《向量的加法运算及其几何意义》教学设计

合集下载

《向量加法运算及其几何意义》教案

《向量加法运算及其几何意义》教案

《向量加法运算及其几何意义》教案课程名称:向量加法运算及其几何意义教学目标:1.理解向量的加法运算的定义和性质;2.掌握向量的加法运算的计算方法;3.能够将向量加法运算的几何意义与实际问题相结合。

教学内容:一、向量的加法运算的定义和性质1.向量的定义和表示方法回顾2.向量加法的定义及性质3.向量加法的交换律、结合律和零元素二、向量的加法运算的计算方法1.坐标法求解向量加法2.平行四边形法求解向量加法3.多个向量的加法运算三、向量加法的几何意义及其应用1.向量的平移和位移概念2.向量加法在平移和位移中的应用3.向量加法与力的合成一、导入(10分钟)1.利用实际生活中的例子引出向量的概念,使学生明白向量的意义和作用。

2.回顾上节课所学的向量的定义和表示方法。

二、讲授(30分钟)1.向量加法的定义和性质的讲解。

2.向量加法的计算方法的讲解,包括坐标法和平行四边形法。

3.多个向量的加法运算的讲解和计算。

三、练习(25分钟)1.针对向量加法运算的计算方法,进行一些练习题的讲解,引导学生掌握计算技巧。

2.布置一些练习题让学生自主练习,并进行互相讨论和解答。

四、应用(25分钟)1.引导学生理解向量加法的几何意义,包括平移和位移的概念。

2.通过实际问题的分析,引导学生将向量加法运算与实际问题相结合,如力的合成问题等。

五、总结和拓展(10分钟)1.对本节课的主要内容进行总结,并强调重点。

2.提出一些综合性的拓展问题,引导学生进一步巩固和应用所学知识。

1.利用多媒体展示向量的定义和表示方法,使学生更直观地理解概念。

2.利用示意图和实例演示向量加法运算的计算方法,帮助学生掌握计算技巧。

3.利用实际问题引导学生将向量加法运算与实际问题相结合,提升学生的应用能力。

教学评价:1.在练习环节中,观察学生的练习过程和结果,及时给予指导和反馈。

2.在应用环节中,观察学生对实际问题的分析和解决能力,评价学生的应用能力和创新思维能力。

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量的概念回顾1.1 向量的定义向量是从数学和物理学中引入的概念,具有大小和方向。

向量通常用字母表示,如\(\vec{a}\)、\(\vec{b}\) 等,也可以用箭头表示。

1.2 向量的表示方法向量可以用坐标形式表示,如\(\vec{a} = (a_x, a_y)\)。

向量还可以用图形表示,在坐标系中表示向量的起点和终点。

第二章:向量的加法运算2.1 向量加法的定义向量加法是将两个向量相加得到一个新的向量。

如果\(\vec{a} = (a_x, a_y)\) 和\(\vec{b} = (b_x, b_y)\),它们的和\(\vec{c}\) 可以表示为\(\vec{c} = \vec{a} + \vec{b} = (a_x + b_x, a_y + b_y)\)。

2.2 向量加法的几何意义向量加法可以直观地理解为在坐标系中将两个向量的终点相连,得到一个新的向量。

几何上,向量加法表示的是两个向量的位移合成。

第三章:平行向量的加法3.1 平行向量的定义平行向量是指方向相同或相反的向量。

如果两个向量平行,它们的坐标成比例。

3.2 平行向量的加法规则平行向量相加时,可以直接将它们的大小相加,方向不变。

如果\(\vec{a}\) 和\(\vec{b}\) 是平行向量,\(\vec{a} + \vec{b} = (a + b, c)\),其中\(a\) 和\(b\) 是向量的大小,\(c\) 是它们的方向。

第四章:向量的减法运算4.1 向量减法的定义向量减法是将一个向量从另一个向量中减去。

如果\(\vec{a} = (a_x, a_y)\) 和\(\vec{b} = (b_x, b_y)\),它们的差\(\vec{d}\) 可以表示为\(\vec{d} = \vec{a} \vec{b} = (a_x b_x, a_y b_y)\)。

4.2 向量减法的几何意义向量减法可以理解为从起点到终点的位移减去从起点到另一个终点的位移。

向量的加法运算及其几何意义 说课稿 教案 教学设计

向量的加法运算及其几何意义  说课稿  教案  教学设计

向量加法运算及其几何意义教学分析《向量》这一章是前一轮教材中新增的内容.高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用.另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具.教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、单位向量、零向量以及平行向量等基本概念.而本节课是继向量基本概念的第一节课.向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础.它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用.正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限.学生学习情况分析学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景.教学目标根据新课标的要求:培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识.集本节教材的特点和高一学生对矢量的认知特点,我把本节课的教学目标确定为:1.理解向量加法的意义,掌握向量加法的几何表示法,理解向量加法的运算律.2.理解和体验实际问题抽象为数学概念的过程和思想,增强数学的应用意识.3.培养类比、迁移、分类、归纳等能力.4.进行辩证唯物主义思想教育、数学审美教育,提高学生学习数学的积极性.教学重点与难点1.教学重点:两个向量的和的概念及其几何意义.(两个向量的和的概念是向量加法的基础,而向量加法是向量运算的基础.向量的线性运算的另一个特点是它有深刻的物理背景和几何意义,因此在引入一种向量运算后,总是要考查一下它的几何意义,正因为向量的几何意义,使得向量在解决几何问题时可以发挥很好的作用.)2.教学难点:向量加法的运算律.(设计让学生先猜想后验证来学习运算律,需要利用类比的思想进行猜测,还要在猜测的基础上加以验证,有一定难度.)教学过程导入新课问题引入(约5分钟)引例:有两条拖轮牵引一艘轮船,它们的牵引力分别是F 1=3 000牛,F 2=2 000牛,牵绳之间的夹角θ=60°.如果只用一条拖轮来牵引,而产生的效果跟原来的相同,试求出这条拖轮的牵引力的大小和方向.图1在物理中,我们已知道,两个不在一条直线的共点力OA →与OB →的合力是以OA →、OB →为邻边的平行四边形OACB 的对角线OC →所表示的力.这就是说,OC →是OA →与OB →相加所得到的和.设计说明引导学生利用物理中合力的概念,来解决这个实际问题,以现有的知识为出发点培养学生的知识类比、迁移能力.学情预设把实际问题抽象为数学概念是学生的认知难点.概念形成(约5分钟)一般地,把以OA →、OB →为邻边的平行四边形OACB 的对角线OC →,叫做OA →与OB →两个向量的和,记作OA →+OB →.求两个不平行向量的和可按平行四边形法则进行.问题1:如何求两个平行向量的和向量?问题2:任意一个向量与一个零向量的和是什么?求两个向量的和的运算叫做向量的加法.设计说明补充说明两个向量和的概念,同时让学生体验分类的思想.概念深化(约15分钟)练习:根据图2中所给向量a ,b ,c 画出向量:(1)a +b ;(2)a +b +c .图2解法一:将两个向量起点重合,应用平行四边形法则画出两个向量的和向量.解法二:将一个向量的起点与另一向量的终点重合,也可以画出两个向量的和向量. 设计说明1.学生通过练习题(1)可加深对向量加法概念的理解.另外,可由此引出向量加法的三角形法则.图32.通过对比的方式让学生了解向量的加法既可以按照平行四边形法则进行,也可以按照三角形法则进行.在向量加法运算中,通过向量的平移使两个向量首尾相接,可使用三角形法则.引申:求n (n >3)个向量的和向量.设计说明求n (n >3)个向量的和向量时,让学生进一步体会应用首尾相接的三角形法则的优越性. 学情预设学生对从特殊到一般的理解较抽象.结论:求n 个向量的和向量可应用多边形法则.运算律的归纳问题:向量的加法既然是一种运算,它应该具有哪些运算律?如何进行验证呢?设计说明引导学生类比实数加法的运算律,得出向量加法的运算律,培养学生的类比、迁移归纳能力.应用举例(约10分钟)(1)已知平面内有三个非零向量OA →、OB →、OC →,它们的模都相等,并且两两的夹角都是120°,求证:OA →+OB →+OC →=0;(2)在平面内能否构造三个非零向量a 、b 、c ,使a +b +c=0;(3)能否说出(2)的实际模型?设计说明题(1)是基本的例题;题(2)是题(1)的拓展;题(3)能体现数学来源于实际又应用于实际的思想.研究讨论(约5分钟)已知a 、b 是非零向量,则|a +b|与|a|+|b |有什么关系?设计说明设置这一研讨题可以将本节课与上节课的知识联系起来,并进一步渗透分类的思想.小结归纳(约4分钟)让学生自主回顾和归纳本节的内容.。

《向量加法运算及其几何意义》教案全面版

《向量加法运算及其几何意义》教案全面版

《向量加法运算及其几何意义》教案全面版第一章:向量加法运算1.1 向量加法的定义与性质介绍向量加法的定义探讨向量加法的性质(交换律、结合律、分配律)1.2 向量加法的平行四边形法则介绍平行四边形法则展示平行四边形法则的推导过程举例说明平行四边形法则的应用第二章:向量加法的几何意义2.1 向量加法的图像表示利用图像展示向量加法的几何意义分析图像中各部分的关系2.2 向量加法与向量共线的性质探讨向量共线与向量加法的关系举例说明向量共线在向量加法中的应用第三章:向量加法运算的坐标表示3.1 二维空间中的向量加法运算介绍二维空间中的向量加法运算展示向量加法运算的坐标表示方法3.2 三维空间中的向量加法运算介绍三维空间中的向量加法运算展示向量加法运算的坐标表示方法第四章:向量加法运算的应用4.1 向量加法在几何中的应用探讨向量加法在几何问题中的应用举例说明向量加法在几何问题中的解题过程4.2 向量加法在物理中的应用介绍向量加法在物理学中的应用举例说明向量加法在物理学中的解题过程第五章:向量加法的运算律5.1 向量加法的交换律探讨向量加法的交换律及其证明举例说明交换律在实际问题中的应用5.2 向量加法的结合律探讨向量加法的结合律及其证明举例说明结合律在实际问题中的应用第六章:向量加法与向量减法6.1 向量减法的定义与性质介绍向量减法的定义探讨向量减法的性质(与向量加法的联系)展示向量减法的几何意义6.2 向量加法与向量减法的关系分析向量加法与向量减法之间的关系举例说明向量加法与向量减法的应用第七章:向量加法的逆运算7.1 向量加法的逆运算——向量相反介绍向量相反的概念探讨向量相反的性质展示向量相反的几何意义7.2 向量相反在实际问题中的应用举例说明向量相反在解决实际问题中的应用分析向量相反在问题求解中的重要性第八章:向量加法的运算性质8.1 向量加法的运算性质探讨向量加法的运算性质展示向量加法运算性质的证明过程举例说明向量加法运算性质的应用8.2 向量加法的运算性质在实际问题中的应用分析向量加法运算性质在解决实际问题中的应用展示向量加法运算性质在问题求解中的作用第九章:向量加法的应用案例分析9.1 向量加法在几何问题中的应用案例分析向量加法在几何问题中的应用案例展示向量加法在几何问题求解中的关键作用9.2 向量加法在物理学中的应用案例探讨向量加法在物理学中的应用案例展示向量加法在物理学问题求解中的关键作用第十章:向量加法运算的拓展与提高10.1 向量加法运算的拓展探讨向量加法运算的拓展内容展示向量加法运算的拓展性质与应用10.2 向量加法运算能力的提高分析如何提高向量加法运算能力提出提高向量加法运算能力的建议与方法重点解析第一章:向量加法运算1.1 向量加法的定义与性质重点:向量加法的定义,性质(交换律、结合律、分配律)难点:性质的证明与理解1.2 向量加法的平行四边形法则重点:平行四边形法则的推导过程和应用难点:平行四边形法则在空间向量中的应用第二章:向量加法的几何意义2.1 向量加法的图像表示重点:图像表示法的理解和应用难点:图像分析与几何关系的建立2.2 向量加法与向量共线的性质重点:向量共线与向量加法的关系难点:共线向量在复杂几何问题中的应用第三章:向量加法运算的坐标表示3.1 二维空间中的向量加法运算重点:坐标表示方法和坐标运算规则难点:三维空间坐标运算的复杂性3.2 三维空间中的向量加法运算重点:三维空间坐标表示和运算难点:三维空间向量加法的图像理解第四章:向量加法运算的应用4.1 向量加法在几何中的应用重点:几何问题的向量加法解决方案难点:复杂几何问题的向量分析4.2 向量加法在物理中的应用重点:物理问题的向量加法解决方案难点:物理场景中向量加法的实际应用第五章:向量加法的运算律5.1 向量加法的交换律重点:交换律的理解和证明难点:交换律在复杂问题中的应用5.2 向量加法的结合律重点:结合律的理解和证明难点:结合律在复杂问题中的应用第六章:向量加法与向量减法6.1 向量减法的定义与性质重点:向量减法的定义和性质难点:向量减法与加法的联系和转换6.2 向量加法与向量减法的关系重点:加法与减法之间的关系难点:实际问题中的加减法应用第七章:向量加法的逆运算7.1 向量加法的逆运算——向量相反重点:向量相反的概念和性质难点:向量相反在实际问题中的应用7.2 向量相反在实际问题中的应用重点:相反向量在问题解决中的作用难点:相反向量在不同情境下的应用第八章:向量加法的运算性质8.1 向量加法的运算性质重点:向量加法的运算性质及其证明难点:运算性质在不同维度空间的适用性8.2 向量加法的运算性质在实际问题中的应用重点:运算性质在实际问题中的应用难点:复杂问题中运算性质的灵活运用第九章:向量加法的应用案例分析9.1 向量加法在几何问题中的应用案例重点:几何问题中向量加法的关键作用难点:复杂几何问题中向量加法的分析9.2 向量加法在物理学中的应用案例重点:物理学问题中向量加法的关键作用难点:物理场景中向量加法的实际应用第十章:向量加法运算的拓展与提高10.1 向量加法运算的拓展重点:向量加法运算的拓展性质与应用难点:拓展内容的深度与广度理解10.2 向量加法运算能力的提高重点:提高向量加法运算能力的方法与技巧难点:高级运算能力的培养与实践。

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量的概念回顾1.1 向量的定义1.2 向量的表示方法1.3 向量的长度和方向第二章:向量的加法运算2.1 向量加法的定义2.2 向量加法的几何意义2.3 向量加法的三角形法则2.4 向量加法的平行四边形法则第三章:向量加法的性质3.1 交换律3.2 结合律3.3 存在零向量3.4 存在相反向量第四章:向量的减法运算4.1 向量减法的定义4.2 向量减法的几何意义4.3 向量减法的三角形法则4.4 向量减法的平行四边形法则第五章:向量减法的性质5.1 减去一个向量等于加上它的相反向量5.2 减去两个向量等于减去它们的和5.3 减法运算与加法运算的关系第六章:向量的数乘运算6.1 向量的数乘定义6.2 向量的数乘几何意义6.3 向量的数乘与向量长度的关系6.4 向量的数乘与向量方向的关系第七章:向量的数乘运算性质7.1 数乘运算的分配律7.2 数乘运算的结合律7.3 数乘运算的单位元7.4 数乘运算的逆元第八章:向量的点积运算8.1 向量点积的定义8.2 向量点积的几何意义8.3 向量点积的计算公式8.4 向量点积的性质第九章:向量的叉积运算9.1 向量叉积的定义9.2 向量叉积的几何意义9.3 向量叉积的计算公式9.4 向量叉积的性质第十章:向量的应用10.1 向量在几何中的应用10.2 向量在物理中的应用10.3 向量在其他领域中的应用10.4 向量的进一步研究第六章:向量的线性组合与基底6.1 向量的线性组合定义6.2 向量的线性组合的几何意义6.3 基底的概念6.4 基底的选取方法第七章:向量空间与线性相关性7.1 向量空间的概念7.2 线性相关的定义7.3 线性无关的定义7.4 线性相关性与线性无关性的判断方法第八章:向量的坐标表示8.1 坐标系的概念8.2 向量的坐标表示方法8.3 坐标变换与向量的关系8.4 坐标表示在几何中的应用第九章:向量组的线性表示9.1 向量组的线性表示概念9.2 矩阵与向量组的关系9.3 矩阵的基本运算9.4 矩阵的逆与向量组的线性表示第十章:向量的进一步研究10.1 向量范数的概念10.2 向量范数的性质10.3 向量内积的概念10.4 向量内积的性质10.5 向量组的内积空间重点和难点解析一、向量的概念回顾:重点关注向量的定义、表示方法、长度和方向,为学生奠定扎实的向量基础。

向量的加法运算及其几何意义 说课稿 教案 教学设计

向量的加法运算及其几何意义 说课稿  教案 教学设计

向量的加法运算及其几何意义一、教学目标:1.理解向量加法的概念及向量加法的几何意义;2.熟练掌握向量加法的平行四边形法则和三角形法则,会作已知两向量的和;3.理解向量的加法交换律和结合律,并能熟练地运用它们进行向量计算。

二、教学重难点:1.如何作两向量的和向量;2.向量加法定义的理解。

三、教学过程:(一)复习:1.向量的概念、表示法。

2.平行向量、相等向量的概念。

例:已知O 点是正六边形ABCDEF 的中心,则下列向量组中含有相等向量的是( ) (A )OB 、CD 、FE 、CB (B )AB 、CD 、FA 、DE (C )FE 、AB 、CB 、OF (D )AF 、AB 、OC 、OD(二)新课讲解:情景:利用向量的表示,从景点O到景点A的位移为OA,从景点A到景点B的位移为 OB ,那么经过这两次位移后游艇的合位移是 OB (图22 1)A C E O D B1.向量的加法:求两个向量和的运算叫做向量的加法。

规定:零向量与任一向量a ,都有00a a a +=+=.说明:①共线向量的加法: a b a b +②不共线向量的加法:如图(1),已知向量a ,b ,求作向量a b +.作法:在平面内任取一点O (如图(2)),作OA a =,AB b =,则OB a b =+ .(1) (2)2.向量加法的法则:(1)三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。

表示:AB BC AC +=.(2)平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作ABCD ,则以A 为起点的对角线AC 就是a 与b 的和,这种求向量和的方法称为向量加法的平行四边形法则。

3.向量的运算律:b a OBA b a b a A BC D A B C+=+.交换律:a b b a结合律:()()a b c a b c++=++.说明:多个向量的加法运算可按照任意的次序与任意的组合进行:例如:()()()()++++=++++.a b c d b d a ca b c d e d a c b e+++=+++;[()]()六、小结:1.理解向量加法的概念及向量加法的几何意义;2.熟练掌握向量加法的平行四边形法则和三角形法则。

《向量的加法运算及其几何意义》教学设计方案

《向量的加法运算及其几何意义》教学设计方案

《向量的加法运算及其几何意义》教学设计方案《《向量的加法运算及其几何意义》教学设计方案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习主题介绍学习主题名称:向量的加法运算及其几何意义主题内容简介:本学习主题主要学习了平面向量的加法的定义、几何意义和运算法则,通过对平面向量加法的学习,加深对于平面向量的理解。

学习目标分析1、知识与技能:(1)理解认知平面向量的加法的定义(2)掌握平面向量的加法的集合意义及运算法则2、过程与方法:(1)通过对平面向量的加法的学习,在探究过程中,掌握对运算法则的应用(2)在问题的层层递进中,培养学生数形结合的思想方法(3)在对问题的不断深入思考中,提高数学知识的综合运用能力3、情感态度与价值观通过学习,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,形成严谨的科学态度和求简的数学精神,体会学以致用的乐趣。

学情分析前需知识掌握情况:1、学生的基础知识:学生在前面的学习中已经掌握了什么是平面向量,并学习了平面向量的相关概念知识;2、知识的应用层面:学生已经学会了应用平面向量来表达、解决一些实际问题,将平面向量的“有方向、有大小”这个特点应用在题目中。

综合对上述两点的分析,学生已经掌握了一定的平面向量的知识,可以运用微课进行接下来的学习,但是微课的制作需要注意图形变换与讲解相结合,微课的内容以基础知识为主,方便学生理解。

对微课的认识:学生已经在前面的学习过程中经历了我采用的微课形式和使用微课学习的方式,经历过以下几种方式:1、应用微课学习某个特定的知识点,并根据指导在课本中画出重点内容;2、应用微课学习了某个知识点的类型题,在学后测试表现出了学习的效果;3、应用微课加深了对于“数形结合”这一思想的理解。

以上三种方式可以观察到,学生比较乐于接受微课,对于微课的学习有一定的兴趣。

学生特征分析学习态度:学生对于自主学习的态度分为两种:1、学习习惯好、成绩优异的学生:对于此类学生而言,自主学习可以增加他们自主调配的时间,让他们更有针对性地学习,提高学习的效率,此类学生非常乐于接受自主学习的方式;2、学习习惯一般,成绩有待提高的学生:此类学生对于自主学习的态度不是非常积极,学习习惯一般导致他们面对自主学习时,会显得局促不安,此类学生需要老师的指引,帮助他们度过适应期。

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量的引入1.1 实数与向量的关系介绍实数的概念和性质。

解释实数可以看作是二维向量空间中的一条直线上的点。

强调实数与向量的相关性。

1.2 向量的定义定义向量的概念,包括大小和方向。

强调向量是自由矢量,可以自由平移。

解释向量与箭头表示法的区别。

第二章:向量的表示法2.1 箭头表示法介绍箭头表示法,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

强调箭头表示法中的大小和方向的表示方法。

2.2 坐标表示法介绍坐标表示法,使用有序数对(x, y) 来表示向量,其中x 表示向量在x 轴上的分量,y 表示向量在y 轴上的分量。

强调坐标表示法中的分量的概念和计算方法。

第三章:向量的加法运算3.1 向量加法的定义定义向量加法的概念,即将两个向量相加得到一个新的向量。

强调向量加法满足交换律和结合律。

3.2 向量加法的几何意义解释向量加法的几何意义,即将两个向量的箭头首尾相接,得到一个新的向量箭头。

强调向量加法是将两个向量的方向和大小相加。

第四章:平行向量与共线向量4.1 平行向量的定义定义平行向量的概念,即方向相同或相反的向量。

强调平行向量具有相同的方向或相反的方向。

4.2 共线向量的定义定义共线向量的概念,即在同一直线上的向量。

强调共线向量可以是同方向的或反方向的。

第五章:向量加法的平行四边形法则5.1 平行四边形法则的定义介绍平行四边形法则,即将两个向量的起点相连,形成一个平行四边形,平行四边形的对角线表示两个向量相加的结果。

强调平行四边形法则是向量加法的一种直观表示方法。

5.2 平行四边形法则的应用解释如何使用平行四边形法则计算两个向量的和。

强调平行四边形法则适用于任意两个向量的加法运算。

第六章:向量减法与相反向量6.1 向量减法的定义定义向量减法,即将一个向量与它的相反向量相加。

强调向量减法实际上是加上一个相反向量。

6.2 相反向量的概念解释相反向量的定义,即大小相等、方向相反的向量。

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量概念的复习1.1 向量的定义1.2 向量的基本性质1.3 向量的表示方法1.4 向量的模长与方向第二章:向量的加法运算2.1 向量加法的定义2.2 向量加法的基本性质2.3 向量加法的几何意义2.4 向量加法的运算规则第三章:向量的减法运算3.1 向量减法的定义3.2 向量减法与向量加法的关系3.3 向量减法的几何意义3.4 向量减法的运算规则第四章:向量的数乘运算4.1 向量数乘的定义4.2 向量数乘的基本性质4.3 向量数乘的几何意义4.4 向量数乘的运算规则第五章:向量加法运算的坐标表示5.1 坐标系的建立5.2 向量坐标的定义5.3 向量加法运算的坐标表示方法5.4 向量加法运算的坐标运算规则第六章:向量加法运算的图形验证6.1 向量加法图形的表示方法6.2 向量加法的平行四边形法则6.3 向量加法的三角形法则6.4 向量加法的图形验证练习第七章:向量的减法与数乘的图形意义7.1 向量减法的图形意义7.2 向量减法的三角形法则7.3 向量数乘的图形意义7.4 向量数乘的三角形法则第八章:向量加减法的综合应用8.1 向量加减法的混合运算8.2 向量加减法的坐标应用8.3 向量加减法的几何解释8.4 向量加减法的综合练习第九章:向量数乘的应用9.1 向量数乘与向量长度的关系9.2 向量数乘与向量方向的关系9.3 向量数乘的几何应用9.4 向量数乘的实际问题应用第十章:总结与提高10.1 向量加法、减法、数乘的总结10.2 向量运算在几何中的应用10.3 向量运算在坐标系中的应用10.4 向量运算的综合练习与提高重点和难点解析一、向量概念的复习补充说明:向量是具有大小和方向的量,可用箭头表示。

向量具有平行四边形法则、三角形法则等基本性质。

向量可用字母和箭头表示,例如→a、→b。

向量的模长表示向量的大小,方向表示向量的指向。

二、向量的加法运算补充说明:向量加法是将两个向量首尾相接,形成一个新的向量。

《向量加法运算及其几何意义》教案全面版

《向量加法运算及其几何意义》教案全面版

《向量加法运算及其几何意义》教案全面版第一章:向量的概念1.1 向量的定义介绍向量的定义,即有大小和方向的量。

通过实际例子解释向量的概念。

1.2 向量的表示介绍向量的表示方法,包括字母表示和箭头表示。

解释向量的大小和方向的表示方式。

第二章:向量的基本运算2.1 向量的加法介绍向量加法的定义和规则。

通过实际例子解释向量加法的运算方法。

2.2 向量的减法介绍向量减法的定义和规则。

通过实际例子解释向量减法的运算方法。

第三章:向量的数乘运算3.1 向量的数乘定义介绍向量的数乘运算,即向量与实数的乘积。

解释向量数乘的结果向量的意义。

3.2 向量的数乘运算规则介绍向量的数乘运算规则,包括标量与向量的乘积以及向量与向量的乘积。

通过实际例子解释向量数乘的运算方法。

第四章:向量的几何意义4.1 向量加法的几何意义介绍向量加法的几何意义,即两个向量相加的结果向量表示起点到终点的位移。

通过图形和实际例子解释向量加法的几何意义。

4.2 向量数乘的几何意义介绍向量数乘的几何意义,即标量与向量相乘的结果向量表示向量的伸缩和平移。

通过图形和实际例子解释向量数乘的几何意义。

第五章:向量加法的平行四边形法则5.1 平行四边形法则的定义介绍平行四边形法则的定义,即两个向量相加的结果向量可以用它们构成的平行四边形的对角线表示。

通过图形和实际例子解释平行四边形法则。

5.2 平行四边形法则的应用介绍平行四边形法则的应用,即通过已知向量的加法来求解未知向量。

通过实际例子解释平行四边形法则在解题中的应用。

第六章:向量减法的平行四边形法则6.1 平行四边形法则在向量减法中的应用解释向量减法可以看作是向量加法的特殊情况,即加上一个向量的相反向量。

通过图形和实际例子说明如何使用平行四边形法则进行向量减法。

6.2 平行四边形法则的扩展探讨当第三个向量不在第一和第二个向量所构成的平行四边形内时,如何使用平行四边形法则进行运算。

通过图形和实际例子展示平行四边形法则的灵活应用。

2.2向量加法运算及其几何意义教学设计(北师大必修4)

2.2向量加法运算及其几何意义教学设计(北师大必修4)

2.2向量加法运算及其几何意义教学设计(北师大必修4)第一篇:2.2 向量加法运算及其几何意义教学设计 (北师大必修4)2.2.1向量加法运算及其几何意义一.教学内容和内容分析本节课是《普通高中课程标准实验教科书数学》人教A版必修4第二章《平面向量》第二节《平面向量的线性运算》的第一课时,内容是向量加法运算及其几何意义。

向量是数学中重要和基本的数学概念之一,是沟通代数与几何的桥梁。

向量的加法运算是通过类比数的加法,以位移的合成、力的合力两个物理模型为背景引入的,主要内容是向量加法的三角形法则和平行四边形法则。

教科书从几何角度具体给出了通过两个法则作两个向量和的方法,介绍了向量加法满足的运算率,最后举例说明生活中有向量,生活中用向量。

向量加法运算是学生对向量运算体系所进行的第一次探索和尝试,学好本节课将为后面学习向量的其他知识奠定基础,为用“数”的运算解决“形”的问题提供工具和方法。

因此,本节的教学重点是掌握用向量加法的三角形法则和平行四边形法则作出两个向量的和以及向量加法的运算率。

二.教学目标和目标分析(一)教学目标1.掌握用向量加法的三角形法则和平行四边形法则作出两个向量的和以及向量加法的运算律。

2.理解向量加法及其几何意义。

3.通过类比、观察、归纳等方法提高发现问题、分析问题、解决问题的能力。

(二)教学目标分析1.用向量加法的三角形法则和平行四边形法则作出两个向量的和向量时,体会在平面内任取一点O的依据,它体现了向量起点的任意性,用平行四边形法则作图时强调向量的起点放在一起,而用三角形法则作图则要求首尾相连。

2.通过对向量的大小、方向的探究,加深理解向量加法及其几何意义。

3.从位移的合成、力的合成总结出向量加法法则;从向量的大小与方向探究出向量加法性质;从实数加法的运算律类比向量加法的运算律。

三.教学问题诊断分析本节课学生在学习过程中可能遇到以下疑惑和困难:1.对三角形法则的理解,尤其是方向相反的两个向量的加法。

《向量加法运算及其几何意义》教案全面版

《向量加法运算及其几何意义》教案全面版

《向量加法运算及其几何意义》教案全面版第一章:向量加法运算1.1 向量加法定义1.2 向量加法运算规则1.3 向量加法运算的性质第二章:向量的几何表示2.1 向量的起点和终点2.2 向量的箭头表示法2.3 向量的图形表示法第三章:向量加法的几何意义3.1 向量加法的平行四边形法则3.2 向量加法的三角形法则3.3 向量加法的多边形法则第四章:向量加法与坐标表示4.1 二维空间中的向量加法4.2 三维空间中的向量加法4.3 坐标表示法与向量加法的关系第五章:向量加法运算的应用5.1 向量加法在物理学中的应用5.2 向量加法在工程学中的应用5.3 向量加法在计算机图形学中的应用第六章:向量加法的逆运算6.1 向量加法的逆运算定义6.2 逆运算的性质6.3 逆运算的应用第七章:向量加法的运算律7.1 结合律7.2 交换律7.3 分配律第八章:向量加法与标量乘法8.1 标量乘法定义8.2 向量与标量的乘法运算8.3 向量加法与标量乘法的关系第九章:向量加法在实际问题中的应用9.1 力学中的向量加法9.2 导航与定位中的向量加法9.3 数据分析中的向量加法10.2 向量加法运算的拓展10.3 课后习题与思考题重点和难点解析一、向量加法定义补充和说明:向量加法是指在几何空间中,将两个向量首尾相接,得到一个新的向量。

这个新向量的起点与第一个向量的起点相同,终点与第二个向量的终点相同。

二、向量加法运算规则补充和说明:在平面直角坐标系中,两个向量a和b的加法运算可以通过将它们的坐标分量分别相加得到结果向量c,即c = (a1 + b1, a2 + b2)。

三、向量加法运算的性质补充和说明:向量加法满足交换律,即a + b = b + a;满足结合律,即(a + b) + c = a + (b + c)。

四、向量的几何表示补充和说明:向量可以用箭头表示,箭头的长度表示向量的模,箭头的方向表示向量的方向。

五、向量加法的几何意义补充和说明:向量加法的平行四边形法则是指两个向量首尾相接,构成的平行四边形的对角线表示结果向量。

《向量的加法运算及其几何意义》教案

《向量的加法运算及其几何意义》教案

《向量的加法运算及其几何意义》教案教案:向量的加法运算及其几何意义一、教学目标:1.理解向量的加法运算的定义;2.掌握向量的加法运算的性质;3.能够利用向量的几何意义解决实际问题。

二、教学重点:1.向量的加法运算的定义;2.向量的加法运算的性质。

三、教学难点:1.向量的几何意义;2.利用向量的几何意义解决实际问题。

四、教学过程:1.导入(5分钟)教师通过出示一张图片,让学生观察并说出图片中的向量。

2.引入(15分钟)教师向学生介绍向量的加法运算的定义。

向量的加法运算是指,对于任意两个向量a和b,可以定义出一个新的向量c,使得a+b=c。

同时,教师向学生说明向量的加法运算满足交换律和结合律。

3.探究(20分钟)教师出示示意图,向学生提问:如果有两个向量a和b,它们的起点都是同一个点A,终点分别是B和C,那么a和b的和向量及其几何意义是什么?学生思考后,教师引导学生发现,向量a和b的和向量的起点也是A 点,终点是连接B和C两个终点的直线段的终点D。

这时,教师进一步解释向量的加法运算的几何意义是:将一个向量平移至另一个向量终点的过程。

4.总结(10分钟)教师让学生总结向量的加法运算的几何意义:向量的加法运算就是将一个向量平移至另一个向量终点的过程。

5.进一步探究(25分钟)教师出示两个不共线的向量,要求学生计算它们的和向量,并画出和向量的几何意义。

学生根据教师的引导,通过向量的平移得出结果。

接着,教师出示三个不共线的向量,要求学生计算它们的和向量,并画出和向量的几何意义。

学生通过向量的平移得出结果。

最后,教师出示四个不共线的向量,要求学生计算它们的和向量,并画出和向量的几何意义。

学生通过向量的平移得出结果。

6.拓展应用(20分钟)教师出示一些实际问题,要求学生运用向量的几何意义解决问题。

例如:物体从原点出发,先沿着向量a行进10米,然后再沿着向量b行进15米,最后沿着向量c行进20米,求物体的最终位置。

《向量的加法运算及其几何意义》教案

《向量的加法运算及其几何意义》教案

《向量的加法运算及其几何意义》教案一、教学目标1. 让学生理解向量的加法运算概念,掌握向量加法的三角形法则和平行四边形法则。

2. 让学生理解向量加法的几何意义,能够运用向量加法解决实际问题。

3. 培养学生的空间想象能力和逻辑思维能力。

二、教学内容1. 向量的加法定义及三角形法则。

2. 向量的加法平行四边形法则。

3. 向量加法的几何意义。

三、教学重点与难点1. 教学重点:向量的加法运算及其几何意义。

2. 教学难点:向量加法的三角形法则和平行四边形法则的推导及应用。

四、教学方法1. 采用讲授法,讲解向量的加法定义及运算规则。

2. 利用多媒体演示向量加法的几何意义,增强学生的空间想象力。

3. 引导学生通过小组讨论,发现向量加法法则之间的联系。

五、教学过程1. 导入:通过实际例子,引入向量加法概念,引导学生思考向量加法的意义。

2. 新课讲解:讲解向量的加法定义,引导学生掌握向量加法的三角形法则和平行四边形法则。

3. 实例分析:分析实际问题,运用向量加法解决,让学生体会向量加法的应用价值。

4. 课堂练习:布置练习题,让学生巩固向量加法运算及几何意义。

5. 总结:对本节课内容进行总结,强调向量加法法则的应用。

6. 作业布置:布置相关作业,巩固所学知识。

教学反思:在教学过程中,要注意关注学生的学习情况,针对不同学生的需求进行针对性讲解。

通过多媒体演示和实际例子,帮助学生建立直观的空间想象力,理解向量加法的几何意义。

注重培养学生的逻辑思维能力,引导学生发现向量加法法则之间的联系。

六、教学评价1. 评价内容:学生对向量加法运算的理解和应用能力。

2. 评价方法:课堂练习、课后作业、小组讨论、学生讲解。

3. 评价标准:能够正确运用三角形法则和平行四边形法则进行向量加法运算,理解向量加法的几何意义,并能解决实际问题。

七、教学拓展1. 引导学生思考向量减法的定义及运算规则。

2. 探讨向量加法的逆运算,即向量减法,引导学生理解其几何意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《向量的加法运算及其几何意义》教学设计
教学目标:
1、掌握向量的加法运算,并理解其几何意义;
2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;
3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量. 教学难点:理解向量加法的定义. 学 法:
数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.
教 具:多媒体或实物投影仪,尺规 授课类型:新授课 教学思路: 一、设置情景:
1、 复习:向量的定义以及有关概念
强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、情景设置:
(1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:AC BC AB =+
(2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:AC BC AB =+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:AC BC AB =+
(4)船速为AB ,水速为BC ,则两速度和:AC BC AB =+
A B C
C A B A B
C
A B
C
O
A
B
a
a
a b
b b
二、探索研究:
1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)
如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a
探究:(1)两相向量的和仍是一个向量;
(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且
|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |. (4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加
3.例一、已知向量a 、b ,求作向量a +b
作法:在平面内取一点,作a OA = b AB =,则b a OB +=. 4.加法的交换律和平行四边形法则
问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同
从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)
a A
B
C
a +b
a +b
a
a b
b
a

b a
a
2)向量加法的交换律:a +b =b +a 5.向量加法的结合律:(a +b ) +c =a + (b +c )
证:如图:使a AB =, b BC =, c CD =
则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+
∴(a +b ) +c =a + (b +c )
从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行. 三、应用举例:
例二(P94—95)略 练习:P95 四、小结
1、向量加法的几何意义; 2、交换律和结合律;
3、注意:|a +b | ≤ |a | + |b |,当且仅当方向相同时取等号. 五、课后作业:
P103第2、3题 六、板书设计(略) 七、备用习题
1、一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为h km /4,求水流的速度.
2、一艘船距对岸43km ,以h km /32的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km ,求河水的流速.
3、一艘船从A 点出发以1v 的速度向垂直于对岸的方向行驶,同时河水的流速为2v ,船的实际航行的速度的大小为h km /4,方向与水流间的夹角是60︒,求1v 和2v .
4、一艘船以5km/h的速度在行驶,同时河水的流速为2km/h,则船的实际航行速度大小最大是km/h,最小是km/h
5、已知两个力F
1,F
2
的夹角是直角,且已知它们的合力F与F
1
的夹角是60 ,
|F|=10N求F
1和F
2
的大小.
6、用向量加法证明:两条对角线互相平分的四边形是平行四边形。

相关文档
最新文档