a n>b n(n∈N*).(拓展)提醒:不等式的基本性质是不等式变形的依据,也是解不等式的根据,同时还是证明不等式的理论基础.(1)在应用不等式时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件.(2)要注意每条性质是否具有可逆性.1.思考辨析(正确的打“√”,错误的打“×”)(1)若ac>bc,则a>b.( )(2)若a+c >b+d,则a>b,c>d.( )(3)若a >b ,则1a <1b.( )[答案] (1)× (2)× (3)×2.已知a 1,a 2∈()0,1,记M =a 1a 2, N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定B [由题意得M -N =a 1a 2-a 1-a 2+1=()a 1-1()a 2-1>0,故M >N .故选B .]3.若x >y ,且x +y =2,则下列不等式一定成立的是( ) A .x 2<y 2B .1x <1yC .x 2>1D .y 2<1C [因为x >y ,且x +y =2,所以2x >x +y =2,即x >1,则x 2>1,故选C .]利用不等式的性质判断和解不等式①若a >b ,则ac 2>bc 2; ②若a <b <0,则a 2>ab >b 2; ③若a >b ,则a 2>b 2;④若a <b <0,则a b >ba.其中正确命题的序号是 .(2)求解关于x 的不等式ax +1>0(a ∈R ),并用不等式的性质说明理由.(1)②④ [对于①∵c 2≥0,∴只有c ≠0时才成立,①不正确; 对于②,a <b <0⇒a 2>ab ;a <b <0⇒ab >b 2,∴②正确;对于③,若0>a >b ,则a 2<b 2,如-1>-2,但(-1)2<(-2)2,∴③不正确;对于④,∵a <b <0,∴-a >-b >0,∴(-a )2>(-b )2,即a 2>b 2.又∵ab >0,∴1ab >0,∴a 2·1ab >b 2·1ab ,∴a b >ba,④正确.所以正确答案的序号是②④.](2)[解] 不等式ax +1>0(a ∈R )两边同时加上-1得ax >-1 (不等式性质3),当a =0时,不等式为0>-1恒成立,所以x ∈R , 当a >0时,不等式两边同时除以a 得 x >-1a(不等式性质4),当a <0时,不等式两边同时除以a 得 x <-1a(不等式性质4).综上:当a =0时,不等式的解集为R ,当a >0时,不等式的解集为⎝ ⎛⎭⎪⎫-1a ,+∞,当a <0时,不等式的解集为⎝⎛⎭⎪⎫-∞,-1a .1.利用不等式判断正误的两种方法①直接法:对于说法正确的,要利用不等式的相关性质证明;对于说法错误的只需举出一个反例即可.②特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.2.利用不等式的性质解不等式,要求步步有据,特别是解含有参数的不等式更加要把握好分类讨论的标准.因为参数的范围不同,不等式的解集不同,所以对于参数的不同范围得到的解集都是独立的,不能求并集.[跟进训练]1.已知a <b <c 且a +b +c =0,则下列不等式恒成立的是( )A .a 2<b 2<c 2B .ab 2<cb 2C .ac <bcD .ab <acC [∵a +b +c =0且a <b <c ,∴a <0,c >0,∴ac <bc ,故选C .]2.若关于x 的不等式ax +b >0的解集为(-∞,2),则不等式bx -a >0的解集为 .⎝ ⎛⎭⎪⎫-12,+∞ [因为关于x 的不等式ax +b >0的解集为(-∞,2),所以a <0,且x =2是方程ax +b =0的实数根,所以2a +b =0,即b =-2a ,由bx -a >0得-2ax -a >0,因为a <0,所以x >-12,即不等式bx -a >0的解集为⎝ ⎛⎭⎪⎫-12,+∞.]利用不等式的性质比较代数式的大小[探究问题]1.如果a ,b 之间的大小关系分别为a >b ,a =b ,a <b ,那么a -b 分别与0的关系?反之呢?[提示] 若a >b ,则a -b >0,反之也成立; 若a =b ,则a -b =0,反之也成立; 若a <b ,则a -b <0,反之也成立.2.若a >b ,则ab >1吗?反之呢?[提示] 若a >b ,当b <0时,ab<1,即a >bab >1;若a b >1,则a b -1>0,即a -b b>0, ∴a -b >0,b >0或a -b <0,b <0,即a b >1a >b ,反之也不成立.【例2】 已知x <1,比较x 3-1与2x 2-2x 的大小.[思路点拨] 作差―→因式分解――→x <1判号―→下结论[解] x 3-1-(2x 2-2x ) =x 3-2x 2+2x -1=(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2=(x -1)(x 2-x +1)=(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34, ∵x <1,∴x -1<0,又∵⎝⎛⎭⎪⎫x -122+34>0, ∴(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34<0, ∴x 3-1<2x 2-2x .1.(变条件)本例条件“x <1”变为“x ≥1”,比较x 3-1与2x 2-2x 的大小.[解] x 3-1-(2x 2-2x )=(x -1)(x 2-x +1)=(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34, ∵x ≥1,∴x -1≥0,又⎝⎛⎭⎪⎫x -122+34>0, ∴(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34≥0, ∴x 3-1≥2x 2-2x .2.(变题)已知:a >0, b >0, 比较1a +1b 与1a +b 的大小.[解](作差法)⎝ ⎛⎭⎪⎫1a +1b -1a +b=ab +b 2+a 2+ab -abab a +b=a 2+ab +b 2ab a +b, 因为a >0, b >0,所以a 2+ab +b 2ab a +b>0,所以1a +1b >1a +b.(作商法)因为a >0, b >0,所以1a +1b 与1a +b同为正数,所以1a +1b1a +b =a +b2ab ,所以a +b 2ab -1=a 2+ab +b 2ab>0,即a +b 2ab>1,因为1a +b >0,所以1a +1b >1a +b.(综合法)因为a >0, b >0,所以a +b >0,所以⎝ ⎛⎭⎪⎫1a +1b (a +b )=a +b a +a +b b =2+b a +a b >1,所以1a +1b >1a +b.1.作差法比较两个数大小的步骤及变形方法(1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④分母或分子有理化(针对无理式中的二次根式);⑤分类讨论.2.作商法比较大小的三个步骤 (1)作商变形; (2)与1比较大小; (3)得出结论.提醒:作商法比较大小仅适用同号的两个数.3.综合法需要结合具体的式子的特征实施,本题思路为:A >B >0⇔A ·1B>1.[跟进训练]3.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >bA [∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎪⎫a -122+34>0,∴b >a ,∴c ≥b >a .故选A .] 4.已知a ,b ∈R ,试比较a 2-ab 与3ab -4b 2的大小.[解] 因为a ,b ∈R ,所以(a 2-ab )-(3ab -4b 2)=a 2-4ab +4b 2=(a -2b )2,当a =2b 时,a 2-ab = 3ab -4b 2, 当a ≠2b 时,a 2-ab > 3ab -4b 2.证明不等式【例3】 (1)已知a >b ,e >f ,c >0,求证:f -ac <e -bc . (2)已知a > b >0, m >0,求证:b a <b +ma +m.[证明] (1)∵a >b ,c >0,∴ac >bc . ∴-ac <-bc ,∵f <e ,∴f -ac <e -bc .(2)(作差法)因为a > b >0, m >0,所以b -a <0,a +m >0,所以b a -b +m a +m =b a +m -a b +m a a +m =m b -a a a +m <0,所以b a <b +m a +m;(不等式的性质)因为a > b >0, m >0, 所以am > bm, a +m >0,ab >0,所以am +ab >ab +bm ,即a (b +m )>b (a +m ),所以b a <b +m a +m.1.利用不等式的性质证明不等式(综合法)的注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.2.作差法也可以应用于证明不等式.3.第二题的结论源于生活背景的提炼:在含糖b 克的a 克糖水中放入m 克的糖,结果糖水变甜了.本质上是浓度变大了.[跟进训练]5.若bc -ad ≥0,bd >0.求证:a +b b ≤c +d d.[证明] ∵bc -ad ≥0,∴ad ≤bc ,bd >0,∴a b ≤c d ,∴a b +1≤c d +1,∴a +b b ≤c +dd . 6.已知a >b >m >0,求证:a b <a -m b -m.[证明] (作差法)因为a >b >m >0, 所以b -a <0,b -m >0,所以a b -a -m b -m =a b -m -b a -m b b -m =m b -a b b -m <0,所以a b <a -m b -m;(不等式的性质)因为a >b >m >0,所以am >bm ,b -m >0, 所以-bm >-am ,所以ab -bm >ab -am ,即b (a -m )>a (b -m ),所以a b <a -m b -m.不算式性质的应用[思路点拨] 欲求a -b 的范围,应先求-b 的范围,再利用不等式的性质求解.[解]∵1<a<4,2<b<8,∴2<2a<8,6<3b<24,∴8<2a+3b<32.∵2<b<8,∴-8<-b<-2,又∵1<a<4,∴1+(-8)<a+(-b)<4+(-2),即-7<a-b<2,故8<2a+3b<32,-7<a-b<2.即2a+3b的取值范围为(8,32),a-b的取值范围为(-7,2).相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.2.已知两个二元一次代数式的范围,求第三个二元一次式的范围,可以用双换元的方法,也可以通过待定系数法,先用已知的两个二元一次代数式表示未知的二元一次式.[跟进训练]7.已知-12≤α<β≤12,求α+β2,α-β3的取值范围.[解] ∵-12≤α<β≤12,∴-14≤α2<14,-14<β2≤14.两式相加得-12<α+β2<12.∵-16≤α3<16,-16≤-β3<16,两式相加得-13≤α-β3<13.又∵α<β,∴α-β3<0,∴-13≤α-β3<0.8.已知-4≤a -c ≤-1,-1≤4a -c ≤5,求9a -c 的范围.[解]令⎩⎪⎨⎪⎧a -c =x ,4a -c =y ,得⎩⎪⎨⎪⎧a =13y -x ,c =13y -4x ,∴9a -c =83y -53x ,∵-4≤x ≤-1,∴53≤-53x ≤203,①∵-1≤y ≤5,∴-83≤83y ≤403,②①和②相加,得-1≤83y -53x ≤20,∴-1≤9a -c ≤20.1.作差法比较大小的三个步骤作差、变形、定号,概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.2.利用不等式的性质可以判定不等式的正确性、也证明一些不等式还可以求相关量的取值范围.必须熟记不等式的性质,不可省略条件或跳步推导,更不能随意构造性质与法则.3.不等式的证明可以用比较法(作差或作商法)、也可以利用不等式的性质(综合法),注意方法的灵活应用.1.已知a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +bC .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-bB [选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以,否则如a =-1,b =0时不成立,故选B .]2.设a =3x 2-x +1,b =2x 2+x ,则( )A.a>b B.a<bC.a≥b D.a≤bC[a-b=(3x2-x+1)-(2x2+x)=x2-2x+1=(x-1)2≥0,∴a≥b.]3.已知角α,β满足-π2<α-β<π2,0<α+β<π,则3α-β的取值范围是.(-π,2π)[结合题意可知3α-β=2(α-β)+(α+β),且2(α-β)∈(-π,π),α+β∈(0,π),利用不等式的性质可知3α-β的取值范围是(-π,2π).]4.近来鸡蛋价格起伏较大,假设第一周、第二周鸡蛋价格分别为a元/斤、b元/斤,家庭主妇甲和乙买鸡蛋的方式不同:家庭主妇甲每周买3斤鸡蛋,家庭主妇乙每周买10元钱的鸡蛋,试比较谁的购买方式更优惠(两次平均价格低视为实惠) .(在横线上填甲或乙即可)乙[由题意得甲购买产品的平均单价为3a+3b6=a+b2,乙购买产品的平均单价为2010a+10b=2aba+b,由条件得a≠b.∵a+b2-2aba+b=a-b22a+b>0,∴a+b2>2aba+b,即乙的购买方式更优惠.]5.若a>b>0,c<d<0,e<0,求证:ea-c2>e(b-d)2.[证明]∵c<d<0,∴-c>-d>0,又a>b>0,∴a-c>b-d>0,则(a-c)2>(b-d)2>0,即1a-c2<1(b-d)2.又e<0,∴ea-c2>e(b-d)2.。

高中数学第3章不等式3.1.1不等关系与不等式3.1.2不等式的性质新人教B版必修5

高中数学第3章不等式3.1.1不等关系与不等式3.1.2不等式的性质新人教B版必修5
A.5x+4y<200 B.5x+4y≥200 C.5x+4y=200 D.5x+4y≤200
2.设 M=x2,N=-x-1,则 M 与 N 的大小关系是( )
A.M>N
B.M=N
C.M<N
D.与 x 有关
A [M-N=x2-(-x-1)=x2+x+1=x+122+34>0,故 M>N.]
a>b,b>c⇒_a_>_c_
性质 3(可加性)
a>b⇒_a_+__c_>_b_+__c_
推论 1 性质 3
推论 2
a+b>c⇒_a_>__c_-__b__ a>b,c>d⇒_a_+__c_>__b_+__d_
性质 4(可乘性) a>b,c>0⇒_a_c_>__b_c_;a>b,c<0⇒_a_c_<__b_c_
2.由-6<a<8,-4<b<2,两边分别相减得-2<a-b<6,你认为 正确吗?
[提示] 不正确.因为同向不等式具有可加性与可乘性.但不能 相减或相除,解题时要充分利用条件,运用不等式的性质进行等价变 形,而不可随意“创造”性质.
3.你知道下面的推理、变形错在哪吗? ∵2<a-b<4, ∴-4<b-a<-2. 又∵-2<a+b<2, ∴0<a<3,-3<b<0, ∴-3<a+b<3. 这怎么与-2<a+b<2 矛盾了呢?
1.利用不等式的性质证明不等式注意事项 (1)利用不等式的性质及其推论可以证明一些不等式.解决此类问 题一定要在理解的基础上, 记准、记熟不等式的性质并注意在解题 中灵活准确地加以应用. (2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立 的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.

高中数学第三章不等式3.1不等关系作差比较法的应用素材北师大版必修(1)

高中数学第三章不等式3.1不等关系作差比较法的应用素材北师大版必修(1)

作差比较法的应用比较法是证明不等式的最基本方法,解决问题时,往往是最基本方法也是最有效方法,最能够体现高考强调的“通性通法”。

比较法分为比差法与比商法两种。

本文主要讲解“比差法”。

一、方法细解1、比差法步骤是“作差――变形――判断”三步组成,比差法的判断是与“零”比较。

2、比较法证明不等式时,先作差,再变形,比差法的依据是:0>-⇔>b a b a ;0=-⇔=b a b a ;.0<-⇔<b a b a 。

作差法的关键是变形,它具有方向性和技巧性,常用的技巧有:(1)分解因式;(2)配方;(3)有理化分子;(4)分类讨论;(5)平方后作差。

二、比较法的应用1、直接应用例1、已知R b R a ∈∈,,且b a ≠,在(1)2223b ab a >+;(2)322355b a b a b a +>+;(3))1(222--≥+b a b a ;(4)2>+ab ba ,四个式子中恒成立的是( )A 、4个B 、3个C 、2个D 、1个 解:(1)(4)举反例很容易排除,对于(2),利用作差法:322355ba ba ba--+)()(223223b ab b aa ---=))((3322b ab a --=))(()(222b ab ab a b a +++-=0,0)(222>++>-bab a b a ,而a +b 的符号是不确定的,故差值符号不能确定,因此(2)不正确;对于(3),=++-+22222b a b a 0)1()1(22≥++-b a ,故)1(222--≥+b a ba(3)正确,综合以上分析,只有(3)正确,故选D.点评:这种题型在高考中经常出现,比差法是常用的方法技巧。

要熟练的应用因式分解发、配方法、提取公因式等技巧。

例2 设a 、b 是正实数,以下不等式 (1)ba ab ab +>2;(2)22234b ab b a ->+;(3)22>+abab 恒成立的序号为( )A 、(1)(2)B 、(1)(3)C 、(2)(3)D 、(3)解:(1)ba abb a ab ba ab ab +-+=+-2)(20)()2(2≥+-=+-+=ba b a ab ba ab b a ab ,(1)不合题意,排除A 、B ;(2)=--+)34(322b ab b a =+-2244b ab a 0)2(2≥-b a ,即22234b ab ba-≥+,不合题意,排除C ;(3)22-+abab 01)1(22222>+-=+-=abab abab ba ,所以22>+abab 成立,故选D.点评:能够利用基本方法,通过熟练的运用配方化为平方和的形式,容易判断作差后与零的大小关系。

高中数学必修5目录

高中数学必修5目录

高中数学必修5目录高中数学必修5在高考占很大比例,主要集中于数学第一道大题中。

题型较为简单,但变化多端。

今天小编在这给大家整理了高中数学必修5目录,接下来随着小编一起来看看吧!高中数学必修5目录第一章解三角形1.1正弦定理与余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.2.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题如何学好高中数学一·培养良好的学习兴趣学习数学最好的方法就是把数学培养成自己的爱好。

爱好高中数学就会有兴趣去实践高中数学的学习方法,有兴趣才会形成学习的主动性和积极性。

养好良好的学习习惯,并把它培养成学习兴趣有这几点建议:(1)课前预习,对所有学识产生疑问,产生好奇心。

(2)听课中要配合老师讲课,满足感官的兴奋性,听课重点解决预习中疑问,把老师课堂的提问·停顿·教具和模型的演示的都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

(3)思考问题注意归纳,挖掘你的学习的潜力。

(4)听课中注意老师讲解时的数学思想,多问什么要这样的思考,这样的方法怎样是产生的?把概念回归自然。

所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念·直角坐标系的产生·极坐标的产生都是从实际生活中抽象出来的。

只有回归现实才能对概念理解切实可靠,有应用概念判断·推理时会准确。

二、弄清概念、性质与基本方法弄清概念、性质和基本方法是每个学科学习的第一步也是最重要的一步,如果概念没有弄清就去解题是没有不碰壁的。

高中数学第三章不等式31不等关系与不等式课件新人教A版必修5

高中数学第三章不等式31不等关系与不等式课件新人教A版必修5

D.5
【解题探究】判断不等关系的真假,要紧扣不等的性
质,应注意条件与结论之间的联系. 【答案】C
【解析】①c 的范围未知,因而判断 ac 与 bc 的大小缺乏 依据,故该结论错误.
②由 ac2>bc2 知 c≠0,则 c2>0,
∴a>b,∴②是正确的.
③a<b, ⇒a2>ab,a<b, ⇒ab>b2,
【答案】M>N
【解析】M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1= a1(a2 - 1) - (a2 - 1) = (a1 - 1)(a2 - 1) , 又 ∵ a1∈(0,1) , a2∈(0,1) , ∴ a1 - 1<0 , a2 - 1<0.∴(a1 - 1)(a2 - 1)>0 , 即 M - N>0.∴M>N.
用不等式表示不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成 500 mm 和600 mm两种规格,按照生产的要求,600 mm 钢管 的数量不能超过500 mm钢管的3倍.试写出满足上述所有不等 关系的不等式.
【解题探究】应先设出相应变量,找出其中的不等关 系,即①两种钢管的总长度不能超过4 000 mm;②截得600 mm钢管的数量不能超过500 mm钢管数量的3倍;③两种钢管 的数量都不能为负.于是可列不等式组表示上述不等关系.
比较大小要注重分类讨论
【示例】设 x∈R 且 x≠-1,比较1+1 x与 1-x 的大小. 【错解】∵1+1 x-(1-x)=1-1+1-x x2=1+x2 x,而 x2≥0,∴ 当 x>-1 时,x+1>0,1+x2 x≥0,即1+1 x≥1-x; 当 x<-1 时,x+1<0,1+x2 x≤0,即1+1 x≤1-x.

高中数学 第三章 不等式与不等关系1学案 新人教版必修5 学案

高中数学 第三章 不等式与不等关系1学案 新人教版必修5 学案

§3.1不等式与不等关系(1)一、学习目标:通过具体情境,感受在现实世界和日常生活中存在着大量的数量关系,了解不等式(组)的实际背景,并能将这些不等关系用不等式表示出来。

二、学习重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。

三、学习难点:用不等式(组)准确地表示出不等关系。

四、学习过程:学习导引:在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。

如两点之间线段最短,三角形两边之和大于第三边,等等。

人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。

在数学中,我们用不等式来表示不等关系。

(一)表示不等关系的常用符号,请你填一填文字语言数学符号文字语言数学符号大于至多小于至少大于或等于不少于小于或等于不多于(二)日常生活中,既有相等关系,又存在着大量的不等关系。

如以下标志,请用不等式表示出来请你列举生活中的不等关系1._______________________________________2.__________________________________3.______________________________________4.__________________________________(三)实例感知用不等式表示下列问题中的不等关系1.点与线、点与面的距离问题设点A 与平面a 的距离为d,B 为平面a 上的任意一点,则其中不等关系有______________2.杂志的销售问题某种杂志原以每本 2.5 元的价格销售,可以售出 8 万本. 据市场调查,若单价每提高 0.1 元,销售量就可能相应减少 2000 本. 若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于 20 万元呢?3.钢材的截取问题某钢铁厂要把长度为 4000mm 的钢管截成500mm 和 600mm 两种.按照生产的要求,600mm的数量不能超过 500mm 钢管的 3 倍.怎样写出满足所有上述不等关系的不等式呢?(四)实战演练1.用不等式表示,某地规定本地最低生活保障金x 不低于 400 元______________________2.限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过 40km/h,写成不等式就是_______________3.某品牌酸奶的质量检查规定,酸奶中脂肪的含量p应不少于 2.5%,蛋白质的含量q 应不少于 2.3%,写成不等式组就是_________________4.(1)如图(见课本 74 页),在一个面积为 350 的矩形地基上建造一个仓库,四周是绿地,仓库的长L 大于宽 W 的 4 倍(2)有一个两位数大于 50 而小于 60,其个位数字比十位数大 2.试用不等式表示上述关系,并求出这个两位数(用a 和b 分别表示这个两位数的十位数字和个位数字)(五)实践训练(时量:5 分钟 满分:10 分) 1. 下列不等式中不成立的是( ).A . -1≤2B . -1< 2C . -1≤-1D . -1≥22. 用不等式表示,某厂最低月生活费 a 不低于 300元 ( ). A . a ≤ 300 B . a ≥300 C . a > 300 D . a < 3003. 已知 a + b > 0 , b < 0 ,那么 a ,b ,-a , - b 的大小关系是( ). A .a > b > -b > - a B .a > -b > -a > b C .a > -b > b > - a D .a > b > -a > - b4. 用不等式表示:a 与b 的积是非正数___________5. 用不等式表示:某学校规定学生离校时间 t 在 16点到 18 点之间______________________(六)课堂小结: 1.会用不等式(组)表示实际问题的不等关系;2.会用不等式(组)研究含有不等关系的问题.(六)课后实践 1.用不等式表示下面的不等关系:(1)a 与 b 的和是非负数_________________(2)某公路立交桥对通过车辆的高度h “限高4m ”________________(3)坐火车时,儿童身高1.2米以上需要买票,需买票汇的范围是_______________2. 某夏令营有 48 人,出发前要从 A 、B 两种型号的帐篷中选择一种.A 型号的帐篷比 B 型号的少 5顶.若只选 A 型号的,每顶帐篷住 4 人,则帐篷不够;每顶帐篷住 5 人,则有一顶帐篷没有住满.若只选 B 型号的,每顶帐篷住 3 人,则帐篷不够;每顶帐篷住 4 人,则有帐篷多余.设 A 型号的帐篷有x 顶,用不等式将题目中的不等关系表示出来.3.某用户计划购买单价分别为60元,70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒。

高中数学课件-不等式与不等关系

高中数学课件-不等式与不等关系

2
2
判断两个实数大小的依据是:
abab0 a b ab 0 abab0
作差比较法
这既是比较大小(或证明大小)的基本方法,又是推导不等式的性质的基础.
作差比较法其一般步骤是: 作差→变形→判断符号→确定大小.
比较两个数(式)的大小的方法:
例2.比较x2-x与x-2的大小.
解:(x2-x)-(x-2)=x2-2x+2
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6. ∵2<b<3,∴13<1b<12, ∵-6<a<8,∴-2<ab<4.
变变式式46、已知-π2≤α<β≤π2,求α+2 β,α-2 β的范围.
解析:∵-π2≤α<β≤π2,∴-π4≤α2<π4,-π4<β2≤π4. 两式相加,得-π2<α+2 β<π2.
(2)现在销售量是多少?
8 x 2.5 0.2 0.1
(3)销售总收入为多少?
(8 x 2.5 0.2)x万元 0.1
(8 x 2.5 0.2)x 20 0.1
解:若杂志的定价为x元,则销售量减少:
x 2.5 0.2万本 0.1
因此,销售总收入为: (8 x 2.5 0.2)x万 元 0.1
分析:假设截得500mm的钢管x根,截得600mm的钢管y根。根 据题意,应当有什么样的不等关系呢?
(1)截得两种钢管的总长度不能超过4000mm; (2)截得600mm钢管的数量不能超过500mm的钢管数量的3倍; (3)截得两种钢管的数量都不能为负.

人教版高中数学第3章3.1不等关系

人教版高中数学第3章3.1不等关系

解答。听课时关键应该弄清楚老师讲解问题的思路。
三、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
四、听方法。

在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”
②关于 a≤b 或 a≥b 的含义. 不等式 a≤b 应读作“a 小于或者等于 b”,其含义是 指“或者 a<b,或者 a=b”,等价于“a 不大于 b”,即 若 a<b 或者 a=b 之中有一个正确,则 a≤b 正确. 如 2<3 正确,则 2≤3 没有逻辑错误,因为 2、3 是 具体数值,“2<3”比“2≤3”更确切.
因为 ቤተ መጻሕፍቲ ባይዱ-b>0,所以 b-a<0.所以 ab<0. 又 a>b,所以 a>0,b<0.故该命题为真命题.
名师点评 判断命题的真假,应紧扣不等式的性质,同时要注意 条件和结论之间的联系,利用不等式的性质进行不等式的 证明时,一定要在理解的基础上记准、记熟不等式的性质, 并注意在解题时要灵活、准确地加以应用.
[变式训练]
1.国家计划以 2 400 元/吨的价格收购某种农产品 m 吨,按规定,农户向国家纳税为:每收入 100 元纳税 8 元(称作税率为 8 个百分点,即 8%),为了减轻农民负担, 制定积极的收购政策,根据市场规律,税率降低 x 个百分 点,收购量能增加 2x 个百分点,税率降低后,国家此项 税收总收入不低于原计划的 78%.请用不等式表示上述不 等关系.
的研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进

高中数学 第三章 不等式 3.1 不等关系与比较大小教学设计 高二数学教案

高中数学 第三章 不等式 3.1 不等关系与比较大小教学设计 高二数学教案

《不等关系与比较大小》教学设计一、教学目标知识与技能:1、会用实数基本理论比较两个实数(代数式)的大小;2、掌握不等式的基本性质.过程与方法:通过回忆初中内容,结合数轴得出实数基本性质;由不等式的基本性质,总结并证明不等式的其它性质;强化转化思想与数形结合思想.情感、态度与价值观:激发探究数学问题的兴趣,体会数学式子的结构美.二、教学重点:比较两实数(或代数式)的大小..三、教学难点:不等式性质的熟练运用.四、教学过程(一)复习引入问题:不等关系在数学意义上有哪些体现?如果两个量之间存在不等关系,一般就有大小之分,那么如何比较两个量的大小呢?本节就来讨论这个问题---比较大小.(二)新课学习1实数比较大小的依据(从数轴上看,右边的点所表示的数总比左边的点所表示的数大)对于任意两个实数,a b0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2比较两个实数,a b 大小的方法(1)作差a b ----变形---与0比较---得出结论;(2)作商a b ----变形---与1比较---得出结论(作商的前提是两个数同号)3不等式的基本性质(1)a b a c b c >⇒+>+;(2),0a b c ac bc >>⇒>;(3),0a b c ac bc ><⇒<;(4),a b b c a c >>⇒>(传递性);(5),a b c d a c b d >>⇒+>+(同向可加性);(6)0,0a b c d ac bd >>>>⇒>(正数同向可乘性); (7)0,1,n n a b n n N a b >>>∈⇒>>且;(8),0a b >,a b <,0m >a a m b b m+⇒<+. 一、典例分析 例1、试比较下列各组数的大小,其中x R ∈(1)(1)(5)x x ++与2(3)x +;(2)61x +与42x x +;(3)a b a b 与b a a b ,其中,0,,R a b a b >∈且.解(1)(1)(5)x x ++-2(3)x +22(65)(69)x x x x =++-++40=-<所以,(1)(5)x x ++<2(3)x +.(2) 61x +42()x x -+6421x x x =--+422(1)(1)x x x =--- 当1x =±时, 61x +42()x x =+;当1x ≠±,61x +42()x x >+. (3) a b a b b a a b a a b b -⎛⎫= ⎪⎝⎭①当a b >时,1,0,a a b b >->所以1a b a b -⎛⎫> ⎪⎝⎭,所以a b b a a b a b >; ②当a b =时,1,0,a a b b =-=所以1a b a b -⎛⎫= ⎪⎝⎭,所以a b b a a b a b =; ③当a b <时,1,0,a a b b <-<所以1a b a b -⎛⎫> ⎪⎝⎭,所以a b b a a b a b >;综上知, a b b a a b a b ≥例2(教材P72例7)引出性质(8)一、深化练习例3、已知22ππαβ-≤<≤,求2αβ+,3αβ-的取值范围解 ,2222ππππαβ-≤<-<≤,∴式相加得παβπ-<+<, ∴222παβπ+-<<. 22ππα-≤<,∴22ππβ-≤-<,∴παβπ-≤-<,∴333παβπ--≤<, 又∵αβ<,∴03αβ-<,∴033παβ--≤< 综上,2αβ+的取值范围为(,)22ππ-,3αβ-的取值范围为[,0)3π-. 例4、 设2()(0)f x ax bx a =+≠,若3(1)5,4(1)6f f ≤≤≤-≤,求(2)f 的取值范围.解 由(1)(1)f a b f a b =+⎧⎨-=-⎩,得1[(1)(1)]21[(1)(1)]2a f fb f f ⎧=+-⎪⎪⎨⎪=--⎪⎩∴(2)423(1)(1)=+=+-f a b f f∵3(1)5≤≤f≤≤,∴9(1)15f又∵4(1)6≤+-≤f f≤-≤,∴133(1)(1)21f即(2)f的取值范围为[13,21]五、课堂小结1比较两个实数(代数式)的大小依据及方法;2掌握不等式的基本性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学第三章不等式 3.1 不等关系与不等式
(1)说课稿新人教A版必修5
一、教材分析
1、教材所处地位、作用
不等式与方程、函数、三角等内容有着密切的联系.在高考题中不等式常与其他知识交汇呈现,因此不等式在高考中占有比较重要的地位。

而本节课是本章的起始课,学好本节课是学习本章的基础。

通过学习有助于学生认识到学习不等关系及不等式的必要性和重要性,在具体情境中感受并由此产生用数学研究不等关系的强烈愿望,并且为进一步学习后面的内容起了良好的铺垫作用.
2、教学目标
(1)知识目标:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,会用不等式(组)表示不等关系;掌握不等式的基本性质,会利用作差法比较两数(式)大小。

(2).过程与方法:根据具体问题,让学生经历从不等关系实际情境中抽象出不等式模型的过程。

感知不等关系和不等式之间的内在联系,并通过具体的操作归纳、总结已达到理解的目的。

让学生在获得数学基础知识的基础上,了解它们产生的背景、应用、使学生学会数学思考问题,解决问题。

(3)情感、态度与价值观:让学生感受数学来源于生活,初步体会数学形成过程,逐步培养学生学习数学的良好品质。

二、教学重点与难点
教学重点:用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值.并会利用作差法比较两数(式)大小.
教学难点: 用不等式(组)正确表示出不等关系以及作差法比较大小变形方法的掌握。

三、教授类型:新授课教具:多媒体
四、学情分析
教学应走在发展的前面,教学创造着最近发展区,我认为对学生现有发展水平的充分了解对我们的教学至关重要。

所以我对学生的学情作了如下分析
第一,初中已学简单的不等式;第二,会比较两数的大小;第三,具备“通过观察、操作并抽象概括等活动获得数学结论”的体会,有一定的抽象概括能力、数学建模能力和合情推理能力.
五、教法与学法
为了更好地体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。

我设计了以下六个环节,层层深入,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。

六、教学过程
1、创设情景,引出问题
在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.例如大小、长短、轻重、高矮,又如在数学上两点之间线段最短,三角形两边之和大于第三边,两边之差小于第三边等等。

设计意图:让学生感受不等关系无处不在,认识学习不等式的重要性,引入课题:不等关系与不等式
你能例举生活中的一些不等关系吗?
并给学生一定的时间和空间,大胆发言,说说身边的不等关系,从而进一步体验不等关系普遍存在,激发学生的学习兴趣,而正值学生情绪高涨,我将及时给出问题:
在数学中我们如何表示不等关系?
从而引入下一环节,也就是本节课的重点、难点:用不等式(组)表示不等关系,为了突破难点,下面我将通过由浅入深的过程引导学生分析、探究。

首先将引入时展示的简单不等关系用不等式表示,再是让学生尝试将自己列举的一些不等关
系转化为不等式,教师及时点评。

设计意图:此过程在学生现有发展水平的基础上完成,起点低,学生基本能准确的用不等式刻画不等关系,从而使全体学生积极参与并体验到成功,也为后面的难点突破做铺垫。

通过上述实践,接下来,我以问题串的形式,让学生自己归纳总结,教师适当点评,并强调准确写出不等式的关键是找出不等词,抓住重点,体现难点。

(1).不等号的种类?
(2)将不等关系表示成不等式的方法?
(3)能准确写出不等式的关键是什么?
我们说教学不能只适应现有发展水平,而应适应最近发展区,从而不断冲击最近发展区,达到新的发展水平。

因此在学生自主归纳新知后,我将及时通过典型例题,加以应用。

2、典例示范,数学应用
例1、 每本2.5元的价格销售,可以售出8万本。

据市场调查,若单价每提高0.1元,销
售量可能相应减少2000本。

若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?
设计意图:通过例1让学生参与到不等关系的数学刻画,建构一元二次不等式,本题对学生的要求也比较低,可以放手让学生完成,并且为后面出现的较复杂问题做好一定准备。

例2、某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,
600mm 钢管的数量不能超过mm 500钢管的3倍。

怎样写出满足上述所有不等关系的不等式呢?
例2相比例1,提升了难度。

因此本例的分析、引导是关键。

本题出现了两个变量、多个不
等式,学生可能会感到困难,所以我将采用同桌讨论的方式,
设计意图:通过一系列指向性的问题,使全体学生积极思维参与学习.整个解决过程让学生体会分析问题的重要性,更深入的掌握用不等式组表示实际问题的不等关系,并为以后的线性规划问题做一定的铺垫,同时也培养学生思维的严谨性.
接着,我就给出一个反馈练习,要求学生独立完成,以巩固用不等式组表示不等关系。

练习巩固
某校学生以面粉和大米为主食.已知面食每100克含蛋白质6个单位,含淀粉4个单位;米饭每100克含蛋白质3个单位,含淀粉7个单位.某快餐公司给学生配餐,现要求每盒至少含8个单位的蛋白质和10个单位的淀粉.设每盒快餐需面食x 百克、米饭y 百克,试写出x ,y 满足的条件
2、联系实际,探索研究
在教学中,我们提倡让学生在问题解决中学习,在问题探索中学习,从而使学生建构起对知识的理解,因此在下一环节中,我设计了一个生活实际问题,让学生在问题探索中学习新知。

能否用所学知识准确表示“糖水加糖甜更甜”的现象?
此过程,通过将实际问题到数学问题的转化,将不等关系到不等式的刻画,不仅巩固了不等关系的表示,而且通过提出新问:我们该如何证明此不等式?很自然地引出了作差比较法。

下面通过复习实数的基本理论,利用数轴数形结合,归纳总结得出比较两个实数(式)大小的方法,学生容易接受。

然后给出两组比较简单的作差比较,师生合作完成,教师板书,学生回答,再总结提炼步骤方法。

并对问(2)变式练习,一方面可以巩固作差比较法,另一方面,渗透了分类讨论的数学思想,为课后的能力作业给予一点启示。

例3、比较下面两组代数式的大小:
步骤:作差→变形→判号→结论.
其中变形是关键,常用的变形手段有提公因式、分解因式、通分、配方、有理化等.
1,1)2(2)1(232+->--x x x x x x x 与时当与).0,0(4>>>>++m a b b a m b m a :证明不等式:例
设计意图:最后通过例4,可以先让学生尝试,教师巡视学生解答情况,最后通过幻灯片展示标准过程,指出学生易错点,强调关键点。

对本题的教学既是对实际探索问题的解决,前后呼应;也是对作差比较法的进一步巩固,突破难点,同时也体现了作差比较法是证明不等式的重要方法之一,运用广泛,为后续的学习做准备.
3、教学小结
(1)认识了哪些不等关系?
(2)如何用不等式表示不等关系?
(3)作差比较法的步骤和关键?
设计意图:通过问答的方式,学生自己回忆总结本节课的收获,这样可以在最后短短几分钟内使学生脑海中迅速回放本节课的学习过程,再通过及时点评,使学生对重点内容更加深刻。

4、布置作业:1、课本习题3.1A组2、3;B组1;
2、预习课本不等式的性质
七、教学评价及反思
1、教学过程基本符合教学设计的预设,基本完成预设目标。

2、学生对于与实际结合紧密的实例表现积极感兴趣,特别是身边具体某超市的例子,今后
教学中还要注意多结合学生熟悉的身边的一些例子。

3、时间安排上还需进一步斟酌,合理安排预习要求和课堂每一环节的要求。

小结由于时间
原因未能让学生自己总结,不便于学生对于课堂学习情况的反思。

4、作差法练习中学生在变形中问题多,还需要进一步巩固。

5、数学来源于生活,应用于生活,需要在教学中长期渗透。

相关文档
最新文档