变频器基本结构与原理
变频器的基本组成与工作原理简介
变频器的基本组成与工作原理简介变频器(Inverter)是一种电力电子设备,用于调节电源频率并将直流电源转换为交流电源。
它在各个领域广泛应用,如工业生产、交通运输和家庭电器等。
本文将介绍变频器的基本组成和工作原理。
一、基本组成1. 整流器:变频器的第一部分是整流器,用于将交流电源转换为直流电源。
整流器通常由整流桥和滤波电路组成,整流桥使用四个或六个二极管来将输入的交流电转换为直流电,并通过滤波电路去除电流中的脉动。
2. 逆变器:逆变器是变频器的核心组成部分,用于将直流电源转换为交流电源。
逆变器通常由IGBT(绝缘栅双极性晶体管)或MOSFET (金属氧化物半导体场效应晶体管)等开关元件控制。
逆变器通过高频脉冲宽度调制(PWM)技术,将直流电源转换为可调节频率和电压的交流电源。
3. 控制电路:控制电路是变频器的智能控制中心,负责监测和调节逆变器的工作状态。
控制电路通常使用微处理器或DSP(数字信号处理器),可以根据实时反馈信号调整逆变器的输出频率和电压。
4. 过载保护:为了保护变频器和被控制设备,变频器还配备了过载保护功能。
当负载过大或电流异常时,变频器会自动切断电源,以避免设备损坏或事故发生。
二、工作原理变频器的工作原理可以分为三个主要阶段:整流、逆变和调节。
首先,在整流阶段,交流电源通过整流器转换为直流电源。
整流器将输入的交流电通过整流桥和滤波电路转换为平稳的直流电,供给逆变器使用。
然后,在逆变阶段,逆变器将直流电源转换为可调频率和电压的交流电源。
逆变器中的开关元件根据控制电路的指令,以高频脉冲的方式控制电流的通断,从而形成模拟正弦波的输出信号。
通过调整开关元件的通断时间和脉冲宽度,逆变器可以产生不同频率和电压的交流电源。
最后,在调节阶段,控制电路对逆变器的输出进行实时监测和调节。
根据输入的指令和反馈信号,控制电路可以自动调整逆变器的输出频率和电压,以满足不同的工作需求。
总结:变频器是电力电子设备中一种常见的装置,可将直流电源转换为可调节频率和电压的交流电源。
变频器结构及工作原理
变频器结构及工作原理引言:随着现代工业的发展,越来越多的机械设备需要实现电机的调速控制。
而变频器作为一种常见的电机调速方案,被广泛应用于各行各业。
本文将介绍变频器的结构及其工作原理。
一、变频器的结构变频器是由多个模块组成的复杂电子装置。
其主要结构包括:整流器、滤波器、逆变器、控制电路和电源。
1. 整流器整流器是将交流电转换为直流电的部分。
在变频器中,通常采用整流器将供电网络中的交流电转换为直流电,并提供给逆变器模块使用。
2. 滤波器滤波器主要用于过滤整流后的直流电,降低其纹波电压,保证逆变器模块正常工作。
常用的滤波器有电解电容滤波器和电感滤波器。
3. 逆变器逆变器是变频器中最重要的模块之一,其功能是将直流电转换为交流电。
逆变器通过控制开关管的导通和截止,来产生不同频率、不同幅值的交流电供电给电机。
4. 控制电路控制电路是变频器中的大脑,负责接收用户输入的指令,对逆变器进行精确的控制。
控制电路通常采用微处理器作为控制核心,通过运算和控制算法实现对逆变器的精确控制。
5. 电源电源模块主要为整个变频器提供电源能量,保证变频器的正常运行。
电源模块通常输入交流电,并通过整流器和滤波器将其转换为直流电供其他模块使用。
二、变频器的工作原理变频器主要基于PWM技术实现电机调速。
其工作原理可以分为以下几个步骤:1. 输入信号处理变频器接收用户输入的调速指令,并经过处理后,转换为数字信号。
通常,用户通过面板或者外部接口输入频率、电流等调速指令。
2. 控制算法运算变频器的控制电路根据用户的输入信号,结合内部预设的控制算法进行运算。
运算结果会被转换为控制逆变器的PWM信号。
3. PWM信号生成控制电路用于生成PWM(脉冲宽度调制)信号,根据算法计算的结果控制开关管的导通和截止,调整逆变器输出的合适频率和幅值。
4. 逆变器输出逆变器根据PWM信号的控制,将直流电转换为特定频率、幅值的交流电。
这样,通过调整PWM信号的频率和幅值,就可以实现对电机的精确调速控制。
变频器基本组成和原理
变频器基本组成和原理变频器,也称为变频电源,是一种将固定频率的电源输入转换为可调频率、可调电压的电源输出的电器设备。
其基本组成包括整流器、中间电路、逆变器和控制器等部分。
1.整流器:整流器是变频器的输入部分,用于将交流电源转换为直流电源。
常见的整流器包括单相整流桥和三相整流桥。
整流器可以通过控制开关元件的导通和截止来调节输出电压大小。
2.中间电路:中间电路是变频器的储能元件,用于平滑整流器输出的直流电压。
常见的中间电路元件有电容和电感等。
电容可以储存电荷并提供电流平滑,而电感则可以储存电能。
3.逆变器:逆变器是变频器的核心部分,用于将中间电路的直流电压转换为可调的交流电压输出。
逆变器通过控制开关元件的开关频率和开关比例来调节输出电压的频率和幅值。
常见的逆变器拓扑有单相全桥逆变器、三相桥臂逆变器等。
4.控制器:控制器是变频器的智能部分,用于对整个变频器系统进行控制。
控制器通过采集反馈信号和计算实时数据来调节变频器的输出参数,如频率、电压和电流等。
控制器可以采用单片机、DSP或FPGA等智能芯片来实现。
变频器的工作原理如下所示:1.输入电源经过整流器转换为直流电源,并经过中间电路进行储能。
2.控制器根据设定参数采集反馈信号,通过计算实时数据得出输出参数的控制值。
3.控制器控制逆变器中的开关元件,根据设定的控制值来调节开关频率和开关比例。
4.逆变器将储存在中间电路中的直流电压转换为可调的交流电压输出。
5.交流电压经过输出滤波器进行滤波,减小谐波和噪声等干扰。
6.最终输出的交流电压根据设定参数调节频率和电压大小,可以用于驱动各种负载,如电动机、压缩机、水泵等。
总结起来,变频器通过以可调频率的交流电源驱动电动机等负载设备,可以实现电机的无级调速,提高能源利用率和控制精度。
其基本组成包括整流器、中间电路、逆变器和控制器等部分,通过控制器对逆变器的开关元件进行控制来实现输出电压的调节。
变频器结构和工作原理
三、变频器的结构原理
1、变频器的分类:
交~交型:将频率固定的交流电源直接变换成频率连续可调的交流电 源,其主要优点是没有中间环节,变换率高。但其连续可调的频率 范围较窄。主要用于容量较大的低速拖动系统中。又称直接式变频 器。 交~直~交型:先将频率固定的交流电整流后变成直流,在经过逆变 电路,把直流电逆变成频率连续可调的三相交流电。由于把直流电 逆变成交流电较易控制,因此在频率的调节范围上就有明显优势。 又称为间接性变频器。
二、变频的控制方式
在各种薄膜或线材的收卷或放卷过程 中,要求被卷物的张力F必须保持恒 定即F=C,为此: 1)被卷物的线速度v也必须保持恒定即 v =C,所以卷绕功率是恒定的; 2)负载的阻转矩随被卷物卷径的增大而 增大:但为了保持线速度恒定,负载 的转速必须随卷径的增大而减小: (b) 用转矩控制模式实现 恒张力运行 令 变频器在转矩 控制模式下运行,将 给 定信号设定在某一值下不变。则 电动机的电磁转矩TM也将不变,如 图 (b)中之曲线①所示: TM=C 而动态转矩TJ则随着卷径D 的增大而变为负值,如图(b)中之曲 线③所示。拖动系统将处于减速状态, 满足图(c)所示的转速变化规律。 改 变给定转矩的大小,可以改变卷绕的 松紧程度
2、变频器的组成(交~直~交型)
如下图:
三、变频器的结构原理
a、主电路结构 该电路是现在通用的低压变频器主电路图。不管什么品牌的 变频器,其主电路结构基本如此。因为:整流电路和逆变电 路是两个标准模块,没有变化的空间。
三、变频器的结构原理
b、变频器控制电路 任何品牌的变频器,其 内部功能框图是一样的, 因为变频器要保证正常 工作,必须要有相应的 功能。变频器主要包括: 主电路、电流保护电路、 电压保护电路、过热保 护电路、驱动电路、稳 压电源、控制端子、接 口电路、操作面板、 CPU等。
变频器基本原理和作用
变频器基本原理和作用变频器(Inverter)是一种电力电子器件,其基本原理是将直流电能转换为可调频的交流电能。
它主要由直流输入电源、逆变桥、滤波电路、控制器和交流输出端组成。
变频器广泛应用于工业、航空、军事、交通等领域,并发挥了重要的作用。
下面将详细介绍变频器的基本原理和作用。
变频器的基本原理如下:1.直流输入电源:变频器的输入端接收来自交流电源的交流电压,并使用整流电路将其转换为直流电压。
通常使用整流电路+电容滤波器的方式进行直流电压平滑处理。
2.逆变桥:逆变桥是变频器的核心组件,它将平滑的直流电压转换为可调频的交流电压。
逆变桥由四个可控开关组成,通常是IGBT(绝缘栅双极型晶体管)或MOSFET(金属氧化物半导体场效应晶体管)。
3.滤波电路:逆变桥输出的交流电压含有较高频率的谐波成分,为了减小谐波影响,需要使用LC滤波器进行滤波。
LC滤波器通过选择合适的电感和电容来过滤谐波成分,使交流输出电压更接近正弦波。
4.控制器:变频器的控制器是变频器的大脑,它通过对逆变桥的开关控制来实现对输出电压频率和幅值的调整。
控制器通常由微处理器、运算放大器等芯片组成,利用脉宽调制(PWM)技术来控制逆变桥开关的导通和断开,从而控制输出电压的频率和幅值。
5.交流输出端:变频器的交流输出端将可调频的交流电能提供给负载。
根据应用需求,可以将交流输出端连接到电动机、电炉、照明设备等不同的负载上,实现对其速度、温度、亮度等参数的精确控制。
变频器主要有以下作用:1.节能降耗:传统的电动机驱动系统通常采用带有固定转速的交流电源,而变频器可以根据实际负载需求,调整电机的转速和输出功率,降低电机的无功损耗和机械能量的损耗,从而实现能量的经济利用。
2.频率调节:变频器可以调节电机的输出频率,从而实现对驱动设备的控制。
例如,变频器常用于电梯、空调、水泵等场合,可以根据需求调整其运行频率,提高设备的工作效率和使用寿命。
3.调速控制:传统的电动机驱动系统通常只能实现定速运行,而变频器可以通过调整输出频率,实现对电机的精确调速控制。
变频器的工作原理
变频器的工作原理一、引言变频器是一种用于调节电机转速和输出功率的电子设备。
它通过改变输入电源的频率和电压来控制电机的转速。
本文将详细介绍变频器的工作原理,包括其基本组成部分和工作原理。
二、变频器的基本组成部分1. 整流器:变频器的输入电源为交流电,整流器将交流电转换为直流电,以供给后续的逆变器使用。
2. 逆变器:逆变器将直流电转换为交流电,并通过调节输出电压的频率和幅值来控制电机的转速。
3. 控制电路:控制电路接收来自用户的输入信号,并根据用户的要求来调节变频器的输出频率和电压。
4. 保护电路:保护电路用于监测变频器的工作状态,并在出现异常情况时采取相应的保护措施,以保证变频器和电机的安全运行。
三、变频器的工作原理1. 输入电源的整流变频器的输入电源为交流电,通过整流器将交流电转换为直流电。
整流器通常采用整流桥电路来实现,它由四个二极管组成。
当交流电的正半周时,两个二极管导通,将电流导向正极;当交流电的负半周时,另外两个二极管导通,将电流导向负极。
这样,交流电就被整流成了直流电。
2. 逆变器的工作逆变器将直流电转换为交流电,并通过调节输出电压的频率和幅值来控制电机的转速。
逆变器通常采用IGBT(绝缘栅双极型晶体管)来实现,它具有高开关速度和低导通压降的特点。
逆变器的工作原理可以简单描述为:根据控制电路的指令,逆变器将直流电按照一定的频率和幅值进行开关,从而产生与输入电源频率和幅值不同的交流电输出。
3. 控制电路的作用控制电路接收来自用户的输入信号,并根据用户的要求来调节变频器的输出频率和电压。
控制电路通常由微处理器和其他电子元件组成,它可以监测电机的转速、电流和温度等参数,并根据这些参数来调整逆变器的输出。
用户可以通过控制电路来实现对电机的精确控制,例如调节转速、启停电机、反向运行等。
4. 保护电路的功能保护电路用于监测变频器的工作状态,并在出现异常情况时采取相应的保护措施,以保证变频器和电机的安全运行。
变频器基本原理
变频器基本原理变频器,也称为频率调节器,是一种能够调节电机转速和输出频率的电气设备。
它在工业生产中广泛应用,为电机提供了更加灵活和精确的控制方式。
本文将介绍变频器的基本原理及其工作原理。
一、变频器的定义和作用变频器是一种电子设备,它能够将固定频率的交流电源转换为可调节频率的交流电源,并通过控制输出频率来控制电机的转速。
它通过改变电源电压的频率和幅值,从而改变电机的运行状态,实现对电机的精确控制。
变频器在工业生产中起到了至关重要的作用。
它能够使电机在不同的工况下运行,适应不同的负载要求。
通过调节电源频率,可以实现电机的变速运行,并在启动过程中减小电机的启动电流。
同时,变频器还能够提高电机的工作效率,减少能源的消耗。
二、变频器的结构和工作原理1. 变频器的结构典型的变频器结构包括整流器、滤波器、逆变器和控制单元等组成。
整流器将输入的交流电源转换为直流电源,供给逆变器使用。
滤波器用于滤除直流电源中的杂散成分,保持逆变器输入的电压信号稳定。
逆变器则将直流电源转换为可调频率的交流电源,用于驱动电机。
控制单元是变频器的核心部分,通过接收命令信号和输入信号,对逆变器的输出频率进行调节,实现对电机的精确控制。
2. 变频器的工作原理变频器的工作原理基于电力电子技术和控制理论。
在启动过程中,控制单元给逆变器发送启动指令。
逆变器将直流电源转换为低频交流电源,通过变压器升压并输出给电机。
此时,电机根据输入的频率和电压信号运行。
通过控制单元的调节,可以改变输出频率和电压信号,从而实现对电机的精确控制。
三、变频器的优势和应用领域1. 变频器的优势变频器具有以下几个显著的优势:- 变速范围广:变频器可以实现电机的连续调速,速度范围广,适应不同的工况要求。
- 节能环保:变频器通过控制电机的转速和输出频率,实现了电机的高效运行,减少了能源的消耗,降低了环境污染。
- 提高生产效率:变频器能够精确控制电机的转速,提高生产效率,减少人工干预,提高产品质量。
变频器的工作原理
变频器的工作原理变频器是指一种能够改变交流电源频率并控制电动机转速的装置,也被称为变频调速器、交流调速器等。
它广泛应用于工业生产领域,能够帮助提高生产效率、降低耗能、减少机器损耗等。
那么,变频器的工作原理是怎样的呢?下面我们就来一起探讨一下。
一、变频器的基本结构变频器是由多个部件组合而成的。
其中包括整流单元、滤波单元、逆变单元、控制单元等。
下面我们分别对这几个部件进行介绍:1.整流单元变频器通过直流电源来驱动交流电动机。
因此,首先需要将供电网提供的交流电,变成直流电,这就需要整流单元来完成。
整流单元的主要作用是将交流电信号通过电子元件的作用,转变成等幅值、纯直流的电压波形,这样才能被下一级电路处理。
2.滤波单元整流单元输出的直流电有很大的脉动。
这种脉动会给电动机带来很大的损害,因此,需要滤波单元来消除这些脉动。
滤波单元通过电容、电感等元件,将直流电转化为稳定的电压,进而为后续的逆变单元提供稳定的幅值和频率。
3.逆变单元逆变单元是变频器最为核心的部件之一。
它的作用是将直流化的电源转化成高频交流电,以便输送到电机。
逆变单元一般采用多种晶体管、开关管等元件来控制电源,实现直流与交流之间的转换。
4.控制单元控制单元是变频器的大脑,其控制信号的稳定性和精度直接决定了变频器的工作性能。
控制单元的作用是对逆变单元的输出电压、电流进行调整,并根据电机转速的反馈信号,调整输出频率及电压,从而实现对电机的调速。
二、变频器的工作原理变频器的工作原理主要分为两部分,即电源电路和控制电路。
1.电源电路在变频器的电源电路中,整流单元、滤波单元、逆变单元等三个部件按照顺序连接起来,最终的输出为三相交流电机的电源。
其中,整流单元将供电网提供的交流电转换成直流电,然后再由滤波单元将直流电平稳化。
接下来,逆变单元将直流电转变成高频交流电,并将其输送至电机。
其中,变频器控制单元根据电机转速的反馈信号,调整逆变单元的输出频率和电压,从而实现对电机的调速。
变频器的基本组成和原理
变频器的基本组成和原理变频器是一种能够改变交流电频率的电气设备,通常用于控制交流电机的转速和扭矩。
它是由许多不同的组件组成的,每个组件都承担着特定的功能,合起来实现了变频器的工作原理。
整流器位于变频器的输入端,它主要负责将交流电源转换为直流电源。
整流器的主要组件是六个整流二极管,它们通过交流输入产生的正半周期和负半周期来进行整流操作。
整流器通常配有一个电感和电容,以减小输出波纹并稳定电压。
中间直流环节是由电容电池组成的,它用于平滑整流器输出的直流电压。
电容电池能够存储一定量的能量,以克服变频器在输出电压变化时的不稳定性并提供稳定的电流输出。
逆变器是变频器的最重要组成部分,它将直流电压转换为可调频率和可调幅度的交流电压。
逆变器由多个开关器件(例如IGBT)组成,这些开关器件以高频率开关操作来控制输出电压的形状和频率。
逆变器会根据控制单元的指令来改变输出波形和频率,进而控制交流电机的转速和扭矩。
控制单元是变频器的核心部分,它通常由一台微处理器组成,用于接收和处理各种输入信号并控制变频器的输出。
控制单元根据用户的需求或系统的需求来调整变频器的输出频率、电压和其他参数。
它还可以用于监测和保护变频器的运行状态,例如过电流、过压和短路等故障。
变频器的工作原理是通过控制逆变器的输出频率来改变交流电机的转速。
当用户需要改变电机转速时,控制单元将指令发送给逆变器,逆变器通过调整开关器件的开关频率和占空比来改变输出电压的形状和频率。
这种输出信号将交流电机驱动为不同的转速和扭矩。
总结起来,变频器是由整流器、中间直流环节、逆变器和控制单元组成的。
整流器将交流电源转换为直流电源,中间直流环节用于平滑直流电压,逆变器将直流电压转换为可调频率和可调幅度的交流电压,控制单元接收和处理输入信号并控制变频器的输出。
变频器通过调整输出频率来改变交流电机的转速和扭矩,实现对交流电机的精确控制。
变频器的工作原理
变频器的工作原理一、引言变频器是一种用于控制电动机转速的电子设备。
它通过改变电源频率和电压来控制电动机的转速,广泛应用于工业生产和机械设备中。
本文将详细介绍变频器的工作原理及其相关知识。
二、变频器的基本结构1. 电源模块:负责将交流电源转换为直流电源,并提供给后续的电路模块。
2. 整流模块:将直流电源转换为可控直流电压,用于供电给逆变模块。
3. 逆变模块:将直流电压转换为可调节的交流电压和频率,用于驱动电动机。
4. 控制模块:接收外部控制信号,通过控制逆变模块的输出电压和频率,实现对电动机转速的精确控制。
三、变频器的工作原理1. 电源模块工作原理:变频器的电源模块主要由整流桥和滤波电路组成。
整流桥将交流电源的正负半周分别整流为正向和反向的脉冲电流,然后通过滤波电路将脉冲电流转换为平滑的直流电压。
2. 整流模块工作原理:变频器的整流模块主要由可控整流器和滤波电路组成。
可控整流器通过控制晶闸管的导通角度来调节输出直流电压的大小,滤波电路则用于平滑输出的直流电压。
3. 逆变模块工作原理:变频器的逆变模块主要由逆变器和输出滤波电路组成。
逆变器通过控制功率晶体管的开关状态,将直流电压转换为可调节的交流电压和频率。
输出滤波电路则用于滤除逆变器输出的高频噪声,使输出电压更加平滑。
4. 控制模块工作原理:变频器的控制模块接收外部控制信号,如转速设定值、启停信号等。
控制模块通过调节逆变模块的输出电压和频率来控制电动机的转速。
控制模块还可以实现其他功能,如故障保护、过载保护等。
四、变频器的优势和应用1. 优势:- 节能:变频器可以根据实际负载需求调整电动机的转速,避免不必要的能量浪费。
- 调速范围广:变频器可以实现电动机的无级调速,适应不同工况的需求。
- 启动平稳:变频器可以通过逐渐增加输出电压和频率,实现电动机的平稳启动,避免机械设备的冲击和损坏。
- 提高生产效率:变频器可以精确控制电动机的转速和运行状态,提高生产过程的稳定性和效率。
变频器的工作原理是什么
变频器的工作原理是什么变频器(也称为变频驱动器或变频调速器)是一种能够改变交流电驱动电机转速的电力调速设备。
它通过调整输入电源的频率和电压来控制电机的运行速度。
变频器的工作原理涉及到电力电子技术、控制系统和电机原理等多个领域。
一、基本组成结构一个典型的变频器通常由整流器、滤波器、逆变器和控制模块等几个主要组成部分组成。
1.整流器:将交流电源(通常是三相交流电)转换为直流电源。
2.滤波器:用于滤除整流器输出的脉动直流电,得到更平滑的直流电源。
3.逆变器:将直流电源转换为可变频率的交流电源。
4.控制模块:通过逻辑电路和微处理器等控制元件,接收输入的控制信号,经过处理后控制逆变器输出的频率和电压。
二、工作原理1.输入电源整流:在变频器电路的开始,交流电源首先通过整流器,将交流电转换为直流电。
2.滤波:经过整流的交流电含有一定的脉动,通过滤波器可以将这些脉动尽可能地除去,得到平滑的直流电源,以提供给逆变器使用。
3.逆变:逆变器将直流电源转换为可变频率和可变幅值的交流电源。
逆变器通常采用PWM(脉冲宽度调制)技术,通过控制开关管的导通时间和间隔,按照一定的频率和占空比产生脉冲信号,实现变频,然后经过滤波器进行平滑处理,得到不同频率和幅值的交流电。
4.控制模块:在逆变器的输出端接入控制模块,用于调节逆变器的输出频率和电压。
通常,控制模块是由逻辑电路和微处理器等元件组成,可以根据输入的控制信号(如电压或电流反馈信号、速度设定值等)进行计算和处理,在控制电路中生成相应的PWM信号,从而控制逆变器输出的频率和电压,以实现对电机转速的控制。
5.输出:控制模块经过处理后,通过逆变器的输出口可以提供一个可变频率和可变幅值的交流电源给电机,根据输出频率的不同,可以实现电机的不同转速控制。
三、应用领域变频器广泛应用于工业和家用领域。
在工业领域中,变频器广泛用于电机驱动系统,如风机、水泵、压缩机、传送带、机床等,通过改变电机的转速,达到节能、调速和控制的目的。
变频器的基本结构和工作原理
变频器的基本结构和工作原理变频器是一种将电源频率变换为所需频率的电子设备。
它可将固定频率(如50Hz或60Hz)的交流电源转换为可调节频率的交流电源,以驱动各种不同频率的电动机。
变频器主要由整流器、滤波器、逆变器和控制电路组成。
1.整流器:变频器的整流器将输入的交流电源转换为直流电源。
它通常采用晶闸管整流电路或采用了桥式整流器电路。
整流器主要目的是将交流电源转换为直流电源,以便后续电路的工作。
2.滤波器:滤波器用于去除整流器输出的脉动直流电源中的高频噪音和杂散波,使其变得更加平稳。
常见的滤波器包括电感滤波器和电容滤波器,它们通常结合使用以达到更好的滤波效果。
3.逆变器:逆变器是变频器的核心部分,它将直流电源转换为可调节频率的交流电源。
逆变器通常包括大量的功率开关管(如IGBT或MOSFET)和驱动电路。
通过对功率开关管的控制,逆变器能够精确地控制输出电压和频率。
4.控制电路:控制电路是变频器的智能部分,它负责监测输入的信号和驱动逆变器的工作。
控制电路通常由微处理器和其他数字和模拟电路组成。
它可以根据用户设定的参数和反馈信号,调整逆变器的输出频率和电压,以实现对电动机的精确控制。
变频器的工作原理如下:1.输入电源经过整流器转换为直流电源。
2.直流电源通过滤波器去除脉动和杂散波。
3.控制电路接收用户设定的参数和反馈信号,计算出逆变器的控制信号。
4.逆变器根据控制信号控制功率开关管的通断,将直流电源转换为可调节频率的交流电源。
5.输出的交流电源经过滤波器去除脉动和杂散波,供电给电动机驱动。
变频器可以实现对电动机的速度和转矩进行精确调节,从而使得电动机在不同的负载和工况下工作更加高效和稳定。
它在工业自动化中广泛应用于各种设备和系统,如风机、水泵、压缩机等。
变频器的应用能够降低能源消耗,提高生产效率,并减少电动机的磨损和噪音。
变频器基本工作原理与构成
主回路器件
七、汇川变频器主回路器件 1、整流桥(SIZE-D以下,整流桥与IGBT等封装在一起,称 为PIM,厂家:TYCO,SEMIKRON、EUPEC、FUJI等) 2、逆变IGBT (SIZE-D以下,整流桥与IGBT等封装在一起, 称为PIM,SIZE-E/I是六管封装、SIZE-F/G/H是双管封装。) 3、大电解电容,作用:储能和滤波,供应商:海立。 4、SIZE-E及以下使用继电器,SIZE-F及以上使用直流接触 器。 5、电流检测部分: SIZE-E及以下使用分流器及光耦, SIZE-F及以上使用霍尔。 6、直流电抗器能提高功率因数,抑制谐波等,对整流桥和电 解电容都有好处,SIZE-D以下由于体积限制,没有装,SIZED/E/F内置,SIZE-G以上是标配外置。
基本构成
二、件
主回路 元器件
单板
钣金件 塑胶件
性能
功能
功率范围
三、功率范围
汇川变频器的功率大小从单相0.2KW一直到315KW,涵盖在 SIZE-A、B、C、D、E、F、G、H、I共9种大小的箱体结构中。 如下表所示:
SIZE A
B
C D E F G H I
输入电源 单相220VAC 单相220VAC 三相380VAC 三相380VAC 三相380VAC 三相380VAC 三相380VAC 三相380VAC 三相380VAC 三相380VAC
基本原理
一、基本原理
1、变频器是一种控制交流电机运转的控制器。它 把固定频率(我国为50HZ)的交流电源变成频率电 压可调的交流电源,从而控制电机的转速。异步电 机转速公式如式(1)所示:
变频器的基本结构和工作原理
SVF逆变器使用空间矢量调制技术将直 流电压转换为高质量的正弦交流电压。
变频器的优点和应用
优点
变频器能够提供精确的速度控制、节能和降低电机 的磨损。
应用
变频器广泛应用于工业领域,如泵、风机、压缩机 和输送带的控制,以及家用电器中的电机控制。
变频器的维护和未来发展趋势
1 维护
定期检查和清洁变频器,确保散热和连接良 好,以确保其正的进步,变频器将变得更加智能化、 高效和可靠,应用范围也将继续扩大。
频率变换方式和逆变器
1
电流源逆变器
2
电流源逆变器将直流电流转换为可调节
的交流电流和频率。
3
SPWM逆变器
4
SPWM逆变器使用正弦波调制技术将直
流电压转换为精确的正弦交流电压。
5
电压源逆变器
电压源逆变器将直流电压转换为可调节 的交流电压和频率。
PWM逆变器
PWM逆变器使用脉宽调制技术将直流电 压转换为可调节的交流电压。
变频器的基本结构
晶体管和IGBT
变频器中使用的晶体管和IGBT是用于控制电流 的关键元件。
PWM控制电路
PWM控制电路根据输入信号的波形调节输出电 压的占空比,从而控制交流电机的转速。
整流电路和滤波电路
整流电路将交流电源转换为直流电压,滤波电路 用于去除电压中的纹波。
电源电路
电源电路提供变频器所需的电能,并将其转换为 适合交流电机的电压和频率。
变频器的基本结构和工作 原理
变频器是一种电力电子设备,用于改变电源频率和控制交流电机的转速。它 由多个部件组成,包括晶体管、整流电路、PWM控制电路和电源电路。
什么是变频器
变频器是一种电力电子设备,它能够将输入电源的频率转换为可调节的输出 频率,用于控制交流电机的转速。它可以提高电机的效率和控制性能,广泛 应用于工业和家庭电器。
变频器的结构原理及生产工艺流程
变频器的结构原理及生产工艺流程引言变频器是一种将电能转换为机械能的装置,具有调节电机速度的功能,广泛应用于工业生产中。
本文将介绍变频器的结构原理以及其生产工艺流程。
一、变频器的结构原理1.1 变频器的基本构成变频器由电源模块、整流滤波器、逆变器、控制电路等组成。
•电源模块:提供稳定的直流电源,常用的电源模块有整流桥、滤波电容等。
•整流滤波器:将交流电转换为稳定的直流电,并滤除杂波。
•逆变器:将直流电转换为交流电,通过控制输出电流的频率和幅值,实现电机转速的调节。
•控制电路:根据输入的控制信号,调整逆变器的工作方式,实现对电机的精确控制。
1.2 变频器的工作原理变频器的工作原理是将输入的交流电转换为直流电,然后再将直流电转换为矩阵波,通过控制矩阵波的频率和幅值,实现对电机的转速调节。
具体的工作过程如下:1.通过电源模块将输入的交流电转换为稳定的直流电,并滤除杂波。
2.直流电经过逆变器转换为矩阵波,矩阵波的频率和幅值可以通过控制电路进行调节。
3.控制电路根据输入的控制信号,调整逆变器的工作方式,控制矩阵波的频率和幅值,从而实现对电机的转速调节。
二、变频器的生产工艺流程变频器的生产工艺流程一般包括原材料采购、加工制造、组装调试和质量检验等步骤。
2.1 原材料采购原材料采购是变频器生产的第一步,包括电子元器件、金属壳体、电路板等。
采购人员根据产品设计需求和供应商的价格、质量等方面的考虑,选择合适的原材料供应商,并进行采购。
2.2 加工制造加工制造是将原材料进行加工和组装的过程。
首先,对电子元器件进行贴片、焊接等工艺加工,将元器件焊接到电路板上。
接下来,对金属壳体进行冲压、折弯等工艺加工,制造出变频器的外壳。
最后,将加工好的电子元器件和外壳进行组装,形成成品变频器。
2.3 组装调试组装调试阶段是对生产好的变频器进行组装和功能调试的过程。
工人将加工好的电子元器件和外壳进行装配,搭建成完整的变频器。
然后,对组装好的变频器进行功能调试,确保其正常工作。
变频器结构及工作原理
变频器结构及工作原理变频器是一种能够改变交流电频率的设备,主要用于改变电动机的转速、提高电机的效率和降低噪音。
它通过将输入的直流电转变为高频交流电,再通过整流、滤波和逆变等过程得到所需的输出电压和频率。
变频器一般由三部分组成,分别是整流器、滤波器和逆变器。
整流器将交流电转变为直流电,滤波器对直流电进行滤波,使其更加稳定和平滑。
逆变器通过将直流电转变为高频交流电,再通过控制输出波形和频率,实现对电机的控制。
变频器的工作原理如下:1.输入电源:接入220V或380V的交流电源,经过输入端的保险和开关,输入到整流器。
2.整流器:将输入的交流电转变为直流电,通常采用整流桥电路实现,即将交流电通过四个二极管组成的桥路进行整流。
3.滤波器:对整流后的直流电进行滤波处理,通常采用电容器作为滤波元件,使直流电的纹波尽量小,产生平稳的直流电。
4.逆变器:将滤波后的直流电通过逆变器转变为高频交流电。
逆变器的控制方式有很多种,常见的控制方式包括PWM控制、SPWM控制等,通过控制开关管的通断时间来控制输出波形的幅值和频率。
5.输出电路:经过逆变器转换的高频交流电输出到电机,驱动电机正常运行。
变频器根据运行要求与电机匹配,可实现电机运行速度的调节,改变转矩曲线,提高效率和降低噪音。
在变频器的操作过程中,还有一些辅助电路和保护措施,如温度保护、电流保护、过载保护等,以保证变频器的安全稳定运行。
同时,通过前馈控制器和反馈传感器可对输出电压和电流进行检测,并送回控制器进行反馈,从而实现对输出电压和频率的精确调节。
变频器的应用领域非常广泛,常见的应用包括空调、电梯、水泵、风机等各种电机驱动系统。
随着技术的不断发展,变频器不仅在工业领域得到广泛应用,而且在家用电器领域也有着重要的地位,如家用空调、冰箱、洗衣机等家电产品中都有变频器的身影。
变频器的发展将进一步提高电机的控制性能,促进电机驱动系统的发展。
变频器的工作原理
变频器的工作原理一、引言变频器是一种用于调节电机转速的设备,广泛应用于工业自动化领域。
本文将详细介绍变频器的工作原理,包括变频器的基本构成、工作原理和应用场景。
二、变频器的基本构成1. 整流器:变频器的输入端通常接入交流电源,整流器的作用是将交流电转换为直流电,为后续的逆变器提供直流电源。
2. 逆变器:逆变器是变频器的核心部件,它将直流电转换为交流电,并通过改变交流电的频率和电压来控制电机的转速。
3. 控制电路:控制电路是变频器的大脑,负责接收用户输入的指令,并通过控制逆变器输出的电压和频率来调节电机的转速。
4. 过载保护:为了保护电机和变频器不受过载损坏,变频器通常配备有过载保护功能,当电机负载过大时会自动停机或降低转速。
5. 故障诊断:现代变频器通常配备有故障诊断功能,可以自动检测电机和变频器的工作状态,并在出现故障时提供详细的故障信息。
三、变频器的工作原理1. 输入电源:变频器通常接入三相交流电源,其标称电压和频率根据实际需求而定。
2. 整流器:交流电通过整流器转换为直流电,整流器通常采用整流桥电路,将交流电的负半周和正半周分别转换为直流电。
3. 滤波器:直流电通过滤波器进行滤波,去除掉直流电中的脉动成分,以保证逆变器输出的交流电质量。
4. 逆变器:直流电通过逆变器转换为交流电,逆变器的输出电压和频率可以根据控制电路的指令进行调节。
5. 控制电路:控制电路接收用户输入的指令,通过控制逆变器输出的电压和频率来调节电机的转速。
控制电路通常采用微处理器或专用的数字信号处理器(DSP)来实现。
6. 反馈回路:为了实现闭环控制,变频器通常配备有反馈回路,用于检测电机的转速和电流,并将实际值与设定值进行比较,通过调节控制电路的输出来实现转速的精确控制。
7. 保护功能:变频器通常具有多种保护功能,如过载保护、短路保护、过压保护等,以保护电机和变频器不受损坏。
8. 输出电源:逆变器输出的交流电经过输出滤波器,去除掉高频噪声,然后供应给电机驱动。
变频器结构及工作原理
变频器结构及工作原理
引言
变频器是一种用于调节电机转速的设备,广泛应用于工业生产和家庭电器中。
本文将介绍变频器的结构和工作原理,帮助读者更好地理解和应用这一技术。
一、变频器结构
变频器主要由以下几个部分组成:
1. 输入电源模块:负责接收外部电源输入,并将其转换为适合变频器工作的电压和频率。
2. 整流器:将输入电源中的交流电转换为直流电,为变频器后续工作提供稳定的电源。
3. 滤波器:对整流器输出的直流电进行滤波处理,消除其可能存在的干扰和噪声。
4. 逆变器:将直流电转换为可调频率的交流电,通过调节输出频率来实现对电机转速的控制。
5. 控制器:负责监测和控制变频器的工作状态,接收外部指令
并进行相应的调节,保证系统的稳定运行。
6. 电机驱动模块:将控制器输出的信号转换为适合电动机驱动
的电流和电压,在保证电机正常运行的同时,提供良好的驱动效果。
二、变频器工作原理
变频器通过改变输入电源的频率和电压,来控制电机的转速和
运行方式。
其工作原理可分为以下几个步骤:
1. 输入电源经过整流器转换为直流电,然后经过滤波器进行滤
波处理,得到稳定的直流电源。
2. 控制器读取外部指令,并根据指令的要求,通过调节逆变器
的工作频率来进行电机的控制。
控制器根据输入的转速指令和反馈
信号,计算出逆变器所需的频率和电压。
3. 逆变器将直流电转换为交流电,并通过调节频率和电压来控
制电机的转速。
逆变器工作频率的调节通过改变信号的占空比实现,电压的调节通过调整逆变器的输出电压来实现。
变频器培训资料
变频器培训资料一、概述变频器是一种能够调节电机电源频率和电压的电子装置,广泛应用于工业生产中的电机控制领域。
本文将为读者介绍变频器的基本原理、应用领域以及培训资料的内容。
二、变频器的基本原理变频器通过改变输入电源的频率和电压来控制电机的转速,进而实现电机运行的控制。
其基本原理可以分为三个过程:输入电路、逆变器和输出电路。
1. 输入电路:接入电网的交流电源经过整流后,得到直流电源供应给逆变器。
2. 逆变器:逆变器将直流电源转换成高频交流电源,控制输出电源的频率和电压。
3. 输出电路:输出电路将逆变器产生的高频交流电源转换成所需要的低频交流电源,供给电机运行。
三、变频器的应用领域1. 工业生产变频器在工业生产中广泛应用于电机的运行控制,具有节能、调速范围广、运行平稳等优点。
例如,在风机、水泵、空压机等设备中,通过变频器的控制可以实现根据需求调整运行速度,达到节能的目的。
2. 交通运输变频器也可以应用于交通领域,如电动汽车、地铁等交通运输工具。
通过变频器的控制,可以调节马达的转速,实现车速的调节和控制,提高交通工具的性能和舒适度。
3. 家用电器家用电器中的电机控制也可以采用变频器来实现。
例如空调、冰箱、洗衣机等家电产品,在变频器的调控下,可以根据不同的使用需求实现不同的运行模式,提升产品的智能化程度和用户体验。
四、变频器培训资料内容变频器培训资料通常包括以下方面的内容:1. 变频器的工作原理和基本组成:全面介绍变频器的结构、原理以及各个模块之间的关联。
2. 变频器的安装和调试:详细说明变频器的安装方法、接线要求,并介绍变频器的参数设置和调试过程。
3. 变频器的故障诊断与维修:指导读者如何快速定位和排除变频器故障,并介绍常见的故障类型及其解决方法。
4. 变频器的参数调整与优化:提供调整变频器参数以达到最佳运行效果的方法和技巧,发挥变频器的最大潜力。
5. 变频器的应用案例分析:通过实际应用案例,展示变频器在不同领域和行业中的成功应用,启发读者的创新思维和应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器基本结构与控制简介1 变频器简介1.1 变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。
对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。
1.2 变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM 控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
2 变频器中常用的控制方式2.1 非智能控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。
(1) V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。
V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。
(2) 转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。
这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。
(3) 矢量控制矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。
通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。
例如形成开关次数最少的PWM波以减少开关损耗。
目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。
基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。
因此,基于转差频率的矢量控制方式比转差频率控制方式在输出特性方面能得到很大的改善。
但是,这种控制方式属于闭环控制方式,需要在电动机上安装速度传感器,因此,应用范围受到限制。
无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。
这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂,一般需要专门的处理器来进行计算,因此,实时性不是太理想,控制精度受到计算精度的影响。
(4) 直接转矩控制直接转矩控制是利用空间矢量坐标的概念,在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩,通过检测定子电阻来达到观测定子磁链的目的,因此省去了矢量控制等复杂的变换计算,系统直观、简洁,计算速度和精度都比矢量控制方式有所提高。
即使在开环的状态下,也能输出100%的额定转矩,对于多拖动具有负荷平衡功能。
(5) 最优控制最优控制在实际中的应用根据要求的不同而有所不同,可以根据最优控制的理论对某一个控制要求进行个别参数的最优化。
例如在高压变频器的控制应用中,就成功的采用了时间分段控制和相位平移控制两种策略,以实现一定条件下的电压最优波形。
(6)其他非智能控制方式在实际应用中,还有一些非智能控制方式在变频器的控制中得以实现,例如自适应控制、滑模变结构控制、差频控制、环流控制、频率控制等。
2.2 智能控制方式智能控制方式主要有神经网络控制、模糊控制、专家系统、学习控制等。
在变频器的控制中采用智能控制方式在具体应用中有一些成功的范例。
(1) 神经网络控制神经网络控制方式应用在变频器的控制中,一般是进行比较复杂的系统控制,这时对于系统的模型了解甚少,因此神经网络既要完成系统辨识的功能,又要进行控制。
而且神经网络控制方式可以同时控制多个变频器,因此在多个变频器级联时进行控制比较适合。
但是神经网络的层数太多或者算法过于复杂都会在具体应用中带来不少实际困难。
(2) 模糊控制模糊控制算法用于控制变频器的电压和频率,使电动机的升速时间得到控制,以避免升速过快对电机使用寿命的影响以及升速过慢影响工作效率。
模糊控制的关键在于论域、隶属度以及模糊级别的划分,这种控制方式尤其适用于多输入单输出的控制系统。
(3) 专家系统专家系统是利用所谓“专家”的经验进行控制的一种控制方式,因此,专家系统中一般要建立一个专家库,存放一定的专家信息,另外还要有推理机制,以便于根据已知信息寻求理想的控制结果。
专家库与推理机制的设计是尤为重要的,关系着专家系统控制的优劣。
应用专家系统既可以控制变频器的电压,又可以控制其电流。
(4) 学习控制学习控制主要是用于重复性的输入,而规则的PWM信号(例如中心调制PWM)恰好满足这个条件,因此学习控制也可用于变频器的控制中。
学习控制不需要了解太多的系统信息,但是需要1~2个学习周期,因此快速性相对较差,而且,学习控制的算法中有时需要实现超前环节,这用模拟器件是无法实现的,同时,学习控制还涉及到一个稳定性的问题,在应用时要特别注意。
3 变频器控制的展望随着电力电子技术、微电子技术、计算机网络等高新技术的发展,变频器的控制方式今后将向以下几个方面发展。
(1) 数字控制变频器的实现现在,变频器的控制方式用数字处理器可以实现比较复杂的运算,变频器数字化将是一个重要的发展方向,目前进行变频器数字化主要采用单片机MCS51或80C196MC等,辅助以SLE4520或EPLD液晶显示器等来实现更加完善的控制性能。
(2) 多种控制方式的结合单一的控制方式有着各自的优缺点,并没有“万能”的控制方式,在有些控制场合,需要将一些控制方式结合起来,例如将学习控制与神经网络控制相结合,自适应控制与模糊控制相结合,直接转矩控制与神经网络控制相结合,或者称之为“混合控制”,这样取长补短,控制效果将会更好。
(3) 远程控制的实现计算机网络的发展,使“天涯若咫尺”,依靠计算机网络对变频器进行远程控制也是一个发展方向。
通过RS485接口及一些网络协议对变频器进行远程控制,这样在有些不适合于人类进行现场操作的场合,也可以很容易的实现控制目标。
(4) 绿色变频器随着可持续发展战略的提出,对于环境的保护越来越受到人们的重视。
变频器产生的高次谐波对电网会带来污染,降低变频器工作时的噪声以及增强其工作的可靠性、安全性等等这些问题,都试图通过采取合适的控制方式来解决,设计出绿色变频器。
4 结束语变频器的控制方式是一个值得研究的问题,依靠致力于这项工作的有识之士的共同努力,使国产变频器早日走向世界市场并且成为一流的产品。
1、什麽是变频器?变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
2、PWM和PAM的不同点是什麽?PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。
PAM是英文Pulse Amplitude Modulation(脉冲幅度调制)缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。
3、电压型与电流型有什麽不同?变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。
4、为什麽变频器的电压与电流成比例的改变?非同步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那麽磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用於风机、泵类节能型变频器。
5、电动机使用工频电源驱动时,电压下降则电流增加;对於变频器驱动,如果频率下降时电压也下降,那麽电流是否增加?频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。
6、采用变频器运转时,电机的起动电流、起动转矩怎样?采用变频器运转,随著电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。
用工频电源直接起动时,起动电流为6~7倍,因此,将产生机械电气上的冲击。
采用变频器传动可以平滑地起动(起动时间变长)。
起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对於带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。
7、V/f模式是什麽意思?频率下降时电压V也成比例下降,这个问题已在回答4说明。
V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。
8、按比例地改V和f时,电机的转矩如何变化?频率下降时完全成比例地降低电压,那麽由於交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。
因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。
可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法。
9、在说明书上写著变速范围60~6Hz,即10:1,那麽在6Hz以下就没有输出功率吗?在6Hz以下仍可输出功率,但根据电机温升和起动转矩的大小等条件,最低使用频率取6Hz左右,此时电动机可输出额定转矩而不会引起严重的发热问题。
变频器实际输出频率(起动频率)根据机种为0.5~3Hz.10、对於一般电机的组合是在60Hz以上也要求转矩一定,是否可以?通常情况下时不可以的。
在60Hz以上(也有50Hz以上的模式)电压不变,大体为恒功率特性,在高速下要求相同转矩时,必须注意电机与变频器容量的选择。
11、所谓开环是什麽意思?给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环”,不用PG运转的就叫作“开环”。