与矩形有关的折叠问题

合集下载

矩形的折叠问题(专题)

矩形的折叠问题(专题)

→ Bx
D
,故OE= 。
练习8 如图,在直角三角形ABC中, C ∠C=90º ,沿着B点的一条直线BE折 叠这个三角形,使C点与AB边上的 一点D重合。当∠A满足什么条件时, 点D恰好是AB的中点?写出一个你 B 认为适当的条件,并利用此条件证 明D为AB中点。 条件:∠A=30º
E D A
证明:由轴对称可得,△BCE≌△BDE,∴ BC=BD , 在△ABC中,∵ ∠C=90º,∠A=30º, ∴ BC= ∴ BD =
答案:矩形的长为10,宽为8。
D F E A
C
B
4、求线段与面积间的变化关系
例5 已知一三角形纸片ABC,面积为25,BC的长为 10,B和C都为锐角,M为AB上的一动点(M与A、B 不重合),过点M作MN∥BC,交AC于点N,设MN=x. (1)用x表示△AMN的面积SΔ AMN。 (2)Δ AMN沿MN折叠,设点A关于Δ AMN对称的点为A¹ , Δ A¹ MN与四边形BCMN重叠部分的面积为y.①试求出 y与x的函数关系式,并写出自变量X的取值范围; ②当x为何值时,重叠部分的面积y最大,最大为多 少?
矩形的折叠问题
(复习课)
练习1 如图,有一块直角三角形纸片,两 直角边AC=6,BC=8,现将直角边AC沿 直线AD折叠,使它落在斜边AB上,且与AE 重合,求CD
A E C B D
如图,折叠矩形的一边AD,点D 落在BC边上点F处,已知AB=8, BC=10,求EC的长 D A
E B F C
练习2 如图,在梯形ABCD中, DCAB,将梯形对折,使点D、 C分别落在AB上的D¹ 、C¹ 处, 折痕为EF。若CD=3,EF=4, 则AD¹ +BC¹ = 。

初中数学折叠问题

初中数学折叠问题

第1题图第2题图G 第3题图第4题图第5题图第6题图折叠问题文稿(不含压轴题)1.如图,长方形ABCD 沿AE 折叠,使D 落在边BC 上的F 点处,如果∠BAF=60°,则∠DAE=___.2.如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG 的长.3.如图,在Rt △ABC 中,∠ACB=90°∠A<∠B ,CM 是斜边AB 的中线,将△ACM 沿直线CM 折叠,点A 落在D 处,如果CD 恰好与AB 垂直,那么∠A 等于_ ____.4.如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,折痕交CD 于点E ,已知AB=8cm, BC=10cm , 求EC 的长.5.如图,直角梯形ABCD 中,∠A=90°,将BC 边折叠,使点B 与点D 重合,折痕经过点C ,若AD=2,AB=4,求∠BCE 的正切值.6.如图,点D 、E 分别是AB 、AC 的中点,将点A 沿过DE 的直线拆叠. (1)说明点A 的对应点A '一定落在BC 上; (2)当A '在BC 中点处时,求证:AB=AC .第7题图C'FEDABC7. 如图,矩形纸片ABCD 的长AD=9cm ,宽AB=3cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别是多少?8. 如图是面积为1的正方形ABCD ,M 、N 分别为AD 、BC 边上的中点,将点C 折至MN 上,落在点P 位置,折痕为BQ ,连结PQ .(1)求MP 的长;(2)求证:以PQ 为边长的正方形面积等于13.9. 把矩形ABCD 对折,设折痕为MN ,再把B 点叠在折痕上,得到Rt △ABE ,延长EB 交AD 于点F ,若矩形的宽CD=4. (1)求证:△AEF 是等边三角形; (2)求△AEF 的面积.第8题图 第9题图xy第11题图E COAB PD10. 把矩形纸片OABC 放入直角坐标系xOy 中,使OA 、OC 分别落在x 轴、y轴的正半轴上。

初二数学矩形折叠问题专题讲解,只需三步就能搞定!

初二数学矩形折叠问题专题讲解,只需三步就能搞定!

例1如图,将矩形ABCD沿AE折叠,使点D落在BC边上的点F处,已知AB=6,BC=10,则CE的长为多少?分析:根据折叠可知:△ADE≌△AFE⇒AD=AF=BC=10,DE=EF.在Rt△ABF中,AB=6,AF=10,根据勾股定理,得BF==8,所以CF=10-8=2.设CE的长为x,则DE=EF=6-x.在Rt△CEF中,CF=2,CE=x,EF=6-x,根据勾股定理列出方程,即可求出x的长.例2如图,将矩形ABCD折叠,使点A与点C重合,折痕为EF,若AB=3,AD=4,你能求折痕EF的长吗?分析:连接AC交EF与点O,由翻折可得到FE垂直平分AC,那么AF=FC,易证△AEO≌△CFO.那么求出OF长,乘2后就是EF长,利用直角三角形ABF求解即可.总结矩形折叠问题解题技巧和关键步骤(1)折叠确定全等等量线段转移(2)求出线段长度(3)设未知数,利用勾股关系建立方程好记性不如烂笔头,快快整理笔记在笔记本上,找题目练练哦!题目已经给你们准备好啦专题小练一.选择题1.(2018•牡丹江)如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为( )A.6 B.5C.4 D.32.(2019•辽阳)如图,直线EF是矩形ABCD的对称轴,点P在CD边上,将△BCP沿BP 折叠,点C恰好落在线段AP与EF的交点Q处,BC=4,则线段AB的长是( )3.(2019•桂林)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为( )4.(2018•朝阳)如图,在矩形ABCD中,BC=8,CD=6,E为AD上一点,将△ABE沿BE折叠,点A恰好落在对角线BD上的点F处,则折线BE的长为( )5.(2018•毕节市)如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则折痕AM的长为( )二.填空题(共4小题)6.(2019•盘锦)如图,四边形ABCD是矩形纸片,将△BCD沿BD折叠,得到△BED,BE交AD于点F,AB=3.AF:FD=1:2,则AF= .7.(2019•西藏)如图,把一张长为4,宽为2的矩形纸片,沿对角线折叠,则重叠部分的面积为 .8.(2019•长春)如图,有一张矩形纸片ABCD,AB=8,AD=6.先将矩形纸片ABCD 折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC 相交于点G,则△GCF的周长为 .9.(2019•青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为 cm.三.解答题10.(2019•滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.▍ 声明:本文整理自网络,如有侵权,请联系删除。

八年级数学翻折变换(折叠问题)参考答案与试题解析

八年级数学翻折变换(折叠问题)参考答案与试题解析

八年级数学翻折变换(折叠问题)参考答案与试题解析work Information Technology Company.2020YEAR八年级数学翻折变换(折叠问题)参考答案与试题解析一.选择题(共12小题)1.如图,矩形纸片ABCD,长AD=9m,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长为()A.7cm B.6cm C.5.5cm D.5cm【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【解答】解:由折叠的性质得:BE=DE,设DE长为xcm,则AE=(9﹣x)cm,BE=xcm,∵四边形ABCD是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(9﹣x)2+32=x2,解得:x=5,即DE长为5cm,故选:D.【点评】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.2.如图,在等边三角形ABC中,点D、E分别是边AC、BC上两点.将△ABC沿DE翻折,点C正好落在线段AB上的点F处,使得AF:BF=2:3.若BE=16,则点F到BC边的距离是()A.8B.12C.D.【分析】作EM⊥AB于M,由等边三角形的性质和直角三角形的性质求出BM=BE=8,ME=BM=8,由折叠的性质得出FE=CE,设FE=CE=x,则AB=BC=16+x,得出BF=(16+x),求出FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得出方程,解方程求出BF=21.作FN⊥BC于N,则∠BFN=30°,由直角三角形的性质得出BN=BF=,得出FN=BN=即可.【解答】解:作EM⊥AB于M,如图所示:∵△ABC是等边三角形,∴BC=AB,∠B=60°,∵EM⊥AB,∴∠BEM=30°,∴BM=BE=8,ME=BM=8,由折叠的性质得:FE=CE,设FE=CE=x,则AB=BC=16+x,∵AF:BF=2:3,∴BF=(16+x),∴FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得:(8)2+(+x)2=x2,解得:x=19,或x=﹣16(舍去),∴BF=(16+19)=21,作FN⊥BC于N,则∠BFN=30°,∴BN=BF=,∴FN=BN=,即点F到BC边的距离是,故选:D.【点评】本题考查了翻折变换的性质、等边三角形的性质、直角三角形的性质、勾股定理等知识;熟练掌握翻折变换和等边三角形的性质,由勾股定理得出方程是解题的关键.3.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB 边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.【分析】根据等腰直角三角形的性质得到AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,得到AH=B′H=AB′,求得AH=B′H=1,根据勾股定理得到BB′===,由折叠的性质得到BF=BB′=,DE ⊥BB′,根据相似三角形即可得到结论.【解答】解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,∴AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,∴△AHB′是等腰直角三角形,∴AH=B′H=AB′,∵AB′=AC=,∴AH=B′H=1,∴BH=3,∴BB′===,∵将△BDE沿DE折叠,得到△B′DE,∴BF=BB′=,DE⊥BB′,∴∠BHB′=∠BFE=90°,∵∠EBF=∠B′BH,∴△BFE∽△BHB′,∴=,∴=,∴EF=,故答案为:.故选:C.【点评】本题考查了翻折变换(折叠问题),等腰直角三角形的判定和性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.4.如图,在△ABC中,AB=AC=2,∠BAC=30°,将△ABC沿AC翻折得到△ACD,延长AD交BC的延长线于点E,则△ABE的面积为()A.B.C.3D.【分析】由折叠的性质可知∠CAD=30°=∠CAB,AD=AB=2.由等腰三角形的性质得出∠BCA=∠ACD=∠ADC=75°.求出∠ECD=30°.由三角形的外角性质得出∠E=75°﹣30°=45°,过点C作CH⊥AE于H,过B作BM⊥AE于M,由直角三角形的性质得出CH=AC=1,AH=CH=.得出HD=AD﹣AH=2﹣.求出EH =CH=1.得出DE=EH﹣HD=﹣1,AE=AD+DE=1+,由直角三角形的性质得出AM=AB=1,BM=AM=.由三角形面积公式即可得出答案.【解答】解:由折叠的性质可知:∠CAD=30°=∠CAB,AD=AB=2.∴∠BCA=∠ACD=∠ADC=75°.∴∠ECD=180°﹣2×75°=30°.∴∠E=75°﹣30°=45°.过点C作CH⊥AE于H,过B作BM⊥AE于M,如图所示:在Rt△ACH中,CH=AC=1,AH=CH=.∴HD=AD﹣AH=2﹣.在Rt△CHE中,∵∠E=45°,∴△CEH是等腰直角三角形,∴EH=CH=1.∴DE=EH﹣HD=1﹣(2﹣)=﹣1,∴AE=AD+DE=1+,∵BM⊥AE,∠BAE=∠BAC+∠CAD=60°,∴∠ABM=30°,∴AM=AB=1,BM=AM=.∴△ABE的面积=AE×BM=×(1+)×=;故选:B.【点评】本题考查了翻折变换的性质、等腰三角形的性质、含30°角的直角三角形的性质、等腰直角三角形的判定与性质、三角形面积等知识;熟练掌握翻折变换和等腰三角形的性质是解题的关键.5.如图,点F是长方形ABCD中BC边上一点将△ABF沿AF折叠为△AEF,点E落在边CD上,若AB=5,BC=4,则BF的长为()A.B.C.D.【分析】根据矩形的性质得到CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,根据折叠的性质得到AE=AB=5,EF=BF,根据勾股定理得到DE===3,求得CE=2,设BF=EF=x,则CF=4﹣x,根据勾股定理列方程即可得到结论.【解答】解:∵四边形ABCD是矩形,∴CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,∵将△ABF沿AF折叠为△AEF,∴AE=AB=5,EF=BF,∴DE===3,∴CE=2,设BF=EF=x,则CF=4﹣x,∵EF2=CF2+CE2,∴x2=(4﹣x)2+22,解得:x=,故选:B.【点评】本题考查了翻折变换(折叠问题),矩形的矩形,勾股定理,熟练掌握折叠的性质是解题的关键.6.如图,在矩形纸片ABCD中,CB=12,CD=5,折叠纸片使AD与对角线BD重合,与点A重合的点为N,折痕为DM,则△MNB的面积为()A.B.C.D.26【分析】由勾股定理得出BD==13,由折叠的性质可得ND=AD=12,∠MND=∠A=90°,NM=AM,得出∠EA′B=90°,BN=BD﹣ND=1,设AM=NM =x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,由勾股定理得出方程,解方程得出NM =AM=,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AD=BC=12,AB=CD=5,∴BD===13,由折叠的性质可得:ND=AD=12,∠MND=∠A=90°,NM=AM,∴∠EA′B=90°,BN=BD﹣ND=13﹣12=1,设AM=NM=x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,NM2+BN2=BM2,∴x2+12=(5﹣x)2,解得:x=,∴NM=AM=,∴△MNB的面积=BN×NM=×1×=;故选:A.【点评】此题考查了折叠的性质、勾股定理以及矩形的性质.熟练掌握折叠的性质和矩形的性质,由勾股定理得出方程是解题的关键.7.如图,在△ABC中∠ACB=90°、∠CAB=30°,△ABD是等边三角形、将四边形ACBD折叠,使点D与点C重合,HK为折痕,则sin∠ACH的是()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵△ABD是等边三角形,∴∠BAD=60°,AB=AD,∵∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,则AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:C.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,熟练掌握折叠的性质和解直角三角形是解题的关键.8.如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为()A.B.C.D.【分析】由折叠的性质可得AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,由中点性质可得B'E=2C'E,可得BC=AD=3EC,由勾股定理可求可求CE的长,由“AAS”可证△AB'F≌△DC'F,可得C'F=B'F=,即可求解.【解答】解:∵四边形ABCD是矩形,∴AB=CD=1,AD=BC,∠B=∠C=90°由折叠的性质可得:AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,∵点C'恰好为EB'的中点,∴B'E=2C'E,∴BE=2CE,∴BC=AD=3EC,∵AE2=AB2+BE2,DE2=DC2+CE2,AD2=AE2+DE2,∴1+4CE2+1+CE2=9CE2,解得:CE=,∴B'E=BE=,BC=AD=,C'E=,∴B'C'=,在△AB'F和△DC'F中,∴△AB'F≌△DC'F(AAS),∴C'F=B'F=,∴EF=C'E+C'F=,故选:D.【点评】本题考查了翻折变换,矩形的性质,全等三角形的性质,勾股定理,求出CE 的长是本题的关键.9.如图,▱ABCD中,AB=6,∠B=75°,将△ABC沿AC边折叠得到△AB′C,B′C交AD于E,∠B′AE=45°,则点A到BC的距离为()A.2B.3C.D.【分析】过B′作B′H⊥AD于H,根据等腰直角三角形的性质得到AH=B′H=AB′,根据折叠的性质得到AB′=AB=6,∠AB′E=∠B=75°,求得∠AEB′=60°,解直角三角形得到HE=B′H=,B′E=2,根据平行线的性质得到∠DAC=∠ACB,推出AE=CE,根据全等三角形的性质得到DE=B′E=2,求得AD=AE+DE=3+3,过A作AG⊥BC于G,根据直角三角形的性质即可得到结论.【解答】解:过B′作B′H⊥AD于H,∵∠B′AE=45°,∴△AB′H是等腰直角三角形,∴AH=B′H=AB′,∵将△ABC沿AC边折叠得到△AB′C,∴AB′=AB=6,∠AB′E=∠B=75°,∴∠AEB′=60°,∴AH=B′H=×6=3,∴HE=B′H=,B′E=2,∵▱ABCD中,AD∥BC,∴∠DAC=∠ACB,∵∠ACB=∠ACB′,∴∠EAC=∠ACE,∴AE=CE,∵∠AB′E=∠B=∠D,∠AEB′=∠CED,∴△AB′E≌△CDE(AAS),∴DE=B′E=2,∴AD=AE+DE=3+3,∵∠AEB′=∠EAC+∠ACE=60°,∴∠ACE=∠CAE=30°,∴∠BAC=75°,∴AC=AD=BC,∠ACB=30°,过A作AG⊥BC于G,∴AG=AC=,故选:C.【点评】本题考查了翻折变换(折叠问题),全等三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.10.如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB 的中点,连结CE并延长交AD于F,如图2,现将四边形ACBD折叠,使D与C重合,HK为折痕,则sin∠ACH的值为()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵∠BAD=60°,∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,∴AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:B.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,注意:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM=,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.12.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4C.2+4D.3+2【分析】先证△BDG≌△ADE,得出AE=BG=1,再证△DGE与△EDF是等腰直角三角形,在直角△AEB中利用勾股定理求出BE的长,进一步求出GE的长,可通过解直角三角形分别求出GD,DE,EF,DF的长,即可求出四边形DFEG的周长.【解答】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE===2,∴GE=BE﹣BG=2﹣1,在Rt△DGE中,DG=GE=2﹣,∴EF=DE=2﹣,在Rt△DEF中,DF=DE=2﹣1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2﹣)+2(2﹣1)=3+2,故选:D.【点评】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.二.填空题(共7小题)13.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE、FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为(6+4)厘米.【分析】根据折叠的性质和含30°的直角三角形的性质解答即可.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AG=GC,∵∠AGE=30°,AE=EG=2厘米,∴AG=6厘米,∴BE=AE=2厘米,GC=AG=6厘米,∴BC=BE+EG+GC=(6+4)厘米,故答案为:(6+4),【点评】此题考查翻折问题,关键是根据折叠的性质和含30°的直角三角形的性质解答.14.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=,∴AE=.【点评】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.已知Rt△ABC中,∠ACB=90°,AC=8,BC=4,D为斜边AB上的中点,E是直角边AC上的一点,连接DE,将△ADE沿DE折叠至△A′DE,A′E交BD于点F,若△DEF的面积是△ADE面积的一半,则CE=2.【分析】根据等高的两个三角形的面积比等于边长比可得AD=2DF,A'F=EF,通过勾股定理可得AB的长度,可可求AD,DF,BF的长度,可得BF=DF,可证BEDA'是平行四边形,可得BE=A'D=2,根据勾股定理可得CE的长度【解答】解:如图连接BE∵∠ACB=90°,AC=8,BC=4∴AB=4∵D是AB中点∴BD=AD=2∵折叠∴AD=A'D=2,S△ADE=S△A'DE∵S△DEF=S△ADE∴AD=2DF,S△DEF=S△A'DE∴DF=,A'F=EF∴BF=DF=,且A'F=EF∴四边形BEDA'是平行四边形∴A'D=BE=∴根据勾股定理得:CE=2故答案为2【点评】本题考查了折叠问题,直角三角形斜边上的中线等于斜边的一半,关键是用面积法解决问题.16.如图,在△ABC中,AB=AC=5,tan A=,BC=,点D是AB边上一点,连接CD,将△BCD沿着CD翻折得△B1CD,DB1⊥AC且交于点E,则DE=.【分析】作BF⊥AC于F,证明△B1EC≌△CFB(AAS),得出B1E=CF=1,设DE=3a,则AD=5a,得出BD=B1D=3a+1,得出方程,解方程即可.【解答】解:作BF⊥AC于F,如图所示:则∠AFB=∠CFB=90°,在Rt△ABF中,tan A==,AB=5,∴AF=4,BF=3,sin A==,∴CF=AC﹣AF=1,由折叠的性质得:B1C=BC=,∠CB1E=∠ABC,B1D=BD,∵AB=AC,∴∠ABC=∠BCF,∴∠CB1E=∠BCF,∵DB1⊥AC,∴∠B1EC=90°=∠CFB,在△B1EC和△CBF中,,∴△B1EC≌△CFB(AAS),∴B1E=CF=1,设DE=3a,则AD=5a,∴BD=B1D=3a+1,∵AD+BD=AB,∴3a+1+5a=5,∴a=,∴DE=;故答案为:【点评】本题考查了翻折的性质、等腰三角形的性质、全等三角形的判定与性质、解直角三角形以及方程的解题思想,熟练掌握翻折变换的性质,证明三角形全等是解题的关键.17.如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE 折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.【分析】设HC=HA=x,在Rt△CA′H中,可得x2=32+(4﹣x)2,解得x=,由△CA′H∽△AGE,可得=,由此即可解决问题.【解答】解:由题意四边形ABCA′是矩形,BD=CD=2,AG=GA′=2,∵BC∥AA′,∴∠BCA=∠CAA′,∵∠ACB=∠ACB′,∴∠HCA=∠HAC,∴HC=HA,设HC=HA=x,在Rt△CA′H中,x2=32+(4﹣x)2,∴x=,∴A′H=4﹣=,由△CA′H∽△AGE,可得:=,∴=,∴EG=.【点评】本题考查翻折变换,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′C,AB′交CD于点E,连接B′D.若AB=3,则B′D的长度为6.【分析】作CM⊥AB于M,由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,由平行四边形的性质得出AD=CB,AB=CD,∠ADC=∠B=30°,求出AD=AC,AM=BM=AB=,∠BAC=∠B=30°,由等腰三角形的性质得出∠ACD=∠ADC=30°,由直角三角形的性质得出CM=,证出AD=BC=2CM=3,再由勾股定理即可得出结果.【解答】解:作CM⊥AB于M,如图所示:由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,∵四边形ABCD是平行四边形,∴AD=CB,AB=CD,∠ADC=∠B=30°,∠BAD=∠BCD=180°﹣∠B=150°,∴∠B'AD=150°﹣30°﹣30°=90°,∵BC=AC,∴AM=BM=AB=,∠BAC=∠B=30°,∴CM=,∴AD=BC=2CM=3,在Rt△AB'D中,由勾股定理得:B'D===6;故答案为:6.【点评】本题考查了翻折变换的性质、平行四边形的性质、等腰三角形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和平行四边形的性质,求出∠B'AD=90°是解题关键.19.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC 边上的F点处.已知折痕AE=10,且CE:CF=4:3,那么该矩形的周长为96.【分析】由CE:CF=4:3,可以假设CE=4k,CF=3k推出EF=DE=5k,AB=CD=9k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠B=∠C=∠D=90°,∵CE:CF=4:3,∴可以假设CE=4k,CF=3k∴EF=DE=5k,AB=CD=9k,∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∠EFC+∠FEC=90°,∴∠AFB=∠CEF,∴△ABF∽△FCE,∴∴∴BF=12k∴AD=BC=15k,在Rt△AED中,∵AE2=AD2+DE2,∴1000=225k2+25k2,∴k=2或﹣2(舍弃),∴矩形的周长=48k=96,故答案为:96【点评】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.。

矩形的五种折叠方法

矩形的五种折叠方法

矩形的五种折叠方法折叠问题的实质是轴对称问题,折叠原理实际上是图形的全等问题,对应角相等,对应线段相等。

对应点的连线被折痕垂直平分。

矩形在日常生活中随处可见,矩形的性质又具有平行四边形的所有性质,并且具有对角线互相平分且相等的特有性质,它不仅是中心对称图形,而且还是轴对称图形.所以矩形的折叠问题是中考热点问题,并且折叠的方法不同,问题不同,给参加中考的考生带来各种各样的困境,为了让参加中考的孩子们轻松应考,先把矩形的折叠问题进行总结一下.一.沿对角线折叠例1.在平面直角坐标系中,矩形OABC的两边OA、OC分别落在x轴,y轴上,且OA=4,0C=3。

如图,将△OAB沿对角线OB翻折得到△OBN,ON与AB交于点M。

(1)判断△OBM是什么三角形,并说明理由,并求出△OBM的面积(2)求MN的长.【分析】由矩形性质可知,AB=OC=3,BC=OA=4,∠COA=∠OAB=90°OA∥BC 所以∠AOB=∠MBO根据折叠原理得∠AOB=∠MOB,所以∠MBO=∠MOB,∴MB=MO所以△OBM是等腰三角形,二.折一角,使直角顶点到对边例2.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A 在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC =4.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.则点D 的坐标是 .【分析】折叠原理知,AE=AO=5,AB=OC=4,OD=ED 由勾股先求得BE=3,∴CE=2,然后设OD=x ,则CD=4-x在Rt △DCE 中由勾股定理即可求得OD 的长,然后就得到点D 的坐标。

练习:如图,折叠矩形的一边AD ,点D 落在BC 边上点F 处,已知AB=8,BC=10,则EC 的长是 。

(这道题目先求BF 的长,再求CF 的长,然后再勾股定理)练习2.如图,矩形纸片ABCD ,若把△ABE 沿折痕BE 上折叠,使A 点恰好落在CD 上,此时,AE:ED=5:3,BE=55,求矩形的长和宽。

长方形折叠问题的四个类型

长方形折叠问题的四个类型

长方形折叠问题的四个类型
长方形折叠问题是计算几何学中一个经典的问题,需要将一个矩形
单片纸折叠成不同的形状。

根据折叠的方式不同,长方形折叠问题可
以划分为四个类型。

一、矩形对折型
把矩形沿着某一边对折后再沿着另一边对折,得到的形状为一个小矩形。

其面积为原矩形面积的四分之一。

二、两个小矩形型
把矩形沿着某一边对折后再沿着另一个边对折,将得到两个小矩形。

这两个小矩形的面积之和等于原矩形面积。

三、梯形型
将矩形沿着某一边对折后再折成一三角形,将三角形的一条边与另一
边平行,得到的形状为梯形。

梯形的面积为原矩形面积的一半。

四、折叠成立体型
把矩形按一定方式折叠成一个几何立体体,如立方体、正四棱锥等。

这种类型的长方形折叠问题需要对几何概念和立体几何有一定的认识。

无论是哪种类型的长方形折叠问题,其解题方法都需要灵活掌握,考
虑到折叠的方向和次数,从而推导出最终的形状和面积。

长方形折叠
问题不仅能够训练我们的空间想象力,也有助于提高我们的计算能力和数学应用能力。

矩形中的折叠问题

矩形中的折叠问题

若点E,点F分别是边AB,边AD
上的点,将⊿AEF沿EF对折,使
C
点A落在边BC上,记为A′.观察
图形,请回答下列问题:
D
E
B
图4 A'
F
A
(1)如图1,BA’ = 3 .
(2)如图5,BA’ = 1 ,
5
AE= 3
.
(3)如图4,A’B的范围 是 1≤ A’B≤3 .
C
B (E)
A' 图1
D (F)
x
请探索:是否存在这样的点
F,使得将△CEF沿EF对折
后,C点恰好落在OB上?
若存在,求出点F的坐标;
若不存在,请说明理由.
(2)过点B1作B1F∥x轴,与对角线AC、边OC分别交于 点E、点F。若B1E: B1F=1:3,点B1的横坐标为m,求 点B1的纵坐标,并直接写出m的取值范围。
H B1
备用图
直击中考
(2015•绍兴)在平面直角坐标系中,O为原点,四边 形OABC的顶点A在轴的正半轴上,OA=4,OC=2,点P, 点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点 B关于PQ的对称点。 (1)若四边形OABC为矩形,如图1,①求点B的坐标;
(1)根据勾股定理得方程。 (2)根据相似比得方程。 (3)找折叠中的特殊位置来解决特殊值问题
课后练习
已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA所
在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边
BC上的一个动点(不与B,C重合),过F点的反比y例函k 数(k 0)
的图象与AC边交于点E.
动手折一折
如图矩形ABCD,在边BC上找一点E ,边 AD上找一点F , 将矩形沿着直线EF折叠,使 点A对应点A′落在BC边上.

专题36 矩形与折叠问题(解析版)

专题36 矩形与折叠问题(解析版)

专题36 矩形与折叠问题一、单选题1.如图,矩形纸片ABCD 中,AB =6cm ,BC =8cm .现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CB 1的长为( )A .cmB .C .8cmD .10cm【答案】B【分析】 根据翻折变换的性质可以证明四边形ABEB 1为正方形,得到BE =AB ,根据EC =BC ﹣BE 计算得到EC ,再根据勾股定理可求答案.【详解】解:∵∵AB 1E =∵B =90°,∵BAB 1=90°,∵四边形ABEB 1为矩形,又∵AB =AB 1,∵四边形ABEB 1为正方形,∵BE =AB =6cm ,∵EC =BC ﹣BE =2cm ,∵CB 1cm .故选B .【点睛】本题考查的是翻折变换、矩形和正方形的判定和性质,掌握翻折变换的性质及矩形、正方形的判定定理和性质定理是解题的关键.2.如图,矩形ABCD 中,3AB =,9AD =,将此矩形折叠,使点B 与点D 重合,折痕为EF ,则ABE ∆的面积为( )A.12B.10C.8D.6【答案】D【分析】根据折叠的条件可得:BE=DE,在直角∵ABE中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点B与点D重合,∵BE=ED.∵AD=AE+DE=AE+BE=9.∵BE=9−AE,根据勾股定理可知AB2∵AE2∵ BE2,32∵AE2∵∵9-AE∵2∵解得AE=4.∵∵ABE的面积为3×4÷2=6.故选:D.【点睛】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.3.如图,在矩形ABCD中,E是BC边的中点,将∵ABE沿AE所在的直线折叠得到∵AFE,延长AF交CD 于点G,已知CG=2,DG=1,则BC的长是()A.B.C.D.【答案】B【分析】连接EG ,由折叠的性质可得BE =EF 又由E 是BC 边的中点,可得EF =EC ,然后证得Rt∵EGF ∵Rt∵EGC (HL ),得出FG =CG =2,继而求得线段AG 的长,再利用勾股定理求解,即可求得答案.【详解】解:连接EG ,∵E 是BC 的中点,∵BE =EC ,∵∵ABE 沿AE 折叠后得到∵AFE ,∵BE =EF ,∵EF =EC ,∵在矩形ABCD 中,∵∵C =90°,∵∵EFG =∵B =90°,∵在Rt∵EGF 和Rt∵EGC 中,EF EC EG EG=⎧⎨=⎩, ∵Rt∵EGF ∵Rt∵EGC (HL ),∵FG =CG =2,∵在矩形ABCD 中,AB =CD =CG +DG =2+1=3,∵AF =AB =3,∵AG =AF +FG =3+2=5,∵BC =AD =.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键.4.在矩形纸片ABCD 中,AB =6,AD =10.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ .当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为( )A .8cmB .6cmC .4cmD .2cm【答案】C【分析】 根据翻折的性质,可得BA ′与AP 的关系,根据线段的和差,可得A ′C ,根据勾股定理,可得A ′C ,根据线段的和差,可得答案.【详解】解:∵当P 与B 重合时,BA ′=BA =6,CA ′=BC ﹣BA ′=10﹣6=4cm ,∵当Q 与D 重合时,由勾股定理,得CA cm ,CA ′最远是8,CA ′最近是4,点A ′在BC 边上可移动的最大距离为8﹣4=4cm ,故选:C .【点睛】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.5.如图,把矩形纸片ABCD 沿EF 折叠后得到1∠,再把纸片铺平,若150∠=︒,则AEF ∠的度数为()A .105°B .120°C .130°D .115°【答案】D【分析】 点B 折叠后的点为G ,根据折叠的性质,可得∵GFE=∵BFE ,结合∵1的度数即可求出∵EFB 的度数,利用矩形的性质AD∵BC 即可求出结果.【详解】点B 折叠后的点为G ,根据折叠的性质,可得∵GFE=∵BFE ,∵∵1=50°,∵∵BFE=(180°-50°)÷2=65°,∵ABCD 是矩形,∵AD∵BC ,∵∵DEF=∵BFE=65°,∵∵AEF=180°-65°=115°,故选:D .【点睛】本题考查了折叠的性质,矩形的性质,平行的性质,掌握折叠的性质是解题的关键.6.如图所示,在矩形ABCD 中,4AB =,8AD =,将矩形沿BD 折叠,点A 落在点E 处,DE 与BC 交于点F ,则重叠部分BDF ∆的面积是( )A .20B .16C .12D .10【答案】D【分析】 根据折叠的性质可得∵ADB=∵EDB,由平行可得∵ADB=∵CBD,推出∵CBD=∵EDB,设BF 为x ,在Rt∵DCF 中根据勾股定理列出方程求出x ,再根据面积公式求出∵BDF 的面积即可.【详解】∵AD∵BC,∵∵ADB=∵CBD,∵∵BDE 是∵BDA 折叠后的图形,∵∵ADB=∵EDB,∵∵CBD=∵EDB,设BF 为x ,则DF 为x ,CF 为8-x ,在Rt∵DCF 中,()22284x x -+=解得:x =5.∵S ∵BDF =154102⨯⨯=. 故选D .【点睛】本题考查折叠中矩形的性质,关键在于利用勾股定理列出方程求解.7.如图,把一张长方形的纸沿对角线BD 折叠,使点C 落到点C '的位置,若BC '平分ABD ∠,则DBC ∠的度数是( )A .15°B .30°C .45°D .60°【答案】B【分析】 根据折叠的性质,得到DBC DBC'∠=∠,再根据角平分线的性质得到''ABC DBC ∠=∠ ,得到∵ABC 被平均分成了3份,求出解决即可.【详解】解:∵把一张长方形纸片ABCD 沿BD 折叠∵DBC DBC'∠=∠∵BC '平分ABD ∠∵''ABC DBC ∠=∠∵DBC ∠=13∵ABC=30° 故选B.【点睛】本题考查了折叠的性质以及角平分线的性质,解决本题的关键是熟练掌握折叠与角平分线的性质,找到相等的角.8.将长方形ABCD 纸片沿AE 折叠,得到如图所示的图形,已知∵CED'=70°,则∵EAB 的大小是( )A .60°B .50°C .75°D .55°【答案】D【分析】首先根据折叠的性质得出∵DEA=∵D′EA=55°,然后由余角的性质得出∵DEA=∵EAD′=35°,进而得出∵D′AB=20°,最后即可得出∵EAB.【详解】根据折叠的性质,∵CED'=70°,得 ∵DEA=∵D′EA=18070552︒-︒=︒ ∵∵ADE=∵AD′E=90°∵∵DAE=∵EAD′=90°-55°=35°∵∵D′AB=90°-∵DAE -∵EAD′=90°-35°-35°=20°∵∵EAB=∵EAD′+∵D′AB=35°+20°=55°故答案为D.【点睛】此题主要考查折叠的性质以及余角的性质,熟练掌握,即可解题.9.如图,有一张长方形纸片ABCD ,其中15AB cm =,10AD cm =.将纸片沿EF 折叠,//EF AD ,若9AE cm =,折叠后重叠部分的面积为( )A .230cmB .260cmC .250cmD .290cm【答案】B【解析】【分析】 根据折叠的性质,可知折叠后重叠部分的面积等于长方形ABCD 的面积减去长方形AEFD 的面积,即可得解.【详解】根据题意,得折叠后重叠部分的面积等于长方形ABCD 的面积减去长方形AEFD 的面积,∵10AD cm =,9AE cm =,//EF AD∵2=151091060ABCD AEFD S S S AB AD AE AD cm -=-=⨯-⨯=阴影长方形长方形故答案为B.【点睛】此题主要考查折叠的性质和长方形的面积求解,熟练掌握,即可解题.10.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B C D.6【答案】A【分析】先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.【详解】解:∵∵CEO是∵CEB翻折而成,∵BC=OC,BE=OE,∵B=∵COE=90°,∵EO∵AC,∵O是矩形ABCD的中心,∵OE是AC的垂直平分线,AC=2BC=2×3=6,∵AE=CE,在Rt∵ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=33,在Rt∵AOE中,设OE=x,则AE=33-x,AE2=AO2+OE2,即(33-x)2=32+x2,解得x=3,∵AE=EC=33-3=23.故选:A.【点睛】本题考查翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解题的关键.11.如图,在矩形ABCD 中,点E 在边CD 上,将该矩形沿AE 折叠,恰好使的D 落在边BC 上的点F 处,如果∵BAF =60°,则∵DAE 的大小为( )A .10°B .15 °C .20 °D .25°【答案】B【分析】 由题意可知90BAD ∠=︒,12FAE DAE DAF ∠=∠=∠.再由DAF BAD BAF ∠=∠-∠,即可求出DAE ∠的大小.【详解】∵四边形ABCD 为矩形,∵90BAD ∠=︒,∵FAE 是由DAE △沿AE 折叠而来,且F 点恰好落在BC 上, ∵12FAE DAE DAF ∠=∠=∠, ∵906030DAF BAD BAF ∠=∠-∠=︒-︒=︒, ∵130152DAE ∠=⨯︒=︒. 故选:B .【点睛】 本题考查矩形的折叠问题,根据折叠的性质推出12FAE DAE DAF ∠=∠=∠是解答本题的关键. 12.如图,长方形ABCD 中,点O 是AC 的中点,E 是AB 边上的点,把∵BCE 沿CE 折叠后,点B 恰好与点O 重合,则图中全等的三角形有( )对.A .1B .2C .3D .4【答案】D【分析】 由长方形的性质利用“SSS ”即可证明ADC CBA ≅,再由折叠的性质可知∵BCE ∵∵OCE ,即可得出结论90EOC EBC ∠=∠=︒,从而推出90EOA EOC ∠=∠=︒,最后由O 点为AC 中点,利用“ASA ”即可证明OCE OAE ≅,最后又可推出∵OAE ∵∵BCE ,即可选择.【详解】∵四边形ABCD 为长方形,∵在ADC 和CBA △中AD CB CD AB AC CA =⎧⎪=⎨⎪=⎩,∵()ADC CBA SSS ≅;∵∵BCE 沿CE 折叠后,点B 恰好与点O 重合,∵∵BCE ∵∵OCE ;∵O 点为AC 中点,∵AO =CO .∵∵BCE ∵∵OCE ,∵90EOC EBC ∠=∠=︒,∵在∵OCE 和∵OAE 中,90AO CO EOA EOC OE OE =⎧⎪∠=∠=︒⎨⎪=⎩,∵()OCE OAE ASA ≅;∵∵BCE ∵∵OCE ,OCE OAE ≅,∵∵OAE ∵∵BCE综上,图中全等三角形有4对.故选:D .【点睛】本题考查矩形的性质以及全等三角形的判定和性质.掌握全等三角形的判定条件是解答本题的关键. 13.如图,矩形纸片ABCD 中,6AB =,10AD =,折叠纸片,使点A 落在BC 边上的点A 处,折痕为PQ ,当点1A 在BC 边上移动时,折痕的端点P 、Q 分别在AB 、AD 边上移动,则当1A B 最小时其值为( )A .2B .3C .4D .5【答案】A【分析】 根据翻折的性质,可得当Q 与D 重合时,A 1B 最小,根据勾股定理,可得A 1C ,从而可得答案.【详解】解:由折叠可知:当Q 与D 重合时,A 1B 最小,A 1D=AD=10,由勾股定理,得:A 1,∵A 1B=10-8=2,故选A .【点睛】本题考查了翻折变换,利用了翻折的性质得到当Q 与D 重合时,A 1B 最小是解题的关键.14.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .20【答案】C【分析】 由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.15.如图,把一张长方形纸片沿对角线折叠,若∵EDF 是等腰三角形,则∵BDC ( )A .45ºB .60ºC .67.5ºD .75º【答案】C【分析】 由翻折可知:∵BDF∵∵BCD ,所以∵EBD=∵CBD ,∵E=∵C=90°,由于∵EDF 是等腰三角形,易证∵ABF=45°,所以∵CBD=12∵CBE=22.5°,从而可求出∵BDC=67.5°. 【详解】解:由翻折的性质得,∵DBC=∵EBD ,∵矩形的对边AD∵BC ,∵E=∵C=90°,∵∵DBC=∵ADB ,∵∵EBD=∵ADB ,∵∵EDF 是等腰三角形,∵E=90°,∵∵EDF 是等腰直角三角形,∵∵DFE=45°,∵∵EBD+∵ADB=∵DFE , ∵∵DBF=12∵DFE=22.5°, ∵∵CBD =22.5°,∵∵BDC=67.5°,故选:C .【点睛】本题考查等腰三角形,涉及矩形的性质,全等三角形的判定与性质等知识,需要学生灵活运用所学知识. 16.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A B C.2D【答案】D【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A′B 的长,然后由勾股定理可得方程:x2+22=(4-x)2,解此方程即可求得AG的长,继而求得答案.【详解】解:设AG=x,∵四边形ABCD是矩形,∵∵A=90°,∵AB=4,AD=3,∵BD5,由折叠的性质可得:A′D=AD=3,A′G=AG=x,∵DA′G=∵A=90°,∵∵BA′G=90°,BG=AB-AG=4-x,A′B=BD-A′D=5-3=2,∵在Rt∵A′BG中,A′G2+A′B2=BG2,∵x2+22=(4-x)2,解得:x=32,∵AG=32,∵在Rt∵ADG中,DG=故选:D.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.17.如图,在矩形纸片ABCD中,BC a=,将矩形纸片翻折,使点C恰好落在对角线交点O处,折痕为BE,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .2aD .3a 【答案】D【分析】首先证明∵OBC 是等边三角形,在Rt∵EBC 中求出CE 即可解决问题;【详解】解:∵四边形ABCD 是矩形,∵OB=OC ,∵BCD=90°,由翻折不变性可知:BC=BO ,∵BC=OB=OC ,∵∵OBC 是等边三角形,∵∵OBC=60°,∵∵EBC=∵EBO=30°,∵BE=2CE根据勾股定理得:EC=3a , 故选:D .【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明∵OBC 是等边三角形. 18.如图,将矩形纸片ABCD 沿EF 折叠,点C 落在边AB 上的点H 处,点D 落在点G 处,若111GEF ∠=︒,则AHG ∠的度数为( ).A .42°B .69°C .44°D .32°【答案】A【分析】 根据翻折的性质,及矩形的性质,求出AEG ∠,再利用“8”字模型求解即可.【详解】由图形翻折的性质可知,111GEF DEF ∠=∠=︒,180111AEF ∴∠=︒-︒=69︒,1116942AEG GEF AEF ∠=∠-∠=︒-︒=︒,90A G ∠=∠=︒,利用“8”字模型,42AHG AEG ∴∠=∠=︒,故选:A .【点睛】本题考查了矩形翻折问题,能够根据图形翻折的性质推理出AEG ∠是解决问题的关键,熟练运用“8”字模型是求最终结果的关键.19.如图,已知长方形ABCD ,将∵DBC 沿BD 折叠得到∵DBC′,BC′与AD 交于点E ,若长方形的周长为20cm ,则∵ABE 的周长是( )A .5cmB .10cmC .15cmD .20cm【答案】B【分析】 根据现有条件推出∵EDB=∵EBD ,得出BE=DE ,可知∵ABE 的周长=AB+AD ,是长方形的周长的一半,即可得出答案.【详解】由折叠可知:∵CBD=∵C′BD,∵四边形ABCD为平行四边形,∵AD∵BC,∵∵ADB=∵CBD,∵∵ADB=∵C′BD,∵∵EDB=∵EBD,∵BE=DE,∵∵ABE的周长=AB+AD,∵长方形的周长为20cm,∵2(AB+AD)=20cm,∵AB+AD=10cm,∵∵ABE的周长为10cm,故选:B.【点睛】本题考查了等腰三角形的性质,折叠的性质,推出BE=DE是解题关键.20.如图,将一块长方形纸片ABCD沿BD翻折后,点C与E重合,若∵ADE = 30°,EH = 2,则BC的长度为()A.8B.7C.6.5D.6【答案】D【分析】由折叠的性质可得∵E=∵C=∵A=90°,再证明∵ABH∵∵EDH,得到AB的长,再求出∵DBC=30°,在Rt∵BCD 中即可求解.【详解】∵四边形ABCD是矩形,∵AD∵BC,∵C=90°,∵将一块长方形纸片ABCD 沿BD 翻折后,∵∵E =∵C =∵A=90°,又∵AHB=∵EHD ,AB=ED∵∵ABH∵∵EDH∵∵ABH=∵ADE = 30°,AH=EH = 2∵BH=2AH=4∵CD=AB= =∵∵ABH= 30°,∵∵HBC=60°∵翻折,∵∵DBC=30°6=故选:D .【点睛】本题考查了翻折变换,矩形的性质,含30°的直角三角形的性质,求出AB 的长是本题的关键. 21.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:∵把ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;∵把ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若610AD CD ==,,则EH EF=( )A .32B .53C .43D .54【答案】A【分析】利用翻折不变性可得10AE AB ==,推出8DE =,2EC =,设BF EF x ==,在Rt EFC △中,2222(6)x x =+-,可得103x =,设DH GH y ==,在Rt EGH △中,2224(8)y y +=-,可得3y =,由此即可解决问题.【详解】 解:四边形ABCD 是矩形,90C D ∴∠=∠=︒,10AB CD ==,6AD BC ==,由翻折不变性可知:10AB AE ==,6AD AG ==,BF EF =,DH HG =,4EG ∴=,在Rt ADE △中,8DE ==,1082EC ∴=-=,设BF EF x ==,在Rt EFC △中有:2222(6)x x =+-,103x ∴=, 设DH GH y ==,在Rt EGH △中,2224(8)y y +=-,3y ∴=,5EH ∴=, ∴531023EH EF ==,故选:A .【点睛】本题考查矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22.如图,将一张矩形纸片ABCD 沿EF 折叠后,点D ,C 分别落在D ′,C ′地位置,ED ′的延长线与BC 相交于点G ,若∵EFG =68°,则∵1的度数是( )A .112°B .136°C .144°D .158°【答案】B【分析】由AD//BC,∵EFG=68°,根据两直线平行,内错角相等,可求得∵DEF的度数,然后由折叠的性质,求得∵DEG 的度数,继而求得答案.【详解】解:∵AD//BC,∵EFG=68°,∵∵DEF=∵EFG=68°,由折叠的性质可得:∵FEG=∵DEF=68°,∵∵DEG=∵DEF+∵FEG=136°,∵AD//BC,∵∵1=∵DEG=136°.故选:B.【点睛】此题考查了平行线的性质以及折叠的性质.注意掌握折叠前后图形的对应关系是解此题的关键.23.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则DE的长为()A.12B.53C.25D.13【答案】B【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt∵ABF 中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt∵ECF中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到DE的长.【详解】解:∵四边形ABCD为矩形,∵AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∵AF=AD=5,EF=DE,在Rt∵ABF中,BF4,∵CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x,在Rt∵ECF中,CE2+FC2=EF2,∵x2+12=(3﹣x)2,解得x=43,∵DE=3﹣x=53,故选:B.【点睛】本题考查了翻折变换、矩形的性质、勾股定理等知识,属于常考题型,灵活运用这些性质进行推理与计算是解题的关键.24.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上的点G处,并使折痕经过点A,已知2BC=,则线段EG的长度为()A.1B C D.2【答案】B【分析】由折叠的性质可得AE=12AD=12BC=1,AG=AD=2,由勾股定理得出EG即可.【详解】解:如图所示:∵四边形ABCD 是矩形,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF , ∵AE=12AD=12BC=1,EF∵AD , ∵∵AEF=90°,∵再一次折叠,使点D 落到EF 上点G 处∵AG=AD=2,=,故选:B .【点睛】此题主要考查了翻折变换的性质以及矩形的性质,熟练掌握折叠的性质是解题关键.25.如图,将长方形纸片ABCD 沿EF 折叠后,点C ,D 分别落在点C ',D 处,若68AFE ∠=︒,则'∠C EB 等于( )A .68︒B .80︒C .44︒D .55︒【答案】C【分析】 根据矩形的性质可得AD//BC ,根据平行线的性质可得∵CEF =∵AFE ,根据折叠的性质可得∵CEF =∵C′EF ,根据平角的定义即可得答案.【详解】解:∵ABCD 是长方形,∵68AFE ∠=︒,∵∵CEF =∵AFE=68°,∵将长方形纸片ABCD 沿EF 折叠后,点C ,D 分别落在点C ',D 处,∵∵CEF =∵C′EF =68°,∵'∠C EB =180°-∵CEF -∵C′EF=44°,故选:C .【点睛】本题考查了矩形的性质、平行线的性质,翻折变换的性质,熟记折叠的性质是解题的关键.26.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .∵ABE∵∵CDE【答案】B【分析】 由折叠的性质和平行线的性质可得∵ADB=∵CBD ,可得BE=DE ,可证AE=CE ,由“SAS”可证∵ABE∵∵CDE ,即可求解.【详解】解:如图,∵把矩形纸片ABC'D 沿对角线折叠,∵∵CBD=∵DBC',CD=C'D=AB ,AD=BC=BC',∵∵EDB=∵DBC',∵∵EDB=∵EBD ,故选项C 正确;∵BE=DE ,∵AD=BC ,∵AE=CE ,故选项A 正确;在∵ABE 和∵CDE 中,AB CD A C AE CE =⎧⎪∠=∠⎨⎪=⎩,∵∵ABE∵∵CDE (SAS ),故选项D 正确; 没有条件能够证明12AE BE =, 故选:B .【点睛】本题考查了翻折变换,全等三角形的判定和性质,矩形的性质,掌握折叠的性质是本题的关键. 27.如图,将长方形纸片沿对角线折叠,重叠部分为BDE ,则图中全等三角形共有( )A .0对B .1对C .2对D .3对【答案】C【分析】 因为图形对折,所以首先∵CDB∵∵ABD ,由于四边形是长方形,进而可得∵ABE∵∵CDE ,如此答案可得.【详解】解:∵∵BDC 是将长方形纸片ABCD 沿BD 折叠得到的,∵CD=AB ,AD=BC ,∵BD=BD ,∵∵CDB∵∵ABD (SSS ),∵∵CBD=∵ADB∵EB=ED∵CE=AE又AB=CD∵∵ABE∵∵CDE ,∵图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.28.如图,在矩形ABCD 中,点E 是AD 的中点,EBC ∠的平分线交CD 于点F ,将DEF 沿EF 折叠,点D 恰好落在BE 上M 点处,延长BC 、EF 交于点N .有下列四个结论:∵ DF CF =;∵BF EN ⊥;∵BEN 是等边三角形;∵3BEF DEF S S =△△.其中,将正确结论的序号全部选对的是( )A .∵∵∵B .∵∵∵C .∵∵∵D .∵∵∵∵【答案】B【分析】 由折叠的性质、矩形的性质与角平分线的性质,可证得CF =FM =DF ,即可判断∵;易求得∵BFE =∵BFN ,则可得BF∵EN ,即可判断∵;易证得∵BEN 是等腰三角形,但无法判定是等边三角形,即可判断∵;易求得BM =2EM =2DE ,即可得EB =3EM ,根据等高三角形的面积比等于对应底的比,即可判断∵.【详解】∵四边形ABCD 是矩形,∵∵D =∵BCD =90°,DF =MF ,由折叠的性质可得:∵EMF =∵D =90°,即FM∵BE ,CF∵BC ,∵BF 平分∵EBC ,∵CF =MF ,∵DF =CF ;故∵正确;∵∵BFM =90°−∵EBF ,∵BFC =90°−∵CBF ,∵∵BFM =∵BFC ,∵∵MFE =∵DFE =∵CFN ,∵∵BFE =∵BFN ,∵∵BFE +∵BFN =180°,∵∵BFE =90°,即BF∵EN ,故∵正确;∵在∵DEF 和∵CNF 中,90D FCN DF CFDFE CFN ∠∠︒⎧⎪⎨⎪∠∠⎩==== ∵∵DEF∵∵CNF (ASA ),∵EF =FN ,∵BF 垂直平分EN ,∵BE =BN ,假设∵BEN 是等边三角形,则∵EBN =60°,∵EBA =30°,则AE =12BE , 又∵AE =12AD ,则AD =BC =BE ,而明显BE =BN >BC ,∵∵BEN 不是等边三角形;故∵错误;∵∵BFM =∵BFC ,BM∵FM ,BC∵CF ,∵BM =BC =AD =2DE =2EM ,∵BE =3EM ,∵S ∵BEF =3S ∵EMF =3S ∵DEF ;故∵正确.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.29.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处.若6AB =,10AD =,则EC 的长为( )A .2B .83C .3D .103【答案】B【分析】 由翻折可知:AD=AF=10.DE=EF ,设EC=x ,则DE=EF=6-x .在Rt∵ECF 中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD 是矩形,∵AD=BC=10,AB=CD=6,∵∵B=∵BCD=90°,由翻折可知:AD=AF=10,DE=EF ,设EC=x ,则DE=EF=6-x .在Rt∵ABF 中,8BF ===,∵CF=BC -BF=10-8=2,在Rt∵EFC 中,EF 2=CE 2+CF 2,∵(6-x )2=x 2+22, ∵x=83, ∵EC=83. 故选:B .【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.30.如图,已知长方形ABCD 中6cm AB =,10cm BC =,在边CD 上取一点E ,将ADE 折叠使点D 恰好落在BC 边上的点F ,CE 的长是( )A .3B .2.5C .83D .2【答案】C【分析】 要求CE 的长,应先设CE 的长为x ,由将∵ADE 折叠使点D 恰好落在BC 边上的点F 可得Rt∵ADE∵Rt∵AFE ,所以AF=10cm ,EF=DE=6-x ;在Rt∵ABF 中由勾股定理得:AB 2+BF 2=AF 2,已知AB 、AF 的长可求出BF 的长,又CF=BC -BF=10-BF ,在Rt∵ECF 中由勾股定理可得:EF 2=CE 2+CF 2,即:(6-x )2=x 2+(10-BF )2,将求出的BF 的值代入该方程求出x 的值,即求出了CE 的长.【详解】∵四边形ABCD 是矩形,∵AD=BC=10cm ,CD=AB=6cm ,根据题意得:Rt∵ADE∵Rt∵AFE ,∵∵AFE=90°,AF=10cm ,EF=DE ,设CE=x cm ,则DE=EF=CD -CE=(6-x )cm ,在Rt∵ABF 中由勾股定理得:AB 2+BF 2=AF 2,即62+BF 2=102,∵BF=8cm ,∵CF=BC -BF=10-8=2(cm ),在Rt∵ECF 中,由勾股定理可得:EF 2=CE 2+CF 2,即(6-x )2=x 2+22,∵36-12x +x 2=x 2+4,∵x =83,即CE=83cm . 故选:C .【点睛】本题主要考查了图形的翻折变换以及勾股定理、全等三角形、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.31.如图,将长方形ABCD 沿AC 折叠,使点B 落在点B '处,B C '交AD 于点E ,若125∠=︒,则2∠等于( )A .25︒B .30C .50︒D .60︒【答案】C【分析】 根据折叠的性质得到∵ACB '=125∠=︒,由长方形的性质得到AD∵BC ,即可得到∵2=∵BCB '=2∵1=50︒.【详解】由折叠可知:∵ACB '=125∠=︒,∵四边形ABCD 是长方形,∵AD∵BC ,∵∵2=∵BCB '=2∵1=50︒,故选:C.【点睛】此题考查折叠的性质,长方形的对边平行的性质,平行线的性质:两直线平行内错角相等.32.如图,将长方形纸片ABCD 沿对角线BD 折叠,点C 的对应点为E.若CBD 35∠=︒,则ADE ∠的度数为( ).A .15︒B .20︒C .25︒D .30【答案】B【分析】 根据折叠的性质和平行线的性质,可以得到ADB ∠和EDB ∠的度数,然后即可得到ADE ∠的度数.【详解】解:由折叠的性质可得,CDB EDB ∠∠=,AD //BC ,CBD 35∠=︒,CBD ADB 35∠∠∴==︒,C 90︒∠=,CDB 55∠∴=︒,EDB 55∠∴=︒,ADE EDB ADB 553520∠∠∠∴=-=︒-︒=︒.故选:B .【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.33.如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,已知8AB cm =,10AD cm =,则折痕EF 的长为( ).A.2cm B.3cm C.4cm D.5cm【答案】D【分析】根据折叠可得,AD=AF,然后根据勾股定理求出BF,易得CF,再由勾股定理即可求得.【详解】根据折叠可得,AD=AF=10,DE=EF在Rt∵ABF中,根据勾股定理得,BF=6∵CF=4在Rt∵CEF中,EF2=CE2+CF2即EF2=(8-EF)2+42解得EF=5cm故选D【点睛】本题考查勾股定理,掌握折叠的性质是解题关键.34.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若EFC'∠=︒,那么ABE122∠的度数为()A.24︒B.32︒C.30D.26︒【答案】D【分析】由折叠的性质知:∵EBC′、∵BC′F都是直角,∵BEF=∵DEF,因此BE∵C′F,那么∵EFC′和∵BEF互补,这样可得出∵BEF 的度数,进而可求得∵AEB 的度数,则∵ABE 可在Rt∵ABE 中求得.【详解】解:由折叠的性质知,∵BEF=∵DEF ,∵EBC′、∵BC′F 都是直角,∵BE∵C′F ,∵∵EFC′+∵BEF=180°,又∵∵EFC′=122°,∵∵BEF=∵DEF=58°,∵∵AEB=180°-∵BEF -∵DEF=64°,在Rt∵ABE 中,∵ABE=90°-∵AEB=26°.故选D .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.35.如图,将矩形纸片ABCD 沿BD 折叠,得到','BC D C D ∆与AB 交于点E ,若140∠=︒,则2∠的度数为( )A .25︒B .20︒C .15︒D .10︒【答案】D【分析】 根据矩形的性质,可得∵ABD=40°,∵DBC=50°,根据折叠可得∵DBC'=∵DBC=50°,最后根据∵2=∵DBC'-∵DBA 进行计算即可.【详解】解:140,//CD AB ∠=︒,40,50ABD DBC ∴∠=︒∠=︒,由折叠可知'50DBC DBC ∠=∠=︒,2504010DBC ABD '∴∠=∠-∠=︒-︒=︒.故选:D .【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∵DBC′和∵DBA 的度数.36.如图,在长方形ABCD 中,将∵ABC 沿AC 对折至∵AEC 位置,CE 与AD 交于点F ,如果AB =2,BC =4,则AF 的长是( ).A .2B .2.5C .2.8D .3【答案】B【分析】 根据题意,根据轴对称的性质,得AB=AE=CD=2,BC=AD=4;通过证明AEF CDF △≌△得=EF FD ,再通过直角AEF 中勾股定理,计算得AF 的长.【详解】根据题意得:AB=AE=CD=2,BC=AD=4设AF=x ,则FD=AD -AF=4-x∵90AEC D AFE DFC AE CD ⎧∠=∠=⎪∠=∠⎨⎪=⎩∵AEF CDF △≌△∵=EF FD∵4EF FD x ==-∵222AE EF AF +=∵()22224x x +-=∵ 2.5x =∵AF 的长是2.5故选:B .【点睛】本题考查了全等三角形、矩形、勾股定理、一元一次方程、轴对称的知识;解题的关键是熟练掌握全等三角形、矩形、勾股定理、轴对称的性质,从而完成求解.37.如图,矩形ABCD 沿着对角线BD 进行折叠,使点C 落在C '处,BC '交AD 于点E ,16AD =,8AB =,则DE 的长( ).A .10B .6C .8D .【答案】A【分析】 先根据翻折变换的性质得出CD=C′D ,∵C=∵C′=90°,再设DE=x ,则AE=16-x ,由全等三角形的判定定理得出Rt∵ABE∵Rt∵C′DE ,可得出BE=DE=x ,在Rt∵ABE 中利用勾股定理即可求出x 的值,进而得出DE 的长.【详解】解:∵Rt DC B '△由Rt DCB △翻折而成,∵8CD C D AB '===,90C C '∠=∠=︒,设DE x =,则16AE x =-,∵90A C '∠=∠=︒,AEB DEC '∠=∠,∵ABE C DE '∠=∠,在Rt ABE △与Rt C DE '△中,90A C '∠=∠=︒,AB C D '=,ABE C DE '∠=∠∵Rt Rt ABE C DE '≌△△,∵BE DE x ==,在Rt ABE △中,222AB AE BE +=,即()222816x x +-=,解得10x =,即10DE =,故选A .【点睛】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.38.如图,长方形ABCD 中,AD BC 6==,10AB CD ==,点E 为射线DC 上的一个动点,ADE 与AD E '关于直线AE 对称,当'AD B 为直角三角形时,DE 的长为() A .2或8B .83或18C .83或2D .2或18【答案】D【分析】 分两种情况: 当E 点在线段DC 上时, 当E 点在线段DC 的延长线上时,利用全等三角形的判定和性质得出答案即可.【详解】解:分两种情况讨论:∵当E 点在线段DC 上时,AD E '△∵ADE ,90AD E D '∴∠=∠=︒,90AD B '∠=︒,180AD B AD E ''∴∠+∠=︒,B ∴、D 、E 三点共线,1122ABE S BE AD AB AD AD AD ''=⋅=⋅=,, BE AB 10∴==,8BD '===,1082DE D E '∴==-=;∵当E 点在线段DC 的延长线上时,如下图,90ABD CBE ABD BAD ''''''∠+∠=∠+∠=︒,CBE BAD ''∴∠=∠,在ABD ''△和BEC △中,D BCE AD BCBAD CBE '''''∠=∠⎧⎪=⎨⎪∠=∠'⎩, ABD ''∴△∵BEC ,BE AB 10∴==,8BD ''==,81018DE D E BD BE ''''∴==+=+=,综上所知,DE 2=或18,故选:D .【点睛】本题考查翻折的性质、三角形全等的判定与性质、勾股定理、掌握翻折的性质、分类探讨的思想方法是解决问题的关键.39.如图,四边形ABCD 是矩形纸片,AB =2.对折矩形纸片ABCD ,使AD 与BC 重合,折痕为EF ;展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N ,折痕BM 与EF 相交于点Q ;再次展平,连接BN ,MN,延长MN交BC于点G.有如下结论:∵∵ABN=60°;∵AM=1;∵AB∵CG;∵BMG是等边三角形;∵点P为线段BM上一动点,点H是BN的中点,则PN+PH.其中正确结论有()A.5个B.4个C.3个D.2个【答案】B【分析】∵根据折叠的性质得出AE=BE,AB=BN,∵NEB=90°,再根据含30度的直角三角形判定定理即可得出∵ENB =30°,即可得出∵ABN=60°;∵根据折叠的性质得出∵ABM=∵NBM=30°,设AM=x,根据勾股定理即可求出AM的值;∵直接根据矩形的性质即可得出;∵根据∵ABM=30°,得出∵MBG=∵BMA=60°,再根据折叠的性质和等量代换即可得出∵BGM是等边三角形;∵根据点H是BN的中点即矩形的性质得出BH=BE,结合题意得出PE=PH,再根据三点共线时值最小及勾股定理即可判断.【详解】解:由折叠可知,AE=BE,AB=BN,∵NEB=90°,在Rt∵BEN中,∵BN=AB=2BE,∵∵ENB=30°,∵∵ABN=60°,故∵正确;由折叠可知,∵ABM=∵NBM=30°,设AM=x,则BM=2x,x2+22=(2 x)2,∵x>0,解得:x,即AM =∵错误; ∵∵ABG =90°,∵AB ∵CG ,故∵正确;∵∵ABM =30°,∵∵MBG =∵BMA =60°,由折叠可知,∵BMG =∵BMA =60°,∵∵MBG =∵BMG =∵MGB =60°,∵∵BGM 是等边三角形,故∵正确,连接PE .∵点H 是BN 的中点,∵BH =BE =1,∵∵MBH =∵MBE ,∵E 、H 关于BM 对称,∵PE =PH ,∵PH +PN =PE +PN ,∵E 、P 、N 共线时,PH +PN 的值最小,EN ∵正确,故选为B .【点睛】本题考查翻折变换、等边三角形的判定和性质、直角三角形中30度角的判断、轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.40.如图,矩形纸片,,ABCD AB a BC b ==,满足12b a b <<,将此矩形纸片按下面顺序折叠,则图4中MN 的长为(用含,a b 的代数式表示)( )A .2b a -B .22b a -C .32b a +D .12b a + 【答案】B【分析】 如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,∵PEQ 是等腰直角三角形,进而可得∵MNE 是等腰直角三角形,然后根据等腰直角三角形的性质可得EG =12MN ,而12EG EF A F =-,进一步即可求得答案.【详解】解:如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,∵EPQ =11904522APQ ∠=⨯︒=︒,∵EQP =11904522DQP ∠=⨯︒=︒, ∵∵PEQ =90°,∵∵PEQ 是等腰直角三角形,如图4,∵MN ∵PQ ,∵∵MNE 是等腰直角三角形,∵EG ∵MN ,∵EG=MG=NG =12MN , ∵12EG EF A F =-=a ﹣2(a ﹣12b )=b ﹣a , ∵MN =2EG =22b a -.故选:B∵【点睛】本题考查了矩形的性质、折叠的性质以及等腰直角三角形的判定与性质,正确理解题意、熟练掌握等腰直角三角形的判定和性质是解题的关键.41.将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF .若 AB =3,则 BC 的长为( )AB .2C .1.5 D【答案】D【分析】 设BC x =,先根据矩形的性质可得90,B AD BC ∠=︒=,再根据折叠的性质可得,,90OA AD x OC BC x COE B ====∠=∠=︒,从而可得OA OC =,又根据菱形的性质可得AE CE =,然后根据三角形全等的判定定理与性质可得90AOE COE ∠=∠=︒,从而可得点,,A O C 共线,由此可得2AC x =,最后在Rt ABC 中,利用勾股定理即可得.【详解】设BC x =,四边形ABCD 是矩形,90,B AD BC x ∴∠=︒==,由折叠的性质得:,,90OA AD x OC BC x COE B ====∠=∠=︒,OA OC x ∴==,四边形AECF 是菱形,AE CE ∴=,。

矩形中的折叠问题

矩形中的折叠问题

矩形中的折叠问题山东省枣庄市峄城区第二十八中学 潘歌 邮编:277300折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。

对于折叠问题(翻折变换)实质上就是轴对称变换.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。

一、求角度例1 如图 把一张矩形纸片ABCD 沿EF 折叠后,点C D ,分别落在C D '',的位置上,EC '交AD 于点G .已知58EFG ∠=°,那么BEG ∠= °.【解析】在矩形折叠问题中,折叠前后的对应角相等来解决。

解:根据矩形的性质AD ∥BC ,有∠EFG =∠FEC =58°,再由折叠可知,∠FEC =∠C ′EF =58°,由此得∠BEG =64°例2 将一张长方形纸片按如图的方式折叠,其中BC ,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD = 度.【解析】折叠前后的对应角相等.解:BC 、BD 是折痕,所以有∠ABC = ∠GBC ,∠EBD = ∠HBD 则∠CBD = 90°.例4 如图 四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )(A )34 (B )33 (C )24 (D )8【解析】在矩形折叠问题中,求折痕等线段长度时,往往利用轴对称性转化相等的线段,再借助勾股定理构造方程来解决.解:由折叠可知,AE =AB =DC =6,在Rt △ADE 中AD =6,DE =3由勾股定理,得AD =33,设EF =x ,则FC =x -33,在Rt △EFC 中由勾股定理求得x =32,则EF =32,在Rt △AEF 中,由勾股定理得AF =A .A B CDEFA B E C D F G C 'D 'C三、求图形面积例5如图3-1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图3-2所示的图形并在其一面着色,则着色部分的面积为( )A .234cmB .236cmC .238cmD .240cm解析:折叠后重合部分为直角三角形. 解:重合部分其面积为22122=⨯⨯,因此着色部分的面积=长方形纸条面积 - 两个重合部分三角形的面积,即20×2-2×2=36(2cm ).故选B .∴62 + (8 - x )2 = x2解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754 cm2四、数量及位置关系例7 如图 将矩形纸片ABCD 沿对角线BD 折叠,点C 落在点E处,BE 交AD 于点F ,连结AE .证明:(1)BF DF =. (2)AE BD ∥ 【解析】(1)欲证明BF =DF ,只需证∠FBD =∠FDB ; (2)欲证明AE BD ∥,则需证AEB DBE ∠=∠。

矩形折叠动点问题

矩形折叠动点问题

矩形的折叠问题班级________姓名____________①(10哈尔滨)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C’处,折痕为EF,若∠ABE=20°,那么∠EFC’的度数为°.②(10 江西)如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A.4 B.3 C.2 D.1③(10 青岛)把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB = 3 cm,BC = 5 cm,则重叠部分△DEF的面积是cm2.④(11 绵阳)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长为_____cm.第①题图第②题图第③题图第④题图⑤(10 荷泽)如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,记与点A重合点为A',则△A'B G的面积与该矩形的面积比为()A.112B.19C.18D.16⑥(10 连云港)矩形纸片ABCD中,AB=3,AD=4,将纸片折叠,使点B落在边CD上的B’处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为________.⑦(10 吉林)如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A’,D’处,则整个阴影部分图形的周长..为()A.18cm B.36cm C.40cm D.72cm矩形折叠类综合题1.如图,矩形A1B1C1D1沿EF折叠,使B1点落在A1D1边上的B处;沿BG折叠,使D1点落在D处且BD过F点.(1)求证:四边形BEFG是平行四边形;(2)连结B1B,判断△B1BG的形状,并写出判断过程.第⑤题图第⑥题图第⑦题图O A BC B 1D y x 2.如图,矩形OABC OA 、OC 的长满足:|OA -2|+(OC -23)2=0. (1)求B 、C 两点的坐标.⑵把△ABC 沿AC 对折,点B 落在点B 1处,AB 1线段与x 轴交于点D ,求直线BB 1的解析式 ⑶在直线BB 1上是否存在点P 使△ADP 为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =53cm ,ECFC =34,求矩形ABCD 的周长.4.如图一,平面直角坐标系中有一张矩形纸片OABC ,O 为坐标原点,A 点坐标为(10,0),C 点坐标为(0,6),D 是BC 过上的动点(与点B 、C 不重合),现将△COD 沿OD 翻折,得到△FOD ;再在AB 边上选取适当的点E ,将△BDE 沿DE 翻折,得到△GDE ,并使直线DG 、DF 重合,⑴如图二,若翻折后点F 落在OA 上,求直线DE 的函数关系式; ⑵设D (a ,6),E (10,b ),求b 关于a 的函数关系式GxyOA B C D FE y OAB C D FG xE5.将一矩形纸片OABC 放在直角坐标系中,O 为原点,C 在x 轴上,OA =6,OC =10.(1)如图①,在OA 上取一点E ,将EOC ∆沿EC 折叠,使O 点落在AB 边上的D 点,求E 点的坐标;(2)如图②,在OA 、OC 边上选取适当的点E '、F ,将OF E '∆沿F E '折叠,使O 点落在AB 边上的D '点,过D '作y G D //'轴,交F E '于T 点,交OC 于G 点,求证:E A TG '=.(3)在⑵的条件下,设),(y x T ,①探求:y 与x 之间的函数关系式;②指出自变量x 的取值范围.(4)如图③,如果将矩形OABC 变为平行四边形C B A O ''',使10='C O ,C O '边上的高等于6,其他条件均不变,探求:这时),(y x T '的坐标y 与x 之间是否仍然满足⑶中所得的函数关系式?若满足,请说明理由;若不满足,写出你认为正确的函数关系式.yE 'ABC OxFD 'G图②A E y C xBO D OyD ''E ''A ' 'C ' F ' G 'T ' x班级________姓名____________1. 如图,矩形ABCD 中,AB B →C →M 运动,则△APM 的面积y 与点( )2. 如图,在直角坐标系中,过点C (3,6)分别作x 轴和y 轴的垂线CB 和CA ,垂足为B 和A ,若点P 从O 沿OB 向点B 以1个单位长度/秒的速度运动,点Q 从B 沿BC 向点C 以2个单位长度/秒的速度运动. 如果P 、Q 分别从O 、B 同时出发, 试求:(1)经过多少时间,△PBQ 的面积等于2个平方单位;(2)线段PQ 与AB 能否垂直?若能垂直,求出此时点Q 的坐标;若不能,请说明理由.yx3题图MQ PCBO A3.53211A yxO 3.532C11y xO3.532B 11y x O 3.532D11y xOCD P A 第1题图4.(10广东东莞)如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF=2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、MN 、FN ,当F 、N 、M 不在同一直线时,可得△FMN ,过△FMN 三边的中点作△PQW .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题: ⑴说明△FMN ∽ △QWP ;⑵设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,△PQW 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?⑶问当x 为何值时,线段MN 最短?求此时MN 的值.MPQWN 图(2)A BACN MWQDP 图(1)5.(11 聊城)如图,在矩形ABCD 中,AB =12cm ,BC =8cm ,点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EF G 的面积为S (cm2).(1)当t =1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围.(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以F 、C 、G 为顶点的三角形相似?请说明理由.6.(11福州)已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中, ①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.ABCDEF图10-1O图10-2ACD E P备用图A CDEP7.( 11 衡阳)如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连结PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)连结AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.几何综合测验【复习要点】代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.【实弹射击】1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图a,AC= ,BD= ;四边形ABCD是梯形.(2)请写出图a中所有的相似三角形(不含全等三角形).(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.2、(09广东省)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。

矩形的折叠问题归类

矩形的折叠问题归类

矩形的折叠问题归类矩形的折叠问题是指在二维平面上,将一个矩形沿某一方向进行折叠,使得其中的某一条边与另一条边重合的问题。

这个问题可以分为以下几类。

1.水平折叠:在这种情况下,矩形按照水平方向进行折叠。

即将矩形的上边与下边进行折叠,使得它们重合。

这种情况下,折叠中心通常是矩形的中点。

2.垂直折叠:与水平折叠类似,垂直折叠是指将矩形的左边和右边进行折叠,使得它们重合。

折叠中心通常是矩形的中点。

3.对角线折叠:对角线折叠是指将矩形的一条对角线进行折叠,使得它与另一条对角线重合。

这种情况下,折叠中心就是矩形的中心点。

4.不对称折叠:不对称折叠是指将矩形沿任意一条线进行折叠,使得其中的两条边重合,但折叠中心不是矩形的对称中心。

这种类型的折叠通常需要一些几何推理和计算来求解。

5.多次折叠:在这种情况下,矩形可以进行多次折叠,使得多个边重合。

这种问题通常需要分析每次折叠的效果,并综合考虑到所有边的重合情况。

通过以上分类,我们可以看出矩形的折叠问题是一个几何学和空间想象力的结合。

解决这类问题通常需要从折叠后的形状入手,利用几何知识和计算方法,通过推理和计算找到解决方案。

例如,对于水平折叠问题,可以通过计算矩形的上边和下边的重合点来求解。

类似地,对于垂直折叠问题,可以计算矩形的左边和右边的重合点。

而对于对角线折叠问题,可以通过计算矩形的对角线的重合点来求解。

在不对称折叠问题中,可能需要通过几何推理来找到折叠点的位置,然后再进行计算。

这可能涉及到一些较为复杂的几何分析和角度计算。

在多次折叠问题中,可以通过类似的方法逐步解决每个折叠步骤,然后整合所有步骤的结果。

总之,矩形的折叠问题是一个有趣的几何学问题,需要运用数学和空间想象力来解决。

通过分类和分析不同类型的折叠问题,我们可以更好地理解和解决这类问题。

矩形折叠中的相关问题

矩形折叠中的相关问题

矩形折叠中的相关问题一、角度的计算例1、如图1,把矩形ABCD沿EF对折,若∠1=500,求∠AEF的度数。

例2、将矩形纸片ABCD(图3 -1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图3-2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3-3);(3)将纸片收展平,那么∠AFE 的度数为()(A)60°(B)67.5°(C)72°(D)75°二、求折叠出的线段的计算例1、如图2,沿折痕AE折叠矩形ABCD的一边,使点D落在BC边上一点F处。

若AB=8,且⊿ABF的面积为24,求EC的长。

例2将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C.2D.3BD FOD图2图1例3、如图3,是一矩形的纸片,其中AD =2.5,AB =1.5。

按下列步骤折叠:将其对折,使AB 落在AD 上,折痕为AE ,再将⊿ABE 以BE 为折痕向右折叠,AE 与DC 交于点F ,则CF 的长是( ) A .0.5 B .0.75 C .1 D .1.25三、折痕的计算例1、有一矩形纸片,其中宽AB =6cm ,长BC =8cm 。

现按如图4所示的方法作折纸游戏,将它折叠使B 点与D 点重合,求折痕EF 的长。

例2、 将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为GF. AB=6,BC=8,求GF 的长四、面积的计算例1、如图5,将矩形ABCD 沿着对角线BD 折叠,使点C 落在点'C 处,'BC 交AD 于E 。

已知AD =8,AB =4,求⊿BDE 的面积。

AEFDBC G例2、如图1,是一矩形纸片ABCD中,AD=4cm,AB=10cm,现作折纸游戏,使点B与点D重合,折痕为EF,求DE的长。

专题一 矩形中的折叠问题

专题一 矩形中的折叠问题




) - = ,∴FG=2FO= .




平面直角坐标系中的折叠问题
9.如图所示,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x
轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC
边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.(1Biblioteka 求E,D两点的坐标.第一章
特殊平行四边形
专题一
矩形中的折叠问题

求角度
1.如图所示,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,恰好使点D
落在边BC上的点F处,若∠BAF=60°,则∠DAE的大小为( B )
A.10°
B.15°
第1题图
C.20°
D.25°
2.如图所示,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H
∴Rt△CEP1≌Rt△BME(HL),
∴CP1=BE=3,∴OP1=1,∴P1(0,1).
同理可得CP2=BE=3,∴OP2=7,∴P2(0,7).
当PE=PM时,此时点P在EM的垂直平分线上.设P点坐标为(0,-a)(a>
0).
∵E(2,4),M(5,2),∴EP3= +( + ) ,MP3=
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,∴DF=BF,
∴△BDF是等腰三角形.
(2)如图②所示,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AB=6,AD=8,求FG的长.
解:(2)①四边形BFDG是菱形.理由:
∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG.又∵DG∥BE,

初中数学中的折叠问题

初中数学中的折叠问题

初中数学中的折叠问题一、矩形中的折叠折叠后BG 和BH 在再过点A ′折叠使边与对角线BD 重形中根据勾股定合,然后再沿着则∠DFB 等于的位置,已知重合部分是以折痕为底边的等腰三角形理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B落在边AD 的中点G 处,求四边形BCFE 的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD 折叠,使点B 落在边AD 上 不与A 、D 重合.MN 为折痕,折叠后B ’C ’与DN 交于P .(1)连接BB ’,那么BB ’与MN 的长度相等吗?为什么?(2)设BM =y ,AB ’=x ,求y 与x 的函数关系式;(3)猜想当B 点落在什么位置上时,折叠起来的梯形MNC ’B ’面积最小?并验证你的猜想. 二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )C题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm的长方形纸条成如图所示的形状,那么折痕PQ的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ 14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm的长方形纸片ABCD,沿对称轴EF折叠成如图的形状,若折叠后,AB与CD间的距离为60cm,则原纸片的宽AB是()16.一根30cm、宽3cm的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,求MA的长三、三角形中的折叠实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。

人教版八年级数学下册-思想方法专题:矩形中的折叠问题

人教版八年级数学下册-思想方法专题:矩形中的折叠问题

思想方法专题:矩形中的折叠问题——体会折叠中的方程思想及数形结合思想◆类型一折叠中求角度1.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF.若∠EFC′=125°,那么∠ABE的度数为()A.15° B.20° C.25° D.30°第1题图第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形纸片ABCD,使AD和BC 重合,得到折痕EF,把纸片展平;(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察探究可以得到∠ABM的度数是()A.25° B.30° C.36° D.45°◆类型二折叠中求线段长3.(2017·安顺中考)如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm第3题图第4题图4.(2017·宜宾中考)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的F 处,则DE 的长是( )A .3 B.245 C .5 D.89165.★(2016·威海中考)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内的点F 处,连接CF ,则CF 的长为________.◆类型三 折叠中求面积6.(2017·鄂州中考)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E .(1)求证:△AFE ≌△CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.7.★(2016·福州中考)如图,矩形ABCD中,AB=4,AD=3,M是边CD上的一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积.参考答案与解析1.B解析:由折叠可知∠EFC=∠EFC′=125°.∵在矩形ABCD中,AD∥BC,∴∠DEF =180°-125°=55°.根据折叠可知∠BEF=∠DEF=55°,∴∠BED=110°.∵四边形ABCD为矩形,∠A=90°,∴∠ABE=110°-90°=20°.故选B.2.B 3.C 4.C5. 185解析:如图,连接BF 交AE 于H ,由折叠的性质可知BE =FE ,AB =AF ,∠BAE =∠F AE ,∴AH ⊥BF ,BH =FH .∵BC =6,点E 为BC 的中点,∴BE =12BC =3.又∵AB =4,∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =125,则BF =2BH =245.∵E 是BC 的中点,∴FE =BE =EC ,∴∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝⎛⎭⎫2452=185.6.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°.∵将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,∴∠F =∠B ,AB =AF ,∴AF =CD ,∠F =∠D .在△AFE与△CDE 中,⎩⎪⎨⎪⎧∠F =∠D ,∠AEF =∠CED ,AF =CD ,∴△AFE ≌△CDE .(2)解:∵AB =4,BC =8,∴CF =AD =8,AF =CD =AB =4.∵△AFE ≌△CDE ,∴EF =DE .在Rt △CED 中,由勾股定理得DE 2+CD 2=CE 2,即DE 2+42=(8-DE )2,∴DE =3,∴AE =8-3=5,∴S 阴影=12×4×5=10. 7.解:(1)由折叠性质得△ANM ≌△ADM ,∴∠MAN =∠DAM .∵AN 平分∠MAB ,∴∠MAN =∠NAB ,∴∠DAM =∠MAN =∠NAB .∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DAM =30°,∴AM =2DM .在Rt △ADM 中,∵AD =3,∴由勾股定理得AM 2-DM 2=AD 2,即(2DM )2-DM 2=32,解得DM = 3.(2)延长MN 交AB 的延长线于点Q ,如图所示.∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠DMA =∠MAQ ,由折叠性质得△ANM ≌△ADM ,∴∠ANM =∠D =90°,∠DMA =∠AMQ ,AN =AD =3,MN =MD =1,∴∠MAQ =∠AMQ ,∴MQ =AQ .设NQ =x ,则AQ =MQ =MN +NQ =1+x .∵∠ANM =90°,∴∠ANQ =90°.在Rt △ANQ 中,由勾股定理得AQ 2=AN2+NQ2,即(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5.∵△NAB和△NAQ在AB边上的高相等,AB=4,AQ=5,∴S△NAB=45S△NAQ=45×12×AN·NQ=45×12×3×4=245.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.。

矩形折叠问题

矩形折叠问题

例5 如图:将正方形ABCD对折,折痕为MN,
再沿AE折叠,把B点叠在MN上(图中的P),
若AB=3 ,(1)求PM的长;(2)以PE 为边长的
正方形的面积.
C
E
B
分析:将本题与例题3比
M
N
较,不难看出它们的共
P
3
同之处,显然,解决本
3
题的关键是求PE和PN的 D
A
长。
解: (1) M、N分别是正方形 C
一、 什么是折叠 二 、 与折叠有关的问题
一. 折叠的意义
1.折叠 就是将图形的一部分沿着一条 直线翻折180º,使它与另一部分在这条 直线的同旁,与其重叠或不重叠.显然, “折”是过程,“叠”是结果;

l
A
B
O
OBˊ=OB;
图1
如图(1)是线段AB沿直线l折叠后的图形, 其中OBˊ是OB在折叠前的位置;
•问题1.如图,将宽度为a的长方形纸片 折叠成如图所示的形状,观察折叠后重 叠部分三角形 A EF
F a

E
这是一个什么三角形?
三角形 A EF是等腰三角形
证明(方法一) ∵图形在折叠前和
折叠后是全等的, ∴∠1= ∠2,
F
21
a
3

E
又∵矩形的对边是平行的,
∴∠1= ∠3,
∴ ∠2= ∠3, ∴ A E= A F ∴三角形 A EF是等腰三角形
∴AEcos 30°= 3 , ∴AE=2.
C
解法二:延长EP交AD 与 F则FE=FA(已证) M ∵ M、N分别是矩形
D
的边AB和CD的中点, ∴MN∥AD∥BC ∴EP∶PF=BN∶NA=1∶1,

(完整版)初中数学中的折叠问题

(完整版)初中数学中的折叠问题

初中数学中的折叠问题一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC ,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD= 度.2.如图所示,一张矩形纸片沿BC 折叠,顶点A 落在点A ′处,再过点A ′折叠使折痕DE ∥BC ,若AB=4,AC=3,则△ADE 的面积是 .3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积.重合部分是以折痕为底边的等腰三角形321FEDCBAGA'C A B D6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD 按如下的顺序进行折叠:对折,展平,得折痕EF (如图①);延CG 折叠,使点B 落在EF 上的点B ′处,(如图②);展平,得折痕GC (如图③);沿GH 折叠,使点C 落在DH 上的点C ′处,(如图④);沿GC ′折叠(如图⑤);展平,得折痕GC ′,GH (如图 ⑥).(1)求图 ②中∠BCB ′的大小;(2)图⑥中的△GCC ′是正三角形吗?请说明理由.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,求四边形BCFE 的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD 折叠,使点B 落在边AD 上 不与A 、D 重合.MN 为折痕,折叠后B ’C ’与DN 交于P .(1)连接BB ’,那么BB ’与MN 的长度相等吗?为什么? (2)设BM =y ,AB ’=x ,求y 与x 的函数关系式; (3)猜想当B 点落在什么位置上时,折叠起来的梯形MNC ’B ’面积最小?并验证你的猜想.54132G D‘F C‘DB CA E二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB 是以折痕AB 为底的等腰三角形12.如图,将一宽为2cm 的纸条,沿BC ,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEAC GDFEAFDBCAEB Ba 2130°B EF AC D本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14.(1)当中线CD 等于a 时,重叠部分的面积等于 ;GEFD AEF DBC A B C 60cm(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;(3)将∠2看作180°-2∠CED ,∠1看作2∠CDE-180°,再根据三角形内角和定理来求.B'C DA B 231E B'CDB A 21图(1)C'ACBDE12C'ABCDE21GC'A BC DE由于等腰三角形是轴对称图形,所以在折叠三角形时常常会出现等腰三角形20.观察与发现:将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。

初中数学解题技巧专题---矩形中的折叠问题

初中数学解题技巧专题---矩形中的折叠问题
第2页共4页
参考答案与解析 .1 B 解析:由折叠可知∠EFC=∠EFC′=125°.∵在矩形 ABCD 中,AD∥BC,∴∠DEF
=矩形180,°-∠1A2=5°9=0°5,5°∴.根∠据A折BE叠=可11知0°∠-B9E0F°==2∠0°D.故EF选=B5.5°,∴∠BED=110°.∵四边形 ABCD 为 .2 B 3.C 4.C
点 A 恰好落在对角线 BD 上的 F 处,则 DE 的长是( )
. . 24
89
A 3 B. 5 C 5 D.16
5.★(2016·威海中考)如图,在矩形 ABCD 中,AB=4,BC=6,点 E 为 BC 的中点,将
△ABE 沿 AE 折叠,使点 B 落在矩形内的点 F 处,连接 CF,则 CF 的长为 . ________
2.如图,某数第学1兴题趣图小组开展以下折纸活动:(1)对折矩形纸片第AB2C题D图,使 AD 和 BC
重合,得到折痕 点 B,得到折痕
BEMF,,把同纸时片得展到平线;段(B2)N再.观一察次探折究叠可纸以片得,到使∠点AABM落的在度E数F 上是,( 并使) 折痕经过
A◆.类2型5°二
. . B 30° C 36° 折叠中求线段长
与△CDE 中,∠∠FA=EF∠=D∠,CED,∴△AFE≌△CDE. = , AF CD
(2)解:∵AB=4,BC=8,∴CF=AD=8,AF=CD=AB=4.∵△AFE≌△CDE,∴EF =DE.在 △Rt CED 中,由勾股定理得 + = ,即 DE2 CD2 CE2 + = - ,∴ = , DE2 42 (8 DE)2 DE 3
.D 45°
3.(2017·安顺中考)如图,在矩形纸片 ABCD 中,AD=4cm,把纸片沿直线 AC 折叠,

矩形折叠问题

矩形折叠问题

四.一边沿对角线翻折
例4.如图,已知将矩形ABCD沿着直线BD折叠, 使点C落在C’处,BC’交AD于E,AD=8,AB=4, 求△BDE的面积.
1.把一张长方形的纸片按如图所示的方式折叠, EM、FM 为折痕,折叠后的C点落在MB′或MB′ 的延长线上,那么∠EMF=______°.
2.如图,把一个长方形纸片沿EF折叠后,点D、 C分别落在D′、C′的位置,若∠EFB=65°,
矩形的折叠问题
常见题型
将一边折到对角线上 将一边沿对角线翻折
把一个顶点折到一边上
一条对角线的顶点折叠重合
一.将一边折到对角线上
例1.折叠矩形纸片ABCD,先折出折痕(对角线)
BD,再折叠AD边与对角线BD重合,得折痕DG。 若AB=2,BC=1,求AG.
二.一条对角线的顶点折叠重合
交于点M,求直线MN的解析式.
y
C
B
O
A的中点,将△ABE 折叠后得到△GBE , 延长BG交CD于点F,若
CF=1,FD=2,则BC的长为______.
6.将矩形纸片ABCD沿对角线BD折叠,点C落在 点E处,BE交AD于点F.连结AE.证明:AE∥BD.
7.在平面直角坐标系中,矩形OABC的两边OA、 OC分别落在x轴,y轴上,且OA=4,OC=3。 △OAB沿对角线OB翻折得到△OBN,ON与AB
则∠AED′ =______°.
D
3.如图,四边形ABCD 为矩形纸片.把纸片 ABCD 折叠,使点 B恰好落在CD 边的中点E 处,折痕为 AF.若CD=6 ,则AF 等于_____.
4.如图,已知矩形纸片ABCD,点E是AB的中点, 点G是BC上的一点,∠BEG>60°.现沿直线 EG将纸片折叠,使点B落在纸片上的点H处,连 接AH,则与∠BEG相等的角的个数为_____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与矩形相关的折叠问题
在矩形的性质及判定的应用过程中,折叠类的题目是比较多见的,同时也是矩形和角平分线、勾股定理等知识的结合与拓展。

折叠是轴对称的另一种描述,因此,在折叠问题中找到折痕即对称轴就是解决此类问题的一个突破口。

下面从几个不同的层面展示一下。

例1、将一长方形纸片按如图的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为( ).
(A )60° (B )75° (C )90° (D )95°
分析:在这个问题中是利用折叠矩形的两个角给大家提供条件的,那么折痕BC 和折痕BD 就充当了角平分线的角色,即∠ABC =∠A /BC ,∠EBD =∠E /BD 。

例2、如图,把一张矩形纸片ABCD 沿BD 对折,使C 点落在E 处,BE 与AD 相交于点O 。

(1)由折叠可得△BCD ≌△BED ,除此之外,图中还存在其他的全等三角形,请你找出来 。

(2)图中有等腰三角形吗?请你找出来 。

(3)若AB =6,BC =8,则O 点到BD 的距离是 。

分析:在这一折叠的过程中,因为是与全等有关的,所以除了像例1一样提供了角的等量关系之外,边的相等是更重要的。

问题(1)好解决,进而由全等三角形的对应边相等可以说明(2)的结论是等腰△OBD 。

另外,还可以从另一个角度分析。

由折痕BD 可以找到 ∠OBD =∠CBD ,由于在矩形中,AD ∥BC ,∠ODB =∠CBD ,经过等量代换∠OBD =∠ODB ,然后等角对等边OB =OD 。

这是在矩形折叠中比较常见的“角平分线和平行线同时并存”的条件,结论就会出现“等角对等边”的等腰三角形。

问题(3)跟计算线段长度有关,这也是勾股定理在折叠中发挥作用的一类题目。

因为AD =BC ,BC =BE ,因此在△ABO 中可以设AO =x ,则BO =OD =8-x ,因为AB =6,即可以根据勾股定理列等式:AB 2+AO 2=BO 2进行计算了。

下面的这个题目就是用这个思路解决的。

大家可以尝试一下。

例3、已知:如图,矩形AOBC ,以O 为坐标原点,OB ,OA 分别在x 轴、y 轴上,点A 坐标为(0,3),∠OAB =60°,以AB 为轴对折后,使C 点落在D 点处,求D 点的坐标.
O
A
C
B
E
D
例4、一个矩形纸片如图折叠,使顶点B 和D 重合,折痕为EF 。

(1)找出图中全等的三角形,并证明。

(2)重合部分是什么图形?证明你的结论。

(3)连接BE ,并判断四边形BEDF 是什么特殊四边形,BD 与EF 有什么关系?并证明。

分析:此题的折叠不仅有前面几个问题中线段和角的对应相等,而且在折叠的过程中隐藏着EF 垂直平分BD ,这对于第三问中四边形形状的判断,有着重要的作用,这仍然是轴对称的性质。

利用这些条件易证明△EOD ≌△BOF ,则有ED =BF ,且ED ∥BF ,首先四边形EBFD 是平行四边形,由于BD 、EF 互相垂直,所以就可说明四边形EBFD 是菱形。

例5、在矩形ABDC 中,把∠A 沿CF 折叠,点A 恰好落在矩形的对称中心E 处,若AB =a ,AC =b ,请你计算
b
a
的值。

分析:这个问题中的折叠,体现出来的看似只是一对
角的相等,其实还有矩形中心对称图形的特征。

即点E 是
对角线的交点。

由矩形的性质可以说明AE =DE ,因为折叠可知AC =CE ,因此可得:△CAE 是等边三角形,即∠ACB =60°,进而在直角△ACB 中解决两直角边的关系为3:1。

总之,由于矩形本身所独有的特征,例如直角、对角线相等这些区别于普通平行四边形的特征,使得折叠在矩形中会产生奇妙的结果,只要大家用心体会,善于总结归纳,一定会从中发现很多美妙的结论!
F
1 3
2 C
B
A
E
D A '
F
1 3
2 C
B
A
E
D A '
O
A
B
C
D
E
F
A B
C
D
E
F。

相关文档
最新文档