人教版八年级数学下册总复习资料
八年级数学下册知识点总结(全)
八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
(完整版)新人教版八年级下册数学知识点总结归纳期末总复习
新人教版八年级下册数学知识点总结归纳期末总复习 一、 第十六章 二次根式 【知识回顾】 : 1.二次根式:式子 a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质: (1)(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. =·(a ≥0,b ≥0); (b ≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,ab a b b b a a=(>0)(<0) 0 (=0);都适用于二次根式的运算二、第十七章 勾股定理 归纳总结1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么c b a 222=+应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c =,b =,a =)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
2、勾股定理逆定理:如果三角形三边长a,b,c 满足c b a 222=+那么这个三角形是直角三角形。
应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
人教版八年级数学复习资料
人教版八年级数学复习资料只有及时复习,才能降低遗忘率,巩固所学数学知识。
为大家整理了,欢迎大家阅读!矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。
2、矩形的性质1矩形的对边平行且相等2矩形的四个角都是直角3矩形的对角线相等且互相平分4矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点对称中心到矩形四个顶点的距离相等;对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定1定义:有一个角是直角的平行四边形是矩形2定理1:有三个角是直角的四边形是矩形3定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab正方形1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质1正方形四条边都相等,对边平行2正方形的四个角都是直角3正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角4正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,学而知文化培训学校八年级数学教辅是对角线所在的直线和对边中点连线所在的直线。
3、正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。
先证它是菱形,再证它是矩形。
4、正方形的面积设正方形边长为a,对角线长为bb2S正方形=a 22梯形一 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
2、梯形的判定1定义:一组对边平行而另一组对边不平行的四边形是梯形。
2一组对边平行且不相等的四边形是梯形。
二直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下:一般梯形梯形直角梯形特殊梯形等腰梯形三等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质1等腰梯形的两腰相等,两底平行。
人教版八年级下册数学专题复习及练习(含解析):角的平分线的性质
专题12.3 角的平分线的性质1.角平分线的定义将一个已知的角平分为两个相等的角的射线叫做这个已知角的平分线。
2.作角平分线(尺规作图,四弧一线)角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.3.角平分线的性质定理:角平分线上的点到角的两边的距离相等。
符号语言:∵OP平分∠AOB,AP⊥OA,BP⊥OB,∴AP=BP.4.角平分线性质定理的逆定理:到角的两边距离相等的点在角的平分线上。
符号语言:∵AP⊥OA,BP⊥OB,AP=BP,∴点P在∠AOB的平分线上.5.角平分线的综合应用(1)为推导线段相等、角相等提供依据和思路;(2)实际生活中的应用.6.证明命题基本方法(1)明确命题中的已知和求(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)(2)根据题意,画出图形,并用数字符号表示已知和求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.【例题1】已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,垂足分别为点A、点B.求证:PA=PB.【例题2】已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.求证:点P在∠MON的平分线上.【例题3】已知:如图,在R t△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.【例题4】如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.【例题5】如图,在∆ABC中,∠C=90°,AD平分∠BAC,过点D作DE AB于点E,测得BC=9,BE=3,则∆BDE的周长是( )A.15B.12C.9D.6一、选择题1.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C2.如图,在∆ABC中,∠C=90°,AD平分∠BAC,过点D作DE AB于点E,测得BC=9,BE=3,则∆BDE 的周长是( )A.15B.12C.9D.63.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°4.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°二、填空题5.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.6.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=.7.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=____度.三、解答题8.如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD相交于点C.求证:AC=BC.9.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.10. 如图所示,在△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D,问能否在AB上确定一点E,使△BDE的周长等于AB的长?若能,请作出点E,并给出证明;若不能,请说明理由.11.如图,在△ABC中,AD为角平分线,DE⊥AB于点E,DF⊥AC于点F,AB=10 cm,AC=8 cm,△ABC的面积是45 cm2,求DE的长.12.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA交OA于点D,PE⊥OB交OB于点E,F是OC上的另一点,连接DF,EF.求证:DF=EF.13.如图,在四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.求证:(1)OC平分∠ACD;(2)OA⊥OC;(3)AB+CD=AC.14.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.专题12.3 角的平分线的性质1.角平分线的定义将一个已知的角平分为两个相等的角的射线叫做这个已知角的平分线。
人教版数学八年级下册第十八章平行四边形性质与判定专题复习辅导讲义
辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:学科老师:授课类型T 平行四边形的概念、性质T 平行四边形的断定C中位线定理授课日期时段教学内容一、同步学问梳理学问点1:平行四边形的定义:两组对边分别平行的四边形是平行四边形.表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD,记作ABCD”,读作“平行四边形ABCD”.留意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.学问点2:平行四边形的性质:(1)边:平行四边形的对边平行且相等.(2)角:平行四边形的对角相等.邻角互补(3)对角线:平行四边形的对角线相互平分对称性:平行四边形是中心对称图形,两条对角线的交点是对称中心;二、同步题型分析题型1:平行四边形的边、角例1:已知,如图1,四边形ABCD为平行四边形,∠A+∠C=80°,平行四边形ABCD的周长为46 cm,且AB-BC=3 cm,求平行四边形ABCD的各边长和各内角的度数.分析:由平行四边形的对角相等,邻角互补可求得各内角的度数;由平行四边形的对边相等,得AB+BC=23 cm,解方程组即可求出各边的长.解:由平行四边形的对角相等,∠A+∠C=80°,得∠A=∠C=40°又DC∥AB,∠D及∠A为同旁内角互补,∴∠D=180°-∠A=180°-40°=140°.∴∠B=140°.由平行四边形对边相等,得AB=CD,AD=BC.因周长为46 am,因此AB+BC=23 cm,而AB-BC=3 cm,得AB=13 cm,BC=10 cm,∴CD=13 am.AD=10 cm.题后反思:留意充分利用性质解题.例2:如图2,在平行四边形ABCD中,E、F是直线BD上的两点,且DE=BF,你认为AE=CF吗?试说明理由.分析:本题主要考察平行四边形的性质.要证明AE=CF,可以把两线段分别放在两个三角形里,然后证明两三角形全等.解:AE=CF.理由:在平行四边形ABCD中,∵AB=CD且AB∥CD.∴∠ABE=∠CDF.∵DE=BF,∴ DE+BD=BF+BD,即BE=DF:∴△ABE≌△CDF ∴ AE=CF题后反思:利用平行四边形的性质解题时,一般要用到三角形全等学问,此题还可以证明其他三角形全等来证明两线段相等.题型2:平行四边形的周长例1:如图3,在平行四边形ABCD中,AC、BD相交于点O,作OE⊥BD于O,交CD于E,连接BE,若△BCE的周长为6,则平行四边形ABCD的周长为( B )图3A. 6B. 12C. 18D. 不确定分析:本题主要考察平行四边形的性质:对角线相互平分。
人教版八年级下册数学专题复习及练习(含解析):轴对称
专题13.1 轴对称知识点1:轴对称图形1.定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴。
这时我们就说这个图形关于这条直线(或轴)对称.2.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称. 这条直线叫做对称轴,折叠后互相重合的点是对应点,叫做对称点.3.轴对称图形和轴对称的区别:轴对称图形是一个图形,轴对称是两个图形。
4.轴对称和全等的关系:轴对称一定是全等图形,但全等图形不一定是轴对称。
知识点2:轴对称的性质(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.知识点3:线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫这条线段的垂直平分线.2.线段垂直平分线的性质:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.【例题1】若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A B C D【例题2】下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【例题3】如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【例题4】如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.一、选择题1.下列图形中,是轴对称图形的是()A B C D2.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形3.下列图案属于轴对称图形的是()A B C D4.下列图形中,是轴对称图形的是()A B C D二、解答题5.如图所示的是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离都是1,请你画出“中国结”的对称轴,并直接写出阴影部分的面积。
新人教版八年级下册数学复习提纲
新人教版八年级下册数学复习提纲湖北罗田平湖中学 高第十六章二次根式1.二次根式的概念一般地,形如____(a ≥0)的式子叫做二次根式。
(1)对于二次根式的理解:①带有根号,②被开方数是非负数 (2)a 是非负数,即a ≥0易错点:(1)二次根式中,被开方数一定是非负数,否则就没有意义。
(2)4是二次根式,虽然4=2,但2不是二次根式,因此二次根式指的是某种式子的“外在形态”。
2.二次根式的性质(a )2=a ( a ≥0 )a 2=|a|=⎩⎪⎨⎪⎧a (a ≥0),-a (a<0).3.最简二次根式满足下列两个条件的二次根式,叫做最简二次根式 (1)被开方数中不含____;(2)被开方数中不含能__________的因数或因式。
4.二次根式的运算a *b =____(a ≥0,b ≥0)ba=______(a ≥0,b>0) 二次根式相加减时,可以先将二次根式化成_______,再将_______________进行合并。
第十七章 勾股定理1.勾股定理勾股定理:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么a 2+b 2=____ 勾股数:能构成直角三角形的三条边长的三个正整数,称为勾股数。
2.勾股定理的逆定理:如果三角形的三边长分别为a 、b 、c ,满足______________,那么这个三角形是直角三角形。
作用:(1)判断某三角形是否为直角三角形; (2)判断三角形的形状; (3)证明两线段是否垂直; (4)实际应用。
3.互逆定理、互逆命题及其关系互逆命题:在两个命题中,如果一个命题的题设和结论分别是另一个命题的_______和_______,那么这两个命题称为互逆命题.如果一个叫原命题,那么另一个叫它的__________.互逆定理:一般地,如果一个定理的逆命题经过证明是__________,那么它也是一个定理,称这两个定理互为逆定理,其中一个定理为另一个定理的_________方法技巧掌握勾股定理和直角三角形的判别条件的实际应用,即能用它们解决简单的实际问题.将实际问题转化为直角三角形模型,就可用勾股定理和直角三角形的判别条件解决实际问题.第十八章平行四边形1.平行四边形的定义和性质定义:两组对边分别________的四边形是平行四边形.平行四边形的性质:(1)平行四边形的两组对边分别________;(2)平行四边形的两组对边分别________;(3)平行四边形的两组对角分别________;(4)平行四边形的对角线互相________.[拓展] 若一条直线过平行四边形的对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中心,且这条直线等分平行四边形的面积.2.平行四边形的判定定义:两组对边分别______的四边形是平行四边形.定理1:两组对角分别______的四边形是平行四边形;定理2:两组对边分别______的四边形是平行四边形;定理3:对角线________的四边形是平行四边形;定理4:一组对边平行且________的四边形是平行四边形.3.矩形定义:有一个角是直角的平行四边形是矩形.性质:(1)矩形对边________ ;(2)矩形四个角都是________(或矩形四个角相等);(3)矩形对角线________、________.[拓展] (1)矩形的两条对角线把矩形分成四个面积相等的等腰三角形;(2)矩形是一个轴对称图形,它有两条对称轴.[注意] 利用“矩形的对角线相等且互相平分”这一性质可以得出直角三角形的一个常用的性质:直角三角形斜边上的中线等于斜边长的一半.判定:(1)定义:有一个角是直角的____________是矩形.(2)有三个角是直角的____________是矩形.(3)对角线相等的____________是矩形.4.菱形定义:一组邻边相等的___________是菱形.性质:(1)菱形的四条边都___________ ;(2)菱形的对角线互相___________ ,互相__________ ,并且每一条对角线平分一组对角;(3)菱形是轴对称图形,两条对角线所在的直线是它的对称轴.[注意] 菱形的面积:(1)由于菱形是平行四边形,所以菱形的面积=底×高;(2)因为菱形的对角线互相垂直平分,所以其对角线将菱形分成4个全等三角形,故菱形的面积等于两对角线乘积的__________.判定:(1)定义:一组邻边相等的___________是菱形;(2)对角线互相垂直的___________是菱形;(3)四条边都相等的___________是菱形.5.正方形定义:有一组邻边相等的___________形是正方形.性质:(1)正方形对边平行;(2)正方形四边相等;(3)正方形四个角都是直角;(4)正方形对角线相等,互相___________ ,每条对角线平分一组对角;(5)正方形是轴对称图形,对称轴有四条.判定:(1)定义:有一组邻边相等的___________形是正方形;(2)有一个角是直角的___________是正方形.[注意] 矩形、菱形、正方形都是平行四边形,且是特殊的平行四边形.矩形是有一内角为直角的平行四边形;菱形是有一组邻边相等的平行四边形,正方形既是矩形又是菱形.6.三角形中位线定义、定理:定义:连接三角形两边中点的线段,叫做三角形的中位线。
人教版八年级数学下册反比例函数知识点归纳(重点)
人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.答案:(1)D.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
人教版八年级下册数学专题复习及练习(含解析):因式分解
专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= __________ •【例题2]把多项式4子-1分解因式,结果正确的是( )A. (4M1) (4a-1) B・(2M1) (2”1)C. (2a- 1) 2D・(2亦1) 2【例题3]分解因式3/ - 27/= __________ .【例题4】分解因式:xf - 2xy^x= _________ .【例题5】因式分解:/-9= _________ .【例题6】分解因式:_________________ ・一.选择题1.a'b - 6a'bTa:b分解因式得正确结果为( )A. a"b (a* - 6a+9) B・ a-b (a - 3) (a+3) C・ b (a" - 3) D・ a"b (a - 3)2.把多项式x2 - 6x+9分解因式,结果正确的是()A・(x - 3 ) 2 B・(x - 9)=C・(x+3) ( x - 3 ) D・(x+9) ( x - 9)3.多项式77x: - 13x - 3 0可因式分解成(7 x+a ) ( bx+c儿其中a > b、c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 224.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为X3- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19 B・ 2x - 19 C・ 2x+15 D・ 2x - 155.把8a'-8a:+2a进行因式分解,结果正确的是( )A. 2a ( 4a: - 4a+l) B・ 8a: ( a - 1)C. 2a ( 2a - 1) 2 D・ 2a (2a+l) 26.多项式77x" - 13x - 30可因式分解成(7x-ra ) ( bx+c ),其中a. b c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 227.已知甲、乙、丙均为x的一次多项式,且英一次项的系数皆为正整数.若甲与乙相乘为x c- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19B. 2x - 19 C ・ 2x+15 D. 2x・ 158.把多项式亍+ax+b分懈因式,得(x+1) (x-3)则a, b的值分别是( )A. a=2t b=3 B・ a= - 2, b二・3 C・ a= - 2, b=3 D・ a=2, b= - 39.分解因式:16-丘二( )A. (4 - x) (4+x) B・(x - 4) (x+4) C. (8+x) (8 - x) D. (4 - x):10.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a" - 1 B・ a"+a C・ a"+a - 2 D・(a+2) " - 2 (a+2) +1二、填空题11.分解因式:1-¥= _________ .12.分解因式:3a'b十6卅二__ ・13.分解因式X3—9x= _____1 0 114•已知实数x满足x+_=3,则x2 + —的值为___________ -X X15•因式分解:£・6a+9二____ ・16.分解因式:2^2 - 8/= ______________ .17.因式分解:a2 -2a = _________ .18.分解因式:x2 +x-2 = __________ ・19.分解因式.4丘一9二 _____ ・20.分解因式:a^b —ab= _______ ・21.分解因式:ax= - ay== ______________ .22.分解因式:a-16a= ________________ ・23.把多项式9a5 - ab:分解因式的结果是__________ .24._______________________________________ •把多项式ax:+2a*a'分解因式的结果是.25.分解因式3m l - 48= ____________ ・26・分解因式:ab 1 - 4ab:+4ab:= ______________ ・27.分解因式:(m+1) (m- 9) +8m二__________ ・28•将/ (x-2) +加(2-.Y)分解因式的结果是________________三、解答题29•已知a+b二3, ab=2,求代数式a5b+2aV+ab3的值.专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= ___________•【答案】a (6-1).【解析】提公因式a即可.ab- a=a (.b ■ 1 )・【点拨】本题考査了提取公因式法因式分解.关键是求岀多项式里各项的公因式,提公因式.【例题2】把多项式4/ - 1分解因式,结果正确的是( )A. (4亦1) (4a- 1)B. (2M1) (2”1)C. (2a- 1) 2D・(2M1) 2【答案】B【解析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:=(a+6) (a- b)i完全平方公式:a:±2aM6:= (a±b) 5:4a:- 1= (2a+l) (2a- 1),【点拨】本题考査了分解因式,熟练运用平方差公式是解题的关键。
人教版八年级下册数学专题复习及练习(含解析):等腰三角形
专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60°的等腰三角形是等边三角形。
知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
人教版八年级数学下册总复习资料
人教版八年级数学下册总复习资料第一章:三角形1.1 三角形的概念- 定义:由三条边和三个角组成的图形。
- 分类:- 不等边三角形:三条边都不相等的三角形。
- 等腰三角形:有两条边相等的三角形。
- 等边三角形:三条边都相等的三角形。
1.2 三角形的性质- 内角和:180°。
- 外角和:360°。
- 中线、高线、角平分线:- 中线:连接顶点和对边中点的线段。
- 高线:从顶点到对边的垂线。
- 角平分线:从顶点到对边角的平分线。
1.3 三角形的判定- SSS:三边相等,则三角形相似。
- SAS:两边和夹角相等,则三角形相似。
- ASA:两角和夹边相等,则三角形相似。
第二章:平行四边形2.1 平行四边形的概念- 定义:两组对边分别平行且相等的四边形。
- 性质:对角相等,对边平行且相等。
2.2 平行四边形的判定- 两组对边分别平行:四边形是平行四边形。
- 两组对边分别相等:四边形是平行四边形。
- 一组对边平行且相等:四边形是平行四边形。
2.3 平行四边形的应用- 矩形:四个角都是直角的四边形。
- 菱形:四条边都相等的四边形。
- 梯形:一组对边平行,另一组对边不平行。
第三章:平方根3.1 平方根的概念- 定义:一个数的平方根是另一个数的平方等于它。
- 性质:一个正数的平方根有两个,互为相反数。
3.2 平方根的计算- 直接开平方:直接计算一个数的平方根。
- 配方法:通过添加或减去一个数,使其成为完全平方数,再计算平方根。
3.3 平方根的应用- 解方程:求解含有平方根的方程。
- 求面积:求解几何图形的面积。
第四章:二次根式4.1 二次根式的概念- 定义:形如√(ax^2 + bx + c)的根式。
- 性质:当a>0时,二次根式有实数解;当a<0时,二次根式无实数解。
4.2 二次根式的化简- 分解因式:将二次根式分解为一次根式的乘积。
- 有理化分母:将二次根式的分母有理化。
4.3 二次根式的应用- 求解方程:求解含有二次根式的方程。
人教版八年级下册数学期末复习全套专题课件精选全文完整版
∴A′F=25, ∴CF= A′C2-A′F2=60, 又∵EF=AD=3, ∴CE=60+3=63, ∴桂老师手的位置 C 离地面的距离为 63 cm.
期末专题复习(三) 平行四边形(一)
(时间:45分钟 满分:100分)
一、选择题(每小题 4 分,共 20 分)
1.(龙门县期末)在平行四边形 ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可
D.6 个
2.(中山市期末)下列运算中正确的是
A. 2+ 3= 5
B. 2× 8=4
C.( 3)2=6
D. 10÷2= 5
(B )
3.使代数式 1 + 5-x有意义的正整数 x 有 x-3
A.3 个 B.4 个 C.5 个 D.无数个
(B )
4.(海安市期中)若 y= x-12+ 12-x-6,则 xy 的值为 ( C )
( D)
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.一组邻边相等,对角线互相垂直的四边形是菱形
C.矩形的对角线相等且平分一组对角
D.正方形面积等于对角线乘积的一半
4.(赤峰中考)如图,在△ABC 中,点 D,E 分别是边 AB,AC 的中点,点
F 是线段 DE 上的一点.连接 AF,BF,∠AFB=90°,且 AB=8,BC=14,
则 EF 的长是
(B )
A.2
B.3
C.4
D.5
5.(雁塔区期末)将四根长度相等的木条首尾顺次相接,用钉子钉成四边 形 ABCD,转动这个四边形可以使它的形状改变,当∠ABC=60°时,如图 ①,测得 BD=2 3;当∠ABC=90°时,如图②,此时 BD 的长为( A )
A.2 2
① B.2
八年级下册数学知识点大纲
八年级下册数学知识点大纲一、分数
1. 什么是分数
2. 分数的分类
3. 分数的加减乘除
4. 分数化简
5. 分数的大小比较
6. 分数的应用
二、代数式
1. 什么是代数式
2. 代数式的分类
3. 代数式的加减乘除
4. 代数式的同类项合并
5. 代数式的化简
6. 代数式的应用
三、线性方程组
1. 什么是线性方程组
2. 线性方程组的解法
3. 线性方程组的应用
四、平面几何
1. 基本概念与性质
2. 垂线、角平分线、中线、高线与中垂线
3. 三角形的相似
4. 三角形的等角关系和全等关系
5. 三角形面积与勾股定理
五、正比例函数
1. 什么是正比例函数
2. 正比例函数的图像特征
3. 正比例函数的性质和应用
六、平方根与立方根
1. 平方根的计算及其性质
2. 立方根的计算及其性质
3. 平方根、立方根的化简与应用
七、统计与概率
1. 数据的收集、整理和表达
2. 统计量的计算及其意义
3. 概率的基本概念与性质
4. 事件的概率和互斥事件
八、三角函数
1. 什么是三角函数
2. 正弦函数、余弦函数、正切函数的性质
3. 三角函数的应用
以上为八年级下册数学知识点大纲。
在学习这些知识点时,需
要掌握概念、性质和公式等基础知识,加强练习、提高思维能力,将知识点应用于实际问题中,达到对数学知识的全面掌握和灵活
应用。
最新【期末复习清单】人教版--八年级数学下册-知识清单梳理+经典例题练习(含答案)
八年级数学下册 知识清单二次根式1.定义及存在意义的条件: 定义:形如)0(≥a a 的式子叫做二次根式;有意义的条件:a ≥0. 2.根式化简及根式运算: 最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式; (2)被开方数中的因数或因式不能再开方。
同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
根式化简公式:a a =2,2)(a =a ;根式运算: 乘法公式:)0,0(≥≥⋅=⋅b a b a b a ;b a b a ⋅=2除法公式:)0,0(>≥=⇔=b a b a ba b a b a 分母有理化:把分母中的根号化去,叫做分母有理化。
分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式; ③最后结果必须化成最简二次根式或有理式。
常见分母有理化公式:b a ba ba a a a --=+=1,1 二次根式加减运算的步骤: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式。
(2)找出其中的同类二次根式。
(3)合并同类二次根式。
3.双重非负性:002==⇒=+y x y x 且;00==⇒=+y x y x 且;000==⇒=+y x y x 且【典型例题1】 1、使代数式有意义的自变量x 的取值范围是( )A.x ≥3B.x >3且x ≠4C.x ≥3且x ≠4D.x >3 2、若式子-+1有意义,则x 的取值范围是( )A.x ≥21 B.x ≤21 C.x =21 D.以上答案都不对【典型例题2】3、已知x 、y 为实数,且y=﹣+4.+=( )A.13B.1C.5D.6 4、下列式子中,属于最简二次根式的是( )A. B. C. D.5、下列根式中,最简二次根式是( ) A.B.C.D.6、下列根式中与不是同类二次根式的是( )A. B. C. D.【典型例题3】7、化简的结果为()A. B. C.D.8、把根号外的因式移到根号内,得()A. B. C. D.9、计算的结果估计在()A.6至7之间B.7至8之间C.8至9之间D.9至10之间10、若,则( )A.1-2aB.1C.-1D.以上答案都不对【典型例题4】11、已知,,则代数式的值是()A.9B.±3C.3D.512、若m=,则m5﹣2m4﹣2016m3=()A.2015B.2016C.2017D.0【典型例题5】13、已知:实数a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.14、若的整数部分是a,小数部分是b ,求的值.15、已知△ABC的三边长a,b,c均为整数,且a和b 满足试求△ABC的c边的长.勾股定理1.勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
人教版 八年级数学下册 期末综合复习(含答案)
人教版 八年级数学下册 期末综合复习一、选择题(本大题共12道小题) 1. 计算(2x +1)(2x -1)的结果为 ( ) A .4x 2-1B .2x 2-1C .4x -1D .4x 2+12. 把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同乘( ) A .xB .2xC .x +4D .x (x +4)3. 若a 2+ab +b 2=(a -b )2+X ,则整式X 为()A .abB .0C .2abD .3ab4. 如图,△ABE ≌△ACD ,∠A =60°,∠B =25°,则∠DOE 的度数为()A .85°B .95°C .110°D .120°5.(2020·临沂)如图,在ABC ∆中,AB AC =,40A ∠=︒,//CD AB ,则BCD ∠=( )A.40°B.50°C.60°.D.70°6. 下列哪一个度数可以作为某一个多边形的内角和 () A .240° B .600°C .540°D .2180°7. (2020·天津)计算221(1)(1)x x x +++的结果是( )A.11x+B.21(1)x+C. 1D. 1x+8. 如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是A.2 B.3C3D59. 下列长度的三条线段能组成钝角三角形的是( )A. 3,4,4B. 3,4,5C. 3,4,6D. 3,4,710.如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P ,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案( )11. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于( )A.90°B.120 C.135°D.150°12.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD ,则∠A的度数是( )A.45°B.50°C.55°D.80°二、填空题(本大题共12道小题)13.图中的虚线,哪些是图形的对称轴,哪些不是?是对称轴的是______;不是对称轴的是______.(填写序号)14. (2020·武威)分解因式:a2+a=.15.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).16.如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是____ ____.17.将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC即为∠AOB的平分线,理由是______________________.18.如图,∠AOB=40°,C为OB上的定点,M,N分别为OA,OB上的动点,当CM +MN的值最小时,∠OCM的度数为________.19. 将分式1a2-9和a3a-9进行通分时,分母a2-9可因式分解为____________,分母3a-9可因式分解为__________,因此最简公分母是____________.20. 若a-b=3x-y=2则a2-2ab+b2-x+y=________.21.如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC =18,则△AMN的周长为________.22. 计算:1x2-6x+9÷x+3x-3·(9-x2).解:原式=1(x-3)2÷x+3x-3·(3+x)(3-x)……第一步=1(x-3)2·x-3x+3·(3+x)(3-x)……第二步=1.……第三步回答:(1)上述过程中,第一步使用的公式用字母表示为__________________________;(2)由第二步得到第三步所使用的运算方法是____________;(3)以上三步中,从第________步开始出现错误,本题的正确答案是__________.23. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.24. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n边形有条对称轴.三、作图题(本大题共2道小题)25.利用刻度尺和三角尺作图:如图所示,已知四边形ABCD和直线m.请你作出四边形A1B1C1D1,使得四边形A1B1C1D1和四边形ABCD关于直线m成轴对称.26. 如图,在河岸l的同侧有两个居民小区A,B,现欲在河岸边建一个长为a的绿化带CD(宽度不计),使C到小区A的距离与D到小区B的距离之和最小.在图中画出绿化带的位置,并写出画图过程.四、解答题(本大题共6道小题)27. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG 的周长为16,GE=3,求AC的长.28. 我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质.小学时,把分子比分母小的分数叫做真分数.类似地,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如==+=1+. (1)下列分式中,属于真分式的是()A.B.C.-D.(2)将假分式化成整式与真分式的和的形式.29. 整体代入阅读下面文字,并解决问题.已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=2×27-6×9-8×3=-24.请你用上述方法解决问题:已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.30.如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E的直线分别交AP,BC于点D,C.求证:AD+BC=AB.31. 在△ABC中,∠A=90°,∠B=30°,AC=6 cm,点D从点A出发以1 cm/s的速度向点C运动,同时点E从点C出发以2cm/s的速度向点B运动,设运动时间为t s,解决以下问题:(1)当t为何值时,△DEC为等边三角形?(2)当t为何值时,△DEC为直角三角形?32. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x--的值.人教版 八年级数学下册 期末综合复习-答案一、选择题(本大题共12道小题) 1. 【答案】A2. 【答案】D3. 【答案】D4.【答案】C [解析]∵△ABE ≌△ACD ,∴∠B =∠C =25°.∵∠A =60°,∠C =25°,∴∠BDO =∠A +∠C =85°.∴∠DOE =∠B +∠BDO =85°+25°=110°.5. 【答案】D【解析】 根据三角形内角和定理和等腰三角形的等边对等角且AB AC =,40A ∠=,可得:70ABC ACB ∠=∠=;然后根据两直线平行内错角相等且//CD AB 可得:70BCD ABC ∠=∠=,所以选D .6. 【答案】C[解析] ∵多边形内角和公式为(n -2)×180°,∴多边形内角和一定是180°的倍数. ∵540°=3×180°,∴540°可以作为某一个多边形的内角和.7. 【答案】A【解析】本题考查分式的加减运算,主要运算技巧包括通分,约分,同时常用平方差、完全平方公式作为解题工具.本题可先通分,继而进行因式约分求解本题.221(1)(1)x x x +++21(1)x x +=+,因为10x +≠,故211=(1)1x x x +++.故选:A .8. 【答案】D【解析】由作法得CE ⊥AB ,则∠AEC=90°, AC=AB=BE+AE=2+1=3,在Rt △ACE 中,=.故选D .9.【答案】C【解析】①∵32+42=52,∴三条线段3、4、5组成直角三角形,∴B 选项不正确;②当把斜边5变成7时,3+4=7,不满足三角形两边之和大于第三边,不能构成三角形,∴D 选项不正确;③当把斜边5稍微变小一点为4时,三条线段为3、4、4组成锐角三角形,∴A 选项不正确;④当把斜边5稍微变大一点为6时,三条线段为3、4、6组成钝角三角形,∴C 选项正确.10.【答案】C [解析]如图,作PP′垂直于河岸L ,使PP′等于河宽,连接QP′,与河岸L 相交于点N ,将P′N 沿竖直方向向上平移河宽个单位长度,得到PM ,PM -MN -NQ 即所求.根据“两点之间,线段最短”,QP′最短,即PM +NQ 最短.观察选项,选项C 符合题意.11.【答案】C [解析]在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.12. 【答案】B[解析] 如图,连接AC 并延长交EF 于点M.∵AB ∥CF ,∴∠3=∠1. ∵AD ∥CE ,∴∠2=∠4.∴∠BAD =∠3+∠4=∠1+∠2=∠FCE.∵∠FCE =180°-∠E -∠F =180°-80°-50°=50°,∴∠BAD =∠FCE =50°.二、填空题(本大题共12道小题)13. 【答案】②④⑥①③⑤14. 【答案】a 2+a =a (a +1).故答案为:a (a +1).15. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF. 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).16. 【答案】线段垂直平分线上的点与这条线段两个端点的距离相等17. 【答案】角的内部到角的两边距离相等的点在角的平分线上18.【答案】10° [解析]作点C 关于OA 的对称点D ,过点D 作DN ⊥OB 于点N ,交OA 于点M ,则此时CM +MN 的值最小.∵∠OEC =∠DNC =90°,∠DME =∠OMN , ∴∠D =∠AOB =40°.∵MD=MC,∴∠DCM=∠D=40°,∠DCN=90°-∠D=50°.∴∠OCM=10°.19. 【答案】(a+3)(a-3)3(a-3)3(a+3)(a-3)20. 【答案】7[解析] a2-2ab+b2-x+y=(a-b)2-(x-y).把a-b=3x-y=2代入得原式=32-2=7.21. 【答案】30 [解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.22. 【答案】(1)a2-2ab+b2=(a-b)2,a2-b2=(a+b)(a-b)(2)约分(3)三-123. 【答案】 6 [解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.24. 【答案】解:如图.故填3,4,5,6,n.三、作图题(本大题共2道小题)25. 【答案】解:如图,四边形A1B1C1D1即为所求.26. 【答案】解:如图,作线段AP∥l,使AP=a,且点P在点A的右侧;作点P关于直线l的对称点P',连接BP'交l于点D;在l上点D的左侧截取DC=a,则CD就是所求绿化带的位置.四、解答题(本大题共6道小题)27. 【答案】解:∵DE垂直平分线段AB,GF垂直平分线段BC,∴EB=EA,GB=GC.∵△BEG的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.28. 【答案】解:(1)C(2)==+=m-1+.29. 【答案】解:(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab=-4×33+6×32-8×3=-108+54-24=-78.30. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎪⎨⎪⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎪⎨⎪⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.31. 【答案】(1)根据题意可得AD =t ,CD =6-t ,CE =2t. ∵△DEC 为等边三角形,∴CD =CE ,即6-t =2t ,解得t =2.∴当t 的值为2时,△DEC 为等边三角形.(2)∵∠A =90°,∠B =30°,∴∠C =60°. ①当∠DEC 为直角时,∠EDC =30°,∴CE =12CD ,即2t =12(6-t),解得t =65;②当∠EDC 为直角时,∠DEC =30°,∴CD =12CE ,即6-t =12·2t ,解得t =3.综上,当t 的值为65或3时,△DEC 为直角三角形.32. 【答案】【解析】由题意得2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,解方程组得3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入所求代数式得313133143411313331333033n n n n n n n x y z x ---⎛⎫⎛⎫-=⋅⋅-=⋅⨯⋅-=-= ⎪ ⎪⎝⎭⎝⎭.。
人教版八年级下册数学专题复习及练习(含解析):最短路径问题
专题13.4最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点川,万分别是直线2异侧的两个点,在2上找一个点G使CA^CB最短,这时点Q是直线』与初的交点.⑵求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条宜线的对称点, 连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点月,万分别是直线2同侧的两个点,在』上找一个点G使CA+CB最短,这时先作点〃关为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C',连接EG、BC「、证明M -\-CB<AC f +C* 3 如下:证明:由作图可知,点万和万‘关于直线/对称,所以直线/是线段宓’的垂直平分线.因为点Q与C'在直线上,所以BC=B' G BC =B f r C f・在G 中,AB' <AC r +B f C ,所以AC+B' C<AC r +B f C ,所以AC+BC<AC f+C‘ B.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点「到直线上某点的距离和最小越个核心,所有作法都相同.利用轴对称解决最值问题应注意题目要球根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,「审题不淸导致答非所问.3.利用平移确左最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸「的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜而反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.Cy __-7 B5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.对点例题解析【例题1】在图中直线/上找到一点M使它到儿万两点的距离和最小.A【例题2】如图,小河边有两个村庄出B.要在河边建一自来水厂向川村与万村供水.(1)若要使厂部到心万村的距离相等,则应选择在哪建厂?(2)若要使厂部到川,万两村的水管最短,应建在什么地方?【例题3】如图,从川地到万地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到万地的路程最短?【例题4】如图所示,A, 3两点在直线2的两侧,在/上找一点G使点C到点月、万的距离之差最大.如JII练题1 •直线』左侧有两点只Q,试在直线上确左一点Q使得防%最短.2•如图,△月氏与△处关于某条直线对称,请画岀对称轴.A DC F3•如图,A.万为重庆市内两个较大的商圈,现需要在主要交通干道』上修建一个轻轨站只问如何修建,4•如图,四边形ABCD 中,ZBAD=120° , ZB=ZD=90°,在BC、CD ±分别找一点M、N,使Z\AMN 周长最小时,则ZAMN+ZANM的度数为()C. 110°D. 100°5•如图,两条公路0A. 0B相交,在两条公路的中间有一个汕库,设为点P,如在两条公路上各设置一个加油站,,请你设计一个方案,把两个加油站设在何处,可使运汕车从油库出发,经过一个加油站,再到另一个加汕站,最后回到汕库所走的路程最短.专题13.4最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点川,万分别是直线2异侧的两个点,在2上找一个点G使CA^CB最短,这时点Q是直线』与初的交点.⑵求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条宜线的对称点, 连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点月,万分别是直线2同侧的两个点,在』上找一个点G使CA+CB最短,这时先作点〃关为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C',连接EG、BC「、证明M -\-CB<AC f +C* 3 如下:证明:由作图可知,点万和万‘关于直线/对称,所以直线/是线段宓’的垂直平分线.因为点Q与C'在直线上,所以BC=B' G BC =B f r C f・在G 中,AB' <AC r +B f C ,所以AC+B' C<AC r +B f C ,所以AC+BC<AC f+C‘ B.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点「到直线上某点的距离和最小越个核心,所有作法都相同.利用轴对称解决最值问题应注意题目要球根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,「审题不淸导致答非所问.3.利用平移确左最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸「的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜而反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.Cy __-7 B5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.对点例题解析【例题1】在图中直线/上找到一点M使它到儿万两点的距离和最小.A【答案】见解析。
人教版八年级数学下册复习提纲
人教版八年级数学下册复习提纲
一、整数和有理数
1. 整数概念及性质
2. 整数的加减法运算
3. 整数的乘法和除法运算
4. 整数的混合运算和运算规律
5. 有理数概念及性质
6. 有理数的加减法运算
7. 有理数的乘法和除法运算
8. 有理数的混合运算和运算规律
二、平方根和实数
1. 平方根的概念及性质
2. 平方根的运算法则
3. 二次根式的概念及性质
4. 二次根式的加减法运算
5. 二次根式的乘法和除法运算
6. 实数的概念及性质
7. 实数的加减法运算
8. 实数的乘法和除法运算
三、图形的性质
1. 平面直角坐标系
2. 点、线、面的基本概念
3. 图形的相似性质
4. 图形的对称性质
5. 图形的投影性质
6. 图形的旋转性质
四、一元一次方程与一元一次不等式
1. 一元一次方程的基本概念
2. 一元一次方程的解集及解的性质
3. 一元一次方程的加减消元和倍增消元
4. 一元一次方程的应用问题
5. 一元一次不等式的基本概念
6. 一元一次不等式的解集及解的性质
7. 一元一次不等式的加减消元和倍增消元
8. 一元一次不等式的应用问题
以上为人教版八年级数学下册复习提纲,以帮助复习重要知识点和概念。
请根据提纲进行系统性的复习和练习,以加深对数学知识的理解和掌握。
统编教材部编版人教版八年级数学知识点体系复习学习资料上下册
八年级数学上册期末知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a = ⑶积的乘方:()n n n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章分式1、分式的概念【样例1】当x取什么值时,下列分式有意义?(1);(2).【样例2】分式的值等于0,求x的取值.〖人教版课本,P3.例1, P9练习题13〗2、分式的运算【样例1】化简求值:,其中.〖人教版课本,P11.例2, P17.例7,P23练习题6,8〗3、分式方程【样例1】解下列分式方程.(1);(2)【样例2】(2007广西玉林课改,3分)甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要()A.6天B.4天C.3天D.2天【样例3】(2007河北课改,2分)炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A.B.C.D.〖人教版课本,P30.例4, P37练习题10〗第十七章反比例函数1、反比例函数概念【样例1】下列函数中,是的反比例函数为()A.B.C.D.【样例2】(2007广东梅州课改)近视眼镜的度数(度)与镜片焦距(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数与镜片焦距之间的函数关系式为.【样例3】已知反比例函数的图象经过点A(-2,3),则这个反比例函数的解析式为.〖人教版课本,P44.例4, P46~P47.练习题3,7,8,9〗2、实际问题与反比例函数【样例5】一司机驾驶汽车从甲地去乙地,以80千米/时的平均速度用6小时到达目的地.(1)当他按原路匀速返回时,求汽车速度v(千米/时)与时间t(小时)之间的函数关系式;(2)如果该司机匀速返回时,用了48小时,求返回时的速度.〖人教版课本,P52.例3, P46~P47.练习题1,3,5〗3、反比例函数综合运用【样例5】(2007吉林长春课改)如图,在平面直角坐标系中,为轴正半轴上一点,过作轴的平行线,交函数的图象于,交函数的图象于,过作轴的平行线交的延长线于.(1)如果点的坐标为,求线段与线段的长度之比.(3分)(2)如果点的坐标为,求线段与线段的长度之比.(3分)(3)在(2)的条件下,四边形的面积与.(1分)〖人教版课本,P60~P61.练习题5,9,10,11〗第18章勾股定理【样例1】以下面每组中的三条线段为边的三角形中,是直角三角形的是()A. 5cm,13cm,11cmB. 5cm,8cm,11cmC . 5cm,12cm,13cm D. 8cm,13cm,11cm【样例2】△ABC中,如果三边满足关系=+,则△ABC的直角是()A.∠CB.∠AC.∠BD.不能确定【样例3】(2007四川绵阳课改,4分)若a、b、c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:①以a2,b2,c2 的长为边的三条线段能组成一个三角形②以,,的长为边的三条线段能组成一个三角形③以a + b,c + h,h的长为边的三条线段能组成直角三角形④以,,的长为边的三条线段能组成直角三角形其中所有正确结论的序号为.【样例4】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)两直线平行,同位角相等。
(2)全等三角形的对应角相等。
【样例5】(2007安徽芜湖课改,4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.cm B.4cm C.cm D.3cm【样例6】(2007广东梅州课改,3分)如图5,有一木质圆柱形笔筒的高为,底面半径为,现要围绕笔筒的表面由至(在圆柱的同一轴截面上)镶入一条银色金属线作为装饰,这条金属线的最短长度是.【样例7】(2007江苏连云港课改,3分)如图,直线上有三个正方形,若的面积分别为5和11,则的面积为()A.4 B.6 C.16 D.55【样例8】已知,如图四边形ABCD中,∠B=90º,AB=4,BC=3,AD=13,CD=12,求:四边形ABCD的面积。
〖人教版课本,P70.练习题3,6,8。
P75.例2, P80~P81.练习题3,5,6,8,P103习题9〗平行四边形:1、平行四边形的概念【样例1】根据已有知识判断下列图中是平行四边形的是()(2)如果一个四边形有两组对边分别平行,那么这个四边形是____________.(3)一组对边平行,另一组对边相等的四边形,是平行四边形吗?如果不是,请举出反例.(4) ABCD中,∠A的对角是,邻角是___________;AB的对边是,邻边是.【样例2】(1)一个平行四边形的一个外角∠1为38°,这个平行四边形的每个内角度数分别是多少?为什么?(2)如图,□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为( )(A)6cm (B)12cm(C)4cm (D)8cm(3)如图,□ABCD的对角线AC、BD交于点O,若两条对角线长的和为20cm,且BC 长为6cm,则△AOD的周长为cm.【样例3】(2007湖北襄樊非课改,6分)如图,中,是对角线的中点,过点的直线分别交于两点.求证:.〖人教版课本,P85.例2, P86.练习题2〗2、平行四边形的判定与性质及综合运用【样例1】(2007江苏南通课改,3分)如图,在中,已知,,平分交边于点,则等于()A.1cm B.2cm C.3cm D.4cm【样例2】(2006 成都课改)已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.①求证:AF=CE;②若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.【样例3】(1)如图①,BC=6,E、F分别是线段AB和线段AC的中点,那么EF与BC的位置关系是,线段EF的长是厘米.(2)如图②,A、B、C把OD四等分,AA/∥BB/∥CC/∥DD/,若DD/=20,则CC/=().(A)5(B)10(C)15(D)20说明:第(1)题,直接应用三角形中位线定理;第(2)题,灵活运用三角形中位线定理. 【样例4】(2007广西南宁课改,10分)如图,在中,点分别是边的中点,若把绕着点顺时针旋转得到.(1)请指出图中哪些线段与线段相等;(2)试判断四边形是怎样的四边形?证明你的结论.〖人教版课本,P88.例4, P91~P92.习题3,4,5,6,9,10〗(二)特殊的平行四边形:1、矩形:【样例1】矩形的面积为12cm2,周长为14cm,则它的对角线长为(※).(A)5cm (B)6cm (C)cm (D)cm 【样例2】(1)直角三角形中,两直角边分别是12和5,则斜边上的中线长是().(A)34 (B)26(C)8.5 (D)6.5(2)等腰直角三角形的斜边长为18cm,则顶角平分线的长是cm.【样例3】(2007甘肃陇南非课改,3分)如图,下列图形中,每个正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()【样例4】(2007甘肃白银7市课改,4分)如图,矩形的对角线和相交于点,过点的直线分别交和于点E、F,,则图中阴影部分的面积为.【样例5】如图6,已知点E为正方形ABCD的边BC上一点,连结AE,过点D作DG⊥AE,垂足为G,延长DG交AB于点F. 求证:BF=CE.〖人教版课本,P95.例1, P122.习题15〗2、菱形:【样例1】(2007广东课改,3分)如图,点O是AC的中点,将周长为4cm的菱形ABCD沿对角线AC方向平移AO长度得到菱形,则四边形OECF的周长..为_ __cm.【样例2】(1)下列说法正确的是().(A)邻角相等的四边形是菱形(B)有一组邻边相等的四边形是菱形(C)对角线互相垂直的四边形是菱形(D)对角线互相垂直且平分的四边形是菱形(2)如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,且AO=3,BO=4,AB=5. 求证:四边形ABCD是菱形.(3)如图,已知AD是△ABC的一条角平分线,DE∥AC交AB于点E,DF∥AB交AC 于点F,求证:四边形AEDF是菱形.【样例3】(2007山东烟台课改,14分)如图,等腰梯形中,,点是线段上的一个动点(与不重合),分别是,,的中点.(1)试探索四边形的形状,并说明理由.(2)当点运动到什么位置时,四边形是菱形?并加以证明.(3)若(2)中的菱形是正方形,请探索线段与线段的关系,并证明你的结论.〖人教版课本,P99.例3, P103习题10,12,13〗3、正方形【样例1】(2007山东滨州课改,3分)对角线互相垂直平分的四边形是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形答案:D【样例2】(1)在正方形ABCD中,对角线AC和BD相交于点O,AB=3cm,则正方形的周长为,面积为,对角线长为.(2)矩形、菱形、正方形都具有的性质是( ) .(A)对角线相等(B)对角纯碱平分一组对角(C)对角线互相垂直(D)对角线互相平分【样例3】(1)判断下列命题是否正确:①对角线互相垂直且相等的平行四边形是正方形.②对角线互相垂直的矩形是正方形.③对角线相等的菱形是正方形.④对角线互相垂直平分且相等的四边形是正方形.【样例4】已知:如图点A'、B'、C'、D'分别是正方形ABCD四条边上的点,并且AA'=BB'=CC'=DD',求证:四边形A'B'C'D'是正方形.〖人教版课本,P102. .习题2, P104.习题15,P104.习题15〗(三)梯形:【样例1】(1)如图,在等腰梯形ABCD中,AB∥DC,CE∥DA.已知AB=8,DC=5,DA=6,求△CEB 的周长.(2)8.如图,等腰梯形ABCD中,DC//AB,AD=BC,AC为∠DAB的角平分线,AB=AC,求∠B的度数.(3)如图,已知直角梯形中,AD//BC,∠B=90°,DC=10厘米,∠C=45°,求AB的长.【样例2】(2007福建泉州课改,8分)如图,在梯形中,,.(1)请再写出图中另外一对相等的角;(2)若,,试求梯形的中位线的长度.〖人教版课本,P108.例2, P108~P110.练习3,习题1,6,7P121习题8〗第20章【样例1】人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:,,,则成绩较为稳定的班级是()A.甲班B.乙班C.两班成绩一样稳定D.无法确定【样例2】八年级某班的教室里,三位同学正在为谁的数学成绩最好而争论,他们的5次数学成绩分别是:小华:62,94,95,98,98;小明:62,62,98,99,100;小丽:40,62,85,99,99.他们都认为自己的成绩比另两位同学好,根据下表,小华说他的成绩平均数最高,所以他成绩最好;小明说应该比较中位数,他的成绩中位数最高;小丽则说应该比从三人的测验分数对照下图来看,你认为哪一个同学的成绩最好呢? 平均数、中位数和众数各有其长,也各有其短,你能再举出几个例子吗?解:小华说他的成绩平均数最高,所以他成绩最好;小明说应该比较中位数,他的成绩中位数最高;小丽则说应该比较众数,她是三人中成绩众数最高的人.三人说的各有各的道理,从不同侧面概括了一组数据的特征,这些特征都可以作为一组数据的代表,这个问题没有唯一答案。