邱关源《电路》笔记及课后习题(电阻电路的一般分析)【圣才出品】

合集下载

邱关源《电路》笔记和课后习题(含考研真题)详解-第十二章至第十三章【圣才出品】

邱关源《电路》笔记和课后习题(含考研真题)详解-第十二章至第十三章【圣才出品】

第12章三相电路12.1复习笔记一、对称三相电源如图12-1-1所示,由同频率、等幅值、相位互差120°的三个正弦电压源连接成的电源被称为对称三相电源。

对称三相电源有星形(Y)和三角形(△)两种。

这3个电源依次称为A相、B相和C相,它们的电压瞬时表达式及相量如表12-1-1所示。

图12-1-1表12-1-1电压时域及相量表示二、三相电路的线电压(电流)与相电压(电流)的关系三相系统中,流经输电线中的电流称为线电流;电源端或是负载端各输电线线端之间的电压都称为线电压;三相电源和三相负载中每一相的电压、电流称为相电压和相电流。

三相系统中的线电压和相电压、线电流和相电流之间的关系都与连接方式有关,如表12-1-2所示。

表12-1-2线电压(电流)与相电压(电流)的关系三、对称三相电路的分析计算计算的一般步骤:①将△形电源和负载均变成Y形;②用短路线连接所有中性点,画出一相等效电路进行计算;③根据对称性推算其他两相电压和电流。

图12-1-2(a)的一相等效电路如图(b)所示。

图12-1-2四、三相电路的功率1.三相电路的功率计算有功功率:P=P A +P B +P C 。

无功功率:Q=Q A +Q B +Q C 。

视在功率:22Q P S +=若负载对称,则有A P P p p 33cos 3cos l l P P U I U I ϕϕ===A P P p p33sin 3sin l l Q Q U I U I ϕϕ===223l l S U I P Q ==+式中,φp 是指每相负载的阻抗角;对称三相电路的其他计算完全可以用正弦电流电路的相量分析方法。

2.三相电路有功功率的测量三相电路有功功率测量的三表法和两表法,如图12-1-3所示。

电路第五版(邱关源)课后习题答案(全)

电路第五版(邱关源)课后习题答案(全)

!!第一章电路模型和电路定律学习要求!"了解电路模型的概念和电路的基本变量!#"理解电压"电流的参考方向与实际方向的关系#电压与电流的关联参考方向的概念!$"掌握功率的计算"功率的吸收与发出!%"掌握电阻"电容"电感"独立电源和受控源的定义及伏安关系!&"掌握基尔霍夫定律$’()和’*)!!知识网络图电路模型和电路定律电路和电路模型电流和电压的参考方向关联%非关联电功率和能量电路元件电阻元件电容元件"#$电感元件电压源和电流源独立电源%受控电源基尔霍夫定律’()%"#$’*)&!&!!电路同步辅导及习题全解!课后习题全解%!!!!说明题!!!图’+("’,(中$’!(""#的参考方向是否关联)’#(""#乘积表示什么功率)’$(如果在题!!!图’+(中"&-##’-*图’,(中"&-##&-#元件实际发出还是吸收功率)题!!!图解!’!(当流过元件的电流的参考方向#从该元件的标示电压正极性的一端指向负极性的一端#即电流的参考方向与元件两端电压降落的方向一致#称电压和电流的参考方向关联#所以’+(图中""#的参考方向是关联的*’,(图中""#的参考方向是非关联的!’#(当取元件的""#参考方向为关联参考方向时#定义$%"#为元件吸收的功率*当取元件的""#参考方向为非关联时#定义$%"#为元件发出的功率!所以’+(图中的"#表示元件吸收的功率*’,(图中的"#表示元件发出的功率!’$(在电压"电流参考方向关联的条件下#代入""#数值#经计算#若$%"#&-#表示元件实际吸收了功率*若$’-#表示元件吸收负功率#实际是发出功率!’+(图中#若"&-##’-#则$%"#’-#表示元件吸收了负功率#实际发出功率!在电压"电流参考方向非关联的条件下#代入"##数值#经计算#若$%"#&-#为正值#表示元件实际是发出功率*若$’-#为负值#表示元件发出负功率#实际是吸收功率!所以’,(图中#当"&-##&-#则$%"#&-#表示元件实际发出功率!%!!#!若某元件端子上的电压和电流取关联参考方向#而"%!.-/01’!--!&(*##%.123’!--!&(4!求$’!(该元件吸收功率的最大值*’#(该元件发出功率的最大值!解!!!!!!!!!!$’&(%"’&(#’&(%!.-/01’!--!&(’.123’!--!&(%&5&123’#--!&(6’!(当123’#--!&(&-时#$’&(&-#元件实际吸收功率*当123’#--!&(%!时#元件吸收最大功率$&&"第一章!电路模型和电路定律$7+8%&5&6’#(当123’#--!&(’-时#$’&(’-#元件实际发出功率*当123’#--!&(%!!时#元件发出最大功率$$7+8%&5&6题!!$图%!!$!试校核题!!$图中电路所得解答是否满足功率平衡!’提示$求解电路以后#校核所得结果的方法之一是核对电路中所有元件的功率平衡#即元件发出的总功率应等于其它元件吸收的总功率(!解!由题!!$图可知#元件4的电压"电流为非关联参考方向#其余元件的电压"电流均为关联参考方向!所以各元件的功率分别为$$4%9-’’!&(%!$--6’-#为发出功率$:%9-’!%9-6&-#为吸收功率$(%9-’#%!#-6&-#为吸收功率$;%%-’#%<-6&-#为吸收功率$=%#-’#%%-6&-#为吸收功率电路吸收的总功率为$%$:)$()$;)$=%9-)!#-)<-)%-%$--6即#元件4发出的总功率等于其余元件吸收的总功率#满足功率平衡!%!!%!在指定的电压"和电流#参考方向下#写出各元件"和#的约束方程’元件的组成关系(!题!!%图解!’+(图为线性电阻元件#其电压"电流关系满足欧姆定律!’+(图电阻元件"和#的约束方程为$"%!*#%!!-’!-$#’,(图为线性电感元件!’,(图电感元件"和#的约束方程为$"%!#-’!-!$>#>&&#&!!电路同步辅导及习题全解’/(图为线性电容元件!’/(图电容元件"和#的约束方程为$#%!-’!-!9>">&%!-!&>">&’>(图是理想电压源!’>(图的约束方程为$"%!&*’?(图是理想电流源!’?(图的约束方程为$#%#4(!!&!题!!&图’+(电容中电流#的波形如题!!&图’,(所示#现已知"’-(%-#试求&%!1#&%#1和&%%1时的电容电压"!题!!&图分析!电容两端电压"电流的关系为#’&(%(>"’&(>&#"’&(%!()&-!@#’!(>!)!()&&-#’!(>!#根据公式求解即可!解!已知电容的电流#’&(#求电压"’&(时#有"’&(%!()&-!@#’!(>!)!()&&-#’!(>!%"’&-(!!()&&-#’!(>!式中#"’&-(为电容电压的初始值!本题中电容电流#’&(的函数表示式为#’&(%-!!!&*-&&!!!-’&*#1!!-&&"#$#1根据"##积分关系#有&%!1时#"’!(%"’-()!()!-#’&(>&%-)!#)!-&&>&%!#’’&#&#(!-%!+#&*&%#1时#&$&第一章!电路模型和电路定律"’#(%"’-()!()#-#’&(>&%-)!#)#-&&>&%!#’’&#&#(#-%&*&%%1时#"’%(%"’#()!()%##’&(>&%&)!#)%#’!!-(>&%&)!#’’!!-&(%#%!&*%!!9!题!!9图’+(中,%%A #且#’-(%-#电压的波形如题!!9图’,(所示!试求当&%!1#&%#1#&%$1和&%%1时的电感电流#!题!!9图解!电感元件"##关系的积分形式为#’&(%#’&-()!,)&&-"’!(>!本题中电感电压的函数表示式为"’&(%-&*-!--’&*#1-#’&*$1!-&!%-$’&*%1-&&"#$%应用"##积分关系式#有&%!1时##’!(%#’-()!,)!-"’&(>&%-)!%)!-!->&%!%’’!-&(!-%#+&4&%#1时#&%&!!电路同步辅导及习题全解#’#(%#’!()!,)#!"’&(>&%#+&)!%)#!!->&%#+&)!%’’!-&(#!%&4&%$1时##’$(%#’#()!,)$#"’&(>&%&)!%)$#->&%&4&%%1时##’%(%#’$()!,)%$"’&(>&%&)!%)%$’!-&!%-(>&%&)!%’’&&#!%-&(%$%$+.&4(!!.!若已知显像管行偏转圈中的周期性扫描电流如题!!.图所示#现已知线圈电感为-+-!A #电阻略而不计#试求电感线圈所加电压的波形!题!!.图!!!!!!!!!!!!!题解!!.图!!分析!根据图示可写出#’&(的表达式#由"(’&(%,>#’&(>&即可求解!解!电流#’&(的函数表示式为#’&(%!+#9-’!-9&-*&*9-"1$’!-&’9%’!-!9!&(9-’&*9%""#$1根据电感元件"##的微分关系#得电压的函数表示式为"’&(%-+-!>#’&(>&%#’!-#!!!-*&*9-"1!$’!-$!!9-’&*9%"%1"’&(的波形如题解!!.图#说明电感的电压可以是时间的间断函数!%!!<!#"B 的电容上所加电压"的波形如题!!<图所示!求$’!(电容电流#*&&&第一章!电路模型和电路定律题!!<图’#(电容电荷-*’$(电容吸收的功率$!解!’!(电压"’&(的函数表示式为"’&(%-&*-!-$&-’&*#71%!!-$&#’&*%71-&&"#$%71根据电容元件"##的微分关系#得电流#’&(的函数表示式为$#’&(%#’!-!9>"’&(>&%-&*-#’!-!$-’&*#71!#’!-!$#’&*%71-&&"#$%71’#(因为(%-"#所以有-’&(%("’&(%-&*-#’!-!$&-’&*#71#’!-!9’%!!-$&(#’&*%71-&&"#$%71’$(在电容元件上电压"电流参考方向关联时#电容元件吸收的功率为$’&(%"’&(#’&(%-&*-#&-’&*#71!#’!-!$’%!!-$&(#’&*%71-&&"#$%71#’&(#-’&(#$’&(波形如题解!!<图所示!题解!!<图(!!5!电路如题!!5图所示#其中*%#"#,%!A #(%-+-!B #"(’-(%-#若电路的输入电流为$’!(#%#123’#&)!$(4*&’&!!电路同步辅导及习题全解题!!5图’#(#%?!&4!试求两种情况下#当&&-时的"*"",和"(值!分析!电阻两端的电压与电流关系为"*%#*#电感端电压为",%,>#>&#电容端电压为"(%"(’-()!()&-#’!(>!#根据公式求解即可!解!根据*#,和(的"##关系有’!(若#%#123’#&)!$(4#则有!!!!!"*’&(%*#’&(%#’#123’#&)!$(%%123’#&)!$(*!!!!",’&(%,>#’&(>&%!’#+/01’#&)!$(,’#%%/01’#&)!$(*!!!!!!!"(’&(%"(’-()!()&-#’!(>!%-)!-+-!)&-#123’#!)!$(>!%&-!!--/01’#&)!$(*’#(若#%?!&4#则有!!!!!!!!"*’&(%*#’&(%#’?!&*!!!!!!",’&(%,>#’&(>&%!’’!?!&(%!?!&*!!!"(’&(%"(’-()!()&-#’!(>!题!!!-图%!-+-!)&-?!!>!%!--’!!?!&(*%!!!-!电路如题!!!-题图所示#设"C ’&(%.7/01’#&(##C ’&(%/?!$&#试求",’&(和#(#’&(!解!可以看出#流过电感的电流等于电流源的电流#C #电容(#上的电压为"C #故由,#(元件的"##约束方程可得&(&第一章!电路模型和电路定律",’&(%,>#C ’&(>&%,/?!$&’’!$(%!,/$?!$&*!!!#(#’&(%(#>"C ’&(>&%(#.7+D 123’#&(,#%!#(#.7123’#&(*%!!!!!电路如题!!!!图所示#其中#C %#4#"C %!-*!’!(求#4电流源和!-*电压源的功率*’#(如果要求#4电流源的功率为零#在4:线段内应插入何种元件)分析此时各元件的功率*题!!!!图’$(如果要求!-*电压源的功率为零#则应在:(间并联何种元件)分析此时各元件的功率!解!’!(电流源发出的功率$%"C #C %!-’#%#-6电压源吸收的功率$%"C #C %!-’#%#-6’#(若要#4电流源的功率为零#则需使其端电压为零!在4:间插入"C0%!-*电压源#极性如题解!!!!图’+(所示!此时#电流源的功率为$%-’#C %-6!插入的电压源发出功率#-6#原来的电压源吸收功率#-6!’$(若要!-*电压源的功率为零#则需使流过电压源的电流为零!可以采取在:(间并联#0C %#4的电流源#如题解!!!!图’,(所示#或并联*%"C -#C %!--#%&"的电阻#如题解!!!!图’/(所示!题解!!!!图’,(中#因#C %#0C #由’()可知#流经"C 的电流为零!所以"C 的功率为零!原电流源发出功率为$%"C #C %!-’#%#-6并入电流源吸收功率为$%"C #0C %!-’#%#-6题解!!!!图’/(中#流经电阻的电流为#*%"C*%!-&%#4由’()可知#流经"C 的电流为零#因此#"C 的功率为零!此时#电流源发出功率$%"C #C %!-’#%#-6电阻消耗功率$%"#C*%!-#&%#-6(!!!#!试求题!!!#图所示电路中每个元件的功率!&)&!!电路同步辅导及习题全解题解!!!!图题!!!#图分析!电阻消耗的功率1%/#*#电压源吸收的功率1%.2/2#电流源发出的功率1%/2.#根据公式求解即可!解!’+(图中#由于流经电阻和电压源的电流为-E &4#所以电阻消耗功率1*%*/#%#’-E &#%-E &6电压源吸收功率1.%.C /C %!’-E &%-E &6由于电阻电压.*%*/%#’-E &%!*得电流源端电压.%.*).C %!)!%#*电流源发出功率1F %/C.%-E &’#%!6’,(图中#"电阻的电压.*%#!!%!*所以有/!%.*#%!#%-E &4/#%!!%!4由’()得/$%/!!/#%-E &!!%!-E &4故#*电压源发出功率1%#’/!%#’-E &%!6&*!&第一章!电路模型和电路定律!*电压源发出功率1%!’’!/$(%!’-E&%-E&6#"电阻消耗功率1%#’/#!%#’-E&#%-E&6!"电阻消耗功率1%!’/##%!’!#%!6%!!!$!试求题!!!$图中各电路的电压.#并讨论其功率平衡!题!!!$图解!应用’()先计算电阻电流/*#再根据欧姆定律计算电阻电压.G#从而得出端电压.#最后计算功率!’+(图中/*%#)9%<4.%.*%#’/*%#’<%!9*所以输入电路的功率为1%.’#%!9’#%$#6电流源发出功率1F%9’.%9’!9%596电阻消耗功率1*%#’/#*%#’<#%!#<6&!!&!!电路同步辅导及习题全解显然1)1F%1*#即输入电路的功率和电源发出的功率都被电阻消耗了!’,(图中/*%9!#%%4.%.*%#’/*%#’%%<*所以输入电路的功率为1%!.’#%!<’#%!!96电流源发出功率1F%9’.%9’<%%<6电阻消耗功率1*%#’/*#%#’%#%$#6显然仍满足1)1F%1*实际上电流源发出的功率被电阻消耗了$#6#还有!96输送给了外电路!’/(图中/*%#!%%!#4.%.*%$’/*%$’’!#(%!9*所以输入电路的功率为1%.’#%!9’#%!!#6电流源发出功率1F%%’9%#%6电阻消耗功率1*%$’/#*%$’’!#(#%!#6显然仍满足1)1F%1*’>(图中/*%&!$%#4.%.*%%’/*%%’#%<*所以输入电路的功率为1%.’&%<’&%%-6电流源发出功率1F%!$’.%!$’<%!#%6电阻消耗功率1*%%’/*#%%’’!#(#%!96显然仍满足1)1F%1* %!!!%!电路如题!!!%图所示#试求$&"!&第一章!电路模型和电路定律’!(电流#!和"+,+图’+(,*’#(电压"/,+图’,(,!题!!!%图解!’!(受控电流源的电流为-E 5#!%#%!-&%#4所以#!%#-E 5+#E ###4!!!"+,%%’#+,%%’’#!!#(%%’’#!!-E 5#!(%%’-E !#!%%’-E !’#-5+-E <<5*’#(因为"!%#’&%!-*#所以受控电流源的电流为#%-E -&"!%-E -&’!-%-E &4"+/%#-’#%#-’-E &%!-*因为"+,%!$*所以"/,%!"+/)"+,%!!-!$%!!$*,!!!&!对题!!!&图示电路$题!!!&图’!(已知图’+(中#*%#"##!%!4#求电流#*’#(已知图’,(中#"C %!-*##!%#4#*!%%E &"#*#%!"#求##!分析!根据图’+(右边回路的’*)方程即可求解##由图’,(左边回路’*)方程即可求出"!!解!’!(对图’+(中右边的回路列’*)方程’顺时针方向绕行(有&#!&!!电路同步辅导及习题全解*#!!-!&#!%-所以#%!-)&#!*%!-)&’!#%.E &4’#(图’,(中#电路*!两端的电压为"*!%*!#!%%E &’#%5*对左边回路列’*)方程顺时针方向绕行有"*!!"C )"!%-所以"!%"C !"*!%!-!#’%E &%!-!5%!*从图’,(中右边回路的’*)方程顺时针方向绕行得*###)$"!!"*!%-所以##%"*!!$"!*#%#’%E &!$’!!%94小结!掌握回路的’*)方程是本题的解题关键!%!!!9!’!(#%%!4##&%!$4*’#(#!%!-$4###%!$4##$%!!!$4##%%!4##&%!$4!(!!!.!在题!!!.图所示电路中#已知"!#%#*#"#$%$*#"#&%&*#"$.%$*#"9.%!*#尽可能多地确定其它各元件的电压!分析!求解各元件的电压只需根据各个回路的’*)方程即可求解!题!!!.图解!已知",%"!#%#*#">%"#$%$*#"/%"#&%&*#"H %"9.%!*#选取回路列’*)方程!对回路’#$%#(有"+%"!&%"!#)"#&%#)&%.*对回路’#$&#(有"I %"!$%"!#)"#$%#)$%&*对回路’$&’()%$(有"#$)"$.!"9.!"&9!"#&%-所以!!!"J %"&9%"#$)"$.!"9.!"#&%$)$!!!&%-对回路’&’()&(有"?%"$9%"$.!"9.%$!!%#*&$!&第一章!电路模型和电路定律对回路’%)(%(有"2%"&.%"&9)"9.%-)!%!*%!!!<!对上题所示电路#指定各支路电流的参考方向#然后列出所有结点处的’()方程#并说明这些方程中有几个是独立的!解!支路电流的参考方向如题!!!.图所示#各结点的’()方程分别为’以流出结点的电流为正(!!!!!##+)#,)#I%-!!!!$!#,)#/)#>%-!!!!!&!#>)#?)#K!#I%-%!#+!#/)#J)#2%-!!!!!)!#?!#J)#H%-(!#H!#2!#K%-把以上9个方程相加#得到-%-的结果#说明这9个方程不是相互独立的#但其中任意&个方程是相互独立的!%!!!5!略%!!#-!利用’()和’*)求解题!!#-图示电路中的电压"!题!!#-图解!在’+(图中#设电流##右边网孔的’*)方程为###)<<#%!-解得#%!-!!-+-E-5!4所以"%<<#%<<’!-!!-%<*在’,(图中#设电流#!#####$##号结点上的’()方程为#!)##)#$%<题!!#!图对右边大孔和其中的小孔分别按顺时针列出的’*)方程为#!)#!$#$%-#!!#!!###%-由以上三个方程解得#$%#4所以&%!&!!电路同步辅导及习题全解"%$#$%$’#%9*,!!#!!试求题!!#!图示电路中控制量/!及.-!分析!根据图示电路列出结点的’()及回路的’*)方程即可求解!解!设电流/!#/##/$!对结点#和两个网孔列’()’电流流入为正#流出为负(和’*)方程#有/!!/#!/$%-!---/!)&--/#)</!%#-</!)&--/#!!---/$%"#$-应用行列式求解以上方程组#有%%!!!!!!!!!!--<!&--!!-<!!&--!!!---%!#--<’!-$%!%-!!!!!!!#-!&--!!--!!&--!!!---%!$-’!-$%$%!!!!!!!-!--<!&--!#-<!!&--!!-%!!-!9-则/!%%!%%!$-’!-$!#--<’!-$%!%E 5%74/$%%$%%!!-!9-!#--<’!-$%&E -974所以.-%!---’/$%!---’!-!9-#--<’!-$%&E -9*小结!求解电路中的变量#利用’()"’*)方程是最基本的方法!%!!##!"!%#-*#"%#--*&&!&!!第二章电阻电路的等效变换学习要求!+理解等效变换的概念#利用等效变换分析电路!#+掌握电阻的等效变换$串并混联"L-.的等效变换!$+理解"掌握两种电源的等效变换!%+深刻理解单口电路输入电阻*23的定义#并会计算!&"理解二端电阻电路等效电阻的定义#熟练掌握求等效电阻的方法!!知识网络图电阻电路的等效变换电阻的等效变换电阻的串联电阻的并联电阻的L"#$-.电源的串联"并联等效变换3个电压源串联3个电流源并联3个电压源并联$要求电压相同3个电流源串联$"#$要求电流相同.实际电源/的等效变换实际电压源/实际电流源实际电流源/实际电压源等效互换的原则$端口*4G"#$不变输入电阻输入电阻的定义输入电阻的求法电阻变换法外加电压-%"#$"#$电流法&’!&!!电路同步辅导及习题全解!课后习题全解题#D!图%#!!!电路如题#!!图所示#已知"C%!--*#*!%#I"#*#%<I"!若$’!(*$%<I"*’#(*$%@’*$处开路(*’$(*$%-’*$处短路(!试求以上$种情况下电压"#和电流####$!解!’!(*#和*$为并联且相等#其等效电阻*%<#%%I"#则#!%"C*!)*%!--#)%%&-$74##%#$%#!#%&-9%<E$$$74"#%*###%<’&-9%99E99.*’#(因*$%@#则有!!!#$%-##%"C*!)*#%!--#)<%!-74"#%*###%<’!-%<-*’$(因*$%-#则有##%-#得"#%-##$%"C*!%!--#%&-74%#!#!电路如题#!#图所示#其中电阻"电压源和电流源均为已知#且为正值!求$’!(电压"#和电流##*’#(若电阻*!增大#对哪些元件的电压"电流有影响)影响如何)解!’!(因为*#和*$为并联#且该并联部分的总电流为电流源的电流#C#根据分流公式#有##%*$*#)*$#C"#%*###%*#*$*#)*$#C’#(由于*!和电流源串接支路对其余电路来说可以等效为一个电流源!因此当*!增大#对*##*$#*%及"C的电流和端电压都没有影响!但*!增大#*!上的电压增大#将影响电流源两端的电压#即"#C%*!#C)"#!"C显然#"#C随*!的增大而增大!&(!&第二章!电阻电路的等效变换题#!#图!!!!!!!!!!题#!$图(#!$!电路如题#!$图所示!’!(求"0"C *’#(当*,0*!1*#’%*!*#*!)*#(时#"0"C可近似为*#*!)*##此时引起的相对误差为"0"C!*#*!)*#"0"C’!--4当*,为’*!1*#(的!--倍"!-倍时#分别计算此相对误差!分析!*#与*,并联#然后与*!串联#则"5"2%*#1*,*#1*,)*!!解!’!(*%*#’*,*#)*,#%"C*!)*!!"0%*#%"C**!)*所以"0"C%**!)*%*#*,*!*#)*!*,)*#*,’#(设*,%6*!*#*!)*##代入上述"0"C式子中#可得"0"C%*#’6*!*#*!)*#*!*#)’*!)*#(’6*!*#*!)*#%6’!)6(’*#*!)*#相对误差为!!&%’"0"C!*#*!)*#(’!--M "0"C%6!)6*#*!)*#!*#*!)*#6!)6*#*!)*#’!--M &)!&!!电路同步辅导及习题全解%6!)6!!6!)6’!--M %!!6’!--M 当6%!--时#&%!!M *6%!-时#&%!!-M !(#!%!求题#!%图示各电路的等效电阻*+,#其中*!%*#%!"#*$%*%%#"#*&%%"#7!%7#%!C #*%#"!题#!%图分析!根据串联"并联#8-2变换等电阻电路的等效方法即可求解!解!图’+(中将短路线缩为点后#可知*%被短路#*!#*#和*$为并联#于是有*+,%+*!1*#1*$,)*&%+!1!1#,)%%%E %"图’,(中7!和7#所在支路的电阻*%!7!)!7#%#"所以*+,%+*1*%,)*$%+#1#,)#%$"图’/(改画后可知#这是一个电桥电路#由于*!%*##*$%*%处于电桥平衡#故开关闭合与打开时的等效电阻相等!即*+,%’*!)*$(1’*#)*%(%’!)#(1’!)#(%!E &"&*"&第二章!电阻电路的等效变换图’>(中结点!#!0同电位’电桥平衡(#所以!!!0间跨接电阻*#可以拿去’也可以用短路线替代(#故!!!!!!!!!!*+,%’*!)*#(1’*!)*#(1*!%’!)!(1’!)!(1!%-E &"图’?(为非串联电路#其具有某种对称结构#称之为平衡对称网络!因为该电路为对称电路#因此可将电路从中心点断开’因断开点间的连线没有电流(如题解#!%图’+(所示!题解#!%图!+"则*+,%#*)’#*1#*(#%$#*%$"图’J (中’!"#!"##"(和’#"##"#!"(构成两个L 形连接#分别将两个L 形转化成等值的三角形连接#如题解#!%图’,(所示!等值三角形的电阻分别为题解#!%图!,"*!%’!)!)!’!#(%#E &"*#%’!)#)!’#!(%&"*$%*#%&"*0!%#)#)#’#!%<"*0#%!)#)!’##%%"&!"&!!电路同步辅导及习题全解*0$%*0#%%"并接两个三角形#最后得题解#!%图’/(所示的等效电路#所以!!!*+,%+#1’*#1*0#()’*!1*0!(,1’*$1*0$(%+#1’&1%()’#E &1<(,1’&1%(%+#-!5)%-#!,1#-5%!E #95"图’K(也是一个对称电路!根据电路的结构特点#设#从+流入#则与+相连的$个电阻*中流过的电流均为#$!同理#从!0点分流的支流*对称#故支流为#9#得各支路电流的分布如题解#!%图’>(所示!由此得端口电压"+,%!$#’*)!9#’*)!$#’*%&9#’*所以*+,%"+,#%&9*%!E 99."题解#!%图!/"!!!!!!!!!!!!题解#!%图!>"!!%#!&!在题#!&图’+(电路中#"1!%#%*#"1#%9*#*!%!#"#*#%9"#*$%#"!图’,(为经电源变换后的等效电路!’!(求等效电路的#C 和**’#(根据等效电路求*$中电流和消耗功率*’$(分别在图’+(#’,(中求出*!#*#及*消耗的功率*’%(试问"1!#"1#发出的功率是否等于#C 发出的功率)*!#*#消耗的功率是否等于*消耗的功率)为什么)题#!&图&""&第二章!电阻电路的等效变换题解#!&图解!’!(利用电源的等效变换#图’+(中电阻与电压源的串联可以用电阻与电流源的并联来等效!等效后的电路如题解#!&图所示#其中#1!%"1!*!%#%!#%#4#1#%"1#*#%99%!4对题解#!&图电路进一步简化为题#!&图’,(所示电路#故#1%#1!)#1#%#)!%$4*%*!1*#%!#’9!#)9%%"’#(由图’,(可解得三条并联支路的端电压"%’*1*$(’#C %%’#%)#’$%%*所以*$的电流和消耗的功率分别为#$%"*$%%#%#41$%*$##$%#’##%<6’$(根据’*)#图’+(电路中*!#*#两端的电压分别为"!%"1!!"%#%!%%#-*"#%"1#!"%9!%%#*则*!#*#消耗的功率分别为1!%"!#*!%’#-(#!#%!--$%$$E $$61#%"##*#%##9%#$6图’,(中*消耗的功率1%"#*%%#%%%6’%(图’+(中"1!和"1#发出的功率分别为&#"&!!电路同步辅导及习题全解1"1!%"1!’"!*!%#%’#-!#%%-61"1#%"1#’"#*#%9’#9%#6图’,(图中#1发出的功率1#1%"#1%%’$%!#6显然1#131"1!)1"1#由’$(的解可知131!)1#以上结果表明#等效电源发出的功率一般并不等于电路中所有电源发出的功率之和*等效电阻消耗的功率一般也并不等于原电路中所有电阻消耗的功率之和!这充分说明#电路的.等效/概念仅仅指对外电路等效#对内部电路’变换的电路(则不等效!%#!9!对题#!9图所示电桥电路#应用L!三角形等效变换求$’!(对角线电压.*’#(电压.+,!解!把’!-"#!-"#&"(构成的三角形等效变换为L形#如题解#!9图所示!由于两条并联支路的电阻相等#因此得电流/!%/#%&#%#E&4应用’*)得电压.%9’#E&!%’#E&%&*又因输入电阻*+,%’%)%(1’9)#()#)#%%$-"所以.+,%&’*+,%&’$-%!&-*(#!.!题#!.图为由桥N电路构成的衰减器!’!(试证明当*#%*!%*,时#*+,%*,#且有"0"23%-E&*’#(试证明当*#%#*!*#,$*#!!*#,时#*+,%*,#并求此时电压比"0"23!分析!平衡电桥等位点间的电阻可省去!证明!’!(当*!%*#%*,时#此电路为一平衡电桥#9">两点为等位点#故可将连于这两点之间的*!支路断开#从而得到一串并联电路#则*+,%’*!)*!(1’*#)*,(%*,"0%!#"23即"0"23%!#%-E&&$ "&第二章!电阻电路的等效变换’#(把由$个*!构成的L形电路等效变换为三角形电路#则原电路等效为题解#!.图所示#其中*%$*!!根据题意#即*#%#*!*#,$*#!!*#,时#不难得出电路的等效电阻*+,为*+,%$*!*,$*!!*,$*!$*!*,$*!!*,)$*!%5*#!*,5*#!%*,"0%$*!*,$*!)*,$*!*#$*!)*#)$*!*,$*!)*,"23%$*!!*,$*!)*,"23"0"23%$*!!*,$*!)*,%#!<!在题#!<图’+(中#"1!%%&*#"1#%#-*#"1%%#-*#"1&%&-***!%*$ %!&"#*#%#-"#*%%&-"#*&%<"*在图’,(中#"1!%#-*#"1&%$-*##1#%<4##1%%!.4#*!%&"#*$%!-"#*&%!-"!利用电源的等效变换求图’+(和图’,(中电压"+,!解!图’+(利用电源的等效变换#将图’+(中的电压源等效为电流源#得题解#!<所示!&%"&!!电路同步辅导及习题全解题#!<图#1!%"1!*!%%&!&%$4#1#%"1#*#%#-#-%!4#1%%"1%*%%#-&-%-E %4#1&%"1&*&%&-<%9E #&4&&"&第二章!电阻电路的等效变换题解#!<图把所有电源流合并#得#C %#1!)#1#!#1%)#1&%$)!!-E %)9E #&%5E <&4把所有电阻并联#有*%*!1*#1*$1*%1*&%!&1#-1!&1&-1<%9--!5."所以"+,%#C*%5E <&’9--!5.%$-*图’,(的求解方法同图’+(#可得"+,%!&*!%#!5!#%!<4%#!!-!利用电源的等效变换#求题#D !-图所示电路中电压比"0"C!已知*!%*#%#"#*$%*%%!"!解!因为受控电流源的电流为#"$%##$*$%##$’!#即受控电流源的控制量可以改为#$#则"0%*%#%%*%’#$)##$(%$#$即#$%"0$又因#$%!%"C !"0#即"0$%!%"C !"0#所以"0"C%-E $%#!!!!"!-%-E .&"1&’"&!!电路同步辅导及习题全解题#!!-图,#!!#!试求题#!!#图’+(和’,(的输入电阻*+,!题#!!#图分析!输入电阻*23%"##""#分别为端口电压和端口电流#由公式求解即可!解!’!(在图’+(中#设端口电流#的参考方向如图所示#因"!%*!##根据’*)#有"+,%*##!""!)*!#%*##!"’*!#()*!#%’*!)*#!"*!(#故得+#,端的输入电阻*+,%"+,#%*!)*#!"*!’#(在图’,(中#设电阻*#中的电流##的参考方向如图所示#由’*)和’()可得电压"+,%*!#!)*###%*!#!)*#’#!)’#!(所以+#,端的输入电阻*+,%"+,#!%*!)*#’!)’(小结!若求解纯电阻电路的输入电阻可利用等效变换求解!电路中若出现有受控源#则常用*23%"端口#端口求解!&("&第二章!电阻电路的等效变换%#!!$!*23%*!*$’!!"(*$)*!,#!!%!题#!!%图所示电路中全部电阻均为!"#求输入电阻*23!题#!!%图题解#!!%图分析!对电阻电路进行等效变换#即可容易求解!解!+#,端右边的电阻电路是一平衡电桥#故可拿去/#>间连接的电阻#然后利用电阻的串"并联对电路进行简化并进行受控源的等效变换#得题解#!!%图’+(所示电路#再进行简化得题解#!!%图’,(所示电路#图解#!!%图’,(电路的’*)方程为"%!E9#!!E##%-E%#*23%"#%-E%"小结!平衡电桥是一种特殊的电路#/">间连接的电阻可拿去#特殊的电路用特殊的求解方式!&)"&!!第三章电阻电路的一般分析学习要求!+要求会用手写法列出电路方程!#+了解图的基本概念#掌握独立结点"独立回路的数目及选取#’()和’*)的独立方程数!$+掌握支路电流法"回路电流法"结点电压法!线性电阻电路方程建立的方法及电压"电流的求解#是全书的重点内容之一#是考试考研的必考内容!!知识网络图电阻电路的一般分析基本概念结点支路回路电路的图"#$树电路方程’()独立方程’*)%独立方程电路分析方法支路电流法网孔电流法回路电流法"#$"#$结点电压法&*#&!课后习题全解%$!!!在以下两种情况下#画出题$!!图所示电路的图#并说明其结点数和支路数$’!(每个元件作为一条支路处理*’#(电压源’独立或受控(和电阻的串联组合#电流源和电阻的并联组合作为一条支路处理!题$!!图解!’!(题$!!图’+(和题$!!图’,(电路的拓扑图分别如题解$!!图’+(和题解$!!图’,(所示!’#(题$!!图’+(和题$!!图’,(电路的拓扑图分别如题解$!!图’/(和题解$!!图’>(所示!题解$!!图’+(中结点数3%9#支路数:%!!*题解$!!图’,(中结点数3%.#支路数:%!#!题解$!!图’/(中结点数3%%#支路数:%<*题解$!!图’>(中结点数3%&#支路数:%5!题解$!!图($!#!指出题$!!中两种情况下#’()"’*)独立方程各为多少)分析!独立的’()方程个数为3!!#独立的’*)方程个数为:!3)!#根据公式求解即可!解!电路题$!!图’+(对应题解$!!图’+(和题解$!!图’/(两种情况!题解$!!图’+(中#独立的’()方程个数为3!!%9!!%&独立的’*)方程个数为:!3)!%!!!9)!%9&&!#题解$!!图’/(中#独立的’()方程个数为3!!%%!!%$独立的’*)方程个数为:!3)!%<!%)!%&题$!!图’,(对应题解$!!图’,(和题解$!!图’>(两种情况!题解$!!图’,(中#独立的’()方程个数为3!!%.!!%9独立的’*)方程个数为:!3)!%!#!.)!%9题解$!!图’>(中#独立’()方程个数为3!!%&!!%%独立的’*)方程个数为:!3)!%5!&)!%& ($!$!对题$!$图’+(和题$!$图’,(所示7!和7##各画出%个不同的树#树支数各为多少)题$!$图分析!遍后历所有顶点且支路数最少即构成树!解!题$!$图’+(的%个不同的树如题解$!$图’+(所示!题解$!$图!+"题$!$图’,(的%个不同的树如题解$!$图’,(所示!题解$!$图!,"&&"#题$!%图%$!%!题$!%图所示桥形电路共可画出!9个不同的树#试一一列出’由于结点数为%#故树支数为$#可按支路号递增的方法列出所有可能的组合#如!#$#!#%#0!#9#!$%#!$&0等#从中选出树(!解!!9个不同的树的支路组合为’!#$(#’!#%(#’!#&(#’!$&(#’!$9(#’!%&(#’!%9(#’!&9(’#$%(#’#$&(#’#$9(#’#%9(#’#&9(#’$%&(#’$%9(#’%&9(%$!&!对题$!$图所示的7!和7##任选一树并确定其基本回路组#同时指出独立回路数和网孔数各为多少)解!如题$!$图所示!独立回路数%网孔数%连支数!对题$!$图’+(以如题解$!&’+(图所选树’##&#.#<#5(为例#其基本回路组即单连支回路组为’##$#&(#’<#5#!-(#’&#9#.#<#5(#’!###&#.#<(#’%#&#.#<(’划线数字为连支(!对题$!$图’,(以如题解$!&图’,(所选树’%#9#<#5#!-(为例#其基本回路组即单连支回路组为’##5#!-(#’$#%#9#<(#’%#9#<#!-#!!(#’%#.#<(#’!#9#<#5#!-(#’&#9#5#!-(!题解$!&图%$!9!对题$!9图所示非平面图#设$’!(选择支路’!###$#%(为树*’#(选择支路’&#9#.#<(为树!问独立回路各有多少)求其基本回路组!题$!9图解!3%&#:%!-独立回路数;%:!3)!%!-!&)!%9’!(以’!###$#%(为树#对应的基本回路组为’!###$#.(#’!###$#%#&(#’!###9(#’##$#5(#’$#%#!-(#’##$#%#<(!’#(以’&#9#.#<(为树#对应的基本回路组为’!#&#<(#’$#9#.(#’%#&#.(#’##&#9#<(#’&#.#<#5(#’&#9#!-(!&##&%$!.!题$!.图所示电路中*!%*#%!-"#*$%%"#*%%*&%<"#*9%#"#"C $%#-*#"C 9%%-*#用支路电流法求解电流#&!解!各支路电流的参考方向如题解$!.图所示!题$!.图!!!!!!!!!!题解$!.图列支路电流方程结点##!)##)#9%-结点$!##)#$)#%%-结点&!#%)#&!#9%-回路*##*#)#$*$!#!*!%!"C $回路+#%*%)#&*&!#$*$%"C $回路,!##*#!#%*%)#9*9%!"C 9代入数据#整理得!!-#!)!-##)%#$%!#-!%#$)<#%)<#&%#-!!-##!<#%)##9%!"#$%-联立求解以上方程组#得#&%!-+5&94%$!<!用网孔电流法求解题$!.图中电流#&!解!设网孔电流为#;!##;###;$#绕行方向如题解$!<图所示#列网孔电流方程为’*!)*#)*$(#;!!*$#;#!*##;$%!"C $!*$#;!)’*$)*%)*&(#;#!*%#;$%"C $!*##;!!*%#;#)’*#)*%)*9(#;$%!""#$C 9代入数据整理#得#%#;!!%#;#!!-#;$%!#-!%#;!)#-#;#!<#;$%#-!!-#;!!<#;#)#-#;$%!"#$%-解方程#得#;#%#&%!-+5&94&$#&。

《电路》邱关源第五版课后习题答案

《电路》邱关源第五版课后习题答案

《电路》邱关源 第五版课后题答案第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。

【题2】:D 。

【题3】:300;-100。

【题4】:D 。

【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。

【题6】:3;-5;-8。

【题7】:D 。

【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。

【题9】:C 。

【题10】:3;-3。

【题11】:-5;-13。

【题12】:4(吸收);25。

【题13】:0.4。

【题14】:3123I +⨯=;I =13A 。

【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。

【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。

【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得 U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上 式,得U A C =-7V 。

【题18】:P P I I 12122222==;故I I 1222=;I I 12=; ⑴ KCL :43211-=I I ;I 185=A ;U I I S =-⨯=218511V 或16.V ;或I I 12=-。

⑵ KCL :43211-=-I I ;I 18=-A ;U S =-24V 。

第二章 电阻电路的等效变换【题1】:[解答]I =-+9473A =0.5 A ;U I a b .=+=9485V ; I U 162125=-=a b .A ;P =⨯6125. W =7.5 W;吸收功率7.5W 。

邱关源《电路》第五版第3章电阻电路的一般分析

邱关源《电路》第五版第3章电阻电路的一般分析

第 1 步 选定各支路电流参考方向,如图 3-1 所示。 第 2 步 对(n-1)个独立节点列 KCL 方程 如果选图 3-1 所示电路中的节点 4 为参考节点,则节点 1、2、3 为独 立节点,其对应的 KCL 方程必将独立,即: 1 I1 I3 I4 0 2 I1 I 2 I5 0 3 I 2 I3 I6 0 第 3 步.对 b (n 1) 个独立回路列关于支路电流的 KVL 方程 Ⅰ: R1 I 1 R5 I 5 U s 4 R4 I 4 U s1 0 Ⅱ: R2 I 2 U s 2 R6 I 6 R5 I 5 0 Ⅲ: R4 I 4 U s 4 R6 I 6 U s3 R3 I 3 0 第 4 步.求解
第三步,网孔电流方程的一般形式
R11im1 R12im 2 R13im3 us11 R21im1 R22im 2 R23im3 us 22 R31im1 R32im 2 R33im3 us 33
式中,Rij(i=j)称为自电阻,为第 i 个网孔中各支路的电阻之和,值恒为 正。Rij(i≠j)称为互电阻,为第 i 个与第 j 个网孔之间公共支路的电阻之 和,值可正可负;当相邻网孔电流在公共支路上流向一致时为正,不一 致时为负。 usii 为第 i 个网孔中的等效电压源。其值为该网孔中各支路电
G5 1 + US

2 G1 G3 G2 G4
3
4
图 3-8
b.对不含有电压源支路的节点利用直接观察法列方程: G1U n1 (G1 G2 G3 )U n 2 G3U n3 0
G5U n1 G3U n (G3 G4 G5 )U n3 0
c.求解 ② 含多条不具有公共端点的理想电压源支路,如图 3-9。 a.适当选取参考点:令 U n4 0 ,则 U n1 U s 。 b. 虚设电压源电流为 I,利用直接观察法形成方程

邱关源《电路》笔记和课后习题(含考研真题)详解-第十四章至第十五章【圣才出品】

邱关源《电路》笔记和课后习题(含考研真题)详解-第十四章至第十五章【圣才出品】

第14章线性动态电路的复频域分析14.1复习笔记一、拉氏变换及其基本性质对定义在[0,∞)上的函数f(t),其拉氏变换与拉氏反变换分别为()()0e d st F s f t t -∞-=⎰()()j j 1e d 2πj c st c f t F s s +∞-∞=⎰式中,s=σ+jω为复数,称为复频率。

其主要性质如下:(1)线性性质L[A 1f 1(t)+A 2f 2(t)]=A 1L[f 1(t)]+A 2L[f 2(t)]=A 1F 1(s)+A 2F 2(s)(2)微分性质若L[f(t)]=F(s),d ()()d f t f t t'=则L[f′(t)]=sF(s)-f(0-)。

(3)积分性质若L[f(t)]=F(s),则01()d ()t L f F s sξξ-⎡⎤=⎢⎥⎣⎦⎰(4)延迟性质若L[f(t)]=F(s),则()()()000e st L f t t t t F s ε-⎡⎤--=⎣⎦(5)拉氏变换的卷积定理设f 1(t)和f 2(t)的象函数分别为F 1(s)和F 2(s),则有()()()()()()1212012*d t L f t f t L f t f F s F s ξξξ⎡⎤=-⎡⎤⎣⎦⎢⎥⎣⎦=⎰二、拉氏反变换的部分分式展开法1.部分分式展开法概述通常用两个实系数的s 的多项式之比来表示电路响应的象函数,有()()()()101101m m m n n n N s a s a s a F s m n D s b s b s b --+++==≤+++ 且均为正整数将有理分式F(s)用部分分式展开时,首先要把F(s)化为真分式,若n>m,则F (s)为真分式;若n=m,则将F(s)化为F(s)=A+N 0(s)/D(s)。

求反变换时,分情况讨论,如表14-1-1所示。

表14-1-12.部分分式展开法求拉氏反变换的步骤(1)n=m时,将F(s)化成真分式和多项式之和;(2)求真分式分母的根,确定分解单元;(3)将真分式展开成部分分式,求各部分分式的系数;(4)对每个部分分式和多项式逐项求拉氏反变换。

电路原理第五版邱关源罗先觉第五版最全包括所有章节及习题解答-资料

电路原理第五版邱关源罗先觉第五版最全包括所有章节及习题解答-资料
(元件特性代入) 求解上述方程,得到b个支路电流;
进一步计算支路电压和进行其它分析。
支路电流法的特点:
支路法列写的是 KCL和KVL方程,所以方程列 写方便、直观,但方程数较多,宜于在支路数不多 的情况下使用。
例1. 求各支路电流及电压源各自发出的功率。
I1 7
+ 70V

a
I2
1 11
+
6V
2

b
解:(1) n–1=1个KCL方程:
I3
节点a:–I1–I2+I3=0
7
(2) b–( n–1)=2个KVL方程:
7I1–11I2=70-6=64
11I2+7I3= 6
I112182036A I24062032A
P 70670420W
I3I1I2624A
P62612W
例2.
I1 7
+ 70V

解2.
结论:
n个结点、b条支路的电路, 独 立的KCL和KVL方程数为:
(n1 )b(n1 )b
三、支路电流法 (branch current
method )
以各支路电流为未知量列写电路方程分析电路的方法
对于有n个节点、b条支路的电路,要求解 支路电流,未知量共有b个。只要列出b个独立 的电路方程,便可以求解这b个变量。
(1) 先将受控源看作独立源列方程;
(2) 将控制量用未知量表示,并代入(1)中所列的方程,消去 中间变量。
四、网孔电流法(mesh current method)
以网孔电流为未知量列写电路方程分析电路的方法
基本思想
为减少未知量(方程)的个数,假想每个网孔中

《电路》邱关源第五版课后习题答案解析

《电路》邱关源第五版课后习题答案解析

题 10】: 3;-3。

题 11】: -5;-13。

题 12】: 4(吸收);25。

题 13】: 0.4。

题 14】: 3I +12=3; I = A 。

3题 15】: I =3A ; I = -3A ; I = -1A ; I = -4A 。

题 16】: I =-7A ;U =-35V ;X 元件吸收的功率为 P =-IU =-245W 。

题 17】:由图可得U =4V ;流过 2电阻的电流I =2A ;由回路 ADEBCA 列 KVL 得=2-3I ;又由节点 D 列 KCL 得 I =4-I ;由回路 CDEC 列 KVL 解得; I =3;代入上式,得 U =-7V 。

P 1 = 2I 12 = 2 ;故I 12 =I 22;I 1=I 2;P2 I23 8 8⑴ KCL : 4- I = I ; I = A ; U =2I -1I = V 或 1.6 V ;或 I =-I 。

3⑵ KCL :4-I =- I ;I = -8 A ;U =-24 V 。

电路答案——本资料由张纪光编辑整理(C2-241 内部专用)第一章 电路模型和电路定律题 1 】: 题 2 】:题 3 】:题 4 】:题 5 】:题 6 】:题 7 】:题 8 】: 题 9 】:由U =5V 可得: I = -2.5 A :U =0:U =12.5V 。

D 。

300;-100。

D 。

(a ) i =i -i ;(b ) u =u -u ;(c ) u =u S -(i -i S )R S; ( d ) i =i S- 1(u -u S)。

1 2 1 2R S3;-5;-8。

D 。

P US1 =50 W ; P US 2=-6 W ; P US3 =0; P IS1=-15 W ; P IS2=-14 W ;P IS3=-15 W 。

C 。

题 18】:第二章电阻电路的等效变换题 1 】:[解答]I= A=0.5 A;U ab =9I+4=8.5V;I1=U ab -6=1.25 A;P =6 1.25 W=7.5 W;吸收12功率7.5W。

邱关源《电路》笔记及课后习题(电路定理)【圣才出品】

邱关源《电路》笔记及课后习题(电路定理)【圣才出品】

第4章电路定理4.1 复习笔记一、叠加定理叠加定理:在线性电路中,任一支路的电流或电压,等于每一独立电源单独作用于电路时在该支路所产生的电流或电压的代数和。

应用方法:给出电路中变量的参考方向;画出各独立源单独作用时的等效电路;在等效电路中求出相应的待求电压电流变量或中间变量;运用叠加定理求出原电路中的待求电压电流变量。

注:①该定理只适用于线性电路;②计算元件的功率时不可应用叠加的方法;③在各个独立电源单独作用时,不作用的电压源短路,不作用的电流源开路;各分电路在叠加计算时电压和电流的参考方向可取为与原电路相同方向,取代数和时注意各分量的正负号。

二、替代定理给定任意一个线性电阻电路,如果第j条支路的电压u j和电流i j已知,那么这条支路就可以用一个具有电压等于u j的独立电压源,或者一个具有电流等于i j的独立电流源来代替,替代后的电路中的全部电压和电流均将保持原值,如图4-1-1所示。

图4-1-1三、戴维宁定理和诺顿定理1.一个线性含源一端口网络如图4-1-2(a)所示,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代,这一等效电路称为戴维宁等效电路,如图4-1-2(b)所示。

电压源的电压等于该一端口网络的开路电压u oc,而电阻等于该一端口网络中所有独立源为零值时的等效电阻R eq。

图4-1-22.一个线性含源一端口网络N,可以等效为一个电流源和电阻的并联组合,这样的等效电路称为诺顿等效电路,如图4-1-2(c)所示。

电流源的电流等于该网络N的短路电流i sc,并联电阻R eq等于该网络中所有独立源为零值时所得网络N0的等效电阻R eq。

3.应用戴维宁定理和诺顿定理求解电路,一般按以下步骤进行:(1)求解含源端口的开路电压u oc或短路电流i sc。

(2)求解端口的输入电阻R eq,有如下两种方法:①利用开路电压与短路电流之比R eq=U oc/i sc;②将含源一端口网络中所有独立源置零,求解其对应的R eq。

邱关源《电路》笔记和课后习题(含考研真题)详解-第一章至第二章【圣才出品】

邱关源《电路》笔记和课后习题(含考研真题)详解-第一章至第二章【圣才出品】
6 / 81
圣才电子书 十万种考研考证电子书、题库视频学习平台

理想电压源的符号如图 1-1-4(a)所示。其特点是其两端电压总能保持一定或一定的 时间函数,且电压值大小由电压源本身决定,与流过它的电流值无关,如图 1-1-4(b)所 示。
图 1-1-4(a)
图 1-1-4(b) 说明:a.电压源为一种理想模型;b.与电压源并联的元件,其端电压为电压源的值; c.理想电压源的功率从理论上来说可以为无穷大。 ②理想电流源 理想电流源的符号如图 1-1-5(a)所示。其特点是输出电流总能保持一定或一定的时 间函数,且电流值大小由电流源本身决定,与外部电路及它的两端电压值无关,如图 1-1-5

电阻元件、电源元件和受控电源元件是常用的电路元件。电路元件可分为无源元件及有 源元件两大类。
1.无源元件及其伏安特性 表 1-1-2 无源元件及其伏安特性
功率和能量比较: (1)电阻元件 P=ui=Ri2=u2/R≥0(关联参考方向);
W t Ri2 d t0 电阻是耗能元件。 (2)电容元件
5 / 81
圣才电子书 十万种考研考证电子书Fra bibliotek题库视频学习平台

P=ui=Cu(du/dt)(u,i 取关联参考方向);吸收功率,电容是无源元件。
WC C
ut2 udu 1 Cu 2
ut1
2
t2
1 Cu 2 2
t1
WC t2 WC t1
电容是储能元件。
2 / 81
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 1-1-2 电压的参考方向 3.关联参考方向 对于一个元件或支路来说:如果指定元件的电流的参考方向是从电压参考极性的“+” 指向“-”,即两者的参考方向一致,则把电流和电压的这种参考方向称为关联参考方向; 反之称为非关联参考方向。如图 1-1-3 所示,对 A 而言,u 和 i 为非关联方向;对 B 而言, u 和 i 为关联方向。

邱关源《电路》笔记及课后习题(含有耦合电感的电路)【圣才出品】

邱关源《电路》笔记及课后习题(含有耦合电感的电路)【圣才出品】

第10章含有耦合电感的电路10.1 复习笔记一、互感1.互感现象及互感磁链某个线圈中的电流产生的磁通链除穿过本线圈外,还与其他线圈相交,称为“互感”现象。

设有n个载流线圈,第k个线圈中的总磁通链为Ψk=±Ψk1±Ψk2±…+Ψkk±…±Ψk(n-1)±Ψkn其中,Ψkk为自感磁通链,Ψkj(j≠k)为互感磁通链。

“+”表示互感磁通链和自感磁通链的方向一致,即同向耦合;“-”为反向耦合。

2.互感系数互感磁通链与产生它的电流比为互感系数,即M12=Ψ12/i2M21=Ψ21/i1式中,M12和M21称为互感系数,简称互感,单位为H(亨)。

当只有两个电感有耦合时,M=M12=M21。

3.耦合因数用来描述两个线圈间磁耦合的松紧程度,定义为4.互感元件的伏安关系(1)时域伏安关系图10-1-1(a)为互感元件的时域电路模型图,其时域伏安关系为图10-1-1 互感元件时域电路模型(2)相量伏安关系图10-1-1(b)为相量电路模型,其相量伏安关系为二、含有耦合电感电路的计算当耦合电感的两线圈串联、并联或各有一端相连成为三端元件时,其电路可以等效为无互感(无耦合)的等效电路,我们称这种等效电路为去耦合等效电路。

1.耦合电感的串联等效(1)同向串联:如图10-1-2(a)所示,等效电感为:L=L1+L2+2M。

(2)反向串联:如图10-1-2(b)所示,等效电感为:L=L1+L2-2M。

图10-1-22.耦合电感的并联等效(1)同向并联如图10-1-3(a)所示,去耦等效电路如图10-1-3(b)所示,其中L a=L1-M,L b =M,L c=L2-M。

(2)反向并联如图10-1-3(c)所示,去耦等效电路如图10-1-3(d)所示,其中L a=L1+M,L b=-M,L c=L2+M。

图10-1-33.其他连接图10-1-4(a)为含耦合电感的两个线圈的单侧同名端连接,其去耦等效电路如图10-1-4(b)所示。

邱关源《电路》笔记及课后习题(非线性电路)【圣才出品】

邱关源《电路》笔记及课后习题(非线性电路)【圣才出品】

第17章非线性电路17.1 复习笔记一、非线性电阻若电阻元件的伏安关系为非线性的,即称为非线性电阻元件。

图形符号及伏安函数关系如图17-1-1和图17-1-2所示。

图17-1-1 非线性电阻符号图17-1-2 伏安特性(流控电阻)1.非线性电阻元件分类(1)流控型电阻,u=g(i);(2)压控型电阻,i=f(u);(3)既是流控又是压控型的电阻(单调型),u=g(i),i=f(u);(4)既不是流控型又不是压控型的电阻。

2.静态电阻与动态电阻(如图17-1-3所示)静态电阻R=u/i=tanα动态电阻动态电导图17-1-33.非线性电阻的串联与并联若串联的非线性电阻均为流控型,如u1=g1(i),u2=g2(i),则等效非线性电阻的伏安特性为u=u1+u2=g1(i)+g2(i)(流控型)若并联的非线性电阻均为压控型的,如i1=f1(u),i2=f2(u),则等效非线性电阻的伏安特性为i=i1+i2=f1(u)+f2(u)(压控型)二、非线性电容若电容元件的库伏关系为非线性的,则称为非线性电容元件。

电路符号如图17-1-4所示。

图17-1-41.非线性电容元件分类(1)压控型电容元件,q=f(u);(2)荷控型电容元件,u=g(q);(3)单调型电容元件。

2.参数静态电容动态电容三、非线性电感若电感元件的韦安关系为非线性的,即称为非线性电感元件,电路符号如图17-1-5所示。

图17-1-51.非线性电感元件分类(1)流控型电感元件,ψ=f(i);(2)磁控型电感元件,i=g(ψ);(3)单调型电感元件。

2.参数静态电感动态电感四、非线性电路非线性电路的小信号分析:由于非线性元件的参数不等于常数,因此分析时不能用叠加定理和齐性定理。

分析线性电路的基本理论依据依然是基尔霍夫定律。

1.小信号分析法(1)绘出直流电路,求出直流偏置电压作用时电路的直流工作点(U Q,I Q)(或待求量);(2)根据非线性元件的伏安特性求出对于工作点处的电导;(3)绘出电路的小信号模型电路,计算出相应的待求量;(4)将直流分量与小信号分量叠加起来。

电路原理(邱关源)习题答案第二章-电阻电路的等效变换练习

电路原理(邱关源)习题答案第二章-电阻电路的等效变换练习

电路原理(邱关源)习题答案(dá àn)第二章-电阻电路的等效变换练习电路原理(邱关源)习题(xítí)答案第二章-电阻电路的等效变换练习第二章电阻电路(diànlù)的等效变换“等效(děnɡ xiào)变换”在电路理论中是很重要的概念,电路等效变换的方法是电路问题分析(fēnxī)中经常使用的方法。

所谓两个电路是互为等效的,是指(1)两个结构参数不同的电路再端子上有相同的电压、电流(diànliú)关系,因而可以互相代换;(2)代换的效果是不改变外电路(或电路中未被代换的部分)中的电压、电流和功率。

由此得出电路等效变换的条件是相互代换的两部分电路具有相同的伏安特性。

等效的对象是外接电路(或电路未变化(biànhuà)部分)中的电压、电流和功率。

等效变换的目的是简化电路,方便地求出需要求的结果。

深刻地理解“等效变换”的思想,熟练掌握“等效变换”的方法在电路分析中是重要的。

2-1 电路如图所示,已知。

若:(1);(2);(3)。

试求以上3种情况下电压和电流。

解:(1)和为并联(bìnglián),其等效电阻,则总电流(diànliú)分流(fēn liú)有(2)当,有(3),有2-2 电路如图所示,其中(qízhōng)电阻、电压源和电流源均为已知,且为正值。

求:(1)电压2u和电流(diànli ú);(2)若电阻增大,对哪些元件的电压、电流有影响?影响如何?解:(1)对于2R和3R来说,其余部分的电路可以用电流源等效代换,如题解图(a)所示。

因此有(2)由于1R 和电流源串接支路对其余电路来说可以等效为一个电流源,如题解图(b )所示。

因此当1R 增大,对及的电流和端电压都没有影响。

但1R 增大(z ēn ɡ d à),1R 上的电压(di àny ā)增大,将影响电流源两端的电压,因为显然(xi ǎnr án)随1R 的增大(z ēn ɡ d à)而增大。

《电路》邱关源第五版课后习题答案

《电路》邱关源第五版课后习题答案

《电路》邱关源第五版课后习题答案答案第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。

【题2】:D 。

【题3】:300;-100。

【题4】:D 。

【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。

【题6】:3;-5;-8。

【题7】:D 。

【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。

【题9】:C 。

【题10】:3;-3。

【题11】:-5;-13。

【题12】:4(吸收);25。

【题13】:0.4。

【题14】:3123I +⨯=;I =13A 。

【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。

【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。

【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上式,得UAC=-7V。

【题18】:PPII12122222==;故I I1222=;I I12=;⑴ KCL:43211-=I I;I185=A;U I IS=-⨯=218511V或16.V;或I I12=-。

⑵ KCL:43211-=-I I;I18=-A;US=-24V。

第二章电阻电路的等效变换【题1】:[解答]I=-+9473A=0.5A;U Ia b.=+=9485V;IU162125=-=a b.A;P=⨯6125.W=7.5W;吸收功率7.5W。

邱关源《电路》笔记及课后习题(非正弦周期电流电路和信号的频谱)【圣才出品】

邱关源《电路》笔记及课后习题(非正弦周期电流电路和信号的频谱)【圣才出品】

第13章非正弦周期电流电路和信号的频谱13.1 复习笔记一、非正弦周期函数的傅里叶分解1.周期函数分解为傅里叶级数设周期函数f(t)=f(t+kT)(k=0,1,2…),T为周期。

若给定的f(t)满足狄里赫利条件,那么它就能展开成一个收敛的傅里叶级数,其数学表达式为其中,各个参数的表达式如下A0=a0φk=arctan(-b k/a k)2.周期函数的谐波定性分析定性判断周期函数存在哪些谐波成分,然后具体计算各次谐波的幅值与相位。

(1)f(t)为奇函数,即f(t)=-f(-t),f(t)的展开式中只能含有奇函数,即(2)f(t)为偶函数,即f(t)=f(-t),f(t)的展开式中只含有偶函数,即(3)f(t)为奇谐波函数,即f(t)=-f(t±T/2),f(t)的展开式中只含奇次谐波,即(4)f(t)为偶谐波函数,即f(t)=f(t±T/2),f(t)的展开式中只含直流分量和偶次谐波,即二、有效值、平均值和平均功率1.非正弦周期电流电路的有效值和平均值设非正弦周期电流其有效值、平均值的计算方法如表13-1-1所示。

表13-1-1注:①非正弦周期电流平均值等于此电流绝对值的平均值;②正弦量平均值I av=0.898I。

2.非正弦周期电流电路的功率计算(1)非正弦周期电流电路的瞬时功率为(2)非正弦周期电流电路的平均功率为其中,φk=φuk-φik,k=1,2…。

即平均功率等于恒定分量构成的功率和各次谐波平均功率的代数和。

(3)非正弦周期电流电路的视在功率:S=UI。

三、非正弦周期电流电路的计算在非正弦周期激励电压、电流或外施信号作用下,分析和计算线性电路的方法,主要利用傅里叶级数展开法——谐波分析法。

计算步骤:(1)把已知的非正弦周期电压u(t)或电流i(t)展开成傅里叶级数,高次谐波取到哪一项,要根据所需准确度的高低而定;(2)应用叠加定理对直流分量和各次谐波分量单独作用计算;(3)将第二步所得结果在时域中进行叠加,即得最后所需要的结果。

邱关源《电路》(第5版)配套题库【名校考研真题 课后习题 章

邱关源《电路》(第5版)配套题库【名校考研真题 课后习题 章
5 第5章含有运算
放大器的电阻 电路
第7章一阶电路和 二阶电路的时域分

第6章储能元件
第8章相量法
第1章电路模型和电 路定律
第2章电阻电路的等 效变换
第3章电阻电路的一 般分析
第6章储能元件
第7章一阶电路 和二阶电路的 时域分析
第8章相量法
邱关源《电路》 (第5版)配套
模拟试题及详 解(一)
目录分析
第1章电路模型和电 路定律
第2章电阻电路的等 效变换
第3章电阻电路的一 般分析
第4章电路定理
第5章含有运算放大 器的电阻电路
第6章储能元件
第7章一阶电路和二 阶电路的时域分析
第8定律
2
第2章电阻电路 的等效变换
3
第3章电阻电路 的一般分析
4
第4章电路定理
邱关源《电路》(第5版)配套题库 【名校考研真题+课后习题+章
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
第版

习题
真题
模型
教材
模拟
题库
电路
邱关源 电路
电阻
名校
第章
试题
相量
分析
时域
储能
内容摘要
本书特别适用于参加研究生入学考试指定考研参考书目为邱关源《电路》(第5版)的考生。也可供各大院校 学习邱关源《电路》(第5版)的师生参考。邱关源等编写的《电路》(第5版)是我国高校电子信息类广泛采用 的权威教材之一,也被众多高校(包括科研机构)指定为考研考博专业课参考书目。为了帮助参加研究生入学考 试指定考研参考书目为邱关源等编写的《电路》(第5版)的考生复习专业课,我们根据教材和名校考研真题的命 题规律精心编写了邱关源《电路》(第5版)辅导用书(均提供免费下载,免费升级):1.[3D电子书]邱关源 《电路》(第5版)笔记和课后习题(含考研真题)详解2.[3D电子书]邱关源《电路》(第5版)配套题库【名 校考研真题+课后习题+章节题库+模拟试题】(上册)3.[3D电子书]邱关源《电路》(第5版)配套题库【名 校考研真题+课后习题+章节题库+模拟试题】(下册)不同一般意义的传统题库,本题库是详解研究生入学考 试指定考研参考书目为邱关源《电路》的配套题库,包括名校考研真题、课后习题、章节题库和模拟试题四大部 分。最新历年考研真题及视频,可免费升级获得。具体来说,本题库分上(1~9章)、下(10~18章)两册,每 章包括以下四部分:第一部分为名校考研真题。本部分从指定邱关源等编写的《电路》(第5版)为考研参考书目 的名校历年考研真题中挑选最具代表性的部分,并对其进行了详细的解答。所选考研真题既注重对基础知识的掌 握,让学员具有扎实的专业基础;又对一些重难点部分(包括教材中未涉及到的知识点)进行详细阐释,以使学 员不遗漏任何一个重要知识点。第二部分为课后习题及详解。本部分对邱关源等编写的《电路》(第5版)教材每 一章的课后习题进行了详细的分析和解答,并对个别知识点进行了扩展。课后习题答案经过多次修改,质量上乘, 非常标准,特别适合应试作答和临考冲刺。第三部分为章节题库及详解。

邱关源《电路》(第5版)笔记和课后习题考研真题详解

邱关源《电路》(第5版)笔记和课后习题考研真题详解

邱关源《电路》(第5版)笔记和课后习题(含考研真题)详解完整版>精研学习wang>无偿试用20%资料全国547所院校视频及题库资料考研全套>视频资料>课后答案>往年真题>职称考试第1章电路模型和电路定律1.1复习笔记1.2课后习题详解1.3名校考研真题详解第2章电阻电路的等效变换2.1复习笔记2.2课后习题详解2.3名校考研真题详解第3章电阻电路的一般分析3.1复习笔记3.2课后习题详解3.3名校考研真题详解第4章电路定理4.1复习笔记4.2课后习题详解4.3名校考研真题详解第5章含有运算放大器的电阻电路5.1复习笔记5.2课后习题详解5.3名校考研真题详解第6章储能元件6.1复习笔记6.2课后习题详解6.3名校考研真题详解第7章一阶电路和二阶电路的时域分析7.1复习笔记7.2课后习题详解7.3名校考研真题详解第8章相量法8.1复习笔记8.2课后习题详解8.3名校考研真题详解第9章正弦稳态电路的分析9.1复习笔记9.2课后习题详解9.3名校考研真题详解第10章含有耦合电感的电路10.1复习笔记10.2课后习题详解10.3名校考研真题详解第11章电路的频率响应11.1复习笔记11.2课后习题详解11.3名校考研真题详解第12章三相电路12.1复习笔记12.2课后习题详解12.3名校考研真题详解第13章非正弦周期电流电路和信号的频谱13.1复习笔记13.2课后习题详解13.3名校考研真题详解第14章线性动态电路的复频域分析14.1复习笔记14.2课后习题详解14.3名校考研真题详解第15章电路方程的矩阵形式15.1复习笔记15.2课后习题详解15.3名校考研真题详解第16章二端口网络16.1复习笔记16.2课后习题详解16.3名校考研真题详解第17章非线性电路17.1复习笔记17.2课后习题详解17.3名校考研真题详解第18章均匀传输线18.1复习笔记18.2课后习题详解18.3名校考研真题详解。

邱关源《电路》笔记及课后习题(电阻电路的等效变换)【圣才出品】

邱关源《电路》笔记及课后习题(电阻电路的等效变换)【圣才出品】

第2章电阻电路的等效变换2.1 复习笔记一、电路等效变换基本概念等效电路:图2-1-1中N1和N2是两个内部结构和参数均不相同的一端口电路,若它端口上的u-i(伏安特性)相同,则称N1和N2对端口u-i关系而言是互为等效电路。

图2-1-1 等效电路的定义等效变换:根据分析、计算电路的需要,将网络的某一部分进行某种变换后,用一个与其不同的电路替代,且替代前后网络的其他部分电压、电流保持不变,这种方法称为电路的等效变换。

注意:①核心是“对外等效”。

②一个电路的等效电路可有许多个,实际中一般是求出最简的等效电路。

二、电阻的等效变换1.电阻的串联和并联(1)电阻的串联如图2-1-2所示,电阻串联时,等效电阻:R eq=R1+R2+…+R k+…+R n。

分压公式图2-1-2 电阻串联的等效(2)电阻的并联如图2-1-3所示,电阻并联时,等效电阻或G eq=G1+G2+…+G k+…+G n分流公式图2-1-3 电阻并联的等效2.△联结与Y联结的等效变换(1)Y联结如图2-1-4(a)所示为电阻的Y形联结,等效电阻的计算公式为Y形电阻=(△形相邻电阻的乘积)/(△形电阻的和)可得△联结→Y联结特别地,当R12=R23=R31=R△,R1=R2=R3=R△/3。

(2)△联结如图2-1-4(b)所示为电阻的△联结,等效电阻的计算公式为△形电阻=(Y形电阻两两乘积之和)/(Y形不相邻电阻)可得Y联结→△联结特别地,当R1=R2=R3=R Y时,R12=R23=R31=3R Y。

图2-1-4 电阻的△联结与Y联结3.平衡电桥电路电桥结构如图2-1-5所示,当R1R3=R2R4时,电桥平衡,此时,c点电位与f点电位相等,电阻R上电流为零,因此,电位相等的点可以短接,电流为零的支路可以断开,等效为图2-1-5(c)的形式。

注:平衡电桥的特点常用于计算电阻电路。

图2-1-5 电桥电路三、含源支路的的等效变换1.理想电源的串、并联理想电源的串并联等效电路如表2-1-1所示。

邱关源《电路》笔记及课后习题(相量法)【圣才出品】

邱关源《电路》笔记及课后习题(相量法)【圣才出品】

第8章相量法8.1 复习笔记一、复数相关知识点1.复数的表示形式如图8-1-1所示,在复平面内有一个向量F,可以用以下几种方式表示:(1)代数形式(2)三角函数形式F=|F|(cosθ+jsinθ)(3)指数形式F=|F|e jθe jθ=cosθ+jsinθ(欧拉公式)(4)极坐标形式F=|F|∠θ图8-1-12.复数运算设有两个复数分别为F1=a1+jb1,F2=a2+jb2。

(1)加减运算F1±F2=(a1+jb1)±(a2+jb2)=(a1±a2)+j(b1±b2)复数的加减运算在复平面上符合平行四边形求和法则,如图8-1-2所示。

图8-1-2 复数的加减运算(2)乘法运算所以|F1F2|=|F1||F2|arg(F1F2)=arg(F1)+arg(F2)(3)除法运算所以(4)旋转因子①e jθ=1∠θ,若则②e jπ/2=j,e-jπ/2=-j,e jπ=-1,e j2π=1。

二、相量法基础(1)正弦量的表达式:u(t)=U m cos(ωt+φ)。

式中,U m为振幅,ω为角频率,φ为初相,三者称为正弦量的三要素。

有效值即其均方根值相量:表征正弦时间函数的复值常数。

(2)有效值相量:U▪=U∠φu,复值常数的模表示有效值,由此可知(3)正弦量的相量表示法:分为有效值相量和最大值相量。

例如,正弦量其有效值相量I▪=10∠50°A。

其对应的最大值相量三、电路定律的相量形式(1)KCL、KVL定律的相量形式∑I▪=0∑U▪=0(2)电路元件VCR的相量形式①电阻元件:U▪=R I▪。

即电阻上的电压和电流同相位,相量图如图8-1-3所示。

图8-1-3②电感元件:U▪=jωL I▪。

即电感上的电压超前电流90°,相量图如图8-1-4所示。

图8-1-4③电容元件:U▪=I▪/(jωC)即电容上的电压滞后电流90°,相量图如图8-1-5所示。

(完整word版)邱关源电路笔记1-7章

(完整word版)邱关源电路笔记1-7章

第一章电路模型和电路定律1.实际电路:有电工设备和电气器件按预期目的连接构成的电流的通路。

功能:a.能量的传输、分配与转换b.信息的传递、控制与处理共性:建立在同一电路理论基础上2.电路模型:反应实际电路部件的主要电磁性质的理想元件5种基本的理想电路元件:电阻元件:表示消耗电能的元件电感元件:表示产生磁场,储存磁场能量的元件电容元件:表示产生的电场,储存电场能量的元件电压源和电流源:表示将其他形式的能量转变成电能的元件3.u, i 关联参考方向p = ui 表示元件吸收的功率P>0 吸收正功率(吸收)P<0 吸收负功率(发出)4.u, i 非关联参考方向p = ui 表示元件发出的功率P>0 发出正功率(发出)P<0 发出负功率(吸收)注:对一完整的电路,发出的功率=消耗的功率a.分析电路前必须选定电压和点流的参考方向b.参考方向一经选定,必须在图中相应位置标注(包括方向和符号)c.参考方向不同时,其表达式相差一负号,但电压、电流的实际方向不变5.理想电压源和理想电流源理想电压源:其两端电压总能保持定值或一定的时间函数,其值与流过它的电流i无关的元件叫理想电压源。

理想电压源的电压、电流关系:a.电源两端电压由电源本身决定,与外电路无关;与流经它的电流方向、大小无关b.通过电压源的电流由电源及外电路共同决定理想电流源:其输出电流总能保持定值或一定的时间函数,其值与它的两端电压u无关的元件叫理想电流源。

理想电流源的电压、电流关系:a.电流源的输出电流由电源本身决定,与外电路无关;与它的两端电压的方向、大小无关b.电流源两端的电压由电源及外电路共同决定6.受控电源(非独立电源):电压或电流大小和方向不是给定的时间函数,而是受电路中某处的电压或电流控制的电源称为受控电源7.基尔霍夫定律基尔霍夫电压定律(KCL):在集总参数电路中,任意时刻,对任一结点流出(或流入)该节点电流的代数和为零基尔霍夫电压定律(KVL):在集总参数电路中,任意时刻,沿任一回路,所有支路电压的代数和恒等于零注:a.kcl是对支路电流的线性约束,kvl是对回路电压的线性约束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章电阻电路的一般分析
3.1 复习笔记
一、电路图论的基本概念
1.图(G)
图(G)是具有给定连接关系的结点和支路的集合,其中每条支路的两端都连到相应的结点上,允许孤立结点的存在,没有结点的支路不能称为图。

路径:从G的一个结点出发,依次通过图的支路和结点(每一支路和结点只通过一次),到达另一个结点(或回到原出发点),这种子图称为路径。

连通图:当G的任意两结点都是连通的,称G为连通图。

有向图:赋予支路方向的图称为有向图。

2.树(T)
满足下列三个条件的子图,称为G的一棵树:①连通的;②包含G的全部结点;③本身没有回路。

树支与连支:属于树的支路称为树支;不属于树的支路称为连支。

基本回路:对于G的任意一个树,有且只有一条连支回路,这种回路称为单连支回路或基本回路。

树支数:对于有n个结点,b条支路的连通图,树支数=n-1。

推论:连枝数=b-n+1;基本回路数=连支数=b-n+1。

二、KCL和KVL的独立方程数
KCL的独立方程数:对一个具有n个结点的电路而言,其中任意的(n-1)个结点的KCL方程是独立的。

KVL的独立方程数:对一个具有n个结点和b条支路的电路而言,其KVL的独立方程数为(b-n+1)。

三、电路的分析方法
1.支路电流法
(1)支路电流法是以b个支路电流为变量列写b个方程,并直接求解。

其方程的一般形式为
(2)支路电流法解题步骤
①标出各支路电流的方向;
②依据KCL列写(n-1)个独立的结点方程;
③选取(b-n+1)个独立回路,标出回路绕行方向,列写KVL方程。

注:①独立结点选择方法:n个结点中去掉一个,其余结点都是独立的;②独立回路选择方法:先确定一个树,再确定单连支回路(基本回路),仅含唯一的连支,其余为树支。

2.网孔电流法
(1)网孔是最简单的回路,即不含任何支路的回路。

网孔数=独立回路数=b-n+1。

网孔电流法是以网孔电流为未知量,根据KVL对全部网孔列出方程求解。

(2)网孔电流法解题步骤
①局部调整电路,当电路中含有电流源和电阻的并联组合时,可转化为电压源和电阻的串联组合;
②选取网孔电流,指定网孔电流的参考方向;
③依据KVL列写网孔电流方程,自阻总为正,互阻视流过的网孔电流方向而定,两电路同向取“+”,异向取“-”。

当有m个网孔时,网孔方程的一般形式为
注:①有相同下标的电阻(R11、R22、R33等)是各自网孔的电阻,简称自阻,总是为正;②不同下标的电阻(R12、R23、R13等)是网孔间的互有电阻,简称互阻;③等号右边u S11、u S22等分别为各自网孔中的电压源的代数和,若电压源的电压方向与网孔电流方向一致,则取“-”号,反之取“+”号。

(3)网孔中含有无伴独立电流源和无伴受控电流源是列写网孔方程的难点。

对于无伴电流源,一般有两种处理方法:①若电流源只经过本网孔,可将电流源I S作为本网孔电流;
②将无伴电流源端电压设为未知量,同时,增加一个网孔电流方程。

(4)当电路中含受控源支路时,先把受控源当做独立源,然后按常规方法列写网孔电流方程,最后,将受控源的控制量用网孔电流表示,代入方程,并将方程整理为标准形式。

3.回路电流法
(1)回路电流是指在一个回路中连续流动的假想电流。

回路电流法是以一组独立的回路电流为电路变量的求解方法。

(2)回路电流法的解题步骤
①选择一个树,确定一组基本回路,指定回路的绕行方向;
②依据KVL列写以回路电流为未知量的方程,自阻总为正,互阻在相关回路共有支路上两回路电流方向相同时取正,相反时取负;
③若电路中含有无伴电流源或受控源时,另行处理,一般是各增加一个方程。

与网孔电流法方程相似,回路电流方程的一般形式为
(3)难点分析
①含有电流源的情况
a.含有电流源和电阻的并联组合,可经等效变换成为电压源和电阻的串联组合再列回路电流方程;
b.存在无伴电流源,且无伴电流源仅处于一个回路时,该回路的电流(连支电流)就是电流源电流;把无伴电流源的电压作为未知量,同时增加一个回路电流的附加方程。

②含有受控电压源的情况
a.将受控电压源作为独立电压源列出回路电流方程;
b.再把受控电压源的控制量用回路电流表示;
c.将用回路电流表示的受控源电压移至方程的左边。

4.结点电压法
(1)在电路中任意选择某一结点为参考结点,其他结点与此结点之间的电压称为结点电压。

结点电压法以结点电压为求解变量,并对独立结点根据KCL列写电路方程。

(2)结点电压法解题步骤
①选取O为参考点,确定结点电压u n1,u n2,…;
②依据KCL列写简化后的结点电压方程,自导总是正,互导总为负;
③若电路中含有无伴电压源或受控源时,另外处理,一般是各增加一个方程。

对(n-1)个独立结点的电路,方程的一般形式为
(3)难点分析
①电路中含有无伴电压源的情况
a.电压源的一端连接点作为参考点,则关于另一端的结点电压已知,无需再列方程;
b.把无伴电压源的电流作为附加变量列入KCL方程,增加结点电压与无伴电压源电压之间的关系。

②电路中含有受控电源的情况
a.含有受控电流源时,先把它当作独立电流源,再把控制量用结点电压表示,按上述方法列出结点电压方程后,把用结点电压表示的受控电流源电流移到方程的左边;
b.含有有伴受控电压源时,把控制量用有关结点电压表示并变换为等效受控电流源;
c.含有无伴受控电压源时,参照无伴独立电压源的处理方法。

3.2 课后习题详解
3-1 在以下两种情况下,画出图3-2-1所示电路的图,并说明其结点数和支路数:(1)每个元件作为一条支路处理;
(2)电压源(独立或受控)和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理。

图3-2-1
解:(1)每个元件作为一条支路,图3-2-1(a)(b)可简化为如图3-2-2(a1)(b1)所示的拓扑结构。

(a1)中结点数n=6,支路数b=11;(b1)中结点数n=7,支路数b=12。

(2)电压源(独立或者受控)和电阻的串联组合,电流源和电阻的并联组合作为一条支路,图3-2-1(a)(b)可简化为如图3-2-2(a2)(b2)所示的拓扑结构。

相关文档
最新文档